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Abstract: The setting where an unknown number m of the largest data
is missing from an underlying Pareto-type distribution is considered. So-
lutions are provided for estimating the extreme value index, the number
of missing data and extreme quantiles. Asymptotic results of the param-
eter estimators and an adaptive selection method for the number of top
data used in the estimation are proposed for the case where all missing
data are beyond the observed data. An estimator of the number of missing
extremes spread over the largest observed data is also proposed. To this
purpose, a key component is a likelihood solution based on exponential
representations of spacings between the largest observations. An effective
and fast optimization procedure is established using regularization, and
simulation experiments are provided. The methodology is illustrated with
a dataset from the diamond mining industry, where large-carat diamonds
are expected to be missing.

Keywords and phrases: Extreme value index, high quantiles, missing
observations, regularization.

Received April 2023.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3729
2 Estimation of γ and the number of missing extremes under the Pareto-

type model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3730
2.1 Missing data situated above the largest observation . . . . . . . 3730

3728

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/23-EJS2191
mailto:jan.beirlant@kuleuven.be
mailto:martinbladt@math.ku.dk
mailto:gao.isc@gmail.com
mailto:VersterA@ufs.ac.za


Estimation of tail parameters with missing largest observations 3729

2.2 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . 3733
2.3 Detecting missing extremes below the largest observation . . . 3735
2.4 Regularized fixed-point optimization . . . . . . . . . . . . . . . 3736
2.5 Sample fraction selection . . . . . . . . . . . . . . . . . . . . . . 3738

3 Simulation results and diamond case study . . . . . . . . . . . . . . 3739
3.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 3739
3.2 Diamond case study . . . . . . . . . . . . . . . . . . . . . . . . 3741

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3743
A Proof of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3744
B Simulation plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3748
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3760

1. Introduction

Extreme value methodology receives growing attention in order to model the
occurrence of rare events with high impact in various fields of application. Es-
timation of the extreme value index (EVI) is then a crucial topic in extreme
value methodology, assuming that the underlying distribution satisfies the max-
domain of attraction condition, i.e. assuming that the maximum of independent
and identically distributed observations X1, X2, . . . , Xn can be approximated
by the generalized extreme value distribution: as n → ∞

P

(
a−1
n

(
max

i=1,...,n
Xi − bn

)
≤ y

)
→ Gγ(y) = exp

(
−(1 + γy)−1/γ), (1.1)

for 1 + γ y > 0, where bn ∈ R, an > 0 and γ ∈ R are the location, scale and
shape parameters, respectively. The EVI γ is a measure of the tail-heaviness of
the distribution of X with a larger value of γ implying a heavier tail of F .

We consider the specific case of Pareto-type distributions with a positive EVI,
which induces a restriction to right tail functions (RTF) given by

F̄ (x) = 1 − F (x) = P (X > x) = x− 1
γ �(x) (1.2)

with γ > 0 and � a slowly varying function at infinity, that is

lim
t→∞

�(ty)
�(t) = 1 for every y > 1. (1.3)

We then assume that from the original ordered data set X1,N ≤ X2,N ≤ . . . ≤
XN,N an unknown number of top data XN−m+1,N ≤ XN−m+2,N ≤ . . . ≤ XN,N

are missing. So we observe n = N −m observations.
The estimation of m, γ > 0 and extreme quantiles Q(1 − p) with small p

based on X1,N ≤ X2,N ≤ . . . ≤ Xn,N under (1.2) is then the main problem
tackled in this paper. Recent discussions of this problem are given in [11] and
[10] based on a Hill Estimator without Extremes (HEWE) process. Similar to
their technique, we adopt a likelihood-based approach. However, the method is
conceptually different since our starting point is, visually, the Pareto QQ-plot,
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and then mathematically the log-spacings and their Rényi representation, which
allows for transparent, automatic selection of the sample fraction used in the
estimation.

Specifically, it is well known that when γ > 0 the EVI can be estimated from
the slope at an ultimate linear part of the Pareto QQ-plot:(

log n + 1
j

, logXn−j+1,N

)
, j = 1, . . . , n,

(see for instance Chapter 4 in Beirlant et al. 2004). The celebrated [8] estimator
of γ can then be considered as an estimator of the slope of this QQ-plot using
the top k available data:

Hk,n = 1
k

k∑
j=1

logXn−j+1,N − logXn−k,N ,

for some appropriate k ∈ {1, . . . , n}. In this paper we propose an adaptation of
the Hill estimator for the case that missing data are or could be present at the
top data.

A motivating practical example can be found in [9] from the diamond min-
ing industry. The nature of metallurgical recovery processes in diamond mining
causes the under-recovery of large diamonds. Because of the potentially large
monetary value of even a small number of large diamonds, the number of dia-
monds that are not recovered is an important problem in the diamond mining
industry. We illustrate the proposed methods with the same sample of carat
sizes as used in [9]. Note that here the missing carat data are, though likely, not
necessarily all larger than the largest observed carat size.

The remainder of the paper is organized as follows. In Section 2 we propose
and analyze the estimation of (γ,m) and extreme quantiles. We propose asymp-
totic results for the estimators and an adaptive method for selecting k in case
the missing observations are situated above the largest observation. A graphical
method is given to detect the number of missing data in case some observations
are also missing below the largest non-missing observation. Finally, we provide
an efficient way of numerically optimizing a regularized version of the likelihood
through a contraction operator. In Section 3 we present and discuss simulation
results and revisit the diamond data set. Section 4 concludes.

