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Abstract: Water quality monitoring systems that are enabled by the Internet of Things (IoT) and
used in water applications to collect and transmit water data to data processing centers are often
resource-constrained in terms of power, bandwidth, and computation resources. These limitations
typically impact their performance in practice and often result in forwarding their data to remote
stations where the collected water data are processed to predict the status of water quality, because of
their limited computation resources. This often negates the goal of effectively monitoring the changes
in water quality in a real-time manner. Consequently, this study proposes a new resource allocation
method to optimize the available power and time resources as well as dynamically allocate hybrid
access points (HAPs) to water quality sensors to improve the energy efficiency and data throughput
of the system. The proposed system is also integrated with edge computing to enable data processing
at the water site to guarantee real-time monitoring of any changes in water quality and ensure timely
access to clean water by the public. The proposed method is compared with a related method to
validate the system performance. The proposed system outperforms the existing system and performs
well in different simulation experiments. The proposed method improved the baseline method by
approximately 12.65% and 16.49% for two different configurations, demonstrating its effectiveness in
improving the energy efficiency of a water quality monitoring system.

Keywords: water network; water quality monitoring; water quality; water resource management;
network resource management

1. Introduction

Water is an essential resource to humanity [1–5]. Water is life as the human body is
made up of approximately 65% water [6]. Hence, humans need to consume clean water for
their survival [4,5,7]. Clean water also plays a critical role in improving people’s health,
well-being, and quality of life [1,2,5]. However, clean water is becoming a scarce commodity
because of the negative impacts of several anthropogenic activities [1,5,7–10].

To increase access to clean water, water quality monitoring is an active area of research
in academia and industry [5,11–13]. Water quality monitoring research involves the use of
traditional laboratory-based technology as well as modern distributed Internet of Things
(IoT) technology. Among these technologies, the use of IoT technology is more popular
because of its advantages over laboratory-based technology in terms of cost, real-time water
quality monitoring, and prompt water data collection [14–17]

Despite the promise of IoT systems in water quality monitoring applications, they
are still at an infant stage and are resource-constrained in terms of power, bandwidth,
and computational resources [18]. Because of these constraints, the IoT systems in water
quality monitoring applications are currently limited in performance in the context of
energy efficiency, throughput, and network lifetime [19].

For IoT systems to perform better in the water quality monitoring domain, it is
important to address the resource constraint issues. Hence, it is important to investigate the
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design of new resource management strategies that can be incorporated into IoT systems for
water quality monitoring. This study focuses on the design of efficient resource allocation
strategies for resource management in a non-orthogonal multiple access (NOMA) IoT
network for water quality monitoring; the main contributions of this work are highlighted
as follows:

• We propose the design of a NOMA-enabled protocol for IoT-enabled water quality
monitoring systems;

• We propose the integration of edge computing with water quality monitoring systems;
• We propose resource allocation optimization methods, including a Dinkelbach

algorithm-based optimization method for optimizing wireless energy transfer and
wireless information transfer, as well as a dynamic resource allocation method for
hybrid access point (HAP) resource allocation for data collection;

• We provide a comparison of the proposed method with a comparable baseline method.

The content of this article is organized as follows. In Section 2, we provide a review
of the related studies. Section 3 presents the proposed method. Section 4 presents the
process of mathematical modeling and optimization of resource allocation. In Section 5, we
provide experimental results to illustrate the energy efficiency performance of the proposed
NOMA-enabled IoT system for water quality monitoring based on the proposed efficient
resource allocation strategies. Section 6 concludes this work.

2. Related Work

The successful deployment of IoT systems in water quality monitoring applications
require efficient resource allocation solutions that can increase the system energy efficiency
and network lifetime, support the transmission of a large amount of water data, and reduce
the computational resources required by the system. As a consequence of this, researchers
have intensified efforts to propose various resource allocation solutions. A review of the
examples of the related studies are presented as follows.

Ji and Guo [20] considered the problem of resource allocation optimization in a wireless-
powered mobile edge computing-based IoT network. In their work, the mobile edge com-
puting approach was employed to offload intensive computation tasks from the network
devices to the edge nodes because of the resource-constrained nature of IoT devices. How-
ever, the use of mobile edge computing in IoT systems often results in increased resource
utilization cost (e.g., power) and computational complexity. This may be due to the extra
computational overhead and energy consumption introduced by edge computing for sensor
devices because they must perform complex tasks in the context of data collection, process-
ing, analysis, and decision making. In addition, the mobile edge computing approach is
still a developing technology associated with various resource-allocation problems. Similar
to the work of Ji and Guo [20], Ahmed et al. [21], and Sun et al. [22] also considered the
problem of resource allocation in wireless-powered mobile edge computing networks.
However, these works also suffer from the inherent resource wastage issue associated
with edge computing due to the extra computational overhead and energy consumption
introduced by edge computing for sensor devices. To address these issues, we introduced a
heterogeneous multiclass communication system that consists of ordinary water quality
sensor devices and two edge computing-enabled HAP devices that can perform edge com-
puting tasks [23,24]. Additionally, we introduced the concept of a sequential multi-class
WPCN to optimally and sequentially schedule the operation of network devices for data
transmission with a low-complexity dynamic resource allocation method.

Zeng [25] formulated the system energy efficiency problem as a game theory problem.
In their work, the sensor devices are modeled to collectively work together to maximize
their overall objective function value. However, because of the need to cooperatively
make decisions on how to allocate resources, the system suffered from a computational
complexity issue. This resulted in a low energy efficiency performance of the system. To
address the problem in the work of Zeng [25], we propose a dynamic resource allocation
method and an optimization-based method to jointly optimize the allocation of the system
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resources and improve the overall system energy efficiency in a sequential multi-class
WPCN setting.

Olatinwo and Joubert [26] studied the energy efficiency optimization problem in a
wireless-powered sensor network where all the sensor devices in the network only have
the opportunity to send their data to only one hybrid access point (HAP). In this case, more
energy is spent by the IoT devices that are far from the HAP while less energy is used to
send data by the IoT devices that are close to the HAP. This situation is due to the inherent
doubly near–far problem in wireless-powered communication networks (WPCNs). To
deal with this problem, a WPCN was proposed with two HAPs and a dynamic resource
allocation method to efficiently allocate the HAPs to the network IoT devices for their
data collection. In addition, unlike the work of Olatinwo and Joubert [26], where a meta-
heuristic method was used to compute resource allocation to the network IoT devices with
a near-optimal best effort solution, this study considered the application of the Dinkelbach
algorithm to compute an optimal solution for the IoT devices in the proposed system.

