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Abstract: Body condition scoring is an objective scoring method used to evaluate the health of a
cow by determining the amount of subcutaneous fat in a cow. Automated body condition scoring is
becoming vital to large commercial dairy farms as it helps farmers score their cows more often and
more consistently compared to manual scoring. A common approach to automated body condition
scoring is to utilise a CNN-based model trained with data from a depth camera. The approaches
presented in this paper make use of three depth cameras placed at different positions near the rear of
a cow to train three independent CNNs. Ensemble modelling is used to combine the estimations of
the three individual CNN models. The paper aims to test the performance impact of using ensemble
modelling with the data from three separate depth cameras. The paper also looks at which of these
three cameras and combinations thereof provide a good balance between computational cost and
performance. The results of this study show that utilising the data from three depth cameras to train
three separate models merged through ensemble modelling yields significantly improved automated
body condition scoring accuracy compared to a single-depth camera and CNN model approach.
This paper also explored the real-world performance of these models on embedded platforms by
comparing the computational cost to the performance of the various models.

Keywords: automated cow body condition scoring; convolutional neural network; computer vision;
ensemble modelling; sensor fusion; precision livestock; data augmentation

1. Introduction

Body condition scoring (BCS) is a subjective and non-invasive scoring method used
to assess the fat reserves of the dairy cow [1]. The dairy cow has been genetically selected
for a high milk yield associated with the mobilization of her body reserves, especially
during early lactation. Lactation commences with a loss in body condition, 40–100 days
after calving [2], followed by a gradual gain in condition in mid-lactation. Due to the
association between the BCS of a cow and milk production, long-term health, and ease of
calving [3], it is important to determine and track a cow’s BCS over time to ensure optimal
milk production.

Automated BCS is becoming vital to large commercial dairy farms as it assists farmers
in scoring their cows more often and more consistently compared to manual methods and
scorers [4]. Various existing regression-based and convolutional neural network (CNN)-
based approaches to automated cow body condition scoring already exist with some
commercial systems also available.

There are two cow BCS methods, namely the five-point BCS scale and the nine-point
BCS scale [4]. The most popular method, and the method used and referenced in this
paper, is the five-point scale, which scores cows from 1 to 5 in increments of 0.25. A low
BCS value indicates that a cow is under-conditioned while a high BCS value indicates
that a cow is over-conditioned. Both of these are undesirable and negatively impact milk
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production and yield. Most automated cow BCS systems are based on the scoring system
derived by Ferguson et al. [5]. The researchers based their scoring system on the work by
Edmonson et al. [6]. The main difference between the two is that, in [5], seven anatomical
features are used, while in [6], eight are used to score cows. Cow BCS is based on eight
anatomical regions, as illustrated in Figure 1. The method described in [6] looks at whether
these regions fit certain predetermined profiles. This is primarily performed by looking at
how the skin wraps around the bones as well as visually and physically inspecting these
regions for how much subcutaneous fat and muscle is under the skin. Usually, overweight
cows are more rounded near these regions while underweight cows are more angular due
to protruding bones. This indicates how much subcutaneous fat and muscle is built up in
these regions and is a visual indicator of how underweight or overweight a cow is.

Figure 1. Important anatomical features, on a Holstein cow, used for manual body condition scor-
ing [6].

Automated body condition scoring approaches have yielded very good results in
recent years with both regression-based and CNN-based approaches. All CNN-based
approaches such as those presented by Alvarez et al. [7], Zhao et al. [8], and Shi et al. [9]
made use of a single depth camera placed above the cows. Therefore, research is needed
to investigate the use of multiple depth cameras placed at multiple angles to determine
whether combining information from multiple cameras can be used to increase the accuracy
of an automated BCS system. Multiple-camera approaches such as that presented by
Salau et al. [10,11] made use of regression-based approaches and multiple depth cameras
placed at multiple angles to improve the accuracy of automated body condition scoring
but did not show which camera angles or combinations of cameras yielded the best results.

The novelty of this study is to test the performance impact of using ensemble modelling
with the data from three separate depth cameras used to train a variety of CNN models.
The study also compares the BCS accuracy of each camera angle model and combinations
of these. The study then compares the computational cost to the performance of various
approaches for automated body condition scoring.
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2. Related Research

The research field of automated cow body condition scoring has seen rapid growth
in recent years with each year seeing an increase in published works. There are two main
approaches, namely regression-based models and neural network-based models [12,13].

2.1. Regression-Based Models

Regression-based models involve extracting features from a cow digitally and fitting
these features to manually labelled BCS values through various regression techniques.
These regression-based models can then be used to estimate the BCS of an unknown cow.

The initial computer-based approach for cow BCS estimation, developed by
Bewley et al. [4], involved manually mapping 23 anatomical points to create 15 angles.
These angles were used in a first-order auto-regression model to estimate BCS values.
The method achieved an accuracy of 99.87% within 0.5 BCS points and 89.95% within
0.25 points of the true BCS value. Although the system lacked real-time operation and
automation, it remains one of the most precise semi-automated methods for cow BCS and
paved the way for automated BCS systems research.

In contrast to Bewley et al. [4], Halachmi et al. [14] introduced one of the first fully
automated real-time regression-based cow body condition scoring (BCS) systems. They
used a thermal camera above the cows to capture their contour. The researchers sug-
gested that over-conditioned cows would have rounder contours, resembling a parabolic
shape, while under-conditioned cows would differ. They validated their model using
both manual and ultrasound-derived BCS values, a method commonly employed by other
researchers [15,16]. Hansen et al. [17] also explored a similar concept, introducing a “rolling
ball” approach to measure the angularity of a cow’s back surface. This method successfully
demonstrated the feasibility of automated real-time BCS using a 3D camera.

One common method for automated BCS is to use depth cameras to extract key
anatomical features, and training models to make BCS estimations. Spoliansky et al. [18]
developed a model that utilized 14 cow features to determine BCS, with the first 6 related
to cow back anatomy and the remainder tied to cow height, weight, and age. This model is
different to most as it incorporates non-anatomical features. Using polynomial second-order
regression, the model correlated the 14 features with BCS, achieving 74% accuracy within
0.25 BCS, 91% within 0.5 BCS, and 100% within 1 BCS of actual values. This model is claimed
to be used in the commercial DeLaval system [19]. Similarly, Song et al. [1] employed three
depth cameras to extract information from eight anatomical regions, training a K-nearest
neighbour approach model that delivered accurate BCS estimates.

