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ABSTRACT
Rangelands are natural ecosystems that serve as essential 
sources of forage for domesticated livestock and wildlife. 
Therefore, accurately mapping nutrient levels in rangelands is 
crucial for sustainable development and effective management 
of grazing animals. Remote sensing tools offer a reliable 
means to explore nutrient concentrations across large spatial 
areas. This study aimed to estimate and map seasonal foliar 
concentrations of nitrogen (N), phosphorus, and neutral deter-
gent fibre (NDF) in mesic tropical rangelands of Limpopo 
using Sentinel-1, Sentinel-2, and the integration of S1 and S2 
data. Fieldwork was conducted to collect samples for seasonal 
foliar nutrients (N, P, and NDF) during early-summer 
(November-January 2020), winter (July-August 2021), and 
late-summer (February-March 2022). Various conventional and 
red-edge-based vegetation indices were computed. The results 
demonstrate that integration data from S1 and S2 can effec-
tively estimate and predict foliar concentrations of N, P, and 
NDF in mesic rangelands throughout the seasons, achieving R2 

values of 0.76, 0.78, and 0.71, with corresponding RMSE values 
of 0.13, 0.04, and 2.52. Notably, red-edge variables emerged as 
the most significant parameters for predicting seasonal N, P, 
and NDF concentrations. Additionally, factors such as season 
and slope significantly influenced the distribution and occur-
rence of these foliage nutrients, with higher foliage production 
observed during late-summer and on steeper slopes. The 
study concludes that the integration of S1 and S2 data can 
effectively monitor the seasonal dynamics of biochemical para-
meters. This finding holds significant implications for policy-
makers and rangeland users, offering a comprehensive 
understanding of the intricate variations within rangeland 
ecosystems. Further research could expand on these findings 
by applying the knowledge to various datasets, exploring 
different rangelands, and examining additional ecological fac-
tors such as slope altitude to detect foliar fibre biochemicals. 
Finally, the applications of this research extend beyond 
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individual properties, providing practical tools for sustainable 
rangeland management and informed decision-making in 
resource utilization and conservation.

1. Introduction

Rangelands are naturally occurring ecosystems primarily used as the forage source for 
domesticated livestock and wildlife (Alkemade et al. 2013; Spangler et al. 2012). Globally, 
rangelands account for over half of global ecosystems and play an important role in social 
well-being (Engler et al. 2018). However, despite the threats from climate change (Godde 
et al. 2020), the continuous increase in the global population has significant implications 
for rangeland utilization and management (Ramoelo et al. 2018). This population increase 
puts pressure on natural rangeland resources (goods and services) and often results in 
significant variations in seasonal forage production (Knox et al. 2011; Thornton 2010). 
Overusing natural rangelands can decrease grass quality and productivity, resulting in 
poor palatability and declining animal production numbers and market demand (FAO 
2010; Ramoelo et al. 2018). The palatability of grass is known to directly impact livestock 
forage intake, affecting livestock production levels and food security (Knox et al. 2011). 
Therefore, the sustainable management of rangelands contributes to carbon absorption 
and storage to alleviate the impact of climate change (McDermot and Elavarthi 2014). In 
this regard, the seasonal monitoring of biochemical parameters, such as nitrogen (N), 
phosphorus (P), and neutral detergent fibre (NDF) concentrations, will indicate forage 
quality and palatability.

Estimating biochemical parameters in rangelands is commonly done through expen-
sive and time-consuming lab chemical approaches, which do not provide real-time data 
and have limited applications over extensive areas (Mutanga, Skidmore, and Prins 2004; 
Ramoelo et al. 2012). Remote sensing techniques offer a cost-effective potential for 
quantitatively assessing rangeland biochemical variables from property to regional 
scale. Over the past decades, remote sensing has been widely used to generate accurate 
information about vegetation biochemical parameters across an extensive area in near- 
real time (Ali et al. 2016). Its advantages, such as repetitiveness, low cost of data storage, 
universal coverage, and non-destructiveness during the mapping of biochemical para-
meters, make it preferable to all land users. However, despite the numerous advantages of 
remote sensing, several challenges associated with processing remote sensing data can 
impact the accuracy of estimated biochemical concentrations, such as N (Ayanu et al. 
2012). These challenges include atmospheric interference, sensor calibration issues, and 
geometric distortions, all introducing uncertainties into the measurements.

Remote sensing technology’s advancement has addressed some limitations in estimat-
ing vegetation biochemical parameters using conventional field data. For instance, 
Sentinel-2 (S2) has improved spectral bands with red-edge and offers higher spatial 
resolution, enabling more accurate estimation of biochemical parameters (Delegido 
et al. 2011; Parida and Kumari 2021). Some studies have even shown that utilizing red- 
edge bands and related indices can further enhance the estimation of biochemical 
concentrations in natural vegetation (Cho and Skidmore 2006; Clevers et al. 2002; 
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Darvishzadeh et al. 2008; Ramoelo et al. 2012). The red-edge refers to the section of rapid 
transformation in vegetation reflectance ranging between 600–800 nm, mainly influ-
enced by the intense effects of spectral absorption in the red wavelengths and scattering 
in the near-infrared region (Ustin and Jacquemoud 2020). Within this context, the red 
edge is correlated with chlorophyll content, with limited saturation problems (Clevers 
et al. 2002; Croft et al. 2020).

