Supplementary Information for:

Patterns of genetic diversity and gene flow associated with an aridity gradient in populations of common mole-rats, *Cryptomys hottentotus hottentotus*

Hana N. Merchant^{1,2*}, Anastasia Ivanova², Daniel W. Hart³, Cristina García¹, Nigel C. Bennett⁴, Steven J. Portugal^{1,5} and Chris G. Faulkes²

¹Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom

²School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom

³Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa

⁴Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa

⁵Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom

*Correspondence to: Hana.Merchant.2020@live.rhul.ac.uk

Figure S1. Phylogenetic trees based on mitochondrial cytochrome b data. a) Maximum parsimony phylogenetic tree of the observed haplotypes and b) maximum likelihood phylogenetic tree of the observed haplotypes. Node numbers indicate bootstrap values for 1,000 replicates. Populations are colour coded and Fukomys damarensis is used as an outgroup. See Table S1 for haplotype naming system. A Maximum Parsimony tree (a) showed differentiation between arid and semi-arid populations (Steinkopf, No Heep, Kamieskroon, Klawer), and mesic populations (Darling, Somerset West). The consistency index (CI), retention index (RI), and rescaled consistency index (RC) were high for all sites (CI = 0.89, RI = 0.86, RC = 0.76), as well as for parsimony-informative sites (CI = 0.68, RI = 0.86, RC = 0.58), although for parsimony-informative sites the values are lower. The bootstrap values were relatively high (>80) for all the nodes that denote divergence between populations, except for the node between Steinkopf and No Heep, where the bootstrap values were low (<50). Within populations, divergence between haplotypes was lower, yet still \sim 70 for arid and semi-arid populations, and higher confidence (>84) for mesic populations. Similarly, the Maximum Likelihood tree using a Hasegawa-Kishino-Yano model of evolution (b) showed differentiation between arid and semi-arid populations, and mesic populations, however, the statistical support for most of the nodes in the resulting phylogenetic tree was low, as few nodes had values of >70. These include differentiation between Darling and Somerset West, as well as between haplotypes within these populations. Differentiation between No Heep and Klawer was found to be robust, as well as the differentiation of two lineages within No Heep. All other nodes, however, showed very low bootstrap values and are not well supported.

Table S1. Twenty haplotypes identified from mitochondrial cytochrome b data across six populations of *C. h. hottentotus*. The table shows haplotype number, haplotype names, the population in which they are found as well as the number of samples that belong to this haplotype. Haplotype name reads as follows: "Number Population Colony1 Colony2 Colony3", etc. ".Q" or ".BM" after colony name represents queen or breeding male respectively (e.g. 13 Klawer C F.Q C.Q reads "Number 13, population Klawer, colony C non-breeder, colony F queen, colony C queen).

Haplotype	Haplotype name	Population	Number of
number			samples
1	Steinkonf D. R.O. C. No. Heen	Steinkonf No	Λ
Ţ	B.BM	Неер	4
2	Steinkopf J F F E.Q	Steinkopf	4
3	No Неер F	No Неер	1
4	No Heep W B.BM	No Неер	2
6	No Heep N.Q	No Неер	1
7	No Heep A.Q	No Неер	1
5	No Heep Y N G	No Неер	3
9	No Heep D	No Неер	1
11	Klawer F	Klawer	1

16	Klawer A.Q	Klawer	1
12	Klawer D E E	Klawer	3
15	Klawer F.Q G.Q G.Q	Klawer	3
13	Klawer C F.Q C.Q	Klawer	3
18	Darling C	Darling	1
17	Darling D.Q	Darling	1
19	Darling A E.BM E.Q B.Q	Darling	4
8	Kamieskroon	Kamieskroon	1
22	Somerset West A C	Somerset West	2
23	Somerset West D	Somerset West	1
21	Somerset West B	Somerset West	1

Figure S2. Heterozygosity estimates of each of the populations are superimposed onto a neighbour-joining tree from genome-wide genetic distance estimates (F_{st}) (branch lengths in units of substitutions per bp). Clades are coloured according to biome type, arid (red), semi-arid (grey) and mesic (blue).

Table S2. Matrix of genetic differentiation (F_{st}) values under Nei assumptions for each of the five populations of *C. h. hottentotus*. F_{st} values range from 0 to 1, with genetic distinction being lowest at 0, and greatest at 1.

	Steinkopf	No Heep	Klawer	Darling	Somerset West
Steinkopf					
No Heep	0.041				
Klawer	0.093	0.076			
Darling	0.22	0.211	0.137		
Somerset West	0.252	0.244	0.197	0.148	

Table S3. Cluster assignment probability for each individual based on STRUCTURE analyses when K = 2.

