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ABSTRACT

Rhizoctonia solani anastomosis group (AG) 3-PT is a
devastating pathogenic fungus that causes several diseases in
potatoes both in South Africa and globally. The removal of
various fungicides from the market and strict regulations on the
use of synthetic chemicals make disease management difficult.
Therefore, alternative, environmentally safe control measures
are being considered, such as the use of biological control
agents (BCAs). BCAs are an attractive alternative for improving
plant and soil health of economically important crops. To identify
key microbial indicators of disease suppression against R. solani
AG 3-PT, a greenhouse pot trial experiment was conducted
using soil from a potato-growing region in KwaZulu-Natal, South
Africa. High-throughput sequencing of fungal internal
transcribed spacer and bacterial 16S ribosomal RNA was used
to characterize the respective fungal and bacterial community
composition in the soil with and without artificial inoculation with

R. solani AG 3-PT. Results indicated that the pathogen caused
dysbiosis in the potato soil microbiome, leading to a shift in
fungal and bacterial community composition. Differentially
abundant microbial taxa in R. solani AG 3-PT inoculated soils
suggest a promising potential for disease-suppressive activity.
Network analysis also confirmed the presence of key taxa
involved in the microbial community shifts, which could support
their role in the suppression of R. solani AG 3-PT. The
identification of key microbial indicators against Rhizoctonia
diseases can contribute to the development of environmentally
sustainable potato production systems, which are particularly
important considering the implementation of the European
Green Deal.

Keywords: biocontrol, disease management, potato, Rhizoctonia
solani AG 3-PT, soil microbiome

Potato (Solanum tuberosum L.) is the most consumed and eco-
nomically important vegetable crop in the world (Food and Agricul-
ture Organization Statistics 2017). Nutritionally, potato is ideal for
human consumption and provides a balanced source of starch, high-
quality proteins, vitamins, trace elements, and dietary fiber (Black
2008). This makes it a reliable crop to feed many communities and
contribute to food security.
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To increase sustainable and economically feasible potato pro-
duction, numerous resources have been invested in disease control,
soil health, good farm management practices, seed quality, and the
breeding of high-yielding varieties (Veeman and Veeman 2004).
However, the potato crop, as with many other agricultural crops, is
susceptible to devastation by various diseases (Fiers et al. 2012).
Potato diseases reduce the yield and quality of fresh produce and
therefore pose a threat to global food security (Black 2008). Soil-
borne diseases are persistent and recurrent in potato production
(Larkin 2016; Tsror et al. 2001). These diseases are difficult to con-
trol, and management practices such as chemical seed treatments,
crop rotation, promotion of rapid emergence, and early harvest of
tubers are not always effective or practical (Larkin and Halloran
2014; Stevenson et al. 2001).

Some of the most important soilborne diseases affecting potatoes
include black scurf, tuber malformation, and stem canker, which are
caused by several anastomosis groups (AGs) of Rhizoctonia solani
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Kühn. R. solani is a soil- and tuber-borne pathogen and is therefore
difficult to manage (Muzhinji et al. 2015). The organism is taxo-
nomically complex, leading to the identification of 13 distinct AGs
based on their hyphal interactions. These AGs differ both morpho-
logically and ecologically as well as in pathogenicity and host range
(Sharon et al. 2006; Sneh et al. 1991). R. solani AG 3 subgroup PT
is the main AG infecting potatoes globally and is commonly iso-
lated from tubers showing symptoms of black scurf (Banville 1989;
Truter and Wehner 2004; Woodhall et al. 2008). In addition to R.
solani AG 3-PT, AG 2-2IIIB (black scurf, stem, and stolon canker),
AG 4HG-I (stem and stolon canker), AG 4HG-III (stem canker),
AG A and AG R (black scurf and stem canker) and AG 5 (black
scurf) have been isolated from different Rhizoctonia disease symp-
toms in potatoes in South Africa, albeit at lower frequencies (Gush
et al. 2019; Muzhinji et al. 2015).

Black scurf is characterized by the presence of dark sclerotia on
the tuber surface (Banville et al. 1996). The appearance of these
sclerotia decreases the marketable yield of tubers. Furthermore,
sclerotia present on seed tubers provide a long-distance disper-
sal mechanism for the pathogen (Vilgalys and Cubeta 1994). To
prevent the development of black scurf, various cultural measures
are practiced, such as planting pathogen-free-certified seed tubers
with no visible signs of sclerotia; planting in relatively warm, dry,
pathogen-free soil; crop rotation with nonhosts; tillage; and early
harvesting after haulm destruction (Carling and Leiner 1990; Dijst
1990; Larkin and Halloran 2014; Mulder et al. 1992). Even though
these practices provide some control, they are not completely ef-
fective, and thus Rhizoctonia diseases remain a persistent threat to
potatoes (Larkin 2016). Some chemicals have been shown to re-
duce the inoculum potential of R. solani in contaminated fields,
but many of these, such as pencycuron and penflufen, have ad-
verse environmental effects and are thus being withdrawn from the
market in various countries (Clarke 2020; Jones 2020). Therefore,
alternative, environmentally safe disease management strategies are
needed.

The incorporation of biological control agents (BCAs) in soil-
borne pathogen management programs may provide ecologically
benign and viable approaches for the control of these pathogens
(Lahlali and Hijri 2010). As a nonchemical and targeted approach,
biocontrol is receiving increased attention, particularly in light of
increased fungicide resistance, deregistration of fungicides, and
heightened concerns about the use of harsh chemicals in crop pro-
duction (O’Brien and Milroy 2017). Therefore, biocontrol provides
a key solution for the successful implementation of the European
Green Deal, as it plays an important role in enhancing biodiversity
and the overall health of plants and soil (Tataridas et al. 2022).