In a study by Zin et al. [20], researchers analysed dairy cows’ backs using 3D sur-
face data, focusing on two regions of interest. The first region involved extracting body
condition-related features like average height, convex hull volume, peak and valley point
differences, and convex hull volume vs. 3D volume differences. In the second region, they
extracted average height and peak-to-valley point differences. Various regression models
were developed and compared to estimate BCS based on these features, yielding promising
results, despite a small training and testing dataset. Both Zin et al. and Zhao et al. [8]
examined the convex hull, with Zin et al. using regression and Zhao et al. employing a
neural network approach. Liu et al. [21] defined 3D shape features from six selected cow
back regions, using ensemble learning to estimate BCS, achieving favourable results.

2.2. Neural Network-Based Models

A newer approach to automated cow BCS is that of using neural networks. Some
approaches make use of various techniques to perform feature extraction and use neural
networks as classifiers rather than regression. However, some approaches use CNNs to
perform both feature extraction as well as classification tasks. Alvarez et al. [13] developed
one of the initial automated cow BCS systems using a CNN-based model. It utilized
a top-mounted depth camera to capture the back of a cow without extracting specific
anatomical features. After the depth image was captured, it was processed to remove
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unwanted depth noise and isolate only the back of the cow. The input images included
depth, edge, and Fourier channels. SqueezeNet [22] was used for the CNN, coupled with
data augmentation, resulting in 94% accuracy within 0.5 BCS, 78% within 0.25 BCS, and
40% exact, surpassing automated regression-based approaches. This study highlighted
the potential of CNN-based real-time BCS systems for commercial use. The researchers
later improved their approach by introducing transfer learning with the VGG16 model [23]
and ensemble modelling. While transfer learning lowered the accuracy, the ensemble
model achieved 97.4% accuracy within 0.5 BCS, 81.5% within 0.25 BCS, and 41.1% exact [7],
representing an enhancement over their previous model [13].

Yukun et al. [16] developed a CNN-based method using ultrasound to measure
subcutaneous fat thickness in dairy cows and applied linear regression to match these
measurements with manual BCS values. The same ultrasound-based validation was
employed in [14,15]. Their regression model served as the reference for training a depth
image-based CNN model for automated BCS, with a different architecture (DenseNet)
compared to Alvarez et al.’s SqueezeNet.Additionally, Yukun et al. utilized a three-channel
approach with depth, grey, and phase congruency data.

Zhao et al. [8] proposed an approach which involved constructing a 3D structure
feature map based on the convex hull distance of point clouds, which served as input for
a two-level model based on the EfficientNet network. The model yielded an accuracy of
97.6% within 0.5 BCS, 91.2% within 0.25 BCS points, and 45.0% exact. While this approach
yielded good results, the model was trained and tested using 5119 depth images of 77 cows,
with a 1:1 training–testing dataset ratio. Even though this is a relatively large dataset for
this research field, the low number of individual cows from which the dataset originated
puts the variation of the dataset into question. This approach is similar to the approach
presented in [9], which also made use of point clouds and continued in the direction of
neural network-based automated BCS models. The approach used a feature extraction
network, which pulled information from 3D point clouds, to extract important features
which were then fed into a fully connected neural network trained to estimate the BCS
of each cow. The model yielded an accuracy of 96% within 0.5 BCS, 80% within 0.25 BCS
points, and 49% exact. To date, this is the most accurate automated cow BCS system which
utilises 3D data and neural networks.

Zhao et al. [8] proposed an approach which involved constructing a 3D structure
feature map based on the convex hull distance of point clouds, serving as input for a
two-level EfficientNet-based model. This model achieved 97.6% accuracy within 0.5 BCS,
91.2% within 0.25 BCS points, and 45.0% exact. However, it was trained and tested on
5119 depth images of 77 cows with a 1:1 training–testing dataset ratio. Even though this is
a relatively large dataset for this research field, it raises concerns about dataset variation
due to the limited number of individual cows. This approach aligns with the methods
presented in [9], utilizing point clouds for neural network-based automated BCS estimation.
It involved a feature extraction network to extract crucial features from 3D point clouds,
which were then input into a fully connected neural network. This model achieved 96%
accuracy within 0.5 BCS, 80% within 0.25 BCS points, and 49% exact, representing the most
accurate automated cow BCS system using 3D data and neural networks to date.

All of the CNN-based approaches referenced here have made use of a single-depth
camera located above the cows. None of these studies investigated the potential results of
capturing depth frames from different angles around the cow. This was one of the goals of
the study presented in this paper.

2.3. Multiple Camera Approaches

Most automated BCS systems typically use a single overhead camera. However, some
systems employ multiple cameras to extract information and enhance automated BCS
performance. For instance, Song et al. [1], as discussed in Section 2.1, employed three depth
cameras placed above, on the side, and at the rear of the cows. This approach demonstrated
the superior information extraction capabilities of multi-camera setups compared to a
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single overhead camera. Salau et al. [10,11] conducted two studies using six Kinect depth
cameras to collect data on the4 linear traits of dairy cows, including teat lengths, ischial
tuberosity heights, udder height above ground, and rear leg angles. Both studies employed
a specialized frame. Ruchay et al. [24] created an automated computer vision system to
produce the precise 3D models of live cattle using data from three Microsoft Kinect™ v2
(Microsoft, Redmond, WA, USA) cameras.

It should be noted that none of these studies used CNNs as the chosen model. Of the
multiple camera studies mentioned here, none compared the results of different camera
angles or combinations of different camera angles. The study presented in this paper
presents the automated BCS results of using various combinations of cameras positioned at
different angles around the cows.

2.4. Commercial Systems

To date, there are currently three commercially available automated cow BCS systems.
These are the DeLaval system from DeLaval International [19], the BodyMat F (BMF) system
from Ingenera [25], and the 4DRT-Alpha from Biondi Engineering. Only two of the three
have been independently validated. All three systems use 3D image-based approaches.

