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Abstract: Type 2 diabetes mellitus (T2DM) is an expanding global health concern, closely associ-
ated with the epidemic of obesity. Individuals with diabetes are at high risk for microvascular and
macrovascular complications, which include retinopathy, neuropathy, and cardiovascular comorbidi-
ties. Despite the availability of diagnostic tools for T2DM, approximately 30–60% of people with
T2DM in developed countries are never diagnosed or detected. Therefore, there is a strong need
for a simpler and more reliable technique for the early detection of T2DM. This study aimed to use
a non-targeted metabolomic approach to systematically identify novel biomarkers from the serum
samples of T2DM-induced Sprague Dawley (SD) rats using a comprehensive two-dimensional gas
chromatography coupled with a time-of-flight mass spectrometry (GCxGC-TOF/MS). Fifty-four
male Sprague Dawley rats weighing between 160–180 g were randomly assigned into two exper-
imental groups, namely the type 2 diabetes mellitus group (T2DM) (n = 36) and the non-diabetic
control group (n = 18). Results from this study showed that the metabolite signature of the diabetic
rats was different from that of the non-diabetic control group. The most significantly upregulated
metabolic pathway was aminoacyl-t-RNA biosynthesis. Metabolite changes observed between the
diabetic and non-diabetic control group was attributed to the increase in amino acids, such as glycine,
L-asparagine, and L-serine. Aromatic amino acids, including L-tyrosine, were associated with the
risk of future hyperglycemia and overt diabetes. The identified potential biomarkers depicted a
good predictive value of more than 0.8. It was concluded from the results that amino acids that
were associated with impaired insulin secretion were prospectively related to an increase in glucose
levels. Moreover, amino acids that were associated with impaired insulin secretion were prospectively
related to an increase in glucose levels.

Keywords: type 2 diabetes; metabolomics; biomarkers; metabolic pathways; Sprague Dawley rats

1. Introduction

Globally, there is a major dilemma of non-communicable diseases, and among the top
ones is type 2 diabetes mellitus (T2DM). T2DM is one of the most prevalent and emerging
chronic diseases and metabolic disorders in developing countries and is related to the
decline in β-cell function and insulin resistance [1]. Furthermore, T2DM is associated
with reduced quality of life from pain or discomfort, mobility, anxiety, and depression [2].
In 2017, the International Diabetes Federation (IDF) atlas reported that approximately
420 million of the world’s human population are diabetic [3], and it is estimated that the
number of diabetic patients will surpass 700 million by the year 2045 [4]. The estimated
increase in patients with T2DM by the year 2045 is expected to come from regions that
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experience economic transitions from low-income to middle-income levels [5]. The risk
factors associated with T2DM include unhealthy eating, high cholesterol, obesity, and
sedentary lifestyle as well as genetic factors [6,7]. Other factors that lead to an increase in
the epidemic of T2DM include population aging and urbanization [8].

Individuals with T2DM are characterized by elevated peripheral neuropathy, car-
diovascular diseases, and diabetic kidney disease (nephropathy) [9]. Moreover, a study
conducted by Scott, Toomath [10] found that patients who had T2DM suffered retinopathy,
leading to blindness. Therefore, early diagnosis of T2DM in patients is important so that
treatment can be administered to ameliorate the effects of the disease. Methods used
for the diagnosis of T2DM include the oral glucose test, fasting blood glucose, and gly-
cated hemoglobin (HbA1c) [11,12]. Despite the availability of the methods, approximately
30–60% of people with T2DM in developed countries are never diagnosed or detected [11].
Some of the reasons include a lack of awareness or misdiagnosis of the disease and a lack
of sensitivity of the assays in predicting the diabetic threshold values [13]. Accordingly,
there is a strong need for a simpler and more reliable technique for the early detection
of T2DM. Additionally, there is a need for new enhanced diagnostic techniques and the
application of novel emerging technologies to study T2DM. It has become evident over
the last decade that metabolomic techniques and technologies can play an essential role in
providing insight into the metabolite changes and pathophysiological pathways of T2DM
in humans [14,15].

Metabolomics is a comprehensive systemic study of metabolites in a biological sys-
tem [16]. For the most part, metabolomics plays a significant role in an in-depth investiga-
tion of metabolic pathways and the identification of biomarkers [17]. According to Roberts,
Koulman [18], metabolomics is essential for the prediction and early detection of T2DM,
and, recently, it has been used to study metabolite changes in patients with T2DM. Fur-
thermore, Ma, Li [4], postulated that the development of metabolomic technology plays an
essential role in the early detection and prediction of T2DM. Currently, blood glucose and
hemoglobin A1c are two diagnostic biomarkers that exist for the detection of T2DM [19].