The antagonistic mechanisms of BCAs can involve the produc-
tion of antibiotics by the BCA, the BCA becoming endophytic
in the host plant, or competition with the target pathogen for re-
sources (Lahlali and Hijri 2010; Larkin 2016; Larkin and Tavantzis
2013). Antagonistic microorganisms used as effective BCAs for
R. solani include both fungal and bacterial taxa (Asaka and Shoda
1996; Mao et al. 1998; Szczech and Shoda 2004; Thrane et al.
2001). Bacterial taxa include Pseudomonas spp. (Howell and
Stipanovic 1979), Bacillus spp. (Pleban et al. 1995), Burkholderia
spp. (Larkin 2016), Lysobacter spp. (Das 2013) and Laetisaria spp.
(Murdoch and Leach 1993). Fungal taxa include Trichoderma spp.
(Grosch et al. 2006; Tsror et al. 2001), Gliocladium spp. (Lewis and
Lumsden 2001), Verticillium spp. (Van Den Boogert and Velvis
1992), Rhizoctonia zeae, Corticium spp., and binucleate Rhizocto-
nia spp. (Escande and Echandi 1991). Only a few studies have doc-
umented beneficial microorganisms that contribute to the disease
suppression of Rhizoctonia and their potential use for biological
control in potatoes in the greenhouse (Brewer and Larkin 2005) or

field (Larkin 2008; Larkin 2016; Larkin and Tavantzis 2013; Mrabet
et al. 2013; Wright et al. 2022).

In the search for potential BCAs, most studies have relied on
traditional culturing methods. These culture-based methods ex-
clude the vast majority of microbes (Amann et al. 1995; Larkin and
Brewer 2020). Next-generation sequencing technologies have pro-
vided a deeper understanding of the composition of soil microbial
communities (Sabale et al. 2019). However, our knowledge of how
to correlate microbial community changes and interactions between
beneficial microbes and pathogens in the soil is still very limited.
A better understanding of the changes in soil microbial communi-
ties and abiotic factors upon pathogen infection of a particular host
will open new avenues for the deployment of beneficial microbes
in the sustainable management of soilborne diseases (Peixoto et al.
2022).

This study aimed to investigate the differences in fungal and
bacterial community composition between uninoculated soil and
R. solani AG 3-PT inoculated soil as well as to evaluate how mi-
crobial enzymatic activity and soil chemical properties differ in R.
solani AG 3-PT inoculated and uninoculated soils. We predicted
that the introduction of R. solani AG 3-PT would alter fungal and
bacterial community structure and diversity in the soil microbiome
of potatoes and that there would be key taxa and/or groups associ-
ated with these shifts. Knowledge of changes in the soil microbial
community resulting from the addition of R. solani AG 3-PT inocu-
lum to the soil could allow the identification of key indicators of
disease suppression of the pathogen (Bai et al. 2019). Results from
this study may facilitate the development of beneficial microbial
inoculants capable of suppressing R. solani AG 3-PT.

MATERIALS AND METHODS

Soil collection. A potato field with a history of black scurf was
selected to study existing and potentially disease-suppressive soil
microbial communities against R. solani AG 3-PT. The study site
was located on a potato production farm in Howick, KwaZulu-
Natal. The region has mild to warm summers with cold winters,
summer rainfall, and brown to red clay soils (Potatoes South Africa
2018). After a potato season, soil for the greenhouse pot experi-
ment was collected from the fallow, weed-free field (29°29′18.6′′S,
30°08′24.7′′E) in March 2021. Soil samples were collected at a
depth of 15 to 30 cm using a spade, which was surface-sterilized
using 70% ethanol prior to sample collection. A total of 20 soil
samples weighing approximately 20 kg each were collected in a
random sampling pattern across the 38-ha field. The soil samples
were pooled and mixed to make a composite sample with a to-
tal weight of approximately 400 kg. Soil samples were stored in
woven bags at room temperature before use in the greenhouse pot
trial.

Inoculum preparation. Inoculum of R. solani AG 3-PT iso-
late Rh13 (culture collection number CMW 40583, Forestry and
Agricultural Biotechnology Institute, GenBank accession number
KJ777561) (Muzhinji et al. 2015) was prepared following the pro-
tocol of Muzhinji et al. (2014). Isolate Rh13 was cultured on potato
dextrose agar (PDA) and incubated at 25°C in the dark for 2 weeks.
Five PDA plugs (10 mm in diameter) were added to 10 g of barley
grains in 13 conical flasks sterilized by autoclaving at 121°C for 20
min. The grains and R. solani were incubated for 14 days, shaking
at 2-day intervals, until barley grains were completely colonized by
visible fungal mycelia.

Pot trial. Visually disease-free sprouted mini-tubers (cultivar
Mondial) were planted in 5-liter pots filled with soil from the
KwaZulu-Natal study site and placed in a greenhouse compart-
ment. Each pot was planted with a single seed tuber at a depth of
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10 cm. Plants were watered every second day with approximately
400 ml of tap water to field capacity. The experiment was laid out in
a randomized complete block design with two different soil treat-
ments: R. solani AG 3-PT inoculated and uninoculated. For the
R. solani AG 3-PT inoculated treatment, R. solani AG 3-PT isolate
Rh13 inoculum at a density of 1.42 × 103 colony-forming units per
gram of soil was spread evenly on the soil layer above the tuber and
then covered with moistened soil to ensure a mini-tuber planting
depth of 10 cm (Muzhinji et al. 2015). Sterile barley grains (10 g
per pot) were added to the soil for the uninoculated treatment. Each
treatment consisted of 13 replicates, resulting in a total of 26 pots.
Replicates one to nine were used for the greenhouse soil sampling
for next-generation sequencing. Potato tubers from replicates 7 to
13 were used for the disease assessment. Plants were grown for
92 days in the greenhouse at 25 ± 2°C with 12 h of light per day.
Plants were fertilized with 2 g Multifeed nutrient solution (Nu-
landis) (3:1:6) per pot once at planting and again 2 months after
emergence.

Greenhouse soil sampling for next-generation sequencing.
Destructive sampling was conducted three times throughout the
growing season; namely, 1 week after emergence (replicates one to
three), at flowering (replicates four to six), and at harvest (replicates
seven to nine). For each treatment at each time point, three plants
were harvested for bulk and rhizosphere soil samples. For the bulk
soil, approximately 3 g of soil around the outermost area of the pot,
where there were no visible roots, was collected per sample. For the
rhizosphere soil, the whole plant was carefully uprooted together
with the soil adhering to the roots. The excess soil was gently shaken
off and approximately 3 g of soil loosely attached to the roots of
each plant was collected (Zimudzi et al. 2018). After sampling, the
soil samples were stored at −80°C until further analysis.