2. Estimation of γ and the number of missing extremes under the
Pareto-type model

2.1. Missing data situated above the largest observation

To describe the influence of deleted data from a graphical point of view, in
Figures 1 we illustrate the influence of missing top data on Pareto QQ-plots
of strict Pareto (with �(x) = 1, x > 1) and Fréchet samples (with F̄ (x) =
exp(−x−1/γ), x > 1) both with γ = 0.5. We consider N = 200 and m = 20
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in both cases. From the Pareto QQ-plots (see label ‘m = 0’ in Figure 1) we
observe that the introduction of 20 missing data leads to concavity. This leads to
underestimating extreme quantiles when using the classical linear extrapolation
methods from extreme value analysis. An additional complication arises in the
case of a non-constant slowly varying function �, since then the missingness
implies non-linearity in the top portion of the data, and hence the linear part in
the QQ-plot is shortened. In case of slow convergence in (1.3) and/or significant
missingness, linearity could be completely lost, and tail estimation then becomes
problematic.

Thus, we propose to correct the QQ-plot by adjusting the inverse ranks j
to j + m̂ in the construction of the QQ-plot with some appropriate value m̂,
leading to a Pareto QQ-plot adapted for missingness:(

log n + m̂ + 1
j + m̂

, logXn−j+1,N

)
, j = 1, . . . , n. (2.1)

In Figure 1 such corrected QQ-plots are given using different values of m̂.

Fig 1. QQ-plots (2.1) for a sample of size N = 200 and γ = 0.5 from the strict Pareto (left)
and Fréchet (right) distributions with m = 20 missing data and m̂ chosen as 0, 20, 60.

When m̂ < 20 the concavity in the top of the QQ-plot remains to some
extent, while linearity is obtained at m̂ = 20 (at least for upper quantiles), and
convex corrected QQ-plots appear when m̂ > 20. The possibility of estimating
m and γ when adjusting the rank numbers is the key idea behind the graphical
motivation.

More precisely, when the observed (non-missing) maximum Xn,N is situated
below the smallest missing data point XN−m+1,N we can exploit the exponential
representations of scaled log-spacings as discussed in [2] and [6] which generalize
the Rényi representation to Pareto-type distributions: under (1.2) with Vj,n :=
log Xn−j+1,N

Xn−j,N
we have that

(j + m)Vj,n = (j + m) log XN−j−m+1,N

XN−j−m,N
, j = 1, . . . , k
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for small enough k can be well approximated by γEj with {Ej , j = 1, . . . , k} in-
dependent standard exponential random variables. Hence the pseudo-likelihood
based on a set {Vj,n, j = 1, . . . , k} equals

L(γ,m) =
k∏

j=1

j + m

γ
exp

(
−j + m

γ
Vj,n

)
,

leading to the log-likelihood function

l(γ,m) = −k log γ +
k∑

j=1
log(j + m) − γ−1

k∑
j=1

jVj,n − m

γ
log Xn,N

Xn−k,N
,

where we use the fact that
∑k

j=1 Vj,n = log Xn,N

Xn−k,N
. In the derivative of l with

respect to m we next approximate
∑k

j=1(j + m)−1 =
∑k+m

i=m+1 i
−1 by log m+k

m ,
which is motivated by Euler’s formula when m, k → ∞. The maximum likelihood
estimators (γ̂k, m̂k) are then given by{

γ̂k = 1
k

∑k
j=1 jVj,n + m̂k

k log Xn,N

Xn−k,N
= Hk,n + m̂k

k log Xn,N

Xn−k,N
,

m̂k

m̂k+k = ( Xn,N

Xn−k,N
)−

1
γ̂k .

(2.2)

Note that γ̂k is a simple adaptation of the Hill (1975) estimator Hk,n which
is induced by the missing observations. In case of a strict Pareto distribution,
X1/γ is standard Pareto distributed, so that ( Xn,N

Xn−k,N
)−1/γ =d Um,m+k, the m-

th smallest order statistics from a uniform (0,1) random sample of size m + k.
The estimator of m given an estimate of γ hence tries to match the expected
value m

m+k of Um,m+k.
For any given choice of k, an estimator for extreme quantiles Q(1−p) can now

be presented based on estimators of γ and m using the classical Weissman-type
extrapolation on the corrected QQ-plot:

log Q̂k(1 − p) = logXn−k,N + γ̂k

(
log 1

p
− log m̂k + n

m̂k + k

)

or

Q̂k(1 − p) = Xn−k,N

(
m̂k + k

(m̂k + n)p

)γ̂k

. (2.3)

One of the main practical drawbacks of the methodology in [10] is the ex-
tremely sensitive log-likelihood function in terms of (γ,m/k). Although the
asymptotic theory is sound, the estimator has to be calibrated sequentially and
with a good initial guess to produce accurate results. Moreover, the complicated
definition of the estimators therein makes it difficult to mathematically analyse
these step-wise procedures, and was not pursued in their paper.

In our specification, the likelihood function still empirically suffers the sensi-
tivity issue, especially for small values of k, though to a much lesser degree. To
further robustify our estimator we impose a regularization term on the number
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of missing observations (we refrain from also penalizing the tail index since the
two quantities are heavily correlated anyway):

lλ(γ,m) = l(γ,m) − λm.

The maximum penalized likelihood estimators are denoted by (γ̂(λ)
k , m̂

(λ)
k ),

where one observes that

m̂
(λ)
k = Hk,n +

m̂
(λ)
k

k
log Xn,N

Xn−k,N
, (2.4)

m̂
(λ)
k = k

{
eλ
(

Xn,N

Xn−k,N

) 1
γ̂
(λ)
k − 1

}−1

. (2.5)

2.2. Asymptotic results

For a mathematical analysis of the estimators (m̂(λ)
k , γ̂

(λ)
k ) we consider two cases.

First we consider m/k → 0 as m, k,N → ∞, which refers to cases with small
m values. Next, we assume that m/k → δ ∈ (0, 1) as k,N → ∞ and k/N → 0.
Proofs are deferred to Appendix A.