Estimating the seasonal spatial distribution of biochemical parameters (N, P, and NDF) 
using Sentinel-1 (S1) and Sentinel-2 (S2) imageries was a focus of this study to address the 
paucity of literature on this. S1 and S2 data are freely available and have highly improved 
spectral and spatial resolution. S1 and S2 sensors were launched for diverse applications, 
although their primary aim was to monitor the dynamics and variation of land-use/land- 
cover and agrarian applications. These sensors provide repeated data with a shorter revisit 
period of 5–12 days with a high spatial resolution of 10–60 m (De Vroey et al. 2022; Veloso 
et al. 2017). S2 has an optical sensor that captures multispectral data in the visible, near- 
infrared, and shortwave infrared spectral regions vulnerable to cloud cover, but sensitive 
to the biochemical properties (such as chlorophyll content) (De Vroey et al. 2022; Shang 
et al. 2021). On the other hand, S1 uses a microwave range, and the backscatter is more 
sensitive to vegetation structure (Raab et al. 2020; Wachendorf, Fricke, and Möckel 2018) 
and is unaffected by clouds.

However, its application has not been extensively investigated in rangeland biochem-
ical estimation studies compared to optical sensors due to its complexity (De Vroey et al. 
2022). Hence, some studies have explored the combination of S1 and S2 data in vegeta-
tion monitoring, leveraging the strengths of both datasets to improve accuracy and 
reliability (Erinjery, Singh, and Kent 2018; Mahdianpari et al. 2019; Mahyoub et al. 2019). 
Data fusion of S1 and S2 sensors offers the benefit of improved spectral and textural 
information with the unique capabilities of each sensor (Cai, Lin, and Zhang 2019). Since 
each sensor has individual capabilities, combining them will help to assess different 
vegetation types (including extensive vegetation), under any ecological conditions; 
many studies have combined these sensors to obtain data under various environmental 
conditions. S1 and S2 integration could improve the estimation and monitoring of forage 
biochemical properties, with limited cloud interference. For instance, a study by Trivedi 
(2020), used S1 and S2 data to estimate chlorophyll content in arable land in Ghana and 
improved predictive power by 0.8. Similar study by Raab et al. (2020), also observed an 
increase in the predictive power (R2 and RMSE between 0.72–0.79 and 1.70% − 2.29%) 
from the combination of S1 and S2 during estimating forage quality of semi-natural 
grasslands. Chatziantoniou et al. (2017), also suggested that high accuracy results were 
due to the synergistic use of S1 and S2 data in a study conducted in the wetlands of 
northern Greece. Additionally, Amankulova et al. (2024) and Wang et al. (2019), demon-
strated that integrating S1 and S2 data can increase estimation accuracy for grassland 
productivity by 0.89 and 0.67, respectively. Integrating S1 and S2 remote sensing data can 
enhance the estimation of forage biochemical parameters in natural rangelands, effec-
tively addressing the limitations inherent in single-sensor methodologies.

However, there is still a lack of scientific data and literature on using S1 and S2 data for 
biochemical estimations in rangelands (Meneghini 2019). Beyond limited studies on the 
integration of S1 and S2 for biochemical estimations, the sensitivity of S1 derived from 
South Africa has not been tested in the estimation of grass N, P and NDF in the mesic 
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savanna.Therefore, the objectives of the study were to; firstly, to develop predictive 
seasonal models for the estimation of the spatial distribution of three biochemical 
parameters (N, P and NDF) concentrations in mesic rangelands using S1, S2 and integra-
tion of S1 and −2 data; and finally, to develop seasonal pooled models and mapping three 
nutrients. Understanding the spatial and temporal variability of biochemical parameters 
can reveal potential hotspots or areas of concern where nutrient management practices 
may need to be implemented to reduce the risk of rangeland degradation and improve 
overall forage quality. This information can also help land managers make informed 
decisions about stocking rates and grazing managements to ensure optimal forage 
utilization while maintaining the health and productivity of the rangeland.

2. Materials and methods

2.1. Study area

This study was conducted in two privately owned game reserves (Welgevonden and 
Hoogland) in the Waterberg Estate region, Limpopo Province, South Africa (Figure 1). The 
Waterberg region lies to the north of the Bushveld Basin, where it forms a highland area. 
The highest part of the area is in the south Kransberg in the southwest towers out above 
the Limpopo Plain at the foot of the cliff-like escarpment made up of Waterberg 
Sandstone. The topography of the study area ranges between 300 and 900 metres 
above Mean Sea Level. The region is predominantly warm to hot (mean minimum 
temperature is 12°C, mean maximum temperature is 44.90 °C) in summer and receives 
Mean Annual Precipitation (MAP) of 300–700 mm with mean annual evaporation of 
between 1750 and 1900 mm (Mundalamo 2019; Nesamvuni et al. 2003). Individually, 

Figure 1. Illustration with two study sites in the waterberg region of Limpopo province, South Africa, 
Welgevonden(a) and Hoogland(b). The black square shows the sample areas.
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Welgevonden Game Reserve is a privately owned reserve between the towns of Vaalwater 
and Lephalale that covers 37,500 hectares of South Africa’s Waterberg Biosphere, 
Limpopo province, South Africa, at latitudes 24° 10’to 24° 25’ South and longitudes 27° 
45’to 27° 56’ East. Welgevonden consists of two distinct vegetation types (sour bushveld 
and mixed bushveld) as classified by (Palmer and Ainslie 2006). At the same time, 
Hoogland is a protected game reserve located in the North-west of Bela-Bela town (24° 
43’20.8‘S 28°07’48.7’E), South of Waterberg Biosphere. Over the past 35 years until 2017, 
the Hoogland reserve was protected from wildfire (veld fire) with almost 200 plant 
species. The wildfire protection was done since the area is stated to be composed of 
fire-sensitive and fire-resistant species; therefore, the fire event normally destroys the fire- 
sensitive species as observed (Trollope 2011).