Disease assessment. To confirm the virulence of R. solani AG
3-PT isolate Rh13, black scurf symptoms were assessed on potato
tubers (replicates 7 to 13) harvested at the end of the greenhouse
pot experiment. Tuber count and yield were measured for every pot,
and the incidence and severity of blemishes on harvested progeny
tubers were evaluated 92 days after planting. Re-isolations were
made from diseased progeny tubers as described previously to con-
firm pathogen identity and thus Koch’s postulates (Gush et al. 2019).
Disease severity was estimated on a 0 to 5 scale using a modifica-
tion of the scheme described by Carling and Leiner (1990), with
0 = no blemishes observed, 1 = less than 1% of the tuber surface
covered with blemishes, 2 = between 1 and 10% of the tuber sur-
face covered with blemishes, 3 = between 11 and 20% of the tuber
surface covered with blemishes, 4 = between 21 and 50% of the
tuber surface covered with blemishes, and 5 = 51% or more of the
tuber surface covered with blemishes. To calculate the disease in-
dex, the following formula was used: DIn = �[0(n0) + 0.25(n1) +
0.5(n2) + 0.75(n3) + 1(n4)] × 100/(Ntotal), where nx is the number
of tubers in the x rating class and N is total number of tubers in each
category.

Statistical analysis of pathogenicity trial. Data were analyzed
using the statistical analysis software ARM (version 2019.8). The
treatment means were separated using the least significant differ-
ence (LSD) test at 5% level of significance.

Soil chemical analysis. Soil chemical analysis was done on the
KwaZulu-Natal soil samples according to standard protocols at
Agri Technovation (MicroLife Research Centre, Wellington, South
Africa). The pH was determined using 1 M potassium chloride
and electrical resistance was determined in a saturated soil-water
paste. Total phosphorus, calcium, sodium, potassium, and magne-
sium were determined by inductively coupled plasma (ICP) analysis
with 1% citric acid extraction. Zinc, manganese, and copper concen-
trations were determined by ICP in 0.02 M diammonium ethylene-

diaminetetraacetic acid soil extracts. Sulfur was determined in
calcium phosphate soil extracts and boron in hot water soil ex-
tracts. The soil organic carbon and total nitrogen were determined
by the Walkley-Black and Dumas methods, respectively (Habig
et al. 2018).

Soil microbial enzymatic activity. The ability of the soil mi-
crobial population to mineralize carbon, phosphorus, and nitrogen
was assayed by measuring the respective β-glucosidase, alkaline
phosphatase, and urease activity in the soil. β-Glucosidase and al-
kaline phosphatase activity was calculated spectrophotometrically
at a wavelength of 410 nm by determining the rate of hydrolysis of
p-nitrophenyl glucoside and p-nitrophenyl phosphate, respectively
(Dick et al. 1997). Urease activity was determined by ammonia
release from urea, quantified at 690 nm after 2-h incubations us-
ing the colorimetric sodium nitroprusside method as described by
Kandeler and Gerber (1988). The urea content was calculated with
reference to a standard calibration graph derived from urea stan-
dards (Kandeler and Gerber 1988).

Data on soil microbial enzymatic activity were subjected to non-
parametric statistical analyses using Statistica 13 (StatSoft, Inc.).
Microbial enzymatic activity was statistically analyzed by clus-
ter analyses (vertical hierarchical tree plots) and constructed using
Ward’s clustering algorithm and the Euclidean distance measure
(i.e., geometric distance between variables in a multidimensional
space). Homogeneous grouping with Fisher’s LSD was calculated
at P < 0.05 for soil microbial enzymatic activity (Habig and
Swanepoel 2015).

DNA extraction and sequencing. From storage, thawed soil
samples were first pretreated with ethidium monoazide bromide to
remove extracellular DNA before DNA extraction following a pre-
viously validated protocol (Carini et al. 2017; Wagner et al. 2015).
Subsequently, 0.5 g of soil from each of the 36 soil samples (two
treatments, two soil types, three sampling times, and three repli-
cates) was subjected to genomic DNA extraction using DNeasy
PowerSoil Kits (Qiagen) according to the manufacturer’s proto-
col. The DNA was quantified using a Qubit 2.0 fluorometer (In-
vitrogen, Life Technologies). The internal transcribed spacer (ITS)
region of ribosomal RNA was amplified using the fungal-specific
primers ITS1 BITS (5′-ACCTGCGGARGGATCA-3′), B58S3 (5′-
GAGATCCRTTGYTRAAAGTT-3′), ITS2 gITS7f (5′-GTGAATC
ATCGARTCTTTG-3′), and ITS4 (5′-TCCTCCGCTTATTGATAT
GC-3′), targeting the ribosomal ITS1-ITS2 region (Bokulich and
Mills 2013). Bacterial 16S ribosomal RNA gene regions were am-
plified using primers 515F (5′-GTGYCAGCMGCCGCGGRA-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) targeting the
V4 region (Castillo et al. 2017). Paired-end 2× 250-bp sequencing
was performed on a MiSeq instrument (Illumina Inc.) at Admera
Health.

Amplicon sequencing analysis. Fungal and bacterial sequence
reads were processed using QIIME 2 (version 2021.11) (Bolyen
et al. 2019) and filtered using the DADA2 pipeline (Callahan et al.
2016). Quality trimming was performed for all sequences greater
than 220 bp for fungal reads and 300 bp for bacterial reads. Fungal
and bacterial sequences containing more than two ambiguous base
calls, quality scores of less than 25, or more than one mismatch to
the sample-specific barcode or the primer sequences were excluded
from further downstream analysis. Resulting amplicon sequence
variants (ASVs) were assigned to taxonomies using the Riboso-
mal Database Project naive Bayesian classifier with the UNITE
fungal database (version 8) (https://unite.ut.ee/) (with 99% similar-
ity cutoff) for fungal species and the SILVA database (version 132)
(Quast et al. 2013) (with 99% similarity cutoff) for bacterial species.
Fungal and bacterial rarefaction curves were generated to assess
the sequencing depth of each sample using the ‘vegan’ package
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(Oksanen et al. 2007) in RStudio. A total of 36 fungal and 36 bac-
terial samples were used for downstream analysis.