To this end we assume the classical second-order assumption (refer to [7]) on
U(x) = Q(1 − x−1) with Q the quantile function of the underlying Pareto-type
distribution:

U(ux)
U(x) = uγ

(
1 + h−β(u)b(x)

(
1 + o(1)

))
, (2.6)

with h−β(u) = (1 − u−β)/β, β > 0 and b a regularly varying function at in-
finity with index −β. Then from Theorem 4.1 in [3] we have the exponential
representations

Mi,k,N :=
(
γ + bN,k

(
i

k + 1

)β)
Ei

for Zi,N = i log XN−i+1,N
XN−i,N

with i = 1, . . . , k, where Ei, i ≥ 1 is a sequence of i.i.d.
standard exponential random variables and bN,k = b(N/k). More precisely,

sup
1≤j≤k

∣∣Zj,N − (Mj,k,N + Rj,N )
∣∣ = op(bN,k)

where sup1≤i≤k |
∑k

j=i Rj,N/j|/max(log k+1
i , 1) = op(bN,k).

When the number of missing observations m is limited, expressed by the
assumption m/k → 0 as k,N → ∞ and N/k → ∞, any conventional estimator
γ̂k of γ could well be adequate as a substitute for γ̂(λ)

k in (2.5). This is confirmed
in a first asymptotic result. In this ζk,n denotes the bias and Z the zero centered
asymptotic normal distribution of γ̂k.

Theorem 1. Assume the second-order condition (2.6). Then as N, k → ∞,
k/N, m/k, λ → 0, we have, when imputing an estimator γ̂k of γ in (2.5) satis-
fying

γ̂k − γ = ζk,n + k−1/2Zk
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where ζk,n is a deterministic bias sequence satisfying
√
kζk,n = O(1) and Zk :=√

k(γ̂k − γ − ζk,n) is a sequence of rv’s converging weakly to a centered normal
distribution, that

m̂
(λ)
k =d Γm ×

{
1 −

[
λ + bN,k(γβ)−1](1 + op(1)

)
+

[
ζk,n + k−1/2Zk

]
γ−1 log k + m

m

(
1 + op(1)

)}
,

where the rv Γm has density

fk,m(v) = Γ(k + m + 1)
Γ(m)Γ(k + 1)km vm−1

(
1 + v

k

)−(k+2m)

, v > 0.

Assuming further that m2/k → 0 we have that

fk,m(v) = 1
Γ(m)v

m−1e−v
(
1 + o(1)

)
, v > 0.

From the above result it follows that the penalization parameter λ can be used
to reduce the bias in estimating m induced by the bias of γ̂k,n especially for small
values of k. A positive penalization parameter then works for estimators γ̂k,n
with a positive bias ζk,n. Estimation of bN,k, β and ζk,n in the present setting is
far from straightforward. In the practical realizations below we choose λ = 0.01,
as a first attempt to reduce the bias. In the simulations we will consider the
finite sample behaviour of m̂(λ)

k when using different well established estimators
of γ next to the estimator γ̂

(λ)
k following from optimizing lλ(γ,m).

From Theorem 1 it appears appropriate to use the Γ(m, 1) distribution as
the sampling distribution for m̂k at fixed k. The goodness-of-fit of this model
will be discussed in the simulation study.

Next we consider the case m/k → δ ∈ (0, 1) as k,N → ∞ and k/N → 0. We
propose an asymptotic result for the estimators (γ̂k, δ̂k) solving (2.2) in case the
missing data were all deleted at the top of the original data set. We here take
λ = 0. Below we use the notation ζ(δ, a) = ((1 + δ)a − δa)/a, a > 0.

Theorem 2. Assume the second-order condition (2.6). Then as N, k → ∞,
k/N → 0, m/k → δ > 0 and

√
kbN,k → ν ≥ 0 we have that

√
k
(
(γ̂k, δ̂k) − (γ, δ)

)
→ N2(νA,Σ),

with

A = δ(1 + δ)
γ[1 − δ(1 + δ) log2(1 + δ−1]

( γ
δ(1+δ) −γ log(1 + δ−1)

log(1 + δ−1) −1

)(
ζδ,1+β

ζδ,β

)

and

Σ =
[
1 − δ(1 + δ) log2(1 + δ−1)]−1

×
(

γ2 γδ(1 + δ) log(1 + δ−1)
γδ(1 + δ) log(1 + δ−1) δ(1 + δ)

)
.
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Note that when δ → 0 the result for γ̂k naturally corresponds with the
classical limit result for the Hill estimator when no data are missing, i.e. a
normal limit distribution with asymptotic variance γ2.

2.3. Detecting missing extremes below the largest observation

So far we have made the assumption that all the missing data is above the largest
observation. However, if the data has missing values in large quantiles but not
necessarily above the largest observation, we may adapt our methodology to
this scenario. In essence, the idea is to sequentially keep removing the largest
datapoint from the sample until we reduce to the canonical scenario, that is
where all missing observations are above the largest datapoint in the sample.
We provide details below.

Given an appropriate value of k, the search for missing extreme values that
are situated within the top extreme data (and not necessarily above the largest
observation) can be performed by trimming the likelihood from the preceding
section until we obtain stabilization of the estimators. Trimming has shown to
provide stability in other settings (cf. [4] for an application in outlier detection
and [5] for general threshold selection).

Thus, we consider the deletion of further extreme points, with the rationale
of eventually excluding all regions of the datasets where missing observations
were present. If the m missing top data are all located above Xn−k0,N with
k0 < k, then we still have that the spacings Vj,n with j = k0 + 1, . . . , k are
approximately exponentially distributed with mean γ if scaled with the inverse
rank numbers j + m, j = k0 + 1, . . . , k. Then, the amount m can be estimated
through maximization of

L(γ,m; k0) =
k∏

j=k0+1

j + m

γ
exp

(
−j + m

γ
Vj,n

)
,

leading to the trimmed log-likelihood function

l(γ,m; k0) = −(k − k0) log γ +
k∑

j=k0+1

log(j + m) − γ−1
k∑

j=k0+1

jVj,n

− m

γ
log Xn−k0,N

Xn−k,N
.