2.2. Field measurements

2.2.1. Sample collection
Field data collection was conducted from November 2020 to March 2022, encompassing 
three seasons: early summer (November-December 2020), winter (July-August 2021), and 
late summer (March 2022). Six areas with varying vegetation cover and standing biomass 
were randomly selected, three areas in each reserve. Within each area, transects were 
established using a combination of systematic placement and purposive sampling plots. 
Each transect was then subdivided into ten 30 × 30 m plots with homogeneous vegeta-
tion to capture variability. In each plot, a total of 10 quadrats of 1 m2 (180 in total) were 
randomly located and shifted during each sampling event to prevent re-sampling. Then 
the fresh grass was clipped at 1 cm above the ground using scissors and oven dried at 
70°C for 48 hours, then the dry matter was measured after 48 hours dried and converted 
into kilogram per hectare (Kg ha − 1), for further chemical analysis.

2.2.2. Laboratory analysis
Near-infrared spectroscopy (NIRS) is an analytical tool that uses a predetermined wave-
length pattern of light (typically 800–2500 nm) to provide a full image of the organic 
composition of the investigated substance/material (Kilcast 2013). All the collected sam-
ples were analysed at the Af4rica laboratory at the University of Pretoria, following a strict 
and systematic protocol to ensure the most reliable results. Initially, the samples were 
dried in an oven at 70°C for 72 hours and then ground to a 1 mm particle size using 
a sieve. Subsequently, the milled samples were analysed for their chemical composition 
on a dry matter (DM) basis. Finally, each sample underwent a series of three experiments 
to derive its foliar biochemicals: Nitrogen (N), Phosphorus (P), and Neutral Detergent Fibre 
(NDF). These three biochemicals were then analysed using Near-Infrared Spectroscopy 
(NIRS).

2.2.2.1. Near-Infrared Spectroscopy (NIRS) analysis. NIRS is a non-invasive technique 
used to measure the percentage of saturated haemoglobin in a target tissue. It relies on 
two physical principles: differential absorption of near-infrared light and the modified 
Beer – Lambert law (Salido et al. 2017). NIRS devices use light in the near-infrared band 
(700–900 nm), which can penetrate skin, bone, and connective tissue. The chemical 
composition of the samples was analysed using the DA 7250 NIR analyser, a third- 
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generation diode array NIR instrument from PerkinElmer c, designed for quick analysis. 
The DA 7250 NIR Analyzer can accurately determine protein N, P, NDF, and many other 
parameters and can analyse samples in only 6 seconds. The instrument combines out-
standing analytical accuracy with speed, ease of use, ruggedness, and versatility. It works 
in reflectance mode, using a moving grating monochromator to scan the region from 570 
to 1850 nm with an interval of 2 nm (Bartzialis et al. 2021).

2.3. Image acquisition and pre-processing

This study utilized the recently launched constellations of Sentinel-1 (Synthetic 
Aperture Radar – SAR) and S2 (optical) from the Copernicus Open Access Hub 
(ESA) (Zhang et al. 2019). In this study, the remote sensing data sampling was 
obtained between the following dates November – January 2020 (early-summer), 
July-August 2021 (winter), and February – March 2022 (later-summer) corresponding 
to field data collection. S1 and S2 data were acquired from Google Earth Engine 
(https://code.earthengine.google.com. and https://code.earthengine.google.com) 
covering the study area each season. One scene was acquired, covering three 
growing seasons from 2020 to 2022 (three images). The Google Earth Engine (GEE) 
computer platform is a sophisticated tool widely used to process and interpret 
satellite images. GEE delivers a cloud-based infrastructure and a set of geospatial 
analytic tools that enable users to access and interpret large volumes of satellite 
data. This study used GEE to process the S1 and S2 data and calculate the metrics 
from bands (either VV or VH and S2 bands).

2.3.1. Sentinel-1 and Sentinel-2
S1, operating as a C-band Synthetic Aperture Radar (SAR) satellite, gives backscatter 
coefficients across various polarizations represented in decibels (dB). This dual-polariza-
tion spacecraft contributes essential Earth observation data, characterized by a revisit 
period of 12 days per individual satellite (Rutkowski, Canty, and Nielsen 2018). This study 
leveraged Ground Range Detected (GRD) scenes from S1, featuring Vertical – Vertical (VV) 
and Vertical-Horizontal (VH) bands at a 10 m resolution. Preprocessing of S1 images in 
Google Earth Engine (GEE) was conducted using the S1 toolbox level 1, encompassing 
tasks such as thermal noise removal, radiometric calibration, and terrain orthorectification 
(Onojeghuo et al. 2021). Acquisition of S1 image, obtained with a descending orbital pass, 
matched with the S2 imagery period, facilitated through the Google Earth Engine online 
platform.

The S2 data used in this study were acquired as surface reflectance products (L2A), 
processed using the sen2cor algorithm. Additional processing steps involved cloud and 
cloud shadow masking to enhance data quality and facilitate accurate analysis. S2, part of 
the European Space Agency’s Copernicus Earth Observation programme, captures Earth 
imagery from a sun-synchronous orbit (Baumann et al. 2018; Zhang et al. 2019). The Level- 
2A data, which includes atmospherically adjusted surface reflectance, is accessible 
through Google Earth Engine (Zhang et al. 2019). To ensure data quality, S2 imagery 
with less than 10% cloud cover was acquired through Google Earth Engine. Cloud and 
cloud shadow masking were conducted using the quality assessment band (QA60) to 
identify and eliminate opaque and cirrus clouds (Nazarova, Martin, and Giuliani 2020). The 
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QA60 band is derived from the blue band and two short-wave infrared bands of the 
Sentinel-2 image (Chong et al. 2021). Subsequently, 10 reflectance bands were selected 
for analysis, comprising six at 20 m resolution and four at 10 m resolution. Sixteen 
vegetation indices (VIs) were developed for biochemical parameter assessment (see 
Table 1). One scene was acquired across study areas, covering three growing seasons 
from 2020 to 2022. Lastly, each season’s individual datasets (field and remote sensing 
data) were pooled/merged into a single seasonal dataset (pooled dataset). The purpose of 
pooling datasets was to create complete seasonal models that can be used to estimate 
each biochemical parameter throughout the vegetation growing season in rangelands.