Over the past years, different biomarkers have been associated with T2DM [20].
Amino acids, such as tryptophan, leucine, and valine, have been proposed to be useful
diagnostic biomarkers for T2DM since the metabolism of these metabolites changes in
pre-diabetic patients and over the course of T2DM [15]. Additionally, these identified
metabolic biomarkers reflect different metabolic pathways that may be involved in the
pathogenesis of T2DM. The application of metabolomics makes it possible to identify the
metabolites that can be used as biomarkers for diagnosis, treatment, and prognosis of
T2DM [15].

In view of the high incidence of T2DM and its consequences, there is a justifiable
need to identify novel biomarkers for T2DM and a need for independent understanding
of the metabolic pathways impacted during T2DM. There is still a lack of dependable
biomarkers indicative of metabolic changes in T2DM, highlighting the need for markers for
early diagnosis and prognosis for T2DM.

Therefore, this study used a non-targeted metabolomics approach to systematically
identify novel biomarkers from serum samples of T2DM-induced Sprague Dawley (SD) rats
using a comprehensive two-dimensional gas chromatography coupled with a time-of-flight
mass spectrometry (GCxGC-TOF/MS).

2. Results
2.1. Multivariate Statistical Analysis

A total of 941 metabolites were identified in the serum samples from the study animals.
When comparing the control with the T2DM group, the unsupervised (PCA), using all
941 metabolites, showed that there was a slight degree of separation between the T2DM
and control groups (Figure 1A). The variance captured by the first and the second principal
components (PC1 and PC2) were 11.2% and 7.5%, respectively. However, to maximize
the separation obtained from the PCA, a PLS-DA was subsequently used (Figure 1B).
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The performance measurements for the PLS-DA had an accuracy of 0.87, R2 > 0.92, and
Q2 > 0.42. Additionally, the distinction between the non-diabetic control and T2DM group
was further evaluated using a OPLS-DA plot, constructed using the 941 metabolites, and
the plot depicted a clear separation Figure 1C.
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Figure 1. PCA, PLS-DA, and OPLSDA score scatter plots distinguishing between the T2DM and
control group. (A) PCA (PC1 and PC2: 11.2% and 7.5% of the total variance, respectively); (B) PLSDA
(PC1 and PC2: 6.2% and 5.4% of the total variance, respectively); (C) OPLSDA (obtained with the
predictive and orthogonal component, accounting for 4.3% and 6.3% of the total variance, respectively)
between the T2DM and the non-diabetic control group, indicating that these groups had different
metabolite profiles. The goodness-of-fit of the parameters (OPLS-DA, R2X, R2Y, and Q2Y) for the
OPLS-DA was calculated. R2X and R2Y represented the fraction of variance of the X and Y variables
of the model, while Q2Y represented the predictive performance of the model. The values of R2Y and
Q2Y of the model were 0.97 and 0.51, respectively.

2.2. Screening of Differential Metabolites

Metabolites that had a significant change (p < 0.05) were identified based on the
absolute cut-off value of the correlation coefficient and VIP value ≥ 1.5 when performing
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the PLS-DA, and these were considered potential biomarkers. Of the 941 metabolites in the
cleaned dataset, a total of 71 metabolites were determined as metabolites most contributing
to the separation between the T2DM and the control group (Supplementary Table S1).
Considering that the metabolites having a VIP ≥ 1.5 were interpreted as highly influential,
the top 15 metabolites were considered to be the most significant potential biomarkers
(Figure 2). The VIP plot illustrates the differences in the concentrations of all the potential
biomarkers between the two groups. The significant potential biomarkers included six
metabolite groups, namely amino acids, carbohydrates, xenobiotics, organic compounds,
fatty acids, and glycosides (Table 1). The metabolite aucubin was upregulated in the
T2DM group as compared with the control group, with a fold change of 15.22. The five
carbohydrate biomarkers identified, namely d-glucose, d-ribofuranose, d-mannitol, and
d-galactose, were all upregulated in the T2DM group as compared with the non-diabetic
control group. Additionally, these carbohydrate metabolites in the T2DM group had a VIP
value > 2, indicating a significant contribution in separating the control from the T2DM
group.

Table 1. Quantitative comparison of the top 15 potential biomarkers from the serum samples of
T2DM-induced Sprague Dawley rats and control group.