As before, approximating
∑k

j=k0+1(j+m)−1 by log( m+k
m+k0

), we obtain the follow-
ing likelihood equations for the maximum likelihood estimators (γ̂k0,k, m̂k0,k):{

γ̂k0,k = 1
(k−k0)

∑k
j=k0+1 jVj,n + m̂k0,k

k−k0
log Xn−k0,N

Xn−k,N

log( m̂k0,k+k

m̂k0,k+k0
) = 1

γ̂k0,k
log Xn−k0,N

Xn−k,N
.

(2.7)

Direct optimization of the above likelihood is possible and effective through
standard nonlinear numerical procedures. However, we refer the reader to the
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next subsection for a fast fixed-point iterative solver. Note that (γ̂0,k, m̂0,k) =
(γ̂k, m̂k).

In practice, one first selects k large enough so that one believes that all
missing datapoints are within the top k observations. Subsequently, one plots
(γ̂k0,k, m̂k0,k) as a function of k0 and with k fixed. One then expects to find a
stable region in the plot for a certain value of k0 and above. The point from which
stability happens then provides an estimate k0 of additional top order statistics
required to be deleted from the sample in order to reduce the dataset to the
canonical case, i.e. where data is missing above the largest sample observation.

As an example, in Figure 2, such a plot for one sample is given for a sample
of size N = 500 from a Pareto distribution with γ = 0.5 where 25 missing
observations are all randomly spread in the top 50 of the original data set.
We also present the MSE and bias of (γ̂k0,k, m̂k0,k) based on 1000 repetitions.
Since all missing observations are situated above Xn−25,N , we expect the plots
(γ̂k0,k, m̂k0,k) to be stable in the region k0 ≥ 25 with m̂k0,k indicating the total
number of missing observations, while for k0 < 25 these plots will be decreasing
with decreasing k0 as the number of missing observations above such Xn−k0,N is
decreasing with smaller k0. The estimates γ̂k0,k appear to be reliable for k0 ≥ 25.
Compare this with a case where the 25 missing data are all situated above Xn,N

(bottom line of Figure 2). Here the plot is stable over the whole plotted area.
The present approach using likelihood trimming only provides a graphical

method assisting in detecting missing observations below the largest observation
Xn,N , and asymptotics are still absent. It appears that methods for detection
of change points in the γ̂k0,n−1 and m̂k0,n−1 plots could be used to provide
an adaptive method to detect a minimal k0 value above which the missing
observations are situated. This will be pursued in subsequent work. Note that
formula (2.3) can still be used in this case in order to estimate extreme quantiles.

2.4. Regularized fixed-point optimization

This subsection is devoted to further robustifying our estimator in two ways.
First, we impose a regularization term on the number of missing observations
(we refrain from also penalizing the tail index since the two quantities are heavily
correlated anyway). Subsequently, we prove that we may compute the (possibly)
penalized MLE estimator recursively by defining a suitable contraction operator
and then invoking Banach’s fixed-point theorem. The latter is key to iteratively
computing our estimators without having to have good initial guesses.

To this end, consider the penalized log-likelihood given by

lλ(γ,m; k0) =

− (k − k0) log γ+
k∑

j=k0+1

log(j + m) − γ−1
k∑

j=k0+1

jVj,n − m

γ
log Xn−k0,N

Xn−k,N
− λm.

(2.8)

It is not hard to see that the approximate solution to the score equations
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Fig 2. Simulations results for Pareto data (γ = 1/2, N = 500,m = 25). Top: plots of γ̂k0,n−1
and m̂k0,n−1 using k = n − 1 as a function of log k0 for one sample when 25 data are
randomly deleted from the top 50 original observations. Middle two lines: plot of MSE and bias
of γ̂k0,n−1 and m̂k0,n−1 as a function of log k0 with randomly spread missing observations
based on 1000 repetitions. Bottom: plot of γ̂k0,n−1 and m̂k0,n−1 as a function of log k0 when
the original top 25 data are deleted.
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satisfies the following equations

m̂k0,k =
kX

1
γ̂k0,k

n−k,N − eλk0X
1

γ̂k0,k

n−k0,N

eλX
1

γ̂k0,k

n−k0,N
−X

1
γ̂k0,k

n−k,N

γ̂k0,k = 1
(k − k0)

k∑
j=k0+1

jVj,n + m̂k0,k

k − k0
log Xn−k0,N

Xn−k,N
.

This gives rise to a recursive perturbed estimator for the tail index, given by

γ̂
(λ)
k0,k

(r + 1) = 1
(k − k0)

k∑
j=k0+1

jVj,n +
log Xn−k0,N

Xn−k,N

k − k0

kX

1
γ̂
(λ)
k0,k

(r)

n−k,N − eλk0X

1
γ̂
(λ)
k0,k

(r)

n−k0,N

eλX

1
γ̂
(λ)
k0,k

(r)

n−k0,N
−X

1
γ̂
(λ)
k0,k

(r)

n−k,N

.

(2.9)

The corresponding estimator m̂(λ)
k0,k

(r) for the number of missing observations is
defined analogously.

It is clear that whenever (2.8) has a unique maximum then proving that (2.9)
is a contraction operator will suffice, by Banach’s fixed-point theorem, to obtain
convergence of γ̂(λ)

k0,k
(r) as r → ∞ to the maximizer of (2.8).

Proposition 3. Let λ ≥ 0. Then the recursive map γ̂
(λ)
k0,k

(r) is c-Lipschitz
continuous on any compact set bounded away from zero, with c < 1.