2.4. Data analysis

All data analyses were computed using the R-programme, version 4.1.0. (R Core Team, 
2021). Descriptive statistics, including mean, minimum (Min), maximum (Max), and coeffi-
cient of variation (CV), were calculated to understand the overall forage quality in the 
study area. The differences in three chemical components and spectral absorption fea-
tures between seasons and study areas were investigated by computing the analysis of 
variance (ANOVA) to test whether there was any significant difference between seasonal 
foliar N, P, and NDF concentrations throughout the study areas in the detection of 
rangeland forage quality. Pearson’s correlation analysis was conducted before and after 
predictions between chemical composition and the raw reflectance of samples to identify 
the most suitable indicators for estimating chemical components from both laboratory 
and field conditions. All variables selected were found to be sensitive to the concentra-
tions of N, P, and NDF. The relationships were plotted against spectral regions for 
comparison purposes. The observed biochemical data and the accumulated absorption 

Table 1. Vegetation indices and bands used in this study.
Index Bands Reference

NDVI (Normalized Difference Vegetation Index) red, nir Rouse et al. (1974)
WDVI (Weighted Difference Vegetation Index) red, nir Richardson and Wiegand 

(1977)
RVI (Ratio Vegetation Index) red, nir Gorai et al. (2014)
MSAVI (Modified Soil Adjusted Vegetation Index) red, nir Qi et al. (1994)
MSAVI2 (Modified Soil Adjusted Vegetation Index 2) red, nir Qi et al. (1994)
NDREI1 (Normalized Difference red-edge Index 1) Red-edge2, Red- 

edge1
Gitelson and Merzlyak 

(1994)
NDREI2 (Normalized Difference red-edge Index 2) Red-edge3, Red- 

edge1
Gitelson and Merzlyak 

(1994)
MCARI (Modified Chlorophyll Absorption Ratio Index) green, red, Red- 

edge1
Daughtry et al. (2000)

CLRE (Red-edge-band Chlorophyll Index) Red-edge3, Red- 
edge1

Gitelson and Merzlyak 
(1994)

SATVI (Soil Adjusted Total Vegetation Index) red, swir2, swir3 Marsett et al. (2006)
SLAVI (Specific Leaf Area Vegetation Index) red, nir Lymburner et al. (2000)
SR (Simple Ratio) red, nir Jordan (1969)
SRRE1 red-edge1 (Modified Simple Ratio+Red-edge1) Red, nir, Red-edge1 Sims and Gamon (2002)
SRRE2 Red-edge2 (Modified Simple Ratio+Red-edge2) Red, nir, Red-edge2 Sims and Gamon (2002)
NDVIREred-edge1(Modified Normalized Difference Vegetation Index 

+Red-edge1)
nir, Red-edge1 Gitelson and Merzlyak 

(1994)
NDVIREred-edge2 (Modified Normalized Difference Vegetation Index 

+Red-edge2)
nir, Red-edge2 Gitelson and Merzlyak 

(1994)

NB: Traditional indices = non-red-edge indices.
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data were set aside for validation, and stepwise regression analysis was applied to 
develop a model for predicting biochemical parameters using field-measured accumu-
lated absorption derived from reflectance.

2.4.1. Development of biochemical parameters predictive models
Random decision forest regression is a statistical method used in ecology for predicting 
the biophysical properties of vegetation. This method is a non-linear ensemble approach 
that generates and averages multiple randomized, de-correlated decisions for regression 
purposes (Hastie et al. 2009). One of the key advantages of this method for ecological 
studies is the ability to easily include or exclude predictors based on data availability and 
user requirements. Another benefit is the possibility of including continuous and catego-
rical predictors, such as land use information. Additionally, this method requires fewer 
user-specified parameters and reduces the risk of overfitting, as well as automatically 
calculating a variable importance score that assesses the contribution of individual 
predictors to the final models.

2.4.2. Accuracy assessment
The developed regression model was validated using the cross-validation method (imple-
mented in the caret package and VSURF package in R ×643.4.0) to determine the 
coefficient of determination (R2) as a measure of goodness-of-fit, as well as the root 
mean square error (RMSE), relative RMSE (%), and mean absolute value of errors (MAE) 
to assess accuracy. The model’s performance was then assessed by comparing the 
differences in R2 and RMSE between the estimated and measured values of vegetation 
biophysical properties. Higher R2 values and lower RMSE, MAE and bias values corre-
sponded to higher precision and accuracy of the model for predicting vegetation bio-
physical properties. Equations (1) to (5) were used to calculate R2, RMSE, relative RMSE, 
MAE, and bias respectively. 

Where: yi is the observed/measured value, ỹi is the predicted value and ӯ is the mean of 
the measured values. n = sample size.
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2.4.3. Random Forest (RF)
RF is a machine learning algorithm developed to improve vegetation classification 
and regression methods. This study utilized RF to estimate forage N,P, and NDF 
using unoptimized and optimized combinations of vegetation indices (VIs) and 
spectral bands, as shown in Table 2. RF is a decision tree-based collective method 
that is widely implemented for classification and regression problems (accuracy 
importance measure, Gini importance, and a number of times each variable is 
selected) (Breiman 2001). The method utilizes feature randomness and bagging 
when constructing each individual tree. Moreover, it is suitable for analysing high- 
dimensional data and robust to nonlinear and unbalanced data (Venables, Smith, 
and Core Team 2015). The RF algorithm has several key parameters, including the 
number of predictors (mtry), which depends on the square root of the total 
number of predictors used, and default values of two for the minimal size of the 
terminal nodes (node size) and 500 for the number of regressions. In this study, to 
obtain high accuracy, the RF model was used according to the error rate reported 
by (Ismail et al. 2010). Then the seasonal pooled data operations were performed 
for forage N, P, and NDF modelling and mapping, variable selection, and model 
accuracy assessment. The final model (best model) was selected when the predic-
tion error was the lowest.