Ansere et al. [27] studied the problem of resource allocation in a cooperative IoT
network for energy efficiency performance optimization of the network. In the network in
the work of Ansere et al. [27], a cooperative relaying communication approach is employed
to enable the network devices to collectively agree to select a channel (i.e., a relaying link) to
send their data to a base station device at the destination. The cooperative communication
process between the devices in the study of Ansere et al. [27] for decision making regarding
channel selection will technically increase the computational complexity of the network in
the context of power and time. This often leads to an increased energy consumption and
low data throughput. The concept of cooperative communication in IoT networks is useful
for reducing energy consumption due to data communication and increases the amount of
data that the network can transmit. However, cooperative communication networks often
experience an increased energy consumption and a reduced data throughput under an
imperfect channel state. To address the limitations in the study of Ansere et al. [27] and also
cater for limited power resources in a cooperative IoT network, this study introduced the
use of a wireless power transfer technique to increase the availability of power resources in
the network. Furthermore, the two HAPs are used to reduce the energy consumption due to
data communication in a quasi-static environment. In addition, the concept of a sequential
multi-class WPCN is proposed to optimally and sequentially schedule the operation of the
network devices in the uplink using a low complexity dynamic resource allocation method.

Ji et al. [28] studied the problem of resource allocation in wireless-powered IoT net-
works. In their work, a dual-hop communication approach was employed. In this case,
relay node was used as an intermediate node between a power source and the IoT devices.
The relay node used the energy received from the power source to power the IoT devices as
well as collect data from the IoT devices. This can lead to network congestion and reduced
throughput. Furthermore, in a wireless-powered network with one power source, the IoT
devices experience unfairness in energy harvesting and data transmission. To address the
problems associated with the use of relay nodes in networks powered by a single transmit-
ter, we considered multiple transmitters in this work to improve the energy harvesting. In
addition, we introduced two HAPs and a dynamic resource allocation method to optimally
allocate the HAPs to the IoT devices for their data collection.

We present a summary of the comparison of the proposed work and the existing works
in Table 1.

It is important to emphasize that energy efficiency is still a major concern in IoT
systems for several reasons, including the limited power resources of sensor devices and
energy consumption due to data communication. Therefore, more research is needed to
investigate the design of new resource allocation solutions for IoT systems in practical
applications. Based on this, in contrast to the previous studies discussed above, we pro-
pose the development of a Dinkelbach algorithm-based method and a dynamic resource
allocation method to achieve optimal energy efficiency in the proposed NOMA-enabled
IoT system for water quality monitoring.
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Table 1. Comparison of the existing works with the proposed work.

Reference Contribution of Related Works Contribution of the Proposed Work

[20]

The authors designed a
resource allocation algorithm
to manage edge computation
resource allocation in a
network where all IoT
devices participate in data
transmission in the same cycle.

Unlike [20], we introduced
a dynamic resource allocation
method and an optimization-based
method to jointly optimize
energy harvesting and data
transmission in a sequential multi-class
WPCN, where each class
of sensors operates sequentially
to improve the overall system
energy efficiency.

[21]

The authors designed a wireless-
powered network where IoT
devices perform complex tasks.
Additionally, IoT devices can
only send their data to
a single base station.

Contrary to [21], we shifted
complex tasks from IoT
devices to reduce energy consumption.
Additionally, we contributed a
dynamic resource allocation method
to optimally allocate multiple
hybrid access points to improve
system energy efficiency.

[22]

The authors designed a resource
management scheme to offload
computations in the network
IoT devices concurrently.

Unlike [22], we introduced a sequential
multi-class WPCN strategy for
offloading computations in a
sequential manner. Additionally, we
contributed a dynamic resource
allocation method to improve the
overall system energy efficiency.

[25]

The authors designed a game
theory-based resource allocation
method to improve energy efficiency
in cooperative network settings.

Unlike [25], we proposed
a dynamic resource allocation method
and an optimization-based method
to jointly optimize the allocation
of system resources to
improve the overall system energy
efficiency in sequential multi-class WPCN
settings.

[26]
The authors designed a wireless-
powered communication network
with only one hybrid access point.

Different from [26], we
contributed a sequential
multi-class WPCN with
dynamically allocated hybrid access points
to improve energy efficiency.

[27]

The authors designed a wireless-
powered cooperative IoT network
where devices transmit data
in the same cycle.

Different from [27], we contributed
a sequential multi-class
WPCN where devices transmit data
in different cycles to
improve energy efficiency.

[28]

The authors designed a wireless-
powered communication network
where IoT devices uses a multi-hop
communication strategy to communi-
cate with a single base station.

Contrary to [28], we contributed
a sequential multi-class
WPCN where IoT devices
uses single-hop communication
to communicate with dynamically
allocated hybrid access points to
improve energy efficiency.
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3. Proposed Method
3.1. System Architecture

The proposed architecture of the water quality monitoring system is illustrated in
Figure 1. It consists of a set of water quality sensors, HAPs, and an edge computing node.
To provide readers with more insights into the project, Table 2 shows a list of requirements
for the system architecture. The water quality sensors are deployed at a water site to
capture the water quality parameters of the relevant water body. Some of the important
parameters for drinking water include pH, E. coli, and dissolved oxygen [29–32]. Due to
the power-constrained nature of water quality sensors in IoT systems, HAPs are employed
to power sensor devices and collect water data from sensor devices. The edge computing
node is introduced to increase the computational capacity of the system for local water data
processing. This is motivated by the limited computational resources of sensor devices and
the gap in conventional water quality monitoring systems. For example, in most water
quality monitoring systems, water data are often forwarded to remote stations where data
processing, analysis, and prediction take place. By sending water data to distant remote
water stations, real-time monitoring of any possible changes in water parameters may be
impractical. To address this gap, we combined edge computing with the proposed water
quality monitoring system to enable real-time water quality monitoring.

Figure 1. Proposed architecture for water quality monitoring system.

Table 2. Project Requirements.

Requirement Range

pH sensor 0–14
Conductivity sensor 100 µS/cm–200 mS/cm

E. coli sensor 1–1000 CFU/100 mL
Residual chlorine sensor 0–10 mg/L
Dissolved oxygen sensor 0–20 mg/L

Transmitter/HAP 1 W–3 W
Edge node ≤5 m from HAPs

ZigBee radio Above 100 m

3.2. System Model

This study considers a multi-class communication system that classifies the system
sensor devices into two different classes, A and B, according to the channel gains among
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the sensor devices and the data collecting HAPs. To minimize the transmission power used
by the sensor devices to transfer their individual data to the available HAPs, the proposed
system exploits the channel gain differences among the sensor devices and the available
HAPs in the system to classify them into K sensor devices ∈ m = {m1, m2, . . . , mK} and L
sensor devices ∈ n = {n1, n2, . . . , nL}.