Proposition 4. Let λ ≥ 0 and let (γ̂(λ)
k0,k

, m̂
(λ)
k0,k

) be the penalized maximum
likelihood estimator of (2.8), with γ̂

(λ)
k0,k

> 0. Then for any positive starting
value γ̂

(λ)
k0,k

(0) > 0,

lim
r→∞

(
γ̂

(λ)
k0,k

(r), m̂(λ)
k0,k

(r)
)

=
(
γ̂

(λ)
k0,k

, m̂
(λ)
k0,k

)
Proof. Any c-Lipschitz continuous function with c ∈ (0, 1) is a contraction. Then
apply Banach’s fixed point theorem.

2.5. Sample fraction selection

In order to select an appropriate value k̃ of the number k of top data several
methods can be used based on goodness-of-fit techniques. For instance:

i) For every k the correlation coefficient rk can be computed based on the
top k points of the adjusted QQ-plot (2.1) with m̂k substituting m̂, and
k̃r then corresponds to the largest correlation rk;

ii) For every k the Anderson-Darling (A-D) W -statistic, given by (cf. [1])

W 2
k = −k − 1

k

k∑
j=1

(2j − 1)
[
log uj,k + log(1 − uk−j+1,k)

]
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is computed on{
uj = 1 − exp

(
−(j + m̂k)Vj,n/γ̂k

)
; j = 1, . . . , k

}
and k̃W then corresponds to the smallest W -statistic Wk.

From the simulations and practical experiments the use of k̃W appears to yield
much better results in cases different from the strict Pareto distribution. While
such adaptive method does not guarantee a consistent estimator for the asymp-
totic MSE optimal k value, it does address the finite-sample case appropriately,
as it appears from simulation studies. However, it is advised to further validate
the choice of k using graphical support from the Pareto QQ-plot adjusted with
m̂kW

, for instance, by validating linearity in this plot above Xn−k̃W ,N .

3. Simulation results and diamond case study

3.1. Simulation results

We conduct a systematic simulation study to investigate the finite-sample be-
haviour of our estimators for varying k, as well as the A-D approach for the
automatic k selection when all missing observations are situated beyond the
largest observation. For varying sample fraction we consider several estimators,
as follows:

1. The estimator (γ̂(0.01)
k , m̂

(0.01)
k ).

2. The estimator (γ̂(0)
k , m̂

(0)
k ).

3. The Hill estimator Hk,n and an implied number of missing observations
given by plugging it into the second equation of (2.2), yielding a ‘naive’
estimator for the number of missing observations: k{( Xn,N

Xn−k,N
)

1
Hk,n −1}−1.

4. The moment estimator for the EVI, and its implied estimator for the
number of missing observations through the same construct as the previous
case.

5. The Generalized Pareto Distribution (GPD) maximum-likelihood estima-
tor for the EVI, and its implied estimator for the number of missing ob-
servations through the same construct as the previous case.

We have also compared with the estimator from [10] as written in their paper,
but their likelihood is very sensitive, for instance with respect to the starting
value. A stepwise procedure for their estimators could improve the performance,
though we refrain from implementing this. Note that the last two estimators
often provide negative tail indices, so that automatic selection formulae derived
through the Anderson-Darling approach from Subsection 2.5 becomes unstable.
Thus, for automatic selection of k we only consider the following three cases:

1a. The estimator (γ̂(0.01)
k , m̂

(0.01)
k ) with k selected through the goodness-of-fit

criterion with Anderson-Darling statistic outlined in Subsection 2.5.
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2a. The estimator (γ̂(0)
k , m̂

(0)
k ) with k selected through the goodness-of-fit cri-

terion with Anderson-Darling statistic outlined in Subsection 2.5.
3a. The Hill estimator Hk,n with k chosen from the selection of the case 1a.

In order to assess how deviations from pure the Pareto distribution affect the
estimation procedure, we consider the following distributions with regularly-
varying tails:

i) The Pareto distribution with RTF given by F̄ (x) = x−2, x ≥ 1.
ii) The Burr(2,−2, 2) distribution with RTF given by F̄ (x) = ((2+x4)/2)−1/2,

x > 0.
iii) The Fréchet(2) distribution with RTF given by F̄ (x) = 1 − exp(−(x−2)),

x > 0.
iv) The GPD(1/2, 1) distribution with RTF given by F̄ (x) = (1 + x/2)−2,

x > 0.

Notice that we have specified γ = 1/2 in all cases, which allows for deviations
in behaviour to be solely attributed to the slowly varying component � of the
distributions. For all distributions we consider a sample size of 500, m = 5, 25, 50,
and compare mean (median when applicable) squared error and bias terms for
the estimation of the tail index, for the number of missing observations, and for
a high quantile (p = 1/500). All results are provided in Appendix B.

Remark 5. We use the iterative procedure from Subsection 2.4, which by
Proposition 4 converges for any positive starting value. For convenience, we
choose 1/2 as starting value, agreeing with the tail index of the simulations,
though any other starting value provides indistinguishable results. Convergence
usually happens within a few iterations, but all results were obtained using 100
iterations.

The main conclusions from the figures are the following:

• Our estimators 1, 1a, 2 and 2a behave better at most k than the bench-
marks when the true distribution is close to being strictly Pareto, and
the automatic selection procedure is effective regardless of the distribu-
tion type. The regularization terms arising from using λ = 0.01 is useful
for fixed k but seems to play a less important role when automatically
selecting k.

• When the distribution has a significant deviation from strict Pareto tails,
the automatic estimators 1a and 2a also outperform the ‘naive’ estima-
tor 3a, except in the m = 5 case when considering the tail index, where
there is a slight underestimation by the estimator 3a, and a slight overes-
timation by 1a and 2a. For the number of missing observations and high
quantiles, this effect seems to be less pronounced. Note in case m = 5 for
all distributions that estimator 3 has a smaller MSE than estimators 1
and 2.