Table 2. A total of 15 model scenarios were developed using 
bands and different indices (from S1, S2 and integration).

Model S1 + S2

1 Bands + Red-edge + Traditional indices
2 Bands+ Red-edge
3 Bands + Traditional indices
4 Red-edge + Traditional indices
5 Bands
6 Red-edge
7 Traditional
8 VH + VV
9 Bands + Red-edge + Traditional indices + VH/VV
10 Bands+ Red-edge + VH/VV
11 Red-edge + Traditional indices + VH/VV
12 Bands+ Traditional indices + VH/VV
13 Bands + VH/VV
14 Red-edge + VH/VV
15 Traditional + VH/VV

NB: Traditional indices = non-red-edge indices.

Table 3. Summary of the seasonal chemical analysis throughout the study area.
Nnutrient Min Max Median CV (%)

Nitrogen (N%) 0.35 1.57 0.85 31.38
Phosphorus (P%) 0.1 0.27 0.19 22.35
Neutral detergent fibre (NDF%) 55.6 77.48 68.22 7.08

CV = Coefficient of variation (%).
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3. Results

3.1. Descriptive statistics

Table 3 presents the findings of the biochemical analysis conducted on the samples 
collected in the field during the growing season. The seasonal variation of biochemical 
parameters such as N, P, and NDF across the study areas was moderate, with a coefficient 
of variation (CV) ranging from 7 to 31%, respectively.

3.2. Seasonal biochemical variables predictive models

The results demonstrate the successful prediction of field-collected biochemical para-
meters throughout the growing season using RF models, as shown in Table 4. In mesic 
tropical rangelands, the RF models produce optimal seasonal estimations of all bio-
chemical parameters, with an overall seasonal coefficient of determination (R2) ranging 
from the lowest of 0.34 (for NDF during E.S from S1) to the highest of 0.74 (for 
P during L.S from S1+S2).On the other hand, RMSE and RRMSE ranged between 
0.01–4.26 and 4.68–14.67, respectively, with MAE < 10 in all parameters throughout 
the seasons, indicating the high accuracy and reliability of the prediction models. The 
combined use of S1 and S2 data significantly improves estimation accuracy for all 
seasonal biochemical parameters, with coefficients of determination and relative root 
mean square errors (R2 = 0.61–0.74; RRMSE = 2.26–14.67), specifical. However, this 
study also shows the effect of seasonality in predicting biochemical parameters and 
variable selection, with L.S producing the most accurate estimations across study 
areas, followed by winter and E.S, separately. Additionally, the most effective variables 
within the RF models for seasonal biochemical predictions were analysed, with the 
red-edge-based parameters (such as CARI and CLRE) being highly selected in all 
seasons. Notably, variable selection is during the late summer season had an increased 
selection of red-edge-based parameters, while S1 parameters were also active and 
selected for biochemical parameter predictions. The bands were mostly selected 
during the estimation of P followed by NDF and N with the least selection throughout 
the seasons.

3.3. Seasonal biochemicals pooled predictive models

The seasonal biochemical pooled models were developed from RF using S1, S2 and their 
combined data. This was done to create a universal model that can be effectively used 
throughout the growing season for natural rangeland biochemical predictions. Since the 
RF model combined with ancillary data produced the best accuracies for predicting 
biochemical parameters (N, P and NDF%). This section first focuses on the correlation of 
the most important variables selected within the biochemical-based models (from 
Table 5) and then looks at the best-performing seasonal models and maps the distribution 
of each variable. Figure 2 shows that all selected predictive parameters presented rela-
tively strong significant correlations among each other and were highly active for bio-
chemical parameters prediction, hence they produced correlation; the correlation 
coefficients R2 were all > 0.40. All 11 selected predictor variables show a positive 
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correlation with nitrogen, while out of 11 and 10 selected for P and NDF, only 9 and 2 
show a positive correlation, respectively.

3.3.1. Visual-spatial distribution of biochemical parameters in ecological context
Nonetheless, through the evaluation of the accuracy comparison of R2, RRMSE, MAE, and 
bias metrics, the models for the integration of S1 and S2 were identified as the best- 
performing models. Hence, further spatial distribution analysis of biochemical parameters 
across the seasons was conducted using these models (refer to Table 5). All the biochem-
ical pooled models generated R2 (>0.50), RRMSE < 10%, and low negative bias (from 

Table 5. Performance of pooled-based biochemical models achieved from S1 and S2 data using 
random forest modelling algorithm.

Nutrient Scenarios Selected variables R2 RMSE RRMSE MAE Bias

S1 VV,VH 0.67 0.15 3.54 0.12 −0.011
N S2 B7, B5, MCARI, NDREI2, B8A, SRRE1 0.70 0.16 4.06 0.13 −0.003

S1+S2 B6, B7, MCARI, CLRE, NDREI1, VV 0.76 0.13 4.16 0.12 −0.001
S1 VV,VH 0.61 0.03 9.65 0.12 −0.0021

P S2 B12, B5, B4, SATVI, NDVIRE1 0.70 0.03 7.81 0.02 −0.0018
S1+S2 SRRE1, VV, VH, CLRE, MCARI 0.78 0.04 8.58 0.03 −0.0002
S1 VV 0.56 2.67 3.72 1.76 −0.055

NDF S2 B7, B6, B8A, MCARI, CLRE, SATVI, B2 0.63 2.72 3.72 1.84 −0.043
S1+S2 B6, B7, B8, B4, MCARI, CLRE, VV, SLAVI 0.71 2.52 3.59 1.66 −0.042

Figure 2. Correlation matrix between the selected variables for best models and biochemical para-
meters (from Table 4). *** indicates regression significance at a p<0.001. a, b and c best models for 
Nitrogen; Phosphorus and Neutral detergent fibre, respectively.
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−0.0002 to −0.055) which signifies a negligible error. The scatter plot depicted in Figure 2 
elucidates the pooled seasonal biochemical predictive models.