In the system, there are I dedicated power sources, represented as s = {s1, s2, . . . , sI}.
These power sources are used to transfer power to K sensor devices in class A as well as
the L sensor devices in class B. Among the I power sources, two of them (s1 and s2) serve
as the HAPs. Hence, both s1 and s2 ∈ s can transfer power to the sensor devices and can
also collect data from the sensor devices. Each class of the network transfers its data to two
HAPs to achieve a good channel gain among the sensor devices and the HAPs. We assume
that the proposed multi-class communication system is a heterogeneous system such that
the sensor devices are ordinary water quality sensor devices and HAPs s1 and s2 are edge
computing-enabled and can perform edge computing tasks [23,24]. This circumvents the
potential extra computational overhead and energy consumption that edge computing may
introduce for sensor devices owing to complex tasks relating to data collection, processing,
analysis, and decision making.

The proposed multi-class communication system works as a wireless-powered com-
munication network (WPCN). Hence, the wireless energy harvesting (WEH) phase and the
wireless information transmission (WIT) phase of the system operates within a timeslot
defined by τ(s) based on the proposed communication protocol presented in Figure 2. Con-
sequently, the durations of the WEH and WIT phases are defined as τWEH(s) and τWIT(s),
respectively. Hence, the system operates within the duration of τ = τWEH(s) + τWIT(s).

Figure 2. Proposed NOMA-based communication protocol.

In each timeslot, both classes A and B harvest power from all the available I power
sources within the duration of τWEH(s), whereas only one of the classes is enabled to
perform data transmission to the allocated set of HAPs within the duration of τWIT(s). For
example, if class A is enabled for data transmission to the HAPs in timeslot τ then class B
is sequentially enabled for data transmission to the HAPs in the next timeslot, τ + 1. Since
it is not a must for all the sensor devices to perform data transmission in the WIT phase
concurrently in each timeslot, the concept of sequential data transmission scheduling is
considered in this work to optimize the use of power resources by the overall system.

The K and L sensor devices are strategically deployed across the water body in a
random manner to optimally capture the key water parameters, as shown in Figure 1.
In addition, dedicated I power sources, including the HAPs {si}2

i=1, are connected to a
controller with global knowledge of the resources in the proposed system. It is aware
of a scheduler designed to enable either class A or B in a sequential manner for data
transmission to HAPs s1 and s2 in each timeslot, τ. It is important to emphasize that, at
each timeslot, the controller update its information about the K sensor devices in class
A, L sensor devices in class B, and I power sources for the purpose of synchronization.
The sensor devices draw energy from separate batteries for updating their energy status
information with the controller.

Table 3 contains some of key acronyms used in this work.
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Table 3. List of acronyms.

Acronymn Definition

IoT Internet of Things
NOMA Non-orthogonal multiple access
HAP Hybrid access point
WEH Wireless energy transfer
WIT Wireless information transfer
τWEH(s) Time slot for wireless information transfer
τWIT(s) Time slot for wireless energy transfer
ci,k and ci,l Downlink communication channel gains
dk,i and dl,i Uplink communication channel gains
Pi(W) HAP transmission power
SIC Successive interference cancellation
B System’s bandwidth
DL Downlink
UL Uplink
HAPs {si}2

i=1 Power sources
eτ

k·harvest Energy harvested by K sensor devices
eτ

l·harvest(J) Energy harvested by L sensor devices
eτ

k·transmit (J) Energy used by each sensor device k for UL data transfer
eτ

l·transmit (J) Energy used by each sensor device l for UL data transfer

4. Mathematical Model

The communication channel gains among the K sensor devices and the HAPs, s1 and s2,
as well as the L sensor devices and the HAPs, follow a quasi-static fading model. Therefore,
the communication channel gain from the I power sources to the K sensor devices and the L
sensor devices in the WEH phase are ci,k and ci,l . In addition, the reversed communication
channel gain from the K sensor devices to the HAPs is dk,i, while the communication
channel gain from the L sensor devices to the HAPs is dl,i.

As a result of the reciprocity of DL and UL communication channel gains for the class
A network, ci,k = dk,i = 10−1× d−α

k,i . Furthermore, the reciprocity of the downlink (DL) and
uplink (UL) communication channel gains for the class B network is ci,l = dl,i = 10−1× d−α

l,i .
In both cases, α is the pathloss exponent. During the WEH phase, using the proposed
NOMA protocol, the K sensor devices and the L sensor devices harvest energy within the
duration of 0 ≤ τWEH ≤ 1. The energy harvested by the K sensor devices and the L sensor
devices are eτ

k·harvest(J) and eτ
l·harvest(J), respectively, where:

eτ
k·harvest = ξ

I

∑
i=1

Pici,kτWEH + eτ
k·available, ∀k (J) (1)

eτ
l·harvest = ξ

I

∑
i=1

Pici,lτWEH + eτ
l·available, ∀l (J) (2)

where Pi(W) is the transmission power used by the I power sources to charge the K sensor
devices, while eτ

k·harvest and eτ
l·harvest are the available energy in the K and L sensor devices’

in-built batteries from the previous timeslot.
Each k sensor device and l sensor device used the energy eτ

k·transmit (J) and eτ
l·transmit (J)

to transfer their respective data to HAPs s1 and s2, respectively, in the WIT phase. Con-
sequently, the available energy, eτ

k·available and eτ
l·available, for the next timeslot, τ + 1, is

computed based on (3) and (4):

e(τ+1)
k·available = eτ

k·harvest − eτ
k·transmit (3)

e(τ+1)
l·available = eτ

l·harvest − eτ
l·transmit (4)
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The transmission power used by each k sensor device to transfer its data to HAPs
s1 and s2 is defined as Pk,i(W), while Pl,i(W) is the transmission power used by each l
sensor device to transmit its data to the HAPs. During the WIT phase, using the NOMA
protocol, the K sensor devices and L sensor devices transmit their individual data at a
scheduled timeslot, τ, to their dynamically allocated HAPs, {si}2

i=1, within the duration of
0 ≤ τWIT ≤ 1.