• Estimators allowing negative tail indices, 4 and 5, can only be considered
adequate when the number of missing observations is small (m = 5 in
our study, or 1%), and then in that case, using a very large k. This is
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particularly the case for the GPD distribution, iv). Notice, however, that
these estimators do not provide a natural estimate of the number of miss-
ing observations, so that their effectiveness relies solely on m � n.1 This
behaviour is extended to the Hill estimator, 3, which in its automatic form
3a can be competitive for tail index estimation.

• Not accounting for missing values decreases the value of estimator 3, but
not removing bias from the regularly varying component (by choosing k
large enough) increases estimator 3. These two very different sources of
bias often cancel each other out, providing “by chance” a good estimate.
This is observed as a sharp decrease in MSE for medium or large k values.
However, estimating such a high k where the two biases cancel out is
neither straightforward nor in the scope of this article. As expected, the
effect vanishes when considering estimators with automatically selected k.

We end this section checking the validity of the Gamma(m, 1) distribution
which follows from Theorem 1 as a sampling distribution for m̂k in case of a small
and a moderate m. The goodness-of-fit is illustrated in Figure 17 in case of the
Pareto distribution, based on 10, 000 repetitions. When using γ̂

(0)
k a positive bias

with respect to the Gamma model is present with small m. When inserting the
Hill estimator Hk,n in place of γ̂k in the second equation of (2.2), the distribution
of the estimates of m for very small values of m follows the Γ(m, 1) distribution
quite close and shows a negative bias in case of moderate m.

3.2. Diamond case study

The problem of estimating the amount of missing diamonds in ore mining was
considered before in [9]. They used a Bayesian approach to fit a truncated gen-
eralized Pareto distribution to part of the data. Based on the estimated tail
probability the expected number of diamonds larger than a specific weight was
estimated. Ore recovered from alluvial deposits are less subjected to the possibil-
ity of breakage. If the stones are not recovered during the metallurgical recovery
process, they are discarded onto the tailing dumps from where they can be re-
covered during a re-mining program. Because of the potentially large monetary
value of even a small amount of missing large diamonds, it is of interest to an-
alyze if re-mining of a diamond dump is profitable thanks to the presence of
large diamonds. The Pareto-type model is generally accepted to describe and
analyze carat data.

Here we use the same data set as in [9]. The Pareto QQ-plot of these obser-
vations is given in the bottom left plot of Figure 3. A concave deflection at the
upper part of the QQ-plot appears comparable with the graphs in Figure 1 ob-
tained from simulations. This leads to a systematic decline of the Hill estimates
with decreasing k below 100 (see Figure 3 bottom right, before correction).

1In some figures, the curves corresponding to estimators 4 and 5 are completely out of
range due to very negative bias (and thus very large MSE) and related numerical instability.
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Fig 3. Diamonds data. Top left: adapted Hill and Hill estimates, γ̂k and Hk,n respectively,
as a function of k. Top right: m̂k and the plug-in missing observation estimator derived from
inserting the Hill estimator into the second equation of (2.2), as a function of k. Bottom:
original Pareto QQ-plot and adapted QQ-plot using m̂273.

We provide plots of m̂k and γ̂k as a function of k in the top panels of Figure 3
and of the Wk statistic in Figure 4. We obtain

k̃W = 273, γ̂k̃W
= 0.4798, m̂k̃W

= 6.4739

The corresponding parameter estimates for λ = 0.01 are

k̃λW = 273, γ̂λ
k̃W

= 0.4792, m̂λ
k̃W

= 6.3740.

The plots are virtually indistinguishable between λ = 0 and λ = 0.01, and hence
we present only the former. The plug-in missing observation estimator derived
from inserting the Hill estimator into the second equation of (2.2) yields a
very stable plot as a function of k leading to an estimate of 5 missing observa-
tions.
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Fig 4. Diamonds data. Top: Wk statistics as a function of k. Bottom left: estimates γ̂k0,273
as a function of k0. Bottom right: estimates m̂k0,273 as a function of k0.

The bottom panels of Figure 3 shows the difference of Pareto QQ plots be-
fore and after correcting with 6 missing extremes. In Figure 4 the solutions
(m̂k0,273, γ̂k0,273) of the trimmed likelihood with 0 ≤ k0 < 273 are plotted as a
function of k0. From this it appears that no extra missing observations can be
reported apart from 6 missing observations at the top. This is to be compared
with the 8 missing observations reported by the method from [9]. Based on The-
orem 1, a 95% confidence interval for m is obtained using the 0.025 and 0.975
quantiles of the Γ(6.45, 1) distribution: (2.5, 12.3). Based on the Hill imputed
missings estimator we obtain the interval (1.6, 10.2).

4. Conclusion

In this paper, we addressed the problem of missing observations in the highest
quantiles of a dataset, assuming that the data followed a Pareto-type distribu-
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tion. We presented solutions for estimating the extreme value index, the number
of missing data and extreme quantiles, assuming that all missing data were be-
yond the observed data. We also proposed an adaptive method for selecting
the number of top data used in the estimation. Additionally, we introduced a
graphical method in order to infer on the number of missing extremes spread
over the largest observed data. We derived asymptotic results and considered
robustifying our estimator through regularization. We demonstrated the effec-
tiveness of our approach through simulation experiments and an application in
the diamond mining industry.

Appendix A: Proof of Theorems

Proof of Theorem 1. With Uj,v (j = 1, . . . , v) denoting the order statistics of an
i.i.d. sample of size v from the uniform (0,1) distribution, we have using (2.6)
that

Xn,N

Xn−k,N
=d

(
Uk+m,N

Um,N

)γ(
1 + b

(
U−1
k+m,N

)
h−β

(
Uk+m,N

Um,N

)(
1 + op(1)

))

=d (Um,k+m)−γ

(
1 + b

(
N

k + m

)
h−β

(
m + k

m

)(
1 + op(1)

))

= Op

(
log k

m

)
,

so that
(

Xn,N

Xn−k,N

)− 1
γ

= Um,m+k

(
1 − 1

γ
b

(
N

k + m

)
h−β

(
m + k

m

)(
1 + op(1)

))
.