Statistical analysis. Alpha diversity metrics (richness, Shannon
and Simpson’s diversity indices), beta diversity metrics, and ordi-
nation were calculated using ‘phyloseq’ (McMurdie and Holmes
2013) and the ‘vegan’ package (Oksanen et al. 2007) in RStudio.
The relative abundances and alpha diversity indices of the differ-
ent soil types (rhizosphere or bulk) and states (uninoculated or R.
solani AG 3-PT inoculated) were tested using the Shapiro-Wilk
normality test (Royston 1982). Significant differences in relative
abundances at the genus level were calculated using analysis of
variance (ANOVA) for normally distributed data (Chambers et al.
1992) and the Kruskal-Wallis test for non-normally distributed data
(McKnight and Najab 2010). The rarefied absolute abundance ta-
bles were log(x + 1) transformed for beta diversity analysis. Beta
diversity indices between groups were calculated using the Bray-
Curtis dissimilarity metric (Lozupone et al. 2011) and visualized in
principal coordinate analysis plots (Jolliffe and Cadima 2016). Sig-
nificant differences in beta diversity between soil types, states, and
sampling times were calculated using a permutational multivariate
ANOVA (PERMANOVA) (Anderson and Walsh 2013) with 1,000
permutations using the ‘adonis’ function of the ‘vegan’ package.
Variation within the different soil types, states, and sampling times
was tested using analysis of multivariate homogeneity of group dis-
persions (‘betadisper’), and similarity was tested with analysis of
similarities (Anderson 2006) using the same number of permuta-
tions as the PERMANOVA test.

Co-occurrence network analysis (rhizosphere and bulk) was per-
formed using the nonparametric Spearman’s correlation test with
a correlation threshold between −0.6 and 0.6 and P value thresh-
old of 0.01 (Barberán et al. 2012). The connections between ASVs
(edges) correspond to a significant positive or negative correlation
between ASVs (nodes) (Dini-Andreote et al. 2014). The networks
were plotted using Gephi (Bastian et al. 2009). A NetShift analy-
sis was performed to identify community shifts (rhizosphere and
bulk) by potential keystone driver taxa based on their different
states and network associations (https://web.rniapps.net/netshift/)
(Kuntal et al. 2019).

Taxa that were significantly overrepresented in the different soil
types or states were identified as microbial markers using a lin-
ear discriminant analysis effect size (LEfSe) analysis (Segata et al.
2011). The ASV abundance counts were converted to relative abun-
dances for the LEfSe analysis. Significant differences in abundance
at species level were calculated using the Kruskal-Wallis test with
a cutoff of 99% (P < 0.01). A distance-based redundancy analysis
(dbRDA) was performed using the ‘vegan’ package to investigate
the effects of soil chemical properties and extracellular enzyme ac-
tivities on the fungal and bacterial community beta diversity distri-
bution (Oksanen 2010). Soil chemistry and enzymatic activity vari-
ables were standardized with the function decostand(). The dbRDA
was performed using capscale(). The function ordiR2step() was
used to check for co-linearity and to select the variables to use in the
redundancy analysis model. These variables were checked for sig-
nificance, which led to the removal of variables with a co-linearity
score above 10. Thereafter, a forward stepwise model with 1,000
permutations was performed to select the best set of variables that
could explain the variational effects on fungal and bacterial commu-
nity composition. The final dbRDA models were calculated using
ANOVA with an adjusted P value threshold of 0.001.

RESULTS

Disease assessment. At harvest of the greenhouse pot exper-
iment, progeny tubers from plants in R. solani AG 3-PT inocu-

lated treatments had a significantly (P < 0.05) higher disease inci-
dence and index compared with those from uninoculated treatments
(Table 1). No disease symptoms were observed in progeny tubers
from uninoculated treatments. According to the univariate proce-
dure and normality plots, the data were normally distributed with
homogeneous treatment variance. When comparing the R. solani
AG 3-PT inoculated and uninoculated treatments, there were no
significant differences between treatments in terms of tuber yield
(P = 0.05).

Changes in soil microbial community diversity of potatoes
upon R. solani AG 3-PT infection. Amplicon sequencing analy-
sis was done to compare fungal and bacterial community compo-
sitional differences between the R. solani AG 3-PT inoculated and
uninoculated rhizosphere and bulk soil samples at three different
sampling times (seedling, flowering, and at harvest) from the potato
pot trial. No significant differences were observed in the different
sampling times (rhizosphere and bulk) (Supplementary Fig. S1);
however, specific trends were observed in alpha and beta diversity
in the different sampling times. The alpha diversity of samples (rhi-
zosphere and bulk) revealed that fungal diversity decreased from
seedling to flowering and then increased from flowering to at harvest
(Supplementary Fig. S1A). The opposite trend was observed for
bacterial samples, in which the diversity increased from seedling to
flowering and then decreased from flowering to at harvest (Supple-
mentary Fig. S1B). Although no significant effects were observed
in beta diversity for both fungal (Supplementary Fig. S2A) and
bacterial (Supplementary Fig. S2B) samples, the Bray-Curtis beta
diversity dissimilarity analysis showed that bacterial communities
clustered into more distinct communities during flowering com-
pared with seedling and at harvest. For this reason, further analysis
focused on comparing fungal and bacterial community composi-
tional differences between the R. solani AG 3-PT inoculated and
uninoculated rhizosphere and bulk soil samples from the potato pot
trial.

A genus-clustered comparison between the different soil treat-
ments revealed that there were 78 (20.9%) and 202 (27.8%) shared
fungal and bacterial ASVs, respectively, across all treatments (Fig.
1). Comparisons between treatments in the rhizosphere soil revealed
that more unique ASVs were observed in the uninoculated treatment
compared with the R. solani AG 3-PT inoculated treatment for both
fungi (8 versus 3.8%) and bacteria (6.9 versus 6.1%). The same
trend was observed for bacterial ASVs in the bulk soil, in which
the uninoculated samples exhibited a higher percentage (5.1 ver-
sus 4.1%) of unique ASVs. By contrast, more unique fungal ASVs
were observed in the R. solani AG 3-PT inoculated (7.8%) bulk soil
treatment compared with the uninoculated (5.9%) bulk soil.