Figure 3 represents the correlation between the observed and predicted seaso-
nal pooled values of biochemical parameters. These models were formulated by 
integrating data from integration S1 and S2 across all biochemical parameters. On 
the other hand, Figure 4 illustrates the realistic patterns of seasonal pooled 
biochemical concentrations across the research areas. The variability of all bio-
chemical parameters is more pronounced in high slope regions than in flat slope 
areas. However, there were no significant variations observed in all biochemical 
parameters within the study areas, as shown in Figure 4.

Furthermore, Table 6 presents the statistical results of seasonal biochemical para-
meters across the research areas. Employing an analysis of variance (ANOVA), the findings 
suggest that there was no substantial variation (p > 0.05) among the study regions, 
despite the fact that HG exhibited significantly higher concentrations of all the biochem-
ical parameters throughout the seasons. Meanwhile, the seasonal fluctuations displayed 
a significant influence on the distribution of all the biochemical parameters across the 
study areas. Specifically, nitrogen and phosphorus concentrations were highest in late 

Figure 3. Scatterplots of the estimated biochemical and observed biochemical parameters throughout 
the season; a, b and c: scatterplot for N% (DM), P% (DM) and NDF% (DM) concentrations, respectively.
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summer, followed by early summer and winter, respectively. Conversely, early summer 
exhibited a high concentration of NDF, whereas the winter and late-summer had the least 
concentration of NDF across the research areas.

Figure 4. Spatial distribution of the pooled seasonal biochemical parameters concentrations derived 
from the field data-based models applied to the integration of S1 and S2 images. a, b and 
c distribution of seasonal pooled nitrogen, phosphorus and neutral detergent fibre concentrations 
throughout the study areas, respectively.

Table 6. The analysis of influence seasonality in N%, P% and NDF% concentrations throughout the 
study areas.

Chemical elements(%DM)

N P NDF

Area Season Mean SD CV Mean SD CV Mean SD CV

WV E. S 0.84 0.12 14.83 0.18 2.15 3.03 70.96 0.01 7.01
W 0.60 0.14 23.67 0.13 0.011 9.26 70.58 4.44 6.29
L.S 1.08 0.12 11.33 0.21 0.02 7.47 62.01 2.53 4.08
S *** ns *** * ** *** ** *** **

HG E. S 0.95 0.11 11.43 0.13 0.04 29.78 72.06 4.33 6.01
W 0.64 0.10 14.90 0.19 0.05 24.77 67.59 2.14 3.17
L.S 1.28 0.12 9.34 0.24 0.02 8.16 65.58 4.79 7.66
S *** ns *** ** ns *** ** *** ***

Significance levels of tests(S): 0.01 = ***,0.05 = **,0.1 = *,ns = non-significant. Coefficient of Variation (CV); Standard 
Deviation (SD); Early summer (E.S); Winter(W); Later summer (L.S); Welgevonden (WV) and Hoogland (HG).
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4. Discussion

4.1. Foliar biochemical concentration

The seasonal variation of N, P, and NDF across the study areas was characterized by 
low to moderate coefficients of variation (CVs) ranging from 7% to 31%. The median 
values for N, P, and NDF were 0.85, 0.19, and 68.22, respectively, which are considered 
reasonable for grasses according to previous research by (Knox et al. 2012; Ramoelo 
and Cho 2018). Seasonal concentrations of N, P, and NDF were used as indicators of 
forage quality throughout the study areas. The results of this study show that the 
distribution and occurrence of these biochemical parameters are influenced by various 
factors such as ecological conditions, slope, and disturbances namely: wildfires in 
heterogeneous vegetation, as observed by (Venter, Hawkins, and Cramer 2017). 
A comprehensive understanding of the distribution and occurrence of these biochem-
ical parameters is crucial for various ecological and environmental applications, includ-
ing nutrient mapping and understanding the effects of land use on rangeland 
processes (R. Wang and Gamon 2019). However, according to Schmidt and Skidmore 
(2001) and Chapin (1980), the importance of various grass nutrients cannot be over-
stated, as diverse grass species exhibit variations in nutrient storage and transporta-
tion. Therefore, it is necessary to consider these factors and account for them in 
different seasons.

4.2. Seasonal biochemical variables predictive models

The integration of data from multiple sensors, such as S1 and S2, has emerged as 
a highly effective approach for precision ecological monitoring in rangelands (Bernardi 
et al. 2016). This study highlights the ecological significance of connecting the com-
bined potential of these sensors to create detailed maps of seasonal biochemical 
parameters. By applying random forest (RF) models, the interaction between S1 and 
S2 datasets enables accurate estimation and prediction of nutrient distribution and 
occurrence, providing comprehensive insights into the intricate fluctuations of seaso-
nal rangeland conditions (Fernández-Habas et al. 2021, Raab et al., 2020; L. Wang et al. 
2020). The collaborative nature of S1 and S2 data significantly improves prediction 
precision due to their comprehensive assessment of vegetation attributes and ecolo-
gical dynamics, particularly in regions characterized by diverse vegetation and com-
plex ecological interactions. Furthermore, the integration of S1 and S2 data integration 
excels, particularly during the late-summer season, due to the season’s unique attri-
butes, such as moisture effects, photosynthetic pigments, and water absorption ele-
ments in foliage spectra (Kokaly and Clark 1999; Ramoelo et al. 2014). Notably, the 
integration of S1 and S2 consistently outperforms individual sensors, highlighting the 
essential role of red-edge parameters and near-infrared (NIR) bands in attaining 
heightened precision and variability in predicting biochemical parameters (Clevers 
et al. 2002; Kokaly et al. 2009; Ramoelo et al. 2015; Verrelst et al. 2012). These findings 
emphasize the ecological significance of factors such as soil composition, topography, 
vegetation cover, phenological stages, land use, and climatic variations in influencing 
the spatial distribution of nutrients within rangelands, underlining the need for 
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comprehensive visual analysis to holistically understand rangeland conditions 
(A. A. Gitelson et al. 2003; F. Wang, Wang, and He 2021; Weltz et al. 2003).

