Supplementary material

Journal of Solid State Electrochemistry

Enhancement of electrochemical performance of monolayer SnS_2 for Li/Na-ion batteries through a sulphur vacancy: A DFT study

C.A. Bekeur¹, R.E. Mapasha^{1*}

Department of Physics, University of Pretoria, Hatfield campus, Pretoria 0002, RSA¹

*Corresponding author Email: edwin.mapasha@up.ac.za

(c) Li at H_{SnS_2} site on pristine SnS_2

(d) Na at \mathbf{H}_{SnS_2} site on pristine $\mathbf{SnS_2}$

(e) Li at T_{Sn} site on pristine SnS_2

(g) Li at T_S site on pristine SnS_2

(f) Na at T_{Sn} site on pristine SnS_2

(h) Na at T_S site on pristine SnS_2

(i) Li at T_{Sn} site on S-vacancy SnS_2

(k) Li at V_S site on S-vacancy SnS_2

(j) Na at T_{Sn} site on S-vacancy SnS_2

(l) Na at \mathbf{V}_S site on S-vacancy \mathbf{SnS}_2

(o) Li at T_S site on S-vacancy SnS_2

Figure 1: The relaxed various configurations (a-p) of Li/Na adatoms on the pristine and S-vacancy SnS₂ monolayer 5×5 supercell.

(c) 25 Li adatoms on SnS_2 with S-vacancy

Figure 2 : The total density of states of multiple Li/Na adatoms on pristine SnS_2 monolayer as well as on SnS_2 monolayer with S-vacancy.