Names Type/Class VIP FC Regulation p-Value

Aucubin Glycoside 3.773 15.224 Up 4.55 × 10−11

d-Glucose Carbohydrate 3.276 8.451 Up 8.4 × 1008

d-ribofuranose Carbohydrate 3.124 3.002 Up 4.92 × 10−07

Methoxy-propanol Xenobiotic 3.120 0.362 Down 5.13 × 10−07

L-Hydroxy proline Amino acid 3.116 0.342 Down 5.36 × 10−07

2-Mercaptoethanol Xenobiotic 2.983 0.230 Up 2.15 × 10−06

D-mannitol Carbohydrate 2.819 0.329 Up 1 × 10−05

H-Imidazole Organic compound 2.796 3.681 Down 1.23 × 10−05

4-Oxo butyric acid Fatty acid 2.794 0.159 Down 1.25 × 10−05

Propane Xenobiotic 2.789 4.880 Up 1.29 × 10−05

Hexanoic acid Fatty acid 2.789 3.095 Up 1.3 × 10−05

D-Ribono-1,4-lactose Organic compounds 2.762 3.294 Up 1.64 × 10−05

Hydroxybutyric acid Organic compounds 2.715 2.591 Up 2.44 × 10−05

d-Galactose Carbohydrate 2.710 9.277 Up 2.55 × 10−05

2-Methylheptanedioic acid Organic compound 2.665 3.564 Up 3.67 × 10−05

A heatmap (Figure 3) highlights some of the metabolites depicting the largest changes
between the non-diabetic control and T2DM group. In comparing the two groups, two
major hierarchical clusters were observed. Additionally, excluding Methoxy-propanol,
H-Imidazole, L-Hydroxy proline, and oxo-butyric acid, the T2DM group had metabolites
with higher concentrations/enrichment as compared with the control group.

To confirm further the significance and specificity of the potential discriminating
metabolic biomarkers identified from the PLS-DA between the T2DM and the control
group, the data were also represented in the form of a volcano plot. The metabolites with
a significant change are depicted with red and blue dots, positioned in the upper right
and left conner of the volcano plot (Figure 4). The generated volcano plot (FDR-adjusted
p < 0.05; FC > 2) is depicted in Figure 4, and additional metabolites were discovered; these
included L-serine, Furo-pyridine, diethanolamine, phenobarbital, and glycolic acid.
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Figure 3. Heatmap visualization of group averages based on 15 top potential biomarkers. Rows:
potential biomarkers; columns: samples. Red: control group; green: T2DM. Color keys indicate
metabolite values (dark blue: lowest; dark red: highest).

2.3. Weekly Changes of the Potential Biomarkers

Changes in the relative concentration of the identified potential biomarkers were
observed with the progression of T2DM (Supplementary Figure S1). From day 0 to day 35,
there was a fluctuation in the relative concentration of the identified potential biomarkers.
The observed fluctuations within the top 15 potential biomarkers depicted no clear change
within the 35 days after diabetes induction. The changes between days showed a significant
difference in the D-ribfuranose concentration between day 7 and day 35 (p = 0.016) and
between day 14 and 35 (p = 0.007). Furthermore, the aucubin concentration was significantly
different between day 7 and 35 (p = 0.015) and between day 14 and 35 (p = 0.003). The
glucose and L-hydroxyproline concentrations were significantly different between day 14
and day 35 (p = 0.034, p = 0.014), respectively. The L-hydroxyproline concentration was also
significantly different between day 7 and 35 (p = 0.040).



Int. J. Mol. Sci. 2023, 24, 12467 6 of 18

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 20 
 

 

To confirm further the significance and specificity of the potential discriminating 
metabolic biomarkers identified from the PLS-DA between the T2DM and the control 
group, the data were also represented in the form of a volcano plot. The metabolites with 
a significant change are depicted with red and blue dots, positioned in the upper right 
and left conner of the volcano plot (Figure 4). The generated volcano plot (FDR-adjusted 
p < 0.05; FC > 2) is depicted in Figure 4, and additional metabolites were discovered; these 
included L-serine, Furo-pyridine, diethanolamine, phenobarbital, and glycolic acid. 

 
Figure 4. Volcano plot. Each dot represents a metabolite. The abscissa represents the fold change 
values, and the ordinate depicts the p-value of the Student’s t-test. 

2.3. Weekly Changes of the Potential Biomarkers 
Changes in the relative concentration of the identified potential biomarkers were ob-

served with the progression of T2DM (Supplementary Figure S1). From day 0 to day 35, 
there was a fluctuation in the relative concentration of the identified potential biomarkers. 
The observed fluctuations within the top 15 potential biomarkers depicted no clear change 
within the 35 days after diabetes induction. The changes between days showed a signifi-
cant difference in the D-ribfuranose concentration between day 7 and day 35 (p = 0.016) 
and between day 14 and 35 (p = 0.007). Furthermore, the aucubin concentration was sig-
nificantly different between day 7 and 35 (p = 0.015) and between day 14 and 35 (p = 0.003). 
The glucose and L-hydroxyproline concentrations were significantly different between 
day 14 and day 35 (p = 0.034, p = 0.014), respectively. The L-hydroxyproline concentration 
was also significantly different between day 7 and 35 (p = 0.040). 

2.4. Metabolic Pathway Discovery and Analyses of Differential Metabolites 
Using the KEGG annotation analysis, the study was able to reveal the metabolic path-

ways involving the differential metabolites. To explore whether the metabolic pathways 
were closely related to the experimental conditions, it was important to further analyze 
the metabolic pathways of the potential metabolites. Metabolite set enrichment analysis 
(MSEA) was used to identify biologically meaningful pa erns that were significantly en-
riched in quantitative metabolomic data (Figure 5). Metabolic data from the diabetic and 

Figure 4. Volcano plot. Each dot represents a metabolite. The abscissa represents the fold change
values, and the ordinate depicts the p-value of the Student’s t-test.