4.3. Seasonal biochemicals pooled predictive models

In this study, the seasonal pooled models employed for predicting the three crucial 
nutrients (N, P, and NDF) displayed robust predictive capabilities, with R2 values exceed-
ing 0.50 and RRMSE values below 10%. The integration of S1 and S2 data consistently 
outperformed individual sensors, with a notable preference for red-edge-based bands 
and indices for accurate estimation. These findings were then utilized to create scatter-
plots illustrating the seasonal distribution of these nutrients, followed by the production 
of maps depicting their spatial distribution across the study areas. Interestingly, despite 
the seasonality and ecological complexities known to influence nutrient distribution, the 
visual representation of N, P, and NDF concentrations showed slight variation across the 
sites. Nonetheless, as highlighted in prior research, factors like seasonality, ecological 
conditions, and anthropogenic activities, including fire occurrences, have significant 
impacts on the spatial distribution and occurrence of these nutrients (Potts et al. 2020; 
Ramoelo and Cho 2018). Specifically, the influence of slope degree on the seasonal 
distribution and occurrence of these biochemical parameters appeared as a significant 
factor in this study, while the slope aspect exhibited no significant effect. These findings 
align with observations that slope degree can substantially impact the distribution and 
occurrence of forage parameters in rangelands, with higher concentrations often found in 
bottomlands and lower concentrations in highlands (Grant and Scholes 2006; Ramoelo 
and Cho 2018). These ecological nuances emphasize the importance of considering 
terrain characteristics and ecological factors in rangeland management and nutrient 
distribution assessments (Auslander, Nevo, and Inbar 2003; Gutiérrez‐Jurado and Vivoni 
2013).

4.3.1. Explaining spatial distribution of biochemical parameters in ecological 
context
This study has revealed that the high forage quality observed in the high slopes of 
rangelands can be attributed to the presence of numerous highly palatable grass species, 
which in turn result in higher nutrient content (see Table 7 and Figure 5). Research has 
shown that high slopes create a stressful environment for plants, potentially triggering 
the production of secondary metabolites like phenolic compounds, alkaloids, and tannins 
in the grasses. These compounds can enhance forage nutritional quality by mitigating the 
negative impact of grass fibre and boosting protein content and digestibility (Abdelal 
2021; Ramachandra Rao and Ravishankar 2002). Another contributing factor could be the 
higher rainfall occurrence in such mesic/wet rangelands, leading to elevated moisture 
levels in both soil and vegetation. This increased moisture content can alter soil chemistry, 
potentially increasing soil acidity due to the leaching of essential minerals and encoura-
ging the growth of acid-producing microorganisms. These changes can promote soil 
acidification and the proliferation of highly palatable plant species (Tian and Niu 2015). 
Moreover, higher slopes are often associated with a more efficient hydrologic cycle, 
reducing waterlogging compared to low-lying areas. This fosters a conducive 
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environment for soil microbes and nutrient availability, ultimately contributing to higher 
forage quality (Frey et al. 2006).

Additionally, this study found that high seasonal concentrations of the three 
nutrients in the HG (high slope) area were linked to the occurrence of wildfires. 
These findings align with previous research highlighting the significant impact of fire 
on forage quality in natural rangelands, often resulting in improved forage quality. 
Fires create favourable conditions for palatable grass species with high grazing value 
while reducing the presence of unpalatable species (Auslander, Nevo, and Inbar 
2003; Ramoelo and Cho 2018; Thapa et al. 2022; Trollope 2011; Vera-Velez et al. 
2023). However, it’s noteworthy that seasonal dynamics exhibited significant varia-
tions among the nutrients, with the late summer season consistently featuring the 
highest concentrations of N and P and the lowest levels of NDF across the study 

Table 7. Cross-correlations between slope type and biochemical 
parameter throughout the study areas.

Slope type vs. Biochemical R P<0.05

SD vs. Nitrogen (N) 0.28 Yes
SD vs. Phosphorus (P) 0.35 Yes
SD vs. Neutral detergent fibre (NDF) 0.42 Yes
SA vs. Nitrogen (N) −0.01 No
SA vs. Phosphorus (P) −0.02 No
SA vs. Neutral detergent fibre (NDF) −0.09 No

SD = Slope degrees; SA = Slope Aspect and R = coefficient of correlation.

Figure 5. Visual representation of slop of the study areas corresponding to the distribution of 
biochemical parameters; the Black circle represent most notable high slope, and Blue for the low 
slope. The low slope (blue circle) shows a relatively low concentration and increases the concentra-
tions with an increase in slope (black circle) in all three nutrients throughout the study areas.
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areas. These variations highlight the complex relationship of factors influencing 
nutrient distribution and occurrence, which can differ for each nutrient across differ-
ent seasons (Manolikaki et al. 2022).