Because of the simultaneous data transmission of the K sensor devices and the L
sensor devices at a scheduled timeslot to the HAPs, a successive interference cancellation
(SIC) technique is applied at the HAPs to enable a sequential decoding of the concurrently
transmitted data of the K sensor devices as well as the L sensor devices in each timeslot by
first decoding the signal of the highest channel gain sensor device at the corresponding
HAP i [26,33].

By applying the Shannon theory, the amount of data that each k sensor device can
transmit per second to a HAP i in the WIT phase is computed in (5) as:

Rk,i(τ, Pk,i) = ∑
i∈s

τWEH Blog2(
1 +

Pk,idk,i

∑k′≥k+1 Pk′ ,idk′ ,i + σ2

)
∀k ∈ {m1, m2, . . . , mK}

(5)

where B denotes the system’s bandwidth in Hz, dk,i denotes the UL communication chan-
nel from the K sensor devices to the HAPs, Pk,i(W) represents the transmission power
consumed by each k sensor device to send its data to a HAP i, and σ2 is the additive
white Gaussian noise (AWGN) power. The resource allocation vectors for the time re-
sources and the transmission power resources for the K sensor devices are formulated as
τ = [τWEH , τWIT ]

T and PA = [P1,1, P2,1, P3,1, . . . , PK,1, P1,2, P2,2, P3,2, . . . , PK,2]
T , respectively.

A minimum quality of service (QoS) constraint is set for each sensor device k in (6) to
satisfy the minimum amount of data of the K sensor devices in order to achieve a reliable
data transmission.

Rk,i(τ, Pk,i) ≥ rk,i, ∀k (6)

The total amount of data that all the K sensor devices can transmit is computed in (7)
from (5) as:

Rtotal(τ, Pk,i) =
K

∑
k=1

∑
i∈s

Rk,i(τ, Pk,i), ∀k (7)

Furthermore, the amount of data that each l device can transmit per second to a HAP i
during the WIT phase is formulated in (8) as:

Rl,i(τ, Pl,i) = ∑
i∈s

τWEH Blog2(
1 +

Pl,idl,i

∑l′≥l+1 Pl′ ,idl′ ,i + σ2

)
∀l ∈ {n1, n2, . . . , nL}

(8)

The resource allocation vectors for the time resources and the transmission power re-
sources for the L sensor devices are τ = [τWEH , τWIT ]

T and PB = [P1,1, P2,1, P3,1, . . . , PL,1, P1,2,
P2,2, P3,2, . . . , PL,2]

T , respectively. Additionally, the minimum QoS rate constraint for the L
sensor devices is formulated in (9) as:

Rl,i(τ, Pl,i) ≥ rl,i, ∀i (9)
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The total amount of data that all the L sensor devices can transmit is calculated in (10) as:

Rtotal(τ, Pl,i) =
L

∑
l=1

∑
i∈s

Rl,i(τ, Pl,i), ∀l (10)

During the WEH phase, the energy consumed by the K devices and L devices are
computed in (11) and (12) [26] as:

eK,WEH(τWEH , Pi) =
I

∑
i=1

(Pi + Pc −
K

∑
k=1

ξ(ci,kPi))τWEH , ∀k (11)

where Pc is the circuit power consumption for the transmission power and hardware.

eL,WEH(τWEH , Pi) =
I

∑
i=1

(Pi + Pc −
L

∑
l=1

ξ(ci,l Pi))τWEH , ∀l (12)

By combining (11) and (12), the total energy consumed by both K devices and L devices
during the WEH phase is formulated in (13) as:

eK,L
WEH(τWEH , Pi) =

I

∑
i=1

(Pi + Pc −
K

∑
k=1

ξ(ci,kPi) +
L

∑
l=1

ξ(ci,l Pi))τWEH (13)

During the WIT phase, the energy consumed by the K devices and L devices to
transmit their individual data to an allocated HAP i at a scheduled period is formulated
in (14) and (15) as:

eK·WIT(τWIT , Pk,i) =
K

∑
k=1

(Pk,i + Pk,c)τWIT (14)

where Pk,c is the circuit power consumption for the k device.

eL·WIT(τWIT , Pl,i) =
L

∑
l=1

(Pl,i + Pl,c)τWIT (15)

where Pl,c is the circuit power consumption for the l device.
Based on the derived equations, the total energy consumed by the class A devices at a

timeslot, τ, and the total energy consumed by the class B devices at the next time timeslot,
τ + 1, can now be formulated in (16)–(19).

eK·total = eK,L
WEH(τWEH , Pi) + eK·WIT(τWIT , Pk,i) (16)

eK·total(τWEH , Pi, τWIT , Pk,i) =
I

∑
i=1

(Pi + Pc −
K

∑
k=1

ξ(ci,kPi) +
L

∑
l=1

ξ(ci,l Pi))τWEH+

K

∑
k=1

(Pk,i + Pk,c)τWIT

(17)

eL·total = eK,L
WEH(τWEH , Pi) + eL·WIT(τWIT , Pl,i) (18)

eL·total(τWEH , Pi, τWIT , Pl,i) =
I

∑
i=1

(Pi + Pc −
K

∑
k=1

ξ(ci,kPi) +
L

∑
l=1

ξ(ci,l Pi))τWEH+

L

∑
l=1

(Pl,i + Pl,c)τWIT

(19)

According to [34], the system energy efficiency (EE) is the ratio of the received sum-
data and the total power consumption. Due to the scheduling of the K devices in class A
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and the L devices in class B during the WIT phase, problems (17) and (19) are solved inde-
pendently at timeslot τ and the next timeslot, τ + 1. Therefore, the system EE configured
with K sequential devices in class A at timeslot τ is formulated as an optimization problem
in (20), and the time allocation, τ, the power source power allocation, P1, as well as each k
device power allocation, Pk,i, are jointly optimized. The system EE optimization problem is:

P1 : max
τ,Pi ,Pk,i

Rtotal(τ, Pk,i)

eK·total(τ,Pi ,Pk,i)
(20)

s.t.:
C1 : τWEH + τWIT ≤ 1 (21)

C2 : 0 ≤ Pi ≤ Pmax
i (22)

C3 : 0 ≤ Pk,i ≤ Pmax
k,i (23)

C4 : (Pk,i + Pk,c)τWIT ≤ ξ
I

∑
i=1

Pici,kτWEHe(τ)k.available (24)

C5 : τWEH ≥ 0, ∀i ∪ ∀k (25)

C6 : τWIT ≥ 0, ∀k ∪ {si}2
i=1 (26)

where C1 is the time resource allocation constraint, C2 is the transmission power constraint
for the power sources, C3 represents the limit on the sensor device k transmission power,
the C4 constraint ensures that the power cost for sensor device k data transmission should
not exceed its total power, and C5 and C6 are non-negative constraints for the decision
variables.