The alpha diversity of both R. solani AG 3-PT inoculated and
uninoculated samples also revealed that the fungal diversity in the
rhizosphere soil was significantly lower (P < 0.00002) compared

TABLE 1
Tuber yield, disease incidence, and index means of the
greenhouse pot trial with potato tubers inoculated with

Rhizoctonia solani anastomosis group 3-PT
in KwaZulu-Natal soil

Treatment
Mean tuber

yield, g
Mean disease

incidence, DI/tta
Mean disease
index, DIn/ttb

Inoculated 103.64 100.00c 742.14c

Uninoculated 105.43 0 0

a Disease incidence per total number of tubers.
b Disease index (disease severity × incidence) per total number of

tubers.
c Values are significantly different (P < 0.05).
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with the bulk soil (Fig. 2A). Similarly, fungal diversity in the R.
solani AG 3-PT rhizosphere inoculated treatments was lower com-
pared with the uninoculated treatments, although not significantly.
By comparison, no difference in diversity was observed for bacte-
rial communities with the introduction of the pathogen (Fig. 2B).
The Bray-Curtis beta diversity dissimilarity analysis showed that
fungal communities were significantly different, albeit to a small
degree, between the R. solani AG 3-PT inoculated and uninocu-
lated treatments (P < 0.002, R2 = 0.036) as well as between the
rhizosphere and the bulk soil (P < 0.0009, R2 = 0.037) (Fig. 3A).
Similarly, bacterial community composition clustered into more
distinct communities in the R. solani AG 3-PT inoculated com-
pared with uninoculated treatments (P < 0.0009, R2 = 0.053) as
well as in the rhizosphere and bulk soil (P < 0.002, R2 = 0.046)
(Fig. 3B). A comparison of the rhizosphere soil further revealed
distinct community clustering between the R. solani AG 3-PT in-
oculated and uninoculated treatments in fungal (P < 0.0009, R2 =
0.086) and bacterial (P < 0.0009, R2 = 0.135) samples (Supple-
mentary Fig. S3). Although not significant, the bulk soil revealed

more distinct clustering between the R. solani AG 3-PT inoculated
and uninoculated treatments in bacterial communities (P < 0.28,
R2 = 0.064) compared with fungal communities (P < 0.89, R2 =
0.054) (Supplementary Fig. S4).

Microbial enzymatic activity of potatoes upon R. solani AG
3-PT inoculation. Extracellular enzyme activity assays were con-
ducted to assess the impact of R. solani AG 3-PT on soil microbial
productivity. β-Glucosidase, alkaline phosphatase, and urease ac-
tivity was used as an indicator of microbial conversion and degrada-
tion of organic substrates into plant-available nutrients. The results
from these assays showed that soil microbial communities associ-
ated with R. solani AG 3-PT inoculated and uninoculated treatments
differed in their ability to mineralize carbon (β-glucosidase), nitro-
gen (urease), and phosphorus (alkaline phosphatase) under high pH
conditions.

β-Glucosidase and alkaline phosphatase activity was signifi-
cantly (P < 0.05) higher in R. solani AG 3-PT inoculated treat-
ments compared with uninoculated treatments (Fig. 4). The same
trend was observed between rhizosphere and bulk soils in the
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Fig. 1. Unique and shared A, fungal and B, bacterial genus-clustered amplicon sequence variants between the Rhizoctonia solani anastomosis
group 3-PT inoculated and uninoculated rhizosphere and bulk soil samples from the potato pot trial. The shared taxa are highlighted in bold.
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R. solani AG 3-PT inoculated treatments, with the former exhibiting
significantly (P < 0.05) higher enzymatic activity. Urease activity
was significantly (P < 0.05) higher in rhizosphere soils compared
with bulk soils. However, microbial activity did not differ signif-
icantly between R. solani AG 3-PT inoculated and uninoculated
treatments in rhizosphere soils.

A dbRDA of soil chemical properties and microbial enzymatic
activities was conducted to further explore the possible effects on
the microbial composition of both R. solani AG 3-PT inoculated and
uninoculated soil communities. β-Glucosidase activity (P < 0.001,
R2 = 0.021) and phosphorus activity (P < 0.001, R2 = 0.012) ex-
plained 2 and 1%, respectively, of the beta diversity distribution
for the fungal communities (Fig. 5A). Soil pH also significantly
contributed to both fungal (P < 0.001, R2 = 0.01) (Fig. 5A) and
bacterial (P < 0.001, R2 = 0.04) (Fig. 5B) community shifts. Mag-
nesium was identified as the major variable driving bacterial com-
munity composition (P < 0.001, R2 = 0.072), explaining 7% of the
beta diversity distribution of bacterial communities.

Impact of R. solani AG 3-PT on soil microbial communities of
potatoes. To identify specific taxa involved in the microbial shifts
observed with the introduction of R. solani AG 3-PT into the soil, a
LEfSe analysis was conducted between the different treatments and
soil sample types. As expected, the biggest difference in microbial
shifts between the R. solani AG 3-PT inoculated and uninoculated
treatments was observed in the rhizosphere soil. More differentially
abundant fungal taxa were identified in the rhizosphere soil (23 taxa
at the highest identified rank) compared with the bulk soil (two taxa
at the highest identified rank). There were 74 differentially abundant
bacterial taxa identified in the rhizosphere soil and none in the bulk
soil.

In the rhizosphere soil, there were more overrepresented fun-
gal taxa associated with the uninoculated treatments compared
with the R. solani AG 3-PT inoculated treatments (Fig. 6A). The
most notable overrepresented (linear discriminant analysis [LDA]
scores >4 and high abundances) fungal taxa associated with the
R. solani AG 3-PT inoculated treatments included Talaromyces
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spp., Talaromyces funiculosus, Aspergillus alabamensis, and
R. solani. Overrepresented fungal taxa in the uninoculated treat-
ments included Thielavia inaequalis and Sordariomycetes. T. inae-
qualis is also classified in the Chaetomiaceae family, Sordariales or-
der, and Sordariomycetes class. In the bulk soil, the overrepresented
fungal taxa included R. solani (LDA 3.34) in the inoculated treat-
ments and Chaetomiaceae (LDA 3.92) in the uninoculated treat-
ments (Fig. 6B).