3. Materials and Methods

This paper proposes that the accuracy of CNN-based automated cow body condition
scoring can be improved by making use of multiple cameras viewing the cow from different
angles and exposing the CNN models to different anatomical features compared to the
simple top view used in most approaches.

3.1. Data Collection

This study made use of three Microsoft Kinect™ v2 cameras. These cameras allow
for the capture of RGB, infrared, and depth images. Only the depth images were captured
and used for this study. The RGB and infrared images were not used since the only useful
information they provide in this use case is the outline of the cow which can also be
produced from a depth image. The depth sensor has a resolution of 512 × 424 and can
capture depth images at 30 fps with millimetre precision [26]. The depth images are saved
in an array where each pixel value represents the distance from the camera in millimetres.

A camera mounting frame was needed to mount the three cameras and hold them
steady while cows passed through the crush. The frame was built in order to be in-
stalled over the crush to prevent the cows from bumping the frame or injuring themselves.
Figure 2a shows the frame with the cameras standing over the crush where the cows would
pass through. The three camera angles that were chosen for this study are a top view, a
rear view, and an angled view. These three camera angles captured the most important
anatomical regions used for body condition scoring. These anatomical regions can be seen
in Figure 1. The rear, top and side regions of the cow are used in body condition scoring
and are widely accepted as the most important regions for visually scoring a cow. Figure 2b
shows the placement of the three Kinect cameras on the frame.

The system made use of three Jetson Nano™ (Nvidia, Santa Clara, CA, USA) single-
board computers to connect to the cameras. This ensured that the system did not encounter
any USB bandwidth limits and meant that there was individual control over the cameras.
The single-board computers were connected to a laptop using an ethernet LAN with gigabit
connections. This setup meant that start and stop commands could be sent to the single-
board computers for when to capture depth images. After each stop command, the depth
images were sent to the laptop and backed up on an external hard drive.

The data collection for this study took place at a single dairy farm in Rayton near
Pretoria, South Africa. The farm has a large dairy parlour in which over six hundred
Holstein cows from the host farm and surrounding farms are milked three times a day. This
variety meant that there was a large variation in size and body condition score amongst
the cows.
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(a) (b)

Figure 2. Data collection frame setup: (a) Placement of data collection frame over crush; and
(b) Camera placement on frame.

Two experienced scorers performed the manual body condition scoring on all the
cows used in this study according to the five-point BCS system. The distribution of the BCS
scores for the animals in this study is illustrated in Figure 3. The scores followed a similar
distribution to related studies [7,9,13].

Class imbalance is a common problem in machine learning. Automated body condition
scoring research knows this problem all too well with the majority of the training samples
sitting in the middle classes and a small number of samples in the edge classes, as can be
seen in Figure 3. There are numerous techniques available for dealing with imbalanced
classes such as oversampling under-represented classes, undersampling over-represented
classes, cost-sensitive learning, and even transfer learning [27]. The technique chosen for
this study was cost-sensitive learning and the approach is explained in detail in Section 3.5.3.

Figure 3. BCS distribution of captured cows.

Data from a total of 462 cows were used for this study. For the purposes of training
the models, approximately 70% of the cows were used for training and 30% were used for
testing. Since the Kinect cameras capture at 30 fps, multiple depth frames were captured for
each cow that passed the cameras. This helped increase the amount of training data for the
models. Since some cows passed quickly and some slowly underneath the camera frame,
some cows ended up with a low number of frames captured and some had dozens of frames
captured. In order to prevent a large difference in the amount of training data presented to
the models from each camera, the number of depth frames per cow was limited to seven.
This meant that each cow had at most seven depth frames captured per camera angle. The
angled camera captured 2053 depth frames, the rear camera captured 2211 frames, and
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the top camera captured 2016 frames. A slightly different approach was used for splitting
the training and testing data for the CNN models. The typical 70/30 split was performed
on the cows and not the overall collected depth frames. In addition, only a single depth
frame was used for each cow during testing. This approach was followed to prevent the
models from producing the same results for each cow several times over. This meant that,
while over 2000 frames were captured for training the models, only 137 unprocessed depth
frames were used for testing. Due to data augmentation, which is explained later in this
paper, this number was increased to 548.

3.2. Image Pre-Processing

The Kinect cameras have a good range of between 0.5 m and 4.5 m, in which they
can accurately determine the distance to an object [26]. While perfectly suited to this
study, the depth images from the cameras contain large amounts of background noise in
the form of background objects which may hinder the performance of the CNN models.
Before the depth images are processed and converted into the different CNN channels,
the background noise must first be removed. Figure 4a shows the raw depth image from
the angled Kinect camera. The floor of the inspection pen can be seen behind the cow.
The crush can also be seen surrounding the cow. A general approach to removing the
background is through background subtraction. Figures 4a, 5a, and 6a show that the cows
often cover these background objects, making background subtraction difficult without
removing portions of the cow. Looking at the top camera view in Figure 6a, an above-
average-sized cow occasionally passes the camera and may touch the top bars of the crush.
Therefore, instead of using background subtraction, the depth images were distance-limited,
removing any objects which are further than a certain distance from the camera from the
image, by zeroing all pixels larger than a certain threshold. The threshold distance was
experimentally determined and was chosen to minimise background pixels whilst ensuring
that all important anatomical features of the cow are present in the image. Unfortunately,
this method does not remove all the background pixels. In principle, the CNN models
should learn that these pixels can be ignored and do not affect the BCS of the cows.

Another pre-processing step which was performed is cropping. The depth images
were cropped to a specific section of the image, which was found to be ideal for capturing
the important regions of the cows as they pass the camera. This region of the image was
also determined experimentally. The cropped images are the same size and of the same
position in the image for each training and testing sample for each camera. The size and
position of the cropped portion of the image are different for each camera, which is why
Figure 4b is square, Figure 5b is a vertical rectangle, and Figure 6b is a horizontal rectangle.