In (20), τWEH and τWIT are replaced with τ in subsequent problems involving τWEH
and τWIT since τ = τWEH + τWIT .

The system EE configured with L sequential devices in class B at the next timeslot,
τ + 1, is formulated in (27), and the time allocation, τ, the power source power allocation,
Pi, as well as the power allocation, Pl,i, of each l device are jointly optimized. The system
EE optimization problem is written as:

P1 : max
τ,Pi ,Pl,i

Rtotal(τ, Pl,i)

eL·total(τ,Pi ,Pl,i)
(27)

s.t.:
C1, C2

C7 : 0 ≤ Pl,i ≤ Pmax
l,i (28)

C8 : (Pl,i + Pl,c)τWIT ≤ ξ
I

∑
i=1

Pici,lτWEHe(τ)l.available (29)

C9 : τWEH ≥ 0, ∀i ∪ ∀l (30)

C10 : τWIT ≥ 0, ∀l ∪ {si}2
i=1 (31)

4.1. Transformation of the Objective Function

The optimization problems in (20) and (27) are non-linear fractional optimization
problems. Such optimization problems cannot be easily solved directly and it is difficult
to obtain optimal solutions to such problems. To deal with this problem, we applied the
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Dinkelbach method [35] to transform the non-linear fractional optimization problems into
a subtraction form that can be easily solved.

To apply the Dinkelbach method, we introduced parameters q and r to compute the
optimal solution for the system EE in (20) and (27). Let q∗ represents the system EE for the
optimization problem in (20), which is formulated in (32) as:

q∗ = max
τ,Pi ,Pk,i

Rtotal(τ, Pk,i)

eK·total(τ,Pi ,Pk,i)
=

Rtotal(τ
∗, P∗k,i)

eK·total(τ∗ ,P∗i ,P∗k,i)
(32)

From (32), the maximum system EE q∗ can now be easily obtained [36] when
max

τ,Pi ,Pk,i
Rtotal(τ, Pk,i)− q∗ · eK·total(τ, Pi, Pk,i) = Rtotal(τ

∗, P∗k,i)− q∗ · eK·total(τ
∗, P∗i , P∗k,i) = 0.

By applying the parameter q to the system EE optimization problem in (20), problem
P1 was transformed as a new objective function in (33) as:

P3 : max
τ,Pi ,Pk,i

Rtotal(τ, Pk,i)− q · eK·total(τ, Pi, Pk,i) (33)

s.t.:
C1, C2, C3, C4, C5, and C6

Let r∗ represents the system EE for problem P2 in (27), which is formulated in (34) as:

r∗ = max
τ,Pi ,Pl,i

Rtotal(τ, Pl,i)

eL·total(τ,Pi ,Pl,i)
=

Rtotal(τ
∗, P∗l,i)

eL·total(τ∗ ,P∗i ,P∗l,i)
(34)

From (34), the maximum system EE r∗ can now be easily obtained when
max

τ,Pi ,Pl,i
Rtotal(τ, Pl,i)− r∗ · eL·total(τ, Pi, Pl,i) = Rtotal(τ

∗, P∗l,i)− r∗ · eL·total(τ
∗, P∗i , P∗l,i) = 0.

Following this, the parameter r can now be applied to optimization problem P2 in (28)
to transform it to a new objective function in (35) as:

P4 : max
τ,Pi ,Pk,i

Rtotal(τ, Pk,i)− q · eK·total(τ, Pi, Pk,i) (35)

s.t.:
C1, C2, C7, C8, C9, and C10

The convergence of the transformed subtraction function has been proved in [36],
and this can be easily applied to problems (P3) and (P4). Hence, the proof is omitted
in this paper. To achieve an optimal EE for the proposed WPCN system, we solved
problems (33) and (35) in each iteration using an iteration algorithm.

4.2. Optimal Solution

The objective functions in problems (33) and (35) are convex optimizations with respect
to variables τ, Pi, Pk,i and variables τ, Pi, Pl,i, respectively. Hence, we proposed and applied
a Lagrangian method and a Dinkelbach iterative algorithm. The Lagrangian function of the
optimization problem in (33) is given in (36) as:

L(τ, Pi, Pk,i, µ1, µ2, µ3, µ4) = Rtotal(τ, Pk,i)−
q · eK·total(τ, Pi, Pk,i)+

µ1(τWEH + τWIT − 1)+

µ2(Pi − Pm
i ax)+

µ3(Pk,i − Pm
k,iax)+

µ4((Pk,i + Pk,c)τWIT−

ξ
I

∑
i=1

Pici,kτWEH + e(τ)k.available)

(36)
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where τ = (τWEH , τWIT) defines the duration for the WEH phase and the duration for the
WIT phase and µ = (µ1, µ2, µ3, µ4) represents the Lagrangian multipliers for the constraints.

The dual optimization problem for the transformed optimization problem in (33) is
provided in (37) as:

min
τ,Pi ,Pk,i ,µ1,µ2,µ3,µ4

max L(τ, Pi, Pk,i, µ1, µ2, µ3, µ4) (37)

s.t.:
µ1, µ2, µ3, µ4 ≥ 0

Based on the zero-duality-gap condition, the optimal solution of the dual variables
(or multipliers) µ∗1 , µ∗2 , µ∗3 , µ∗4 will achieve the maximum EE of the problem in (33). This is
computed by using an iteration algorithm to solve (37).

For each iteration, the dual optimization problem in (37) is solved using the Karush–
Kuhn–Tucker (KKT) conditions [37] based on the initial variables µ1, µ2, µ3, µ4, and by
equating the Lagrangian partial derivative to zero to obtain optimal resource allocation
solutions for τ, Pi, Pk,i.

The iteration process is provided as follows:
∆µ1 = τWEH + τWIT − 1
∆µ2 = Pi − Pmax

i
∆µ3 = Pk,i − Pmax

k,i

∆µ4 = (Pk,i + Pk,c)τWIT − ξ ∑I
i=1 Pici,kτWEH + e(τ)k.available

The initial Lagrangian multipliers are updated iteratively by µ(t+1) = (µ(t) + β(t)∆µ)
to obtain a new set of multipliers. This process is repeated until the optimal multipliers
are obtained when the proposed iteration algorithm saturates to convergence. Note that
∆µ = (∆µ1, ∆µ2, ∆µ3, ∆µ4), β(t) is used to denote the step size of the iteration and T is used
to denote the number of iterations.