Using 1
γ̂k

− 1
γ = −(γ̂k − γ)/(γγ̂k) = −[ζk,n + k−1/2Zk(1 + op(1))]γ−2(1 + op(1))

and max(ζk,n, k−1/2) log(k/m) → 0 we obtain

(
Xn,N

Xn−k,N

) 1
γ̂k

− 1
γ

= exp(−εk,n) = 1 − εk,n
(
1 + op(1)

)
with

εk,n = −
[
ζk,n + k−1/2Zk

(
1 + op(1)

)]
γ−2 log(k/m)

(
1 + op(1)

)
.

Now, as λ → 0,

k

eλ( Xn,N

Xn−k,N
)

1
γ̂k − 1

= k

( Xn,N

Xn−k,N
)

1
γ (1 + λ(1 + o(1)) + εk,n) − 1

= k

( Xn,N

Xn−k,N
)

1
γ − 1
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×
{

1 +
[
−λ

(
1 + o(1)

)
+ εk,n

](
1 −

(
Xn,N

Xn−k,N

)− 1
γ
)−1}

.

Concerning the distribution of k{( Xn,N

Xn−k,N
)

1
γ − 1}−1 we have

k

{(
Xn,N

Xn−k,N

) 1
γ

− 1
}−1

=d
kUm,m+k

1 − Um,m+k

×
(

1 − 1
γ
b

(
N

k + m

)
h−β

(
m + k

m

)(
1 + m

k

)(
1 + op(1)

))
,

while (1 − ( Xn,N

Xn−k,N
)−

1
γ )−1 = 1 + op(1). Furthermore, the density of Rm,k :=

kUm,m+k

1−Um,m+k
is given by

fk,m(v) = Γ(k + m + 1)
Γ(m)Γ(k + 1)km vm−1

(
1 + v

k

)−(k+2m)

= 1
Γ(m)v

m−1e−v
(
1 + o(1)

)
as k → ∞, m2/k → 0 thanks to Stirling’s formula.

Proof of Theorem 2. First we define

S
(1)
k,m,N = k−1

k∑
j=1

(j + m)Vj,n = k−1
k∑

j=1
(j + m) log

XN−(j+m)+1,N

XN−(j+m),N

S
(2)
k,m,N =

k∑
j=1

Vj,n =
k∑

j=1
log

XN−(j+m)+1,N

XN−(j+m),N
.

Using Theorem 4.1 in [3] specifying the exponential representations of Zi,N , it
follows that

√
k

(
S

(1)
k,m,N − γ − bN,kζδ,1+β

S
(2)
k,m,N − γ log(1 + δ−1) − bN,kζδ,β

)

→d N2

((
0
0

)
, γ2

(
1 log(1 + δ−1)

log(1 + δ−1) [δ(1 + δ)]−1

))
. (A.1)

Replacing (j+m) log XN−(j+m)+1,N
XN−(j+m),N

by Mj,k,N and using classical limit theorems

leads to the stated limit distributions. The term based on Rj,N in case of S(1)
k,m,N

can be handled as in the proof of Theorem 4.2 in [3]. Concerning S
(2)
k,m,N this term

equals
∑k

j=1 Rj+m,N/(j + m) =
∑m+k

i=m+1 Ri,N/i which is op(bN,k+m) log(k +
m)/m.

The equation defining δ̂k is given by

1 − δ̂k log(1 + (δ̂k)−1)
log(1 + (δ̂k)−1)

=
k−1 ∑k

j=1 jVj,n

S
(2)
k,m,N



3746 J. Beirlant et al.

where the right hand side converges to 1−δ log(1+δ−1)
log(1+δ−1) , so that δ̂k is consistent

and then also γ̂k.
Using that

∑k
j=1 jVj,n = S

(1)
k,m,N−δS

(2)
k,m,N +O(k−1) as k → ∞, the likelihood

equations are given by{
γ̂k = S

(1)
k,m,N + (δ̂k − δ)S(2)

k,m,N + O(k−1)
γ̂k log(1 + (δ̂k)−1) = S

(2)
k,m,N ,

or ⎧⎪⎨
⎪⎩

(γ̂k − γ) − (δ̂k − δ)S(2)
k,m,N = S

(1)
k,m,N − γ + O(k−1)

(γ̂k − γ) log(1 + (δ̂k)−1) + γ(log(1 + (δ̂k)−1) − log(1 + δ−1))
= S

(2)
k,m,N − γ log(1 + δ−1).

Using the consistency of δ̂k and γ̂k we then obtain⎧⎪⎨
⎪⎩

(γ̂k − γ) − (δ̂k − δ)γ log(1 + δ−1) = S
(1)
k,m,N − γ + O(k−1)

(γ̂k − γ) log(1 + δ−1)(1 + op(1)) − (δ̂k − δ) γ
δ(1+δ) (1 + op(1))

= S
(2)
k,m,N − γ log(1 + δ−1),

and so(
γ̂k − γ

δ̂k − δ

)

=
(

1 −γ log(1 + δ−1)
log(1+δ−1)(1+op(1)) − γ

δ(1+δ) (1 + op(1))

)−1 (
S

(1)
k,m,N−γ+O(k−1)

S
(1)
k,m,N − γ log(1+δ−1)

)
.

Using the asymptotic result in (A.1) now leads to the asserted result after
some algebra.