2.4. Metabolic Pathway Discovery and Analyses of Differential Metabolites

Using the KEGG annotation analysis, the study was able to reveal the metabolic path-
ways involving the differential metabolites. To explore whether the metabolic pathways
were closely related to the experimental conditions, it was important to further analyze
the metabolic pathways of the potential metabolites. Metabolite set enrichment analysis
(MSEA) was used to identify biologically meaningful patterns that were significantly en-
riched in quantitative metabolomic data (Figure 5). Metabolic data from the diabetic and
control animals based on all the identified biomarkers depicted metabolic pathways that
were significantly enriched (FDR < 0.05, p < 0.05), and these included ammonia recycling,
carnitine synthesis, biotin metabolism, and phenylacetate metabolism. Metabolic pathways
that were least enriched in the T2DM serum samples were the urea cycle, selenoamino
acid metabolism, and phenylalanine and tyrosine metabolism. Figure 6 represents the
highly altered metabolic pathways based on a topology analysis. The pathway impact
analysis (p < 0.05 and impact value > 0.1) indicated 31 potential metabolic pathways that
were impacted during diabetes (Supplementary Material, Table S3).

Using the pathway analysis (MetPA) plot to identify the most relevant pathways in the
diabetic group, based on the 71 potential metabolic makers, the most significantly affected
metabolic pathways, in decreasing order, were aminoacyl-t-RNA biosynthesis; valine;
leucine; isoleucine biosynthesis; glyoxylate and dicarboxylate metabolism; phenylalanine,
tyrosine, and tryptophan biosynthesis; and alanine, aspartate, and glutamate metabolism
(Figure 6). Furthermore, the metabolic pathways most impacted (impact factor > 0.1)
included phenylalanine, tyrosine, and tryptophan biosynthesis and glycine, serine, and
threonine metabolism, with impact values of 0.5 and 0.46, respectively.

There were eight biomarkers involved in the aminoacyl-t-RNA biosynthesis metabolic
pathway, which included the amino acids L-asparagine, L-glutamine, glycine, L-serine,
L-leucine-valine, and L-tyrosine. From the KEGG pathway, the differential metabolites
between the diabetic group and the control group were involved in multiple metabolic



Int. J. Mol. Sci. 2023, 24, 12467 7 of 18

pathways linked to the synthesis of amino acids. Supplementary Figure S2 illustrates the
location of the identified biomarkers that were detected on the KEGG map.
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Figure 5. Metabolic pathways associated with 71 identified potential metabolites. The horizontal
bars show a summary of metabolic pathways that were strongly affected or changed in the T2DM SD
rats compared with the control group. Pathways are shown in order of decreasing significance from
top to bottom (increasing nominal p-values, colored from red to yellow), with bars indicating their
estimated fold enrichment.
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2.5. Potential Biomarker Verification

The present study also aimed to evaluate the diagnostic utility of serum metabolic
profile estimated by GC/GC-TOF-MS for discriminating diabetic patients from the control
group. To characterize the predictive value of the identified metabolites independently,
a receiver operating characteristic (ROC) analysis was performed (Figure 7). Setting the
criteria from the top 15 biomarkers for diagnostic value, 0.8 < AUC < 0.9 was considered
good, and 0.9 < AUC ≤ 1.0 was considered excellent. Aucubin and d-galactose 2,3,4,5,6-
pentakis showed excellent diagnostic potential for T2DM, having an AUC of 0.967 and
0.956, respectively. Moreover, excluding methyl-heptadecanoic acid, having a moderate
diagnostic potential from the top 15 potential biomarkers, the metabolites depicted a good
predictive value of more than 0.8. An algorithm combining the 15 most discriminatory
metabolites was even more successful, with AUCs > 0.90 (Figure 8).
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3. Discussion

Using comprehensive metabolomics, this study has identified novel metabolic markers,
which included different classes such as carbohydrates, fatty acids, amino acids, xenobiotics,
and organic compounds. Additionally, the serum concentrations of the identified markers
were significantly different between the T2DM and the non-diabetic control groups. The
identified metabolites were found to be involved in multiple pathways, which included
ammonia recycling, carnitine synthesis, amino sugar metabolism, aspartate metabolism,
and galactose metabolism.