For a given µ, the process of computing optimal energy transfer time allocation; data
transfer time allocation; and k device transmit power allocation, i.e., τ∗ , P∗i , and P∗k,i, is
obtained through the KKT conditions by equating the Lagrangian partial derivative to
derivatives to zero as follows:

By equating ∂L
∂τWEH

, ∂L
∂τWIT

, ∂L
∂Pi

, and ∂L
∂Pk,i

to zero, the following optimal solutions can
be obtained.

∂L
∂τWEH

=
B ∑K

k=1 ∑i∈s
In2

In
(

1 +
Pk,idk,i

∑k′≥k+1 Pk′ ,idk′ ,i + σ2

)
− q ·

I

∑
i=1

(Pi + Pc −
K

∑
k=1

ξ(ci,kPi)

+
L

∑
l=1

ξ(ci,l Pi)) + µ1(WIT)

+ µ4((Pk,i + Pk,c)τWIT

− ξ
I

∑
i=1

Pici,k + e(τ)k.available)

(38)

∂L
∂τWIT

=
K

∑
k=1

(Pk,i + Pk,c) + µ1(τWEH) + µ4((Pk,i + Pk,c) (39)
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∂L
∂Pi

= q ·
I

∑
i=1

(1 + Pc −
K

∑
k=1

ξ(ci,k) +
L

∑
l=1

ξ(ci,l))τWEH

− µ2(1− Pmax
i ) + µ4(ξ ∑ i = 1Ici,k + τWEH + e(τ)k·available)

(40)

∂L
∂Pk,i

=
B ∑K

k=1 ∑i∈s τWEH

In2(
∑k′≥k+1 Pk′ ,idk′ ,i + σ2

∑k′≥k+1 Pk′ ,idk′ ,i + σ2 + Pk,idk,i

)
·(

dk,i

∑k′≥k+1 Pk′ ,idk′ ,i + σ2

)
+

K

∑
k=1

(1 + Pk,c)τWIT + µ3(1− Pmax
k,i ) +

µ4(1 + Pk,c)τWIT

(41)

∂L
∂µ1

= τWEH + τWIT − 1 (42)

∂L
∂µ2

= Pi − Pmax
i (43)

∂L
∂µ3

= Pk,i − Pmax
k,i (44)

∂L
∂µ4

= ((Pk,i + Pk,c)τWIT − ξ
I

∑
i=1

Pici,kτWEHe(τ)k·available (45)

The resource allocation algorithm for solving the optimization problem in (33) is
provided in Algorithm 1. In addition, to obtain optimal resource allocations, a Dinkelbach-
based iteration algorithm is proposed and presented in Algorithm 2.

Algorithm 1 Resource Allocation Algorithm

Require: Variables µ1, µ2, µ3, µ4
Ensure: λ1, λ2, λ3, λ4

1: for each k in Class A do
2: compute an optimal power resource allocation, P∗k,i, using (41)
3: compute an optimal time resource allocation, τ∗WEH and τ∗WiT , using (38) and (39)
4: update µ1, µ2, µ3, µ4 until convergence
5: end for
6: for each l in Class B do
7: compute an optimal power allocation, P∗L,i, using (51)
8: compute an optimal time resource allocation, τ∗WiT , using (48) and (49)
9: update λ1, λ2, λ3, λ4 until convergence

10: end for
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Algorithm 2 Proposed Dinkelbach-based Iteration Algorithm

Require: q = 0, r = 0, t = 0, τmax = maximum number o f iterations,
emax = maximum error,

1: for each k in Class A do
2: repeat
3: apply Algorithm 2 to obtain {τ, Pk,i}
4: if Rtotal (τ, Pk,i)− qi eK.total(τ, Pi, Pk,i) ≤ emax then
5: return(τ∗, P∗k,i)

6: q∗ = Rtotal(τ
∗P∗k ,i)

eK.total(τ∗ ,P∗i ,P∗k,i)

7: else q =
Rtotal(τ,Pk,i)

eK.total(τ,Pi ,Pk,i)
, t = t + 1

8: end if
9: Until Rtotal(τ, Pk,i)− r.eK.total(τ, Pi, Pk,i) ≤ emax is true

10: end for
11: for each l in Class B do
12: repeat
13: apply Algorithm 2 to compute {τ, Pl,i}
14: if Rtotal (τ, Pl,i)− ri eL.total(τ, Pi, Pl,i) ≤ emax then
15: return(τ∗, P∗l,i)

16: r∗ = Rtotal(τ
∗P∗l ,i)

eL.total(τ∗ ,P∗i ,P∗l,i)

17: else r = Rtotal(τ,Pl,i)
eL.total(τ,Pi ,Pl,i)

, t = t + 1
18: end if
19: Until Rtotal(τ, Pl,i)− r.eL.total(τ, Pi, Pl,i) ≤ emax is true
20: end for

The Lagrangian function of the optimization problem in (35) is provided in (46) as:

L(τ, Pi, Pl,i, λ1, λ2, λ3, λ4) = Rtotal(τ, Pl,i)−
r · eL·total(τ, Pi, Pl,i)+

λ1(τWEH + τWIT − 1)+

λ2(Pi − Pmax
i )+

λ3(Pl,i − Pmax
l,i )+

λ4((Pl,i + Pl,c)τWIT−

ξ
I

∑
i=1

Pici,lτWEH + e(τ)l.available)

(46)

where λ = (λ1, λ2, λ3, λ4) denotes the Lagrangian multipliers for the constraints.
The dual optimization problem for the transformed optimization problem in (35) is

provided in (47) as:

min
τ,Pi ,Pl,i ,λ1,λ2,λ3,λ4

max L(τ, Pi, Pl,i, λ1, λ2, λ3, λ4) (47)

s.t.:
λ1, λ2, λ3, λ4 ≥ 0

According to the zero-duality-gap condition, the optimal solution of the dual variables
or multipliers λ∗1 , λ∗2 , λ∗3 , λ∗4 will achieve the maximum EE of the problem in (35). This is
computed by the proposed iteration algorithm to solve (47).