In contrast to fungal communities, there were more overrepre-
sented bacterial taxa associated with the R. solani AG 3-PT in-
oculated treatments compared with the uninoculated treatments
(Fig. 6C). The most notable overrepresented (LDA scores >4 and
high abundances) bacterial taxa associated with the R. solani AG
3-PT inoculated treatments included Burkholderia-Caballeronia-
Paraburkholderia, Luteibacter, Massilia, and Micrococcaceae.
Overrepresented bacterial taxa in the uninoculated treatments in-
cluded Vicinamibacterales, KD4-96, Gemmatimonadaceae, Gaiel-
lales, and subgroup 7.

Co-occurrence networks were constructed to observe the posi-
tive and negative associations between taxa in R. solani AG 3-PT

inoculated and uninoculated treatments (Fig. 7). The fungal net-
work of the R. solani AG 3-PT inoculated soils was larger, with
a higher number of taxa or “nodes” (204 inoculated versus 185
uninoculated), connections, or “edges” (525 inoculated versus 472
uninoculated) and negative connections (13 inoculated versus 1
uninoculated) compared with the network for communities in the
uninoculated soil (Fig. 7A). By contrast, the bacterial network of
the uninoculated soils was larger, with a higher number of nodes
(343 uninoculated versus 322 inoculated) and edges (1,100 uninoc-
ulated versus 913 inoculated), although there were fewer negative
connections (0 uninoculated versus 15 inoculated) compared with
the network for communities in the R. solani AG 3-PT inoculated
networks (Fig. 7B). The top five fungal and bacterial taxa with the
highest degree and betweenness centrality scores were identified
as potential keystones in the uninoculated and R. solani AG 3-PT
inoculated networks (Table 2).

A NetShift association network analysis between the R. solani
AG 3-PT inoculated (rhizosphere and bulk) and uninoculated (rhi-
zosphere and bulk) treatments highlighted fungal and bacterial
taxa that were potential key “drivers” of the microbial shifts that
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occurred with the introduction of the pathogen to the potato soil
microbiome. These driver taxa were identified by their increase in
importance using the betweenness centrality score from a healthy
(i.e., uninoculated) state to a diseased (i.e., R. solani AG 3-PT in-
oculated) state (Kuntal et al. 2019). Unidentified fungal taxa in the
order Sordariales were identified as potential key driver taxa of the
microbial community shifts with the introduction of R. solani AG
3-PT to the potato soil microbiome (Fig. 8A). The taxon Sordariales
was also identified as a biomarker in the LEfSe analysis and as a po-
tential keystone taxon in the co-occurrence network (node 443) with
a degree of 10 and a betweenness centrality score of 499,55. Vari-
ous bacterial taxa were identified as potential key drivers (Fig. 8B).
By comparison, bacterial driver taxa identified across the different
analyses, including Pedobacter, Enterobacteriaceae, Pseudoflav-
italea, Luteibacter, Allorhizobium-Neorhizobium-Pararhizobium-
Rhizobium, Sphingopyxis, Dyadobacter, OLB 12, Chitinophaga,
Luteolibacter, and Verrucomicrobiaceae, were most overrepre-
sented in the R. solani AG 3-PT inoculated treatments. Ther-
momicrobiaceae, Piscinibacter, RB41, and Gaiellales were most
overrepresented in the uninoculated treatments (Fig. 6C).

DISCUSSION

The composition and function of soil microbiomes can protect
plants from soilborne pathogens, leading to disease suppression
(Durán et al. 2018; Wei et al. 2019). With the release of specific
disease-induced root exudates, plants recruit microorganisms di-
rectly related to the plant host genotype to aid in certain functions,
such as directly suppressing soilborne pathogens (Berry and Widder
2014; Lemanceau et al. 2017; Mercado-Blanco and Bakker 2007;
Pascale et al. 2020; Reinhold-Hurek et al. 2015). In the present
study, shifts in the soil microbial community resulting from the ad-
dition of R. solani AG 3-PT inoculum to rhizosphere and bulk soils
revealed potential fungal and bacterial taxa of Rhizoctonia disease
suppression.

Soil microbial enzymatic activity indicated an increase in mi-
crobial activity in the rhizosphere soil and R. solani AG 3-PT in-
oculated treatments, possibly due to the higher microbial biomass
in the rhizosphere (Fig. 4) (Philippot et al. 2013). The increase in
the R. solani AG 3-PT inoculated treatments can be attributed to
the addition of active R. solani AG 3-PT cellular biomass, leading
to greater production of enzymes. Furthermore, decomposition of
diseased plant tissues releases nutrients into the soil, which may
have attracted various beneficial microbes to the rhizosphere, con-
sequently increasing microbial enzymatic activity (Garbeva et al.
2006; Tsror 2010). The rhizosphere is a highly competitive envi-
ronment in which beneficial microbial communities play crucial
roles, not only in nutrient acquisition but also in host defense and
disease suppression (Bakker et al. 2013; Berendsen et al. 2012;
Philippot et al. 2013). Therefore, we propose that the key fun-
gal and bacterial taxa present in the R. solani AG 3-PT inocu-
lated treatments could be recruited by the potato crop (cultivar
Mondial) through the plant-triggered induced systemic resistance
response after infection and nutrient utilization from plant tissue
decomposition.

The loss in fungal diversity (Fig. 2A) and scattered commu-
nity distribution (Fig. 3A; Supplementary Fig. S3A) after pathogen
infection suggest that the pathogen caused microbial community
dysbiosis (loss of diversity and functional potential), leading to
a disruption of fungal composition and function. The increased
β-glucosidase activity in the R. solani AG 3-PT inoculated treat-
ments suggests that the increase in pathogen biomass and the po-
tential of the fungal community to confer benefits resulted in greater
production of β-glucosidase for the utilization of available car-
bon. Increased available carbon has been demonstrated to raise the
incidence of black scurf disease in potato tubers, as the pathogen
utilizes cellulose from plant tissue as a carbon source (Garbeva et al.
2006; Tsror 2010). Similar results have been observed in other stud-
ies, which concluded that competition for substrate through plant
stimulation of beneficial fungal communities reduced pathogen
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invasion and enhanced plant defenses (Chiu et al. 2017; McLaren
and Callahan 2020; Solanki et al. 2022).