The angled camera perspective gives a clear view of the hook bones, pin bones, tail
head, rumen-fill, and spinous processes. All of these anatomical regions are crucial to
determining the body condition score of a cow. The result of the distance limiting and the
cropping for the angled camera is shown in Figure 4b.

The raw depth image from the rear camera has more background noise than the angled
camera and can be seen in Figure 5a. The rear camera gives a clear view of the tail head,
hook bones, pin bones and spinous processes of the cow. Figure 5b shows the result of the
pre-processing of the rear camera depth image.

The top camera angle is the typical camera angle used by many automated body
condition scoring studies. Figure 6b shows that most of the important anatomical regions
for body condition scoring are visible from the top camera angle. Figure 6a shows that
the raw depth image coming from the top camera also contains a substantial amount of
background noise and objects. The top camera gives a clear view of the tail head, hook
bones, pin bones, and spinous processes of the cow. Figure 6b shows the result of the
post-processing of the top camera depth image. Figure 6b shows a fairly small and thin
cow which is why there is so much space on either side of the cow.
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(a) (b)

Figure 4. Angled camera depth images before and after pre-processing: (a) Before pre-processing;
and (b) After pre-processing.

(a) (b)

Figure 5. Rear camera depth images before and after pre-processing: (a) Before pre-processing; and
(b) After pre-processing.

(a) (b)

Figure 6. Top camera depth images before and after pre-processing: (a) Before pre-processing; and
(b) After pre-processing.
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Even though the three cameras observe similar anatomical regions of the cows, the
angles at which these regions are observed are different. This allows the cameras to gather
different visual information about each cow which is then presented to the CNN models.

3.3. CNN Channel Image Processing

After the depth images were pre-processed, each depth image was transformed to
produce two additional images that would be used as additional input channels to the
models. The objective is to provide the models with additional information in order for the
CNN models to determine which information is most useful. The two transformations that
were chosen are binarization and a first derivative filter.

The derivative transform has not been used in previous studies; however,
Alvarez et al. [13] made use of the Fourier transform. The derivative transform was chosen
with the idea that an over-conditioned cow would produce lower gradient values due to
fewer bones protruding and the cow being more rounded whilst an under-conditioned
cow would produce larger gradient values due to the protruding of bones leading to larger
gradients on the surface of the cow.

The outline of a cow has already been used in previous studies for BCS predictions [4]
and has been shown to produce good results. However, the binarized depth image provides
the same information but is more pronounced compared to a single thin edge and is likely to
be more useful to the CNN model; therefore, binarization is used instead of edge detection.
Binarization is an image processing technique in which a set threshold value is used to
decide whether a pixel should be set to a one or a zero. Any pixels further away than this
threshold are set to 0 and any pixels closer than this threshold are set to 1. The threshold
value used in this process was determined experimentally and was chosen such that a
silhouette of the cow is formed from the depth image.

The first derivative process calculates the first derivative of the depth image. This
process produces an array with the contour gradients over the cow. The gradients were
calculated from left to right. Once the gradients were calculated, any gradients above a
threshold value were set to zero since some gradients were relatively large along the edge
of objects in the depth image compared to the gradients across the body of the cow.

Figures 7–9 show the three channels used as training data from each of the three cameras.

(a) (b) (c)

Figure 7. Example of angled camera image processing: (a) Depth channel; and (b) Binary channel;
and (c) First-derivative channel.

3.4. Data Augmentation

Data augmentation is a common technique used in machine learning to increase the
number of training and/or testing samples available by introducing slight changes to these
samples [28]. There are many forms of data augmentation. In the field of image-based
machine learning, techniques such as geometric transformations, sub-sampling and even
filters can be used to slightly change or augment images. In the specific use case of CNN-
based BCS models, techniques such as flipping or rotating the images are often used [29].
Unfortunately, rotating the depth image can only be performed if perfect background
subtraction has been performed, resulting in only the cow being present in the image.
Similarly, flipping the image can only be performed for the top and rear cameras; however,
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it would not be possible for the angled camera due to the asymmetry. Therefore, the
chosen data augmentation technique for this study was sub-sampling. Image sub-sampling,
also known as image down-sampling or image decimation, is a technique used in image
processing to reduce the size or resolution of an image [30]. It involves reducing the number
of pixels in an image while attempting to preserve the important visual information and
overall appearance of the image. For this study, each depth image was sub-sampled by a
factor of 2, meaning that every second pixel across and every second pixel down was taken
to form a new image. This yielded four new images with slightly different information and
at half the resolution of the original depth image. This was performed both to increase the
number of training samples and to decrease the size of the image being fed into the CNN.

(a) (b) (c)

Figure 8. Example of rear camera image processing: (a) Depth channel; (b) Binary channel; and
(c) First-derivative channel.

(a) (b) (c)

Figure 9. Example of top camera image processing: (a) Depth channel; (b) Binary channel; and
(c) First-derivative channel.

Due to data augmentation, the number of training and testing samples was increased
by a factor of four. Table 1 and Figure 10 show the distribution of training data across the
different cameras and BCS values.

3.5. CNN Models

The approach for this study was to implement and compare the use of multiple
camera angles as well as compare various CNN fusion approaches which make use of
these multiple camera angles. The rationale is that producing estimations by combining the
information from all three cameras will produce a more accurate BCS prediction compared
to using a single camera angle since more information is available and processed.

3.5.1. Ensemble Modelling

Ensemble modelling involves the creation of multiple distinct models that work to-
gether to produce estimations about a specific outcome. This can be achieved by employing
various modelling algorithms or utilizing distinct training datasets [31]. The purpose of en-
semble modelling is to increase the overall accuracy of a system compared to using a single
model or dataset [32]. Ensemble modelling also helps to reduce model generalisation [32].
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This modelling approach is also especially helpful in high-variance models such as CNNs
with a large validation loss, where the uncertainty of an individual model is higher than
preferred [31].

Table 1. Number of training and testing samples used to train the final CNN models.