	Cluster1	Cluster2
H10	1.0000	0.0000
H11	1.0000	0.0000
H14	1.0000	0.0000
H15	1.0000	0.0000
H17	1.0000	0.0000
H18	1.0000	0.0000
H2	1.0000	0.0000

H20	1.0000	0.0000
H21	1.0000	0.0000
H23	0.9999	0.0001
H24	1.0000	0.0000
H26	1.0000	0.0000
H28	1.0000	0.0000
H29	1.0000	0.0000
H30	1.0000	0.0000
H33	1.0000	0.0000
H36	1.0000	0.0000
H37	1.0000	0.0000
H38	0.9947	0.0053
H40	0.9998	0.0002
H41	0.0000	1.0000
H42	0.9977	0.0023
H43	0.9693	0.0307
H44	0.9558	0.0442
H45	0.9988	0.0012
H46	0.0054	0.9946
H47	0.0000	1.0000
H48	0.0000	1.0000
Н5	0.0000	1.0000
H53	0.0012	0.9988
H54	0.0096	0.9904
H55	0.0430	0.9570

H56	0.0000	1.0000
H61	0.0000	1.0000
H62	0.0000	1.0000
H64	0.0000	1.0000
H67	0.0000	1.0000
H68	0.0000	1.0000
H8	0.0000	1.0000

Figure S3. DeltaK values for the STRUCTURE analysis. This value is used to select the optimal number of groups in the STRUCTURE analysis (i.e. K). The best K value is that with higher Delta K, that in our case is two.

Figure S4. Distribution of individuals as explained by the first two canonical variates (CV1 and CV2) derived from 3,540 SNP loci for 39 individuals of *C. h. hottentotus* across five populations, Darling, Somerset West, Klawer, No Heep and Steinkopf.

Table S4. List of samples that were successfully sequenced. Samples used in genomic targeted capture (UCEs) and the mitochondrial cytochrome b gene (mtDNA) are indicated with a Y in the respective columns. Sample details are listed for population, colony, sex, age and breeding status where information was available. For myBaits sequences, indexes are listed.

(SEE EXCEL FILE)

Table S5. Details for each of the six pools (total of eight samples per pool) created for sequencing by Arbor Biosciences. Indexes were grouped to avoid overlap in primer sequences. Indexes marked with an asterisk (*) pertain to indexes from a NGS UDI Primer Set 96-1 (Eurofins Scientific, Luxembourg, Luxembourg), and all other indexes are from the NEBNEXT Oligos for Illumina (Primer Set 3) (New England BioLabs, Inc., Ipswich, MA, USA). TapeStation concentrations for all samples and Qubit concentrations for most samples are listed and used to calculate the mass and volume added to each pool to create equal concentrations per sample. Well position in the plate is listed.

Sample	Index	Tape conc	Qubit conc	Mass (ng)	Volume (µl)	Well position
Н5	A12	13.7	37.4	383.6	12.56	A1

H8	B12	17.9	40.6	501.2	9.62	A1
H10	C12	6.15	-	172.2	28	A1
H11	D12	16.3	47.6	456.4	10.57	A1
H64	C6	6.77	13.5	189.56	25.45	A1
H14	F12	6.19	15.6	173.32	27.72	A1
H67	F6	13.9	21	389.2	12.39	A1
H17	H12	15.5	-	434	11.11	A1
TOTAL MASS (μg)	1.3776					
TOTAL VOLUME (μl)	137.42					
H4	H10*	11.9	31.4	333.2	11.02	B1
H53	B7	5.84	8.58	163.52	22.22	B1
H21	C11	15.8	32.8	442.4	8.24	B1
H23	D11	6.01	29.8	168.28	21.71	B1
H24	E11	9.3	38.2	260.4	14	B1
НЗ	G10*	4.65	-	130.2	28	B1
H26	G11	15.1	32.4	422.8	8.62	B1
H28	H11	8.17	34.4	228.76	15.91	B1
TOTAL MASS (μg)	1.0416					
TOTAL VOLUME (μl)	129.72					
H30	A10	6.03	49.2	168.84	28	C1
H55	C7	8.96	27	250.88	18.79	C1
H37	C10	7.41	27.6	207.48	22.76	C1
H40	D10	6.67	12.6	186.76	25	C1
H42	E10	9.59	27.6	268.52	17.61	C1
H43	F10	6.59	18.8	184.52	25.69	C1