Fewer differentially abundant fungal taxa were identified in the
R. solani AG 3-PT inoculated rhizosphere and bulk soils compared
with the uninoculated treatments, which is indicative of the negative
impact of R. solani AG 3-PT on the fungal community (Fig. 6A).
The most overrepresented fungi in the R. solani AG 3-PT inocu-
lated treatments included phosphate-solubilizing fungi, such as T.
funiculosus, Trichoderma spirale, and A. alabamensis. Albeit low

level of significance, the presence of phosphorus could suggest a
better understanding of the shifts in fungal community composition
in the R. solani AG 3-PT inoculated treatments. This could indicate
a high abundance of potential phosphate-solubilizing fungi (Tian
et al. 2010). In addition to R. solani, these taxa are associated with
the ability to solubilize phosphates and could aid in overall potato
crop fitness by enhancing phosphate acquisition and plant growth
(Go et al. 2023; Hakim et al. 2015; Kucey et al. 1989; Whitelaw
1999). However, these fungal taxa were not identified as key drivers
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in the NetShift analysis. β-Glucosidase activity in the R. solani AG
3-PT inoculated treatments was shown to explain a higher percent-
age of the beta diversity distribution than phosphorus; thus, we
suggest that carbon mineralization played a more important role in
the recruited beneficial fungi (Fig. 5A).

The taxonomic group Sordariales was identified as a potential
contributor to the shifts observed in the fungal community follow-
ing R. solani AG 3-PT inoculation in the rhizosphere (Fig. 8A).
The unidentified Sordariales taxa were differentially abundant in
both the R. solani AG 3-PT inoculated and uninoculated treat-
ments and exhibited only positive connections in the community
co-occurrence networks (Fig. 7A). The most notable overrepre-
sented fungal taxa in the uninoculated treatments included T. inae-
qualis (Chaetomiaceae family, Sordariales order, Sordariomycetes
class) and Sordariomycetes (Fig. 6A). Interestingly, no studies have
investigated the role of T. inaequalis as a potential BCA. In the bulk
soil, the overrepresented fungal taxa included R. solani in the inocu-
lated treatments and Chaetomiaceae in the uninoculated treatments
(Fig. 6B). Chaetomium spp. have been found to produce secondary
metabolites that exhibit significant antifungal activity against plant
pathogenic fungi, including Botrytis cinerea, Alternaria solani,
Magnaporthe oryzae, and Gibberella saubinettii (Ibrahim et al.
2021; Li et al. 2018). Chaetomium globosum and Chaetomidium
leptoderma have also shown antagonistic effects against R. solani
(Aggarwal et al. 2014; Di Pietro et al. 1992; Moya et al. 2016;
Walther and Gindrat 1988; Yue et al. 2018).

Although there was no loss in bacterial diversity (Fig. 2B),
community composition shifts (Fig. 3B) also suggest a change in
bacterial communities caused by inoculation of the pathogen. The

distinctly clustered bacterial communities suggest that there was
recruitment of specific bacteria to the rhizosphere upon R. solani
AG 3-PT infection (Supplementary Fig. S3B) (Bakker et al. 2013;
Berendsen et al. 2012). We propose that root-associated bacterial
communities could be derived from the bulk soil with the occur-
rence of the “rhizosphere effect” in the potato soil microbiome upon
introduction of R. solani AG 3-PT, as has been shown in similar
studies (Hou et al. 2020; Mendes et al. 2013).

The introduction of R. solani AG 3-PT demonstrated a negative
impact of dysbiosis caused by the pathogen on the bacterial commu-
nity in the rhizosphere microbiome of potatoes (Petersen and Round
2014). The high number of nodes and positive connections in the
bacterial networks indicates a complex, synergistic, and diverse en-
vironment (Fig. 7B). High bacterial diversity has been suggested to
promote disease suppression and increase resistance to pathogen in-
vasion (Bell et al. 2005; Hu et al. 2016; Kristensen et al. 2016). The
R. solani AG 3-PT inoculated treatments exhibited more connected
components and longer path lengths in the co-occurrence networks
(Fig. 7B) as well as more differentially abundant bacterial taxa (Fig.
6C), suggesting a more complex interactive community compared
with the uninoculated treatments. A study by Mendes et al. (2011)
showed that bacterial taxa associated with R. solani-suppressive
soils in sugar beet were more abundant than those in uninoculated
soils. Similarly, the present study showed an increase in differen-
tially abundant bacterial taxa associated with the R. solani AG 3-PT
inoculated treatments (Fig. 6C), providing insight into the potato
plant’s exploitation of soil bacteria consortia upon pathogen attack.
The various potential bacterial biomarkers (LEfSe) and keystone
(co-occurrence networks) and driver (NetShift) taxa identified in

TABLE 2
Fungal and bacterial taxa of potato soil microbiomes (rhizosphere and bulk) with the highest degree and betweenness centrality scores

in uninoculated and Rhizoctonia solani anastomosis group 3-PT inoculated treatmentsa