Angled Rear Top

BCS Train Test Train Test Train Test

1.75 320 16 324 16 316 16
2.00 452 44 480 44 472 44
2.25 1196 64 1276 64 1180 64
2.50 1468 128 1564 128 1392 128
2.75 2516 164 2724 164 2464 164
3.00 1780 96 1960 96 1740 96
3.25 368 32 420 32 392 32
3.5 112 4 96 4 108 4

Total 8844 548 8212 548 8064 548

Figure 10. Number of training samples for each BCS values for each camera after data augmentation.

There are three CNN fusion approaches which were tested in this paper. The first is
called the early fusion approach. This architecture effectively stacks the three channels
from each camera angle to create a single input consisting of nine channels. The general
approach can be seen in Figure 11. Once the nine-channel input is created, the data are fed
into a single CNN which produces the final BCS prediction.

The next architecture is called the mid-fusion approach. This architecture involves
feeding the data from each camera angle into a set of separate CNN layers. The output from
each CNN set is then concatenated and fed into a dense layer network which produces the
final prediction. The layout can be seen in Figure 12.
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Figure 11. Early fusion CNN model structure.

Figure 12. Midof-fion CNN model structure.

The final architecture can be seen in Figure 13 and is called the late fusion approach.
This architecture consists of three completely separate CNN models (including the dense
layers) with the final prediction being the average of the three CNN predictions. Since equal
weighting was used for the averaging operation, it was vital to ensure that the number of
training samples used for each model remained fairly similar.

Figure 13. Late fusion CNN model structure.

The results in Section 4.1 show that, when the three different approaches are trained
on the same dataset, the late fusion approach produced the best accuracy results. It is for
this reason that the rest of this paper focuses on that approach.

3.5.2. Late Fusion Architecture

In contrast to the models/architectures proposed in [7,13], a generic CNN with a small
number of parameters was chosen for this experiment. The angled, rear, and top CNNs have
265,948, 256,348, and 323,548 trainable parameters, respectively. The generic architecture
was chosen since this paper aims to prove that a multi-camera approach to CNN-based
BCS models has the capability to improve the overall performance of the combined model.
Additionally, an automated BCS system is likely to be run on an embedded platform or a
small computer with limited resources; therefore, it is important to focus on smaller and
faster BCS prediction models. Figure 14 shows the general CNN architecture which was
used for all three camera models. The dimensions for each layer vary for each model due
to the differing dimensions of the inputs.
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Figure 14. CNN architecture used for all three CNN models in the late fusion approach.

3.5.3. Training

The process of training a CNN model is fairly straightforward and
well documented [33,34]. The most important aspects of training CNN models are the
architecture and the training and testing data. Both of these were previously discussed in
Sections 3.2–3.4 and 3.5.2. Other important factors in training CNN models include the
batch size, the number of epochs used for training and the learning rate. For this study
batch sizes of 8, 16, and 32 were, respectively, tested, and there was no clear performance
difference. While testing different architectures, the training was often run for 100 epochs.
With the dataset being relatively small for training CNNs, the models are prone to overfit-
ting. This is likely why the best-performing models were found between 5 and 30 epochs
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before overfitting occurs. A learning rate of 0.001 was used for the training. Both larger and
smaller learning rates were tested. However, a learning rate of 0.001 seemed to produce the
most satisfactory results and was used for the final training.

As mentioned before, there are numerous techniques available for dealing with im-
balanced classes such as oversampling under-represented classes, undersampling over-
represented classes, cost-sensitive learning, and even transfer learning [27]. Cost-sensitive
learning was the chosen technique for this study. Cost-sensitive learning is a technique in
which weights are applied to the model loss where the weights are inversely proportional
to the number of samples in each class [35,36]. In the case of CNNs, this weighted loss is
then applied during backpropagation (training). This technique results in classes with a
higher number of training samples affecting the CNN weights less than classes with fewer
samples. This prevents the model from becoming class-biased due to a class imbalance in
the training data.

3.6. Model Performance Evaluation

When evaluating the performance of any model, it is important to use the correct
analysis for the specific experiment. In the case of automated body condition scoring,
model accuracy and F1-scores are often used. The accuracy is often given in tolerance
bands, where the accuracy is calculated by observing how often the model estimates the
exact BCS value or estimates within 0.25 or 0.5 of the actual BCS value. Other metrics such
as MAE are also often used; however, since the current state-of-the-art generally evaluates
the model accuracy, precision, recall, and F1-score, the results in this paper did as well.

Precision is defined as the ratio of true positive predictions to the total positive pre-
dictions. In the view of BCS, where multiple classes are present, this can be seen as the
ratio of true positive predictions to the total positive predictions for a specific class. For
example, when calculating the precision of a model for all cows with a BCS of 3.0, precision
is calculated by dividing the number of times the model correctly predicts a cow to be a
3.0 (true positive) by the number of times the model incorrectly predicted a cow to be a
3.0 (false positive).

Recall measures the ratio of true positive predictions to the total actual positives. For
example, when calculating the precision of a model for all cows with a BCS of 3.0, recall
is calculated by dividing the number of times the model correctly predicts a cow to be a
3.0 (true positive) by the number of times the model incorrectly predicted a cow to have a
BCS other than 3.0 (false negative).

The F1-score is the harmonic mean of precision and recall, balancing the trade-off
between these two metrics. The goal of the F1-score is to provide a single metric that
weights the two ratios (precision and recall) in a balanced way, requiring both to have a
higher value for the F1-score value to rise. This means that, if, for example, one model
has ten times the precision compared to a second model, the F1-score will not increase
ten-fold. The F1-score is a valuable metric for identifying models with both good precision
and recall, and since the F1-score can be calculated on a per-class basis, it is possible to see
which models have a greater or poorer performance for specific classes.

The accuracy of a typical model can be calculated as

Accuracy =
No. o f correct Estimations

No. o f Estimations
, (1)

and is generally a good indicator of the performance of a model and serves as a good metric
to compare various models.

The precision, recall, and F1-score of a model for a single class can be calculated with

Precisionc =
TPc

TPc + FPc
, (2)
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Recallc =
TPc

TPc + FNc
, (3)

F1 scorec =
2 × Precisionc × Recallc

Precisionc + Recallc
, (4)

where TP is the number of true positives, FP is the number of false positives, and FN is
the number of false negatives for the model with c as the class for which the F1-score is
calculated.