Aucubin was the metabolite marker that was substantially changed. Aucubin is a
glycoside that is found in many natural medicines [21]. Additionally, researchers have
shown that aucubin has pharmacological properties, including anti-inflammation, anti-
aging, anti-tumor, antioxidation, hepatoprotection, neuroprotection, and anti-fibrosis [8].
In the T2DM group, our study showed that aucubin was highly upregulated as compared
with the non-diabetic control animals. A study conducted by Jin et al. (2008) [22] looking
at the effect of aucubin on the antioxidant status of experimentally induced diabetic rats
showed that diabetic rats had a substantial decrease in body weight as compared with
the rats that were diabetic and given aucubin. Moreover, Jin et al. (2008) [22] found that
streptozotocin-induced diabetic rats had higher blood glucose levels and a decrease in
insulin immunoreactivity as compared with diabetic rats treated with aucubin, who had
lowered blood glucose levels and a significant increase in insulin immunoreactivity. The
study by Jin et al. (2008) [22] also reported that aucubin could stimulate glucose uptake
into cells and, therefore, result in a decrease in blood glucose. Therefore, in this study,
it can be speculated that the observed upregulation of aucubin was to stimulate glucose
uptake into cells of the diabetic rats compared with the control animals. According to Pari
and Murugan (2005) [23], the protective function of aucubin in diabetic mice may result
from its direct impact on the endocrine pancreas function to make insulin. A common
feature in T2DM individuals includes low-grade inflammation [24]. With the mentioned
pharmacological properties of aucubin, the increase in the concentration of this metabolite
in diabetic rats can be attributed to its anti-inflammation function, and they can be regarded
as important in reducing the risks of type 2 diabetes.

After aucubin and glucose, D-ribose was a metabolite that was significantly different
and was upregulated in the T2DM group compared was the non-diabetic control group.
According to Su and He (2014) [25], D-ribose has been overlooked as a potential risk player
in causing the onset of diabetes. A study conducted by Tao et al. (2013) [26] reported an ab-
normally high level of D-ribose in the urine of diabetic individuals and that the intravenous
administration of D-ribose causes a decrease in blood glucose [27]. A study by Su and
He (2014) [25] had previously hypothesized that dysfunction or impairment of D-ribose
metabolism may have played a role involving the development of complications of T2DM
and stated that D-ribose could be used as a biomarker for T2DM. In the present study, D-
ribose was part of the potential biomarkers and was associated with the pentose phosphate
pathway. The pentose phosphate pathway, also known as the pentose phosphate shunt, is
a branch of glycolysis and is essential for the synthesis of ribonucleotides and an important
source of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) [28]. According to Ge
et al. (2020) [29], pentose phosphate serves as a new and promising target for modulating
insulin resistance and obesity-induced inflammation in various tissues. Obesity-induced
inflammation can lead to insulin resistance in the liver or skeletal muscles, resulting in
systemic insulin resistance [30]. Su and He (2014) [25] reported that D-ribose can be easily
measured in the urine of diabetic patients, and it can be assumed that this could be new
biomarker for T2DM. According to Cho et al. (2018) [31], the pentose phosphate pathway
is interconnected to the glycolysis pathway via the shared use of the three intermediates,
namely glyceraldehyde 3-phosphate, glucose 6-phosphate, and fructose 6-phosphate. In
this study, with the upregulation or increased glucose concentration observed in the dia-
betic animals, the pentose phosphate pathway was favored, as this pathway was initiated
by glucose that is converted to glucose-6-phosphate (G6P) by hexokinases.
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Another carbohydrate that was identified as a potential biomarker for diabetes in our
study included D-galactose. According to Gannon et al. (2001) [32], D-galactose can result
in increased plasma glucose levels. In this study, D-galactose was found to be upregulated
in the T2DM animals in comparison with the non-diabetic control group. Our study find-
ings are in accordance with the study conducted by Hanafy et al. (2021) [33] that reported
an increased concentration of D-galactose in T2DM-STZ-induced Wistar albino rats. Addi-
tionally, our study also performed a biomarker analysis with universal receiver operating
characteristics (ROC) and found that D-galactose had high area under the curve (AUC)
scores and high sensitivity and specificity. The AUCs obtained in our study were similar
to those of Hanafy et al. (2021) [33]. In our study, D-galactose was involved in different
pathways, and this included lactose degradation, galactose metabolism, and sphingolipids
metabolism. The upregulation of D-galactose favored these metabolic pathways. Prior to
the start of the glycolysis pathway, D-galactose is essential for producing glucose that will
initiate the glycolysis pathway. Galactose is essential for cellular metabolism, as it plays an
important role in energy production, glycosylation, and storage [34].

Considering other different metabolic pathways affected by T2DM, in the ammonia
recycling pathway, four amino acid metabolites were involved: glycine, L-asparagine,
L-serine, and L-glutamine. According to Vangipurapu et al. (2019) [35], amino acids are
associated with insulin resistance and the risks of T2DM. Moreover, Vangipurapu et al.
(2019) [35] found that serine, glycine, and glutamine were associated with improved insulin
sensitivity. Amino acids can regulate the secretion of insulin from β-cell lines and primary
islet β-cells [22,36]. In the present study, it was found that glutamine was upregulated in the
diabetic animals in comparison with the control animals. L-glutamine, the most abundant
amino acid in the body, plays an important role in maintaining the function of various cells
and organs, such as the heart, kidney, liver neurons, macrophages, pancreatic beta-cells,
and intestines [37]. Additionally, glutamine plays an essential role in the production of
glutathione, which is important for reducing oxidative stress, which eventually maintains
the inflammatory processes in the β-cells in diabetic individuals [38]. Studies conducted
on the possible effect of glutamine on the glycemic status of diabetic animals reported
that glutamine supplementation caused a reduction in the plasma glucose levels, with
an increase in the pancreatic and plasma levels of insulin [39,40]. In diabetic patients,
hyperglycemia is one of the symptoms of T2DM and later results in complications of the
disease since an increase in glucose level induces peroxidation and directly injures cells [41].