4.3.1.1. Nitrogen(N). In an ecological context, N is a crucial element that measures 
the quality of rangeland and remains a limiting factor for agricultural production and 
ecological functioning. It is also an excellent indicator of rangeland productivity as it 
explains seasonal photosynthetic efficiency clearly (Ramoelo and Cho 2018). The 
distribution and occurrence of N are typically affected by several factors, such as 
species, growth stage, ecological conditions (such as seasonality and soil fertility), and 
management interventions (e.g. fire and grazing). In this regard, seasonality signifi-
cantly influences the distribution and occurrence of N concentration, with notable 
variations occurring during later summer, followed by early summer and winter with 
the least concentration. These variations are associated with the fact that during 
summer, particularly later summer in these types of rangelands, there is high moisture 
content availability (both vegetation and soil), creating a favourable environment for 
soil microbial processes (bacteria and fungi). These processes are essential for the 
mineralization of nitrogen, which causes high availability of inorganic materials to be 
easily absorbed by plants, whereas during winter, these processes slow down due to 
low temperatures, resulting in low N concentration (Khangura et al. 2023). The results 
of this study also correspond with other studies that show a decrease in N as grasses 
mature due to the development of reproductive tillers with more proportions of 
cellulose and lignin (Gelley, Nave, and Bates 2016; Pontes et al. 2007). Hence, during 
early-summer in this study, there were lower N concentrations compared to later 
summer, associated with the fact that the grass was still under stress from winter 
conditions, with high tiller counts as defence mechanisms (Nie and Norton 2009).

4.3.1.2. Phosphorus(P). Forage P is widely recognized as a critical factor influencing 
animal grazing and feeding behaviour and, consequently, the quality of rangelands 
(Ramoelo et al. 2013). According to KavanovÁ et al. (2006), P plays a pivotal role in 
vegetation growth and contributes to the flexibility of plant communities throughout 
the changing seasons. However, the distribution and occurrence of phosphorus are 
intricately linked to the metabolic activities of vegetation. Therefore, comprehending 
the seasonal variations in phosphorus distribution is paramount for the effective 
management and monitoring of natural rangelands. Regular monitoring of phos-
phorus levels can pinpoint areas where additional management interventions may 
be needed to mitigate the risk of vegetation loss in these ecosystems. This study 
underscores the substantial impact of seasonality on P distribution, with late-summer 
exhibiting high P concentration production, followed by early summer and winter, 
which recorded comparatively lower levels. These findings align with research by Gao 
et al. (2020), indicating slightly higher P concentrations in grass species during the 
rainy season compared to the dry season. Furthermore, changes in species composi-
tion and soil nutrient availability can influence rangeland quality, particularly after 
disturbances like wildfires or grazing (Ferwerda et al. 2006). Schachtman et al. (1998), 
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have highlighted P concentration shifting towards the root as vegetation ages, with 
some phosphorus preserved in older leaves and transferred to new shoots or leaves 
during the early growing season (early summer). These findings corroborate observa-
tions by Grant and Scholes (2006), who noted very low P concentrations at the end of 
the dry season, often falling below the maintenance requirements for grazing animals. 
Regular monitoring of P levels remains crucial for identifying areas requiring targeted 
management actions to safeguard vegetation in rangeland ecosystems.

4.3.1.3. Neutral Detergent Fibre (NDF). Fibre is a crucial nutritional component 
influenced by both biological variables and chemical composition (Van Soest, 
Robertson, and Lewis 1991). Among the essential elements of a forage diet used to 
assess the overall forage quality of herbivorous animals, including wildlife, is fibre 
content, such as NDF. However, studies by Erkovan et al. (2009) and Lacefield et al. 
(1999), have noted the significant impact of vegetation maturity, the proportion of 
grass mechanisms, and seasonal dynamics on the distribution and occurrence of NDF 
in natural rangelands. NDF concentration gradually declines during the first stages of 
growth due to stem elongation. These observations align with the results of this 
study, which showed relatively high NDF during early summer and low NDF in later 
summer. The high concentration of NDF during early summer is attributed to grasses 
still possessing the morphological characteristics that protect them during winter, 
which decline from mid to later summer. Additionally, our results show low NDF 
during later summer when there is high rainfall, which is consistent with the observa-
tions of (Moore and Jung 2001). Areas with increased soil moisture content tend to 
have lower overall fibre content, including NDF, as forage vegetation growing under 
high moisture content conditions is often stunted, resulting in a lower concentration 
of fibre elements (Buscaglia et al. 1994).

5. Conclusion

This study aimed to map the spatial distribution of seasonal biochemical parameters 
and estimate rangeland production by utilizing S1, S2, and the integration of S1 and 
S2 multi-temporal data. The quality of rangelands can be assessed and monitored 
using RF and the integration of S1 and S2 data. The red-edge parameters can indicate 
the levels of three foliage nutrients: N, P, and NDF. Seasonal concentrations of these 
nutrients were related to different predictor variables across the study areas, with red- 
edge variables strongly associated with their distributions. The study results demon-
strated that models derived from the integration of S1 and S2 data effectively 
predicted all three nutrients. Furthermore, these models can be applicability to any 
rangeland type for estimation of forage nutrient throughout the entire season. 
However, the seasonality of the nutrients varied, and several individual factors, such 
as slope, ecological conditions, and management interventions, were found to influ-
ence their occurrence. The study’s findings offer an economical and effective tool for 
rangeland users, including farmers, resource managers, and decision-makers, to moni-
tor rangeland quality throughout the season in mesic tropical rangelands. The study 
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also suggested that later-summer is the ideal time for forage to be harvested or 
grazed since the forage’s nutritive concentrations in rangelands meet the production 
system’s goals. Future research could build on this study’s results by applying this 
knowledge to several datasets, expanding the study to different rangelands, and 
examining other ecological factors, such as slope altitude, to detect foliar fibre 
biochemicals. Ultimately, future research could scale up the products obtained in 
this study for multispectral use.
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