Values for precision, recall, and F1-scores are usually calculated for a single class.
However, in this paper, the models produce estimations for numerous unbalanced classes.
Therefore, instead of producing precision, recall, and F1-score values for each class, a single
weighted F1-score can be calculated with the following equation:

Weighted F1 Score =
N

∑
c

Wc × F1 Scorec, (5)

where
Wc =

No. o f samples in class c
Total number o f samples

. (6)

3.7. Development Tools

The CNN models were trained using TensorFlow in a Python environment. The
hardware that was used included an AMD Ryzen™ (AMD, Santa Clara, CA, USA) 7 5800X
8-Core Processor, 32 GB of memory and a NVIDIA GeForce™ (Nvidia, Santa Clara, CA,
USA) RTX 3070Ti GPU with 8 GB of video memory.

4. Results and Discussion

This section presents the results of various experiments aimed at testing the perfor-
mance of a multi-camera BCS approach. These results are discussed in detail as they are
presented. The first set of results, as presented in Section 4.1, shows how differing CNN
fusion approaches affect the overall performance of the models. Section 4.2 discusses the
performance results of the individual cameras while Section 4.3 presents and discusses the
performance of the multi-camera approach. Finally, Section 4.4 presents the results of the
computational complexity of the various approaches and discusses the findings.

The results in this section present the accuracy of different approaches in three error
ranges, namely the exact BCS, within 0.25 BCS, and within 0.5 BCS. The exact error category
presents the true accuracy of an approach where the value represents the percentage of
testing samples where the approach correctly predicted the BCS of a particular cow. The
0.25 BCS error range represents the percentage of testing samples where the approach
predicted the BCS of a cow within 0.25 BCS (one step off) of the actual BCS. Similarly,
the 0.5 BCS error range represents the percentage of testing samples where the approach
predicted the BCS of a cow within 0.5 BCS (two steps off) of the actual BCS. Veterinarians
and other trained cow body condition scorers are often trained to be within 0.25–0.5 of the
actual BCS. This is seen as the acceptable human error range [19].

4.1. Comparing Different CNN Fusion Approaches

Table 2 shows the accuracy achieved by the different approaches. These approaches
were covered in Section 3.5.1. The Late Fusion approach produced the highest accuracy out
of the three architectures. It was for this reason that the late fusion approach was elaborated
upon in Section 3.5.2.

4.2. Individual Camera Model Results

Table 3 shows the accuracy results from each individual CNN trained on the data from
a specific camera. The results show that the top camera performed the best for estimating
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the exact values; however, the angled camera performed the best for estimating the BCS
values within 0.25 and within 0.5 of the actual BCS values. These results also indicate that
different cameras may lead to better-performing models within certain BCS error ranges
compared to others. The table also shows that the three single-camera models follow a
similar trend of increasing accuracy as the BCS tolerance increases. The performance of
these models does fall below those presented in [7,13] with the reason being the model
complexity. However, as stated earlier in this paper, small generic CNN models were
chosen since part of the research focus is ensuring that these models are capable of running
on embedded platforms.

Table 2. Model results for estimating body condition scores using different CNN fusion approaches.

Approach Exact BCS Value (%) Within 0.25 BCS (%) Within 0.5 BCS (%)

Early fusion 32.42% 66.33% 85.04%
Mid fusion 30.17% 63.34% 82.29%
Late fusion 34.16% 69.08% 84.54%

Values in bold represent the highest accuracies in each category.

Table 3. CNN model results for estimating body condition scores using various models.

Approach Exact BCS Value (%) Within 0.25 BCS (%) Within 0.5 BCS (%)

Angled only 27.92% 67.7% 90.15%
Rear only 27.55% 64.6% 85.77%
Top only 30.84% 64.96% 86.86%

Angled–rear 29.38% 69.34% 90.15%
Angled–top 33.58% 68.25% 88.87%
Top–rear 34.12% 66.97% 88.32%

All cameras combined 35.77% 69.89% 89.96%
Values in bold represent the highest accuracies in each category.

4.3. Ensemble Modelling Results

Table 3 also shows the accuracy results of the ensemble modelling approaches. The
first three ensemble models are two-camera combinations of the three individual camera
models, namely angled–rear, angled–top, and top–rear. The results show the performances
for all three of these two-camera models improved compared to the individual camera
models in the exact BCS category. Only the angled camera had a better performance than
the top–rear model in the 0.25 and 0.5 BCS error ranges.

Looking at the results of the angled–rear model, the model performed better than
either of the individual camera models, improving the accuracies in the exact and within
0.25 tolerance bands by around 2%. The angled–top model, as well as the top–rear model,
showed a well-improved performance compared to the performance of the individual
camera models, especially when looking at the accuracies achieved estimating the exact
BCS values with the top–rear model improving the exact BCS accuracy of the top camera
model by 3.28%. These results show that combining the BCS estimation results from
two individual camera models has the ability to improve the accuracy of the BCS estimation.

Finally, Table 3 also presents the results of combining the estimations from all three
cameras. The all-cameras approach produced the best accuracy results for the exact BCS and
0.25 BCS error range, and also showed high accuracy in the 0.5 error range. Combining the
predictions from all three camera models does not always improve the accuracy. However,
this is discussed in detail in Section 4.5.

The bold values in Table 3 indicate the highest accuracy values for each tolerance
band with the fully combined camera model achieving the best performance in the exact
and 0.25 categories. The angled–rear model achieved the best accuracy in the 0.5 category,
outperforming the angled camera model due to the performance in the other tolerance
bands. An interesting observation is that combining the predictions from multiple camera
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models increases the accuracy in the exact category; however, the 0.5 category results
remain fairly similar across all model combinations. There are several potential reasons as
to why the all-camera model does not outperform other models in the 0.5 error range or
far outperform other models in the 0.25 error range. One consideration is that the CNNs
presented in this study were trained to predict exact BCS values. The cost function used
during training makes use of the exact BCS values, which results in the backpropagation
altering the weights to minimise this cost according to the exact BCS values. In other words,
the model is trained to maximise the accuracy of predicting exact BCS values and not
maximise the accuracy of the model within the 0.25 and 0.5 BCS error ranges. Another
potential reason is that it is well known that, in sensor fusion, combining too many sources
of information may end up hindering the performance of a system. This may be a potential
reason for the “all cameras” model not outright outperforming the other models in the 0.25
and 0.5 BCS error ranges.