H44	G10	7.6	33.8	212.8	22.22	C1
H46	H10	13	24.2	364	12.96	C1
TOTAL MASS (μg)	1.35072					
TOTAL VOLUME (μl)	173.03					
H48	A9	11.4	37.2	319.2	20.74	D1
H54	B9	14	29.6	392	16.87	D1
H29	C9	8.43	39.6	236.04	28	D1
H36	D9	21	30.4	588	11.24	D1
H38	E9	10.2	28.2	285.6	23.14	D1
H41	F9	20.2	34.4	565.6	11.69	D1
H45	G9	10.3	20.2	288.4	22.95	D1
H47	H9	12.1	54.6	338.8	19.51	D1
· · · ·						
TOTAL MASS (μg)	1.88832					
TOTAL MASS (μg) TOTAL VOLUME (μl)	1.88832					
TOTAL MASS (μg) TOTAL VOLUME (μl) H6	1.88832 154.14 A10*	9.24	38	258.72	20.44	E1
TOTAL MASS (μg) TOTAL VOLUME (μl) H6 H2	1.88832 154.14 A10* B8	9.24 23.2	38 41.2	258.72 649.6	20.44 8.16	E1 E1
TOTAL MASS (μg) TOTAL VOLUME (μl) H6 H2 H18	1.88832 154.14 A10* B8 C8	9.24 23.2 7.2	38 41.2 23.6	258.72 649.6 201.6	20.44 8.16 26.17	E1 E1 E1
TOTAL MASS (μg) TOTAL VOLUME (μl) H6 H2 H18 H7	1.88832 154.14 A10* B8 C8 B10*	9.24 23.2 7.2 6.76	38 41.2 23.6 14	258.72 649.6 201.6 189.28	20.44 8.16 26.17 28	E1 E1 E1 E1 E1
TOTAL MASS (μg) TOTAL VOLUME (μl) H6 H2 H18 H7 H20	1.88832 154.14 A10* B8 C8 B10* E8	9.24 23.2 7.2 6.76 11.5	38 41.2 23.6 14 26.8	258.72 649.6 201.6 189.28 322	20.44 8.16 26.17 28 16.47	E1 E1 E1 E1 E1 E1
TOTAL MASS (μg) TOTAL VOLUME (μl) H6 H2 H18 H7 H20 H33	1.88832 154.14 A10* B8 C8 B10* E8 F8	9.24 23.2 7.2 6.76 11.5 15.7	38 41.2 23.6 14 26.8 35.8	258.72 649.6 201.6 189.28 322 439.6	20.44 8.16 26.17 28 16.47 12.07	E1 E1 E1 E1 E1 E1 E1
TOTAL MASS (μg) TOTAL VOLUME (μl) H6 H2 H18 H7 H20 H33 H68	1.88832 154.14 A10* B8 C8 C8 B10* E8 F8 G6	9.24 23.2 7.2 6.76 11.5 15.7 8.78	38 41.2 23.6 14 26.8 35.8 29.6	258.72 649.6 201.6 189.28 322 439.6 245.84	20.44 8.16 26.17 28 16.47 12.07 21.5	E1 E1 E1 E1 E1 E1 E1 E1
TOTAL MASS (μg) TOTAL VOLUME (μl) H6 H2 H18 H7 H20 H33 H68 H15	1.88832 154.14 A10* B8 C8 C8 B10* E8 F8 G6 H8	9.24 23.2 7.2 6.76 11.5 15.7 8.78 10.6	38 41.2 23.6 14 26.8 35.8 29.6 26.2	258.72 649.6 201.6 189.28 322 439.6 245.84 296.8	20.44 8.16 26.17 28 16.47 12.07 21.5 17.83	E1 E1 E1 E1 E1 E1 E1 E1 E1
TOTAL MASS (μg) TOTAL VOLUME (μl) H6 H2 H18 H7 H20 H33 H68 H15 TOTAL MASS (μg)	1.88832 154.14 A10* B8 C8 B10* E8 F8 G6 H8 1.51424	9.24 23.2 7.2 6.76 11.5 15.7 8.78 10.6	38 41.2 23.6 14 26.8 35.8 29.6 26.2	258.72 649.6 201.6 189.28 322 439.6 245.84 296.8	20.44 8.16 26.17 28 16.47 12.07 21.5 17.83	E1 E1 E1 E1 E1 E1 E1 E1 E1
TOTAL MASS (μg) TOTAL VOLUME (μl) H6 H2 H18 H7 H20 H33 H68 H15 TOTAL MASS (μg) TOTAL VOLUME (μl)	1.88832 154.14 A10* B8 C8 B10* E8 F8 G6 H8 1.51424 150.64	9.24 23.2 7.2 6.76 11.5 15.7 8.78 10.6	38 41.2 23.6 14 26.8 35.8 29.6 26.2	258.72 649.6 201.6 189.28 322 439.6 245.84 296.8	20.44 8.16 26.17 28 16.47 12.07 21.5 17.83	E1 E1 E1 E1 E1 E1 E1 E1 E1

H61	A6	0.226/0.584	3.68	103.04	28	F1
H62	A8	0.925/1.45	20.6	176.4	28	F1
TOTAL MASS (μg)	0.35168					
TOTAL VOLUME (μl)	84					