Other glucogenic metabolites that were detected in the present study included glycine,
serine, and L-valine. Previous research suggests that changes in plasma glycine may be one
of the prediabetes biomarkers [42]. These metabolites were involved in different metabolic
pathways. In this study, glycine was another amino acid that was significantly upregulated
in the diabetic animals in comparison with the control animals. This metabolite was
associated with ammonia recycling, carnitine synthesis, methionine metabolism, alanine
metabolism, purine metabolism, and porphyrin metabolism. A study conducted by Chen
et al. (2018) [43] looking at the effect of glycine in diabetic rats reported that rats that were
diabetic and given glycine had higher insulin secretion compared with those that were
diabetic and went without glycine. Additionally, Chen et al. (2018) [43] reported that the
administration of glycine improved the β-cell microstructure, increased the β-cell mass,
and increased the number of mature insulin-secreting particles. Another study conducted
by Li et al. (2019) [44] reported that glycine increased the glutathione content, reduced
blood glucose levels, and increased body weight. Floegel et al. (2013) [45] also reported
that an increase in glycine concentration was associated with elevated insulin sensitivity
and secretion. Therefore, the observed increase in glycine in this study in the diabetic rats
can be attributed to the role that glycine plays in diabetic individuals, which includes being
an antioxidant, as oxidative stress is considered to be the main pathogenic mechanisms of
β-cell damage in diabetes. In our study, having increased glucose in the diabetic animals,
it can be speculated that the increase in glycine served to attenuate the glucose levels
by increasing the secretion of insulin. In the diabetic rats, the glucose concentration was
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reported to be significantly reduced by supplemental glycine [46–48]. Therefore, it can be
stated that glycine played a significant role in glucose homeostasis and that this metabolite
supplementation improved the glucose tolerance.

In this study, the ammonia recycling pathway included metabolites such as L-asparagi
ne, L-tyrosine, and L-serine. The mentioned biomarkers were also linked with aspartate
metabolism, phenylalanine, and tyrosine metabolism, methionine metabolism, homo-
cysteine degradation, and thyroid hormone synthesis. A study by Vangipurapu et al.
(2019) [35] on the association of amino acids and T2DM reported that L-asparagine and
L-serine were associated with improved insulin sensitivity and insulin secretion. How-
ever, Vangipurapu et al. (2019) [35] also found that the amino acid L-tyrosine had the
largest effect on the reduction of insulin sensitivity and secretion. In the present study,
L-tyrosine and asparagine were upregulated in the diabetic animals. According to Würtz
et al. (2013) [15], aromatic amino acids, including L-tyrosine, were associated with the risk
of future hyperglycemia and overt diabetes. In patients who have a diabetic foot ulcer, the
concentration of L-tyrosine was highly elevated [49]. In the present study, the metabolic
pathway with which these biomarkers were associated were pathways that played a sig-
nificant role in the production of amino acids. The increased concentration of L-serine in
diabetic animals favored the methionine metabolism, which is a pathway that can regulate
metabolic processes, digestive functioning in mammals, and the innate immune system [50].
Moreover, according to Ribas et al. (2014) [51], an increase in methionine affected insulin
resistance and could predict the risks of developing diabetes. According to Han et al.
(2018) [52], homocysteine was shown to be an intermediate in methionine metabolism.
Additionally, elevated homocysteine levels were linked with the early development of
heart diseases, especially pronounced in patients with diabetes. In our study, it was found
that the homocysteine metabolism pathway was impacted by diabetes, and L-serine was
the metabolite involved. Recent systematic reviews and studies have concluded that high
concentrations of homocysteine may be associated with the progression of T2DM [53].

4. Methods and Materials
4.1. Experimental Design

Fifty-four male Sprague Dawley rats weighing between 160–180 g were randomly
assigned to two experimental groups, namely the type 2 diabetes mellitus group (T2DM)
(n = 36) and the non-diabetic control group (n = 18) (Figure 9). Experimental rats were
bred and maintained at the Biomedical Resource Unit (BRU), University of KwaZulu-
Natal, Westville Campus in Durban, South Africa. They were maintained and subjected to
laboratory conditions of constant room temperature (22 ± 2 ◦C), carbon dioxide content of
<5000 ppm, 12 h light/dark cycle, and relative humidity of 55 ± 5%. They were fed with
standard rat chow diet (Meadows feeds, Pietermaritzburg, South Africa), and water was
given ad libitum daily throughout the experimental period. Rats from both groups were
euthanized using isoform inhalation in a gas chamber at days 0, 7, 14, 21, 28, and 35 after
induction of diabetes, and on each day of sacrifice, six rats were euthanized from the T2DM
group, while three rats were euthanized from the control group (Figure 9).