Tables 4–6 show the detailed results of calculating the precision, recall, and F1-score for
each of the models for each BCS class. The metric averages were calculated by weighting
the values from each class by the number of data samples for each class. The bold values in
the class-weighted averages show the best-performing model for each performance mea-
surement.

The results show that, according to these metrics, the combined camera model yielded
the best exact BCS performance. However, with the 0.25 error range results, the angled–top
model performed the best with the highest F1-score. It is interesting that the model combin-
ing all cameras had a lower performance than several other models in this tolerance band.
The results are fairly mixed in the 0.5 tolerance band with different models performing the
best for each metric. Interestingly, the angled camera model yielded the best F1-score in the
0.5 tolerance band. Again, the model combining all cameras had a lower performance than
several other models in this tolerance band.

Overall, the results show that a CNN-based ensemble modelling approach to auto-
mated cow BCS using multiple depth cameras generally yields a performance improvement
compared to using a single depth camera and single model. However, this seems to only
be the case for predicting exact BCS values. If some error is allowed, such as 0.25–0.5 BCS,
then single- or two-camera models may be a better choice, especially if equipment cost and
computational complexity are a concern.

4.4. Computational Complexity Analysis

Since an automated BCS system is expected to operate in the real world and is likely
to run on an embedded platform, it is important to consider the computational cost of the
various models presented in this study and the real-world implications this may have. Each
of the approaches presented in Table 3 was evaluated to examine the relationship between
computational complexity and the accuracy achieved by each approach.

Figure 15 shows the number of floating point operations (FLOPs), measured in millions
of floating point operations (MFLOPs), for each of the models, and presents the accuracy of
each model. From Figure 15, a relationship can be seen where an increase in the FLOPs
is mostly followed by an increase in the accuracy. The exception in this case is the rear
camera model.

Figure 16 shows the number of parameters (CNN weights) for each of the models and
also presents the accuracy of each model. A similar relationship to Figure 15 can be seen in
Figure 16, where an increase in the number of parameters mostly leads to an increase in the
accuracy. The exception in this case is the top–rear model.

Finally, each of the models was run on a Jetson Nano™ with 4GB of RAM to determine
the average time it takes for a single test sample to be processed by each model. Although
Figure 17 shows a similar pattern to Figures 15 and 16, the runtimes do not differ greatly
within each category of model (single vs. double vs. all cameras). The difference between
the angled and top camera models amounts to a mere 13 ms. This can likely be a result of
machine learning libraries making efficient use of modern computer architectures. Unless
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a system’s resources are almost completely used up by a model, the small differences in
FLOPS or the number of parameters of each model are almost negligible.

Figure 15. Floating point operations versus BCS prediction accuracy.

Figure 16. Number of parameters versus BCS prediction accuracy.

With the current implementation of the all-cameras approach, the model takes around
535 ms on average to process the data from all three cameras and produce a prediction
result. During the data collection phase of this study, a cow would pass under the camera
frame every 2–5 s. This means that the all-cameras approach, which is the most time-
consuming approach, is more than fast enough to generate BCS predictions in real-time on
an embedded platform such as a Jetson Nano™.
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Figure 17. Average runtime per prediction versus BCS prediction accuracy.

4.5. Noteworthy Observations

During the course of this study, several interesting and noteworthy observations
were made.

• Using the three channels as inputs to the CNNs did marginally improve the results
compared to only using the depth image as a single channel. However, this was only
around 1–2%.

• Data augmentation helped to marginally improve the results compared to only using
the original depth images. Using the data-augmented dataset also yielded more
consistent training.

• Ensemble modelling performed poorly when the individual camera models had a
low validation loss. As expected a large validation loss also yielded poor combined
results. A “sweet spot” validation loss of between 3 and 5 produced the best ensemble
modelling results on average.

• While combining the three CNN model estimations generally yields an increase in
accuracy, this was not always the case. Where the accuracies of the three individual
camera models differed significantly, the combined model accuracy might decrease
rather than increase. For example, during testing, a certain set of the angled, rear, and
top camera models had an exact BCS accuracy of 27%, 28%, and 34%, respectively. The
combined model, however, yielded an accuracy of 31%, i.e., meaning that ensemble
modelling decreased the accuracy of the top-performing single-camera model. A
similar pattern was often observed in other instances where the accuracies of the
three individual camera models differed significantly. This showed that it is better in
some cases to choose individual models with lower accuracies in order to achieve an
increased accuracy for the combined model.
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Table 4. Precision, recall, and F1-scores for all models evaluating the exact BCS estimations. The best results are in bold.

BCS
Precision (%) Recall (%) F1-Score (%)

A R T A&R A&T T&R All A R T A&R A&T T&R All A R T A&R A&T T&R All

1.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.00 23.08 0.0 48.48 16.13 44.44 40.0 48.28 27.27 0.0 36.36 11.36 27.27 22.73 31.82 25.0 0.0 41.56 13.33 33.8 28.99 38.36

2.25 8.57 29.41 5.0 0.0 1.96 5.45 5.0 4.69 15.62 6.25 0.0 1.56 4.69 4.69 6.06 20.41 5.56 0.0 1.74 5.04 4.84

2.50 34.19 27.15 37.5 34.78 46.27 38.46 41.1 31.25 46.88 16.41 50.0 24.22 27.34 23.44 32.65 34.38 22.83 41.03 31.79 31.96 29.85

2.75 35.8 31.71 35.86 30.26 35.71 38.18 37.18 35.37 31.71 54.88 35.98 57.93 64.02 62.8 35.58 31.71 43.37 32.87 44.19 47.84 46.71

3.00 24.66 42.62 36.54 30.28 36.89 43.59 42.86 37.5 27.08 39.58 34.38 46.88 35.42 40.62 29.75 33.12 38.0 32.2 41.28 39.08 41.71

3.25 12.5 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0

3.50 0.0 37.5 0.0 0.0 0.0 0.0 0.0 0.0 75.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0

Class Weighted Average 26.60 27.00 30.37 23.78 31.75 31.90 32.70 27.92 27.55 30.84 29.38 33.58 34.12 34.49 26.93 26.07 28.95 26.13 30.80 31.54 31.90

Table 5. Precision, recall, and F1-scores for all models evaluating the estimations within 0.25 BCS. The best results are in bold.