Domain Treatment Node Taxon Degree Betweenness centrality

Fungi Uninoculated 1,274 Basidioascus 17 80

Fungi Uninoculated 193 Rhizophlyctis rosea 12 20

Fungi Uninoculated 411 Clonostachys 10 17

Fungi Uninoculated 333 Actinomucor elegans 2 17

Fungi Uninoculated 244 Papulaspora funabasensis 2 15

Fungi Inoculated 224 Parabambusicolaceae 12 973.25

Fungi Inoculated 191 Aspergillaceae 11 726.15

Fungi Inoculated 219 Chloridium aseptatum 9 688.72

Fungi Inoculated 1,431 Cystobasidium 17 620

Fungi Inoculated 395 Helicoma 7 618.76

Bacteria Uninoculated 10,449 Steroidobacteraceae 25 7,189.49

Bacteria Uninoculated 8,596 Blastocatellaceae 27 4,423.69

Bacteria Uninoculated 10,534 Moraxellaceae 8 3,396.34

Bacteria Uninoculated 10,315 Gemmataceae 14 3,068.39

Bacteria Uninoculated 9,530 Diplorickettsiaceae 15 2,398.48

Bacteria Inoculated 6,996 SM2D12 14 7,329.90

Bacteria Inoculated 7,214 Caulobacteraceae 21 5,985.52

Bacteria Inoculated 7,092 P2-11E 5 5,675.5

Bacteria Inoculated 6,934 MB-A2-108 4 5,597.48

Bacteria Inoculated 6,919 Rhodococcus 5 5,499.21

a The terms node, degree, and betweenness centrality are widely used in microbial co-occurrence networks (Berry and Widder 2014).
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this study suggest that the interaction between these identified bac-
terial groups could play an important role in the rhizosphere of the
potato plant upon R. solani AG 3-PT infection (Hu et al. 2016; Li
et al. 2019; Wei et al. 2015, 2019).

Although the literature is sparse, bacterial taxa found to be an-
tagonistic to R. solani include Pseudomonas spp. (Howell and
Stipanovic 1979), Bacillus spp. (Pleban et al. 1995), Burkholde-
ria spp. (Larkin 2016), Lysobacter spp. (Das 2013), and Laetisaria
spp. (Murdoch and Leach 1993). Likewise, Bacillus spp., Pseu-
domonas spp., and Streptomyces spp. have been linked to soil sup-
pressiveness of various pathogens (Garbeva et al. 2006; Gómez
Expósito et al. 2015; Haas and Défago 2005; Raaijmakers and
Mazzola 2012). Only Burkholderia spp. and Pseudomonas spp.
were identified as biomarkers in the present study (Fig. 6C).
However, these taxa did not appear as potential key drivers of
the bacterial shift between uninoculated and R. solani AG 3-PT
inoculated treatments. As with the fungal results, several bac-
terial taxa identified in the present study have been associ-
ated with phosphate-solubilizing capabilities. For instance, sev-
eral Burkholderia, Flavobacterium, Enterobacteriaceae, Rhizo-
bium, and Pseudomonas spp. are phosphate-solubilizing organisms,
providing soluble phosphorus to the plant. These plant growth-
promoting rhizobacteria acidify the environment with citrate, succi-
nate, gluconate, or acetate to solubilize phosphorus for plant uptake,
which could aid in defense against the pathogen. The metabolism of

these taxa could also explain the low pH observed in samples from
inoculated treatments (Fig. 5B) (Figueiredo et al. 2011; Spaepen
and Vanderleyden 2011; Vessey 2003).

Various nitrogen-fixing bacteria, such as Pseudomonas,
Burkholderia, and Rhizobium species, have been found to en-
hance nitrogen availability in non-leguminous crops (Khaitov
2018; Shata et al. 2007; Shoghi-Kalkhoran et al. 2018). In a study
conducted by Chapelle et al. (2016), rhizobacteria taxa, including
Burkholderiaceae, Oxalobacteraceae, Sphingomonadaceae, and
Sphingobacteriaceae, were identified as differentially more abun-
dant in R. solani inoculated suppressive soils and exerted oxidative
stress in the rhizobacterial community in sugar beet. Of these
rhizobacteria, Burkholderia-Caballeronia-Paraburkholderia (fam-
ily Burkholderiaceae), Oxalobacteraceae, Sphingopyxis (family
Sphingomonadaceae), and Chitinophaga and Pedobacter (family
Sphingobacteriaceae) were differentially abundant in the R. solani
AG 3-PT inoculated treatments in the present study (Fig. 6C), which
is consistent with the findings of Chapelle et al. (2016). Taxa includ-
ing Sphingopyxis, Chitinophaga, and Pedobacter were identified
as key drivers of the community shift between uninoculated and
R. solani AG 3-PT inoculated treatments, suggesting that these taxa
may play a role in Rhizoctonia disease suppression, as suggested
by Chapelle et al. (2016) (Fig. 8B). Members of the family Oxalo-
bacteraceae are known for their ability to protect plant roots against
fungal infection by inhibiting fungal growth (Johnsen et al. 2010;
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Leveau et al. 2010). Although Massilia (family Oxalobacteraceae)
was not identified as a driver taxon in this study, it was found to be
differentially abundant in both R. solani AG 3-PT inoculated and
uninoculated treatments and has also been associated with protec-
tive properties against R. solani infestation (Fig. 6C) (Yin et al.
2013). Furthermore, Pseudomonas, Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium, and Rhizobiaceae were differentially
abundant in the R. solani AG 3-PT inoculated treatments, whereas
Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium was ide-
ntified as a key driver in the community shift upon R. solani AG
3-PT infection (Fig. 8B). We suggest that the potato plant may have
selected these various taxa for increased plant growth promotion
and, indirectly, pathogen defense by metabolic competition for
nitrogen and magnesium (Figs. 4 and 5B) (Chapelle et al. 2016;
Moromizato et al. 1991; Pascale et al. 2020).

Conclusions. This study reveals insights into soil microbial com-
munity diversity and compositional shifts that occur upon R. solani
AG 3-PT infection of potatoes. Our results suggest that the intro-
duction of R. solani AG 3-PT leads to microbial compositional
and functional changes in the rhizosphere soil. We identified var-
ious fungal and bacterial taxa that could be putative key players
in community changes and interactions upon pathogen infection
and could therefore be potential Rhizoctonia disease-suppressive
agents. Although this study does not necessarily provide the pre-
cise identification of specific BCAs, we provide a framework that
can facilitate future studies investigating potential biological con-
trol agents. Further testing of the identified microbial indicators in
vitro, in vivo, and in situ as single inoculants and in different combi-
nations should be done to confirm their disease-suppressive ability
against R. solani AG 3-PT. Compared with single inoculations, the
identified microbial taxa and/or groups will not only benefit the
crop as an efficient disease control barrier against R. solani AG
3-PT infection but will also enhance the synergistic plant–microbe
relationship for a potentially greater physiological effect in potatoes
(Li et al. 2019). The results are essential to ensure resilience of the
potato industry for agricultural sustainability, long-term productiv-
ity, and economic viability.
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