4.2. Induction of Type 2 Diabetes Mellitus

Type 2 diabetes mellitus was induced in the experimental rats as described by [54] and
Islam and Wilson [55]. To induce insulin resistance, rats in the T2DM group were given 10%
fructose solution orally ad libitum for 14 days, and those in the control group received nor-
mal water. After 14 days of taking fructose solution, T2DM group was fasted overnight, and
streptozotocin (STZ) (Sigma, St. Louis, MO, USA) was administered interperitoneally at a
dose of 40 mg/kg bw. STZ solution used was first freshly dissolved in citrate buffer (pH 4.5)
before being administered. Thereafter, blood from the tail vein was collected the following
morning to determine the non-fasting blood glucose (NFBG) level using a glucometer
(Glucoplus Inc., Saint-Laurent, QC, Canada). Rats that had glucose levels > 18 mmol/L
were considered diabetic, and those that had glucose levels < 18 mmol/L were considered
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non-diabetic and were excluded from the study. Thereafter, the glucose level in diabetic
rats was measured every two days throughout the experiment.
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4.3. Terminal Studies

Rats were sacrificed from groups at days 0, 7, 14, 21, 28, and 35 post-diabetic induc-
tion. On each day of sacrifice, six animals from the T2DM group and three animals from
the control group were euthanized using ISOFOR inhalation for 3 min in an anesthetic
chamber. Cardiac puncture was used to collect blood into 10 mL tubes that contained
clotting activator (dya cgel and clot activator tubes, Terumo® Venosafe®, Terumo, Tokyo,
Japan). Thereafter, the blood was centrifuged (Thermo-scientific Heraeus Labofuge 200 mi-
croprocessor, Waltham, MA, USA) at 132× g for 15 min at a temperature of 4 ◦C. After
centrifuging, serum was collected into Eppendorf micro-centrifuging tubes and stored in a
Bio Ultra freezer (Snijers Scientific, Tilburg, The Netherlands) at −80 ◦C until analysis.

4.4. Analysis of Serum Samples

A total of 54 serum samples from blood of individual rats (aliquots of 2 mL) were
collected from the T2DM (n = 36) and non-diabetic control (n = 18) groups and stored at
−80 ◦C in a Bio Ultra freezer (Snijders Scientific, Tilburg, The Netherlands) until they were
transported to Potchefstroom, North-West University, Center for Human Metabolomics for
analysis using a GCxGC-TOF/MS. The whole metabolome was extracted from the serum
samples by applying the protein crush method. Briefly, serum samples were aliquoted in
1.5 mL Eppendorf tubes, 50 µL of the internal standard (3-phenyl butyric acid 50 ppm) was
added to 50 µL of each serum sample, and 300 µL ice-cold acetonitrile was added, vortexed,
and incubated on ice for 10 min. After incubation, the sample mixtures were centrifuged at
13,000 rpm for 10 min at 4 ◦C. The supernatant was transferred into a gas chromatography
vial and dried under a gentle stream of nitrogen at 40 ◦C for 20–30 min. For derivatization
purposes, 50 µL methoxyamine HCl (150 mg in 10 mL pyridine) was added, followed by
an incubation step at 50 ◦C for 90 min. Thereafter, 40 µL BSTFA + 1% TMCS was added,
and the extract was re-incubated at 50 ◦C for 60 min. The extracts were then transferred to
a 250 µL insert in a sample vial and capped before GCxGC-TOF-MS analysis.
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4.5. Untargeted GCxGC-TOFMS Approach
4.5.1. GCxGC-TOFMS Analysis

Pegasus GCxGC-TOFMS (Leco Corporation Joseph, MI, USA) that uses an Agilent
7890A GC (Atlanta, GA, USA) coupled to a time-of-flight mass spectrometer (TOFMS) (Leco
Corporation, St. Joseph, MI, USA) equipped with a Gerstel Multipurpose sampler was
used for chromatographic analyses of the derivatized samples. Here, 1 µL of serum extract
was randomly injected at a split ratio of 1:50, and the carrier gas used was helium at a flow
rate of 1 mL min−1. For the entire run, the temperature of the injectors was kept constant
at 270 ◦C. A Restek Rxi-5Sil MS capillary column (29.145 m × 0.25 µm d.f.) (Corporation,
Bellefonte, PA, USA) was used as the primary column. The primary oven was programmed
to an initial temperature of 70 ◦C for 2 min to obtain a compound separation. Subsequently,
this was followed by a 4 ◦C per minute increase to a final temperature of 300 ◦C, which
was maintained for 2 min. The second separation of compounds was achieved using
a Restek Rxi-17 (Corporation, Bellefonte, PA, USA) (1.400 m, 0.25 µm i.d., 0.25 µm d.f.)
column, and the secondary column was set to the same temperature parameters as that of
the primary column. The filament bias was EI at 70 eV, while the detector voltage was at
1600 V. Subsequently, the mass spectra were collected at an acquisition rate of 200 spectra
per second, with a source temperature of 220 ◦C and a solvent delay of 400 s from 50 to
800 m/z [56].