BCS
Precision (%) Recall (%) F1-Score (%)

A R T A&R A&T T&R All A R T A&R A&T T&R All A R T A&R A&T T&R All

1.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.00 51.06 30.43 56.25 42.86 60.71 58.33 53.85 54.55 15.91 40.91 27.27 38.64 31.82 31.82 52.75 20.9 47.37 33.33 47.22 41.18 40.0

2.25 66.04 77.27 24.62 74.29 33.33 37.5 32.65 54.69 53.12 25.0 40.62 23.44 23.44 25.0 59.83 62.96 24.81 52.53 27.52 28.85 28.32

2.50 67.42 58.05 88.79 64.85 87.72 79.51 86.09 69.53 78.91 74.22 83.59 78.12 75.78 77.34 68.46 66.89 80.85 73.04 82.64 77.6 81.48

2.75 77.65 73.54 63.37 71.36 62.95 62.08 61.04 80.49 84.76 78.05 92.68 85.98 90.85 85.98 79.04 78.75 69.95 80.64 72.68 73.76 71.39

3.00 64.55 81.01 78.79 80.68 78.22 87.64 86.02 73.96 66.67 81.25 73.96 82.29 81.25 83.33 68.93 73.14 80.0 77.17 80.2 84.32 84.66

3.25 58.82 50.0 100.0 85.71 100.0 100.0 100.0 62.5 18.75 65.62 37.5 65.62 40.62 56.25 60.61 27.27 79.25 52.17 79.25 57.78 72.0

3.50 0.0 42.86 0.0 0.0 33.33 50.0 0.0 0.0 75.0 0.0 0.0 25.0 25.0 0.0 0.0 54.55 0.0 0.0 28.57 33.33 0.0

Class Weighted Average 65.54 64.46 66.73 67.76 67.88 67.77 67.42 67.70 64.60 64.96 69.34 68.25 66.97 67.15 66.48 63.03 65.16 66.57 66.95 65.26 65.95



Sensors 2023, 23, 9051 21 of 24

Table 6. Precision, recall, and F1-scores for all models evaluating estimations within 0.5 BCS. The best results are in bold.

BCS
Precision (%) Recall (%) F1-Score (%)

A R T A&R A&T T&R All A R T A&R A&T T&R All A R T A&R A&T T&R All

1.75 0.0 0.0 18.18 0.0 20.0 18.18 21.05 0.0 0.0 25.0 0.0 18.75 25.0 25.0 0.0 0.0 21.05 0.0 19.35 21.05 22.86

2.00 80.0 78.26 68.75 80.0 84.62 86.67 77.78 81.82 81.82 50.0 72.73 50.0 59.09 47.73 80.9 80.0 57.89 76.19 62.86 70.27 59.15

2.25 96.36 92.06 86.49 98.39 93.85 90.14 90.14 82.81 90.62 100.0 95.31 95.31 100.0 100.0 89.08 91.34 92.75 96.83 94.57 94.81 94.81

2.50 90.07 84.4 100.0 85.91 99.15 97.41 99.13 99.22 92.97 86.72 100.0 90.62 88.28 89.06 94.42 88.48 92.89 92.42 94.69 92.62 93.83

2.75 92.57 90.74 88.59 89.01 86.32 84.46 83.59 98.78 89.63 99.39 98.78 100.0 99.39 99.39 95.58 90.18 93.68 93.64 92.66 91.32 90.81

3.00 85.58 96.77 90.53 95.83 87.13 98.88 95.65 92.71 93.75 89.58 95.83 91.67 91.67 91.67 89.0 95.24 90.05 95.83 89.34 95.14 93.62

3.25 100.0 85.0 100.0 100.0 100.0 100.0 100.0 84.38 53.12 81.25 59.38 100.0 78.12 87.5 91.53 65.38 89.66 74.51 100.0 87.72 93.33

3.50 0.0 100.0 0.0 0.0 50.0 50.0 0.0 0.0 75.0 0.0 0.0 25.0 25.0 0.0 0.0 85.71 0.0 0.0 33.33 33.33 0.0

Class Weighted Average 87.25 86.55 87.72 87.25 88.80 89.57 88.15 90.15 85.77 86.86 90.15 88.87 88.32 87.96 88.49 85.87 86.84 88.18 88.24 88.32 87.43
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4.6. Potential Future Research

When reviewing the work of several researchers in this field, two constant concerns are
the low amount of training data combined with the large class imbalance. The researchers
in [5] noted that it is difficult to accurately distinguish between BCS values lower than
2 or greater than 4. Therefore, it may be useful to develop a system that classifies a cow
with a BCS value below 2 as ”severely under-conditioned” and one above 4 as “severely
over-conditioned”. Additionally, this may simplify the models used since there would be
fewer classes used for classification and the performance should improve. There would be
slightly less class balancing needed.

5. Conclusions

This paper performed a novel study investigating the performance gain of an ensem-
ble model approach to automated cow body condition scoring. The proposed approach
made use of three depth cameras capturing the depth frames of cows from different angles
used to train CNN models. The approach aimed to make use of the extra information
provided by the extra camera angles to improve the BCS prediction accuracy compared
to a single-camera system. The study aimed to identify which camera angles and which
combinations of camera angles increased BCS prediction accuracy. The three-camera ap-
proach yielded a significant accuracy improvement compared to a single-camera approach
and a double-camera approach. However, single- and double-camera models showed very
similar performances to the three-camera approach when 0.25 and 0.5 BCS error ranges
were applied.

This paper also explored the suitability of these various approaches when deployed on
a real-world embedded platform by comparing the computational cost to the performance
of the various models. The general trend was found to be that, as the computational cost
increases, the accuracy also tends to increase.
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