In each iteration, the formulated dual optimization problem in (47) is solved by
applying the KKT conditions [37] according to the given initial multipliers λ1, λ2, λ3, λ4,
and by equating the Lagrangian partial derivative to zero to obtain optimal resource
allocation solutions for τ, Pi, Pl,i.
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The iteration process is provided in as follows:

∆λ1 = τWEH + τWIT − 1
∆λ2 = Pi − Pmax

i
∆λ3 = Pl,i − Pmax

l,i

∆λ4 = (Pl,i + Pl,c)τWIT − ξ ∑I
i=1 Pici,lτWEH + e(τ)l.available

The initial Lagrangian multipliers are updated iteratively by λ(t+1) = (λ(t) + γ(t)∆λ)
to obtain a new set of multipliers. This process is repeated until the optimal multipliers are
realized when the proposed iteration algorithm reaches a point of saturation. Note that
∆λ = (∆λ1, ∆λ2, ∆λ3, ∆λ4), and γ(t) is used to denote the step size of the iteration.

The process of computing optimal energy transfer time allocation; data transfer time
allocation; and l device transmit power allocation, i.e., τ∗ , P∗i , and P∗l,i, is obtained by
equating the Lagrangian partial derivative to zero, as follows:

By equating ∂L
∂τWEH

, ∂L
∂τWIT

, ∂L
∂Pi

, and ∂L
∂Pl,i

to zero, the following optimal solutions can
be determined:

∂L
∂τWEH

=
B ∑L

l=1
In2

In
(

1 +
Pl,idl,i

∑l′≥l+1 Pl′ ,idl′ ,i + σ2

)
− r ·

I

∑
i=1

(Pi + Pc −
K

∑
k=1

ξ(ci,kPi)

+
L

∑
l=1

ξ(ci,l Pi)) + λ1(WIT)

+ λ4((Pl,i + Pl,c)τWIT

− ξ
I

∑
i=1

Pici,l + e(τ)l.available)

(48)

∂L
∂τWIT

=
L

∑
l=1

(Pl,i + Pl,c) + λ1(τWEH)

+ λ4((Pl,i + Pl,c)

(49)

∂L
∂Pi

= r ·
I

∑
i=1

(1 + Pc −
K

∑
k=1

ξ(ci,k)

+
L

∑
l=1

ξ(ci,l))τWEH

− λ2(1− Pmax
i ) + λ4(ξ ∑ i = 1Ici,l

+ τWEH + e(τ)l·available)

(50)

∂L
∂Pl,i

=
B ∑L

l=1 τWEH

In2(
∑l′≥l+1 Pl′ ,idl′ ,i + σ2

∑l′≥l+1 Pl′ ,idl′ ,i + σ2 + Pl,idl,i

)
·(

dl,i

∑l′≥l+1 Pl′ ,idl′ ,i + σ2

)
+

L

∑
l=1

(1 + Pl,c)τWIT + λ3(1− Pmax
l,i ) +

λ4(1 + Pl,c)τWIT

(51)
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∂L
∂λ1

= τWEH + τWIT − 1 (52)

∂L
∂λ2

= Pi − Pmax
i (53)

∂L
∂λ3

= Pl,i − Pmax
l,i (54)

∂L
∂λ4

= ((Pl,i + Pl,c)τWIT −

ξ
I

∑
i=1

Pici,lτWEHe(τ)l·available

(55)

The resource allocation algorithm for solving the optimization problems in (33) and (35)
is presented in Algorithm 1.

To obtain optimal power and time resource allocations in each cycle of the proposed
system, a Dinkelbach-based iteration algorithm is proposed and presented in Algorithm 2.

4.3. Dynamic HAP Resource Allocation Algorithm

This section presents the resource allocation algorithm (i.e., Algorithm 3) employed
by the proposed system for allocating HAP resources. During the WIT phase, the HAPs
are dynamically allocated to the K and L devices for data collection during a scheduled
period to manage the energy consumption of the devices. This is achieved by exploiting the
channel gain differences between the devices and the HAPs. This concept helps improve
the communication channel quality of devices with a power channel gain to reduce the
power used by the devices to report their individual data to the HAPs.

Algorithm 3 HAP allocation in the WIT Phase

Require: {m1, m2, . . . , mK} IoT devices , {n1, n2, . . . , nL} IoT devices, and {si}2
i=1

1: At timeslot τ, compute the Euclidean distance between each k IoT device and {si}2
i=1

2: Based on step (1), allocate each k IoT device to the nearest HAP i ∈ {si}2
i=1

3: At the next timeslot, τ + 1, compute the Euclidean distance between each l IoT device
and {si}2

i=1
4: Based on step (3), allocate each l IoT device to the nearest HAP i ∈ {si}2

i=1

5. Results and Discussions

In this section, the performance of the proposed system is evaluated based on the
baseline method in [26]. Consequently, the same simulation parameters as in [26] were also
assumed in this study for comparison and validation purposes. The simulation parameters
used in the experiments are presented in Table 4.

The proposed system comprises two sequential groups of class A and B networks.
The class A network is configured with a set of K water quality sensor devices, whereas the
B network is configured with L water quality sensor devices. These devices are deployed
within the communication coverage of the power sources and data collection devices, as
shown in Figure 3.
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Table 4. Simulation Parameters.

Parameter Setting References

Pmax
i 3 W [26]

Pmax
k,i = Pmax

l,i 0.3 W [26]

Pc 0.5 W [26]

Frequency 2.4 GHz [26]

ξ 0.9 [26]

σ2 −110 dBm [26]

rk,i = rl,i 2 kbit/s [26]

τ 1 s [26]

B 20 kHz [26]

Figure 3. Network deployment.

5.1. Performance Comparison of Different Methods

In this section, the proposed method is simulated and compared with a baseline
method [26] to evaluate its performance. Similar to the baseline method [26], we consider
a WPCN system with five sensor devices, six sensor devices, and three power sources.
Consequently, two configurations were considered in the experiments. The first config-
uration included K = 3, L = 2, and I = 3. The second configuration included K = 4,
L = 2, and I = 3. Two I devices were enabled to transfer power and collect water data
from the devices. In both configurations 1 and 2, the K and L devices were enabled to
concurrently perform energy harvesting within the period of τWEH using the proposed
NOMA protocol. Using the proposed sequential strategy, only the class A network with A
devices was enabled to perform water data transmission to the allocated HAPs within the
period of τWIT since the water data of the K devices are more critical than those of the L
devices. The proposed algorithm was enabled to simulate the proposed method, and it was
disabled for the baseline method. The proposed method was simulated over a different
number of runs (or iterations). In each run, the performance of the proposed method was
compared with the baseline method, and the outcome of each iteration is presented in
Figure 4.
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Figure 4. Performance comparison of the proposed method.