Proof of Proposition 3. We ease the notation by defining the constants (with
respect to x) a = Xn−k,N

Xn−k0,N
∈ (0, 1) and A = 1

(k−k0)
∑k

j=k0+1 jVj,n. Consequently,
we wish to show that the following function is c-Lipschitz continuous:

f(x) = A + 1
k − k0

log(1/a)ka
1/x − eλk0

eλ − a1/x .

It will be enough to establish that its derivative is, uniformly and in absolute
value, less than unity. For this, note first that

|f ′(x)| = a1/xeλ log2(a)
x2(eλ − a1/x)2

.

Then |f ′(x)| ≤ c < 1 with c > 0 is equivalent to

log2(a)/c ≤ x2(eλ/2a−1/(2x) − e−λ/2a1/(2x))2.
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Taking square roots and replacing the right-hand side with two Taylor expan-
sions, we obtain, after cancelling terms, the equivalent inequality

− log(a)/(x
√
c) ≤ −

∞∑
n=0

2(log(a) − λx)2n+1

(2x)2n+1(2n + 1)! ,

or

1 ≤
√
c
λx + log(1/a)

log(1/a)

∞∑
n=0

(log(a) − λx)2n

(2x)2n(2n + 1)!

=
√
c

2x
log(1/a) sinh

((
log(1/a) + λx

)
/(2x)

)
.

But the above assertion is satisfied for any λ ≥ 0, since in that case, using the
bounded-away property of the compact K, we get

I := inf
x∈K

2x
log(1/a) sinh

((
log(1/a) + λx

)
/(2x)

)
> 1,

and we may simply take c = (1/I)2 ∈ (0, 1).
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Appendix B: Simulation plots

Fig 5. Simulations results for Pareto data (γ = 1/2,m = 50). Top: mean square error (MSE)
for the tail index, number of missing observations, and 99.8% quantile, as a function of top k
order statistics used. Center: Corresponding bias plots as a function of top k order statistics.
Bottom: density of the estimators with automatically-selected k.
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Fig 6. Simulations results for Pareto data (γ = 1/2,m = 25). Top: mean square error (MSE)
for the tail index, number of missing observations, and 99.8% quantile, as a function of top k
order statistics used. Center: Corresponding bias plots as a function of top k order statistics.
Bottom: density of the estimators with automatically-selected k.
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Fig 7. Simulations results for Pareto data (γ = 1/2,m = 5). Top: mean square error (MSE)
for the tail index, number of missing observations, and 99.8% quantile, as a function of top k
order statistics used. Center: Corresponding bias plots as a function of top k order statistics.
Bottom: density of the estimators with automatically-selected k.
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Fig 8. Simulations results for Burr(2,−2, 2) data (γ = 1/2,m = 50). Top: mean square error
(MSE) for the tail index, number of missing observations, and 99.8% quantile, as a function
of top k order statistics used. Center: Corresponding bias plots as a function of top k order
statistics. Bottom: density of the estimators with automatically-selected k.
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Fig 9. Simulations results for Burr(2,−2, 2) data (γ = 1/2,m = 25). Top: mean square error
(MSE) for the tail index, number of missing observations, and 99.8% quantile, as a function
of top k order statistics used. Center: Corresponding bias plots as a function of top k order
statistics. Bottom: density of the estimators with automatically-selected k.
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Fig 10. Simulations results for Burr(2,−2, 2) data (γ = 1/2,m = 5). Top: mean square error
(MSE) for the tail index, number of missing observations, and 99.8% quantile, as a function
of top k order statistics used. Center: Corresponding bias plots as a function of top k order
statistics. Bottom: density of the estimators with automatically-selected k.
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Fig 11. Simulations results for Fréchet(2) data (γ = 1/2,m = 50). Top: mean square error
(MSE) for the tail index, number of missing observations, and 99.8% quantile, as a function
of top k order statistics used. Center: Corresponding bias plots as a function of top k order
statistics. Bottom: density of the estimators with automatically-selected k.
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Fig 12. Simulations results for Fréchet(2) data (γ = 1/2,m = 25). Top: mean square error
(MSE) for the tail index, number of missing observations, and 99.8% quantile, as a function
of top k order statistics used. Center: Corresponding bias plots as a function of top k order
statistics. Bottom: density of the estimators with automatically-selected k.
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Fig 13. Simulations results for Fréchet(2) data (γ = 1/2,m = 5). Top: mean square error
(MSE) for the tail index, number of missing observations, and 99.8% quantile, as a function
of top k order statistics used. Center: Corresponding bias plots as a function of top k order
statistics. Bottom: density of the estimators with automatically-selected k.
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Fig 14. Simulations results for GPD(1/2, 1) data (γ = 1/2,m = 50). Top: mean square error
(MSE) for the tail index, number of missing observations, and 99.8% quantile, as a function
of top k order statistics used. Center: Corresponding bias plots as a function of top k order
statistics. Bottom: density of the estimators with automatically-selected k.
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Fig 15. Simulations results for GPD(1/2, 1) data (γ = 1/2,m = 25). Top: mean square error
(MSE) for the tail index, number of missing observations, and 99.8% quantile, as a function
of top k order statistics used. Center: Corresponding bias plots as a function of top k order
statistics. Bottom: density of the estimators with automatically-selected k.
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Fig 16. Simulations results for GPD(1/2, 1) data (γ = 1/2,m = 5). Top: mean square error
(MSE) for the tail index, number of missing observations, and 99.8% quantile, as a function
of top k order statistics used. Center: Corresponding bias plots as a function of top k order
statistics. Bottom: density of the estimators with automatically-selected k.
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Fig 17. Histograms and fitted Γ(m, 1) densities for simulated Pareto data. Top left: N = 500,
m = 5, k = 494; top right: N = 5000, m = 50, k = 4940. In the bottom panels are the
corresponding histograms using the plug-in missings estimator derived from inserting the Hill
estimator into the second equation of (2.2).
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