4.5.2. Peak Identification

Leco Corporation Chroma-TOF software (version 4.50) was used to obtain peak finding
and mass spectral deconvolution at an S/N ratio of 100, with a minimum of 3 apexing
peaks. Using the mass fragmentation patterns generated by the MS, together with their
respective GC retention times, the identities of these peaks were determined by comparing
them with commercially available NIST spectral libraries (mainlib and replib).

4.6. Data Clean-Up

Data clean-up was conducted using Microsoft Excel to remove features that were not
reliably measured. The reliability of each variable was assessed by calculating the relative
standard deviation (standard deviation divided by the mean) across all quality control
samples of T2DM and control samples. Features with a relative standard deviation above
50% were excluded from further analysis. This was accomplished by replacing all zero
values with half the minimum observed value for the dataset, which served as an estimate
for the detection limit. The data were log-transformed and scaled using MetaboAnalyst for
data that were not normally distributed. Natural-shifted log transformation was performed
to correct the skewness distribution of the variables, followed by auto-scaling to replace all
variables to obtain normality [57].

4.7. Metabolic Biomarker Discovery and Pathway Analysis

Identification of the potential biomarkers was based on the greatest variable im-
portance in the projection (VIP) value and had to be statistically significant (VIP > 1.5
and p value < 0.05) [58]. The identified metabolic biomarkers were mapped onto the
Kyoto Encyclopedia of Genes and Genome (KEGG) pathway network using iPath 3.0
(http://pathways.embl.de, accessed on 22 July 2023), a web-based application used to vi-
sualize and analyze cellular pathways. A metabolite set enrichment overview (MSEA)
was constructed using the significant metabolites to elucidate the pathways in which
these significant metabolites were involved by using MetaboAnalyst version 5.0 (https:
//www.metaboanalyst.ca/docs/Publications.xhtml, accessed on 22 July 2023), an online
tool for analyzing and interpreting metabolic enrichment. Moreover, metabolic pathway
analysis (MetPA) was incorporated with MetaboAnalyst for pathway analyses.

http://pathways.embl.de
https://www.metaboanalyst.ca/docs/Publications.xhtml
https://www.metaboanalyst.ca/docs/Publications.xhtml
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4.8. Statistical Analysis

Data were analyzed by using MetaboAnalyst version 5.0 and SPSS Version 28.0, and
the graphical representation of data was created on Prism software version 5. The integral
intensity of the metabolites was presented as median with interquartile range (IQR). Prior
to principal component analysis (PCA), data were normalized using auto-scaling and log
transformation. For data overview and pattern discovery, a PCA was first constructed
followed by a supervised classification method, partial least-squares discriminant analysis
(PLS-DA). Thereafter, a supervised orthogonal partial least-squares discriminant analy-
sis (OPLS-DA) method was performed to improve the separation between the groups
of samples and to minimize other biological analytical variations. The OPLS-DA was
cross-validated by permutation (n = 20). Thereafter, the goodness-of-fit parameters were
calculated (R2X, R2Y, and Q2Y). The data were also represented in the form of a volcano
plot to distinguish metabolic biomarkers between the T2DM and control groups. Analysis
of variance (ANOVA) was applied to the potential biomarkers to determine whether there
were statistically significant differences in the metabolite concentrations among weeks. The
receiver operating curve analysis (ROC) was used to further evaluate the predictive ability
of the identified potential metabolic biomarkers. Moreover, the area under the curve was
used to determine the diagnostic accuracy of the biomarkers, where 0.8 < AUC < 0.9 was
considered good, and 0.9 < AUC ≤ 1.0 was considered excellent.

5. Conclusions and Recommendations

All amino acids identified were associated with a higher risk of T2DM, whereas
glycine and glutamine were associated with a lower risk. Amino acids that were associated
with impaired insulin secretion were prospectively related to an increase in glucose levels.
Our study results showed that the changed glucogenic amino acids, such as glycine,
were associated with the impairment of insulin sensitivity at a later phase of diabetes
progression as compared with branched and aromatic amino acid metabolism. The GCxGC-
TOF-MS platform proved effective in screening the serum samples of diabetic animals, as
it identified that disturbances in various metabolic pathways translated into significantly
altered metabolites. The ROC curve analysis allowed us to obtain a general overview of
the significant alterations of biomarkers in the T2DM patients with complications. The
limitation of the study is that it did not investigate how the altered concentrations of
different amino acids affected the insulin resistance in the rats. As this was a lab-based
study, in human studies, it can be recommended to target the specified potential amino
acids biomarkers based on their impact on insulin resistance and sensitivity. A better
understanding of these will aid in a better understanding of T2DM.
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