From Figure 4, it can be deduced that both the proposed method and the existing
method converged well to an optimal saturation point at approximately 80 runs. However,
the performance of the proposed system for the two configurations considered validates
that the proposed system is more energy-efficient than the baseline method. The proposed
method outperformed the baseline method by approximately 12.65% and 16.49% for con-
figurations 1 and 2, respectively. The efficiency of the proposed method can be attributed to
the computation of the optimal resource allocation for network devices using the proposed
resource allocation algorithm.

5.2. Impact of Noise Power on Energy Efficiency

In this section, we investigate the effect of noise power on the performance of the
proposed method. For this experiment, we considered a WPCN system with K = 3 devices
in the class A network, L = 2 devices in the class B network, and I = 3. The two classes of
networks perform energy harvesting during the τWEH period. The class A devices are first
enabled to perform data transmission in the current cycle and the B devices are scheduled
to perform data transmission in the next cycle. The value of the system noise power was
varied from −90 dBm to −110 dBm over a different number of iterations, and the energy
efficiency performance of the system is presented in Figures 5 and 6 for the two classes.

Figure 5. Impact of noise power on energy efficiency for class A device during the first phase of UL
data transmission.
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Figure 6. Impact of noise power on energy efficiency for class B device during the next phase of UL
data transmission.

During the first cycle of the system, where the A devices transferred their data to the
two HAPs in the system, as the noise power was varied from −90 dBm to −110 dBm, the
energy efficiency of the system increased for a small value of noise power, while the energy
efficiency decreased for a large value of noise power, as shown in Figure 5. During the next
cycle of the system, where the B devices performed data transmission at the UL, the same
effect during the first cycle of the system was also observed. The increase in the energy
efficiency effect caused by a small value of noise power can be attributed to the increased
data rate with low power consumption and low noise power.

5.3. Effect of the Number of Power Sources on Energy Efficiency

In this section, different numbers of power sources were used in the experiments
to investigate the effect of the number of power sources on the energy efficiency of the
proposed system. The proposed system was configured with K = 3, L = 2, σ2 = −90 dBm,
σ2 = −100 dBm, and σ2 = −110 dBm, and the number of power sources was varied from
one to five. From the results in Figure 7, it was observed that increasing the number of
power sources resulted in increased energy efficiency of the system for both class A and
class B devices. However, the class B devices achieved a higher energy efficiency than the
class A devices. The class B devices achieved an increased energy efficiency because they
had less data to transmit compared to the A devices. Hence, the class B devices spent less
power on data transmission and were able to increase energy efficiency.

Figure 7. Impact of number of power sources on energy efficiency.
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5.4. Impact of Sensor Device Transmit Power on Energy Efficiency

In this section, we study the impact of different values of the sensor device trans-
mission power on the energy of the proposed system. We consider K = 3, L = 2, I = 3,
σ2 = −90 dBm, σ2 = −100 dBm, and σ2 = −110 dBm for Pk,i = Pl,i = 0.1 W, 0.2 W, 0.3 W,
0.4 W. The experimental results are shown in Figure 8. As shown in Figure 8, as the
transmission power of the sensor devices in class A and class B was varied from 0.1 W to
0.4 W, there was a slight decrease in the energy efficiency of the system. This was a result
of the trade-off effect between the total energy consumption and total throughput. When
the transmission power of the sensor devices was increased, more data were supported by
the system, and the energy consumption of the sensor devices increased. Consequently, the
system energy efficiency decreased slightly.

Figure 8. Impact of sensor device transmit power on energy efficiency.

5.5. Impact of QoS Data Requirements on the System EE

In this section, different values of the minimum QoS throughput requirements are
investigated for the performance of the proposed system. In this experiment, two config-
urations were considered. The first system configuration included K = 3, L = 2, I = 3,
σ2 = −90 dBm, σ2 = −100 dBm, and σ2 = −110 dBm. The second system configuration
contains K = 3, L = 2, I = 4, σ2 = −90 dBm, σ2 = −100 dBm, and σ2 = −110 dBm The
minimum QoS throughput requirement of the devices varied from 1000 bits to 5000 bits
for the two system configurations. The experimental results for the two configurations are
shown in Figures 9 and 10.

Figure 9. Impact of minimum QoS throughput on energy efficiency for the first configuration.
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Figure 10. Impact of minimum QoS throughput on energy efficiency for the second configuration.

6. Conclusions

IoT-enabled water quality monitoring systems are becoming increasingly popular
due to their benefits over laboratory-based systems. However, these systems are resource-
constrained, with limited power, computational, and bandwidth resources. As a result,
they have drawn the attention of academics and practitioners to improve their performance.
In this study, we introduced a multi-class communication strategy to classify the water
quality sensor devices in the system. We designed a NOMA-based communication protocol
to schedule and optimize the operation of the water quality sensor devices for energy
harvesting and information transfer. We proposed a new resource allocation method to
compute optimal power and time resource allocation for the devices. We also introduced
a dynamic resource allocation method for hybrid access point (HAP) resource allocation
for efficient data collection. Furthermore, we introduced edge computing into the water
quality monitoring system proposed in this work to extend the traditional architecture
based on cloud computing. This helps to improve the computational capacity of the system
and enables local processing of water data at the water site to guarantee real-time water
quality monitoring. Our proposed method outperformed an existing comparable baseline
method by approximately 12.65% and 16.49% for two different configurations, demon-
strating its effectiveness in improving the energy efficiency of a water quality monitoring
system. In future studies, more research is required to explore ways to improve the en-
ergy efficiency of the wireless-powered water quality sensor devices used in water quality
monitoring systems.

Author Contributions: Conceptualization, S.O.O. and T.H.J.; formal analysis, S.O.O. and T.H.J.; investi-
gation, S.O.O. and T.H.J.; resources, S.O.O. and T.H.J.; supervision, T.H.J.; validation, S.O.O. and T.H.J.;
writing—orginal draft, S.O.O. and T.H.J.; writing—review and editing, S.O.O. and T.H.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research work was supported by the University of Pretoria, Pretoria, South Africa.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 8963 22 of 23

References
1. Olatinwo, S.O.; Joubert, T.H. A bibliometric analysis and review of resource management in internet of water things: The use of

game theory. Water 2022, 14, 1636. [CrossRef]
2. Li, J.; Ma, R.; Cao, Z.; Xue, K.; Xiong, J.; Hu, M.; Feng, X. Satellite detection of surface water extent: A review of methodology.

Water 2022, 14, 1148. [CrossRef]
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