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Abstract: Mapping and tracking invasive alien plant species (IAPS) and their invasiveness can be
achieved using remote sensing (RS) and geographic information systems (GIS). Continuous moni-
toring using RS, GIS and modelling are fundamental tools for informing invasion and management
strategies. Using systematic comparisons, we look at three remote sensing imagery platforms and
how accurately they can be classified within the Vhembe biosphere reserve, Limpopo Province, South
Africa. Supervised classification of National Geospatial Information Colour Digital Aerial Imagery,
DigitalGlobe Worldview 2 and CNES SPOT 6 was performed. The Spectral Angle Mapper (SAM)
algorithm was used to identify the best satellite for species-level classification. The accuracy of the
classifications produced an overall accuracy (OA) of 71% with a Kappa coefficient (KC) of 0.76 for
CDA photographs, an OA of 81% and a KC of 0.80 for Worldview 2, and an OA of 89% with a KC of
0.86 for SPOT 6 imagery. Therefore, SPOT 6 imagery came out as the most suitable for species-level
classification. The classification results from the SPOT 6 imagery were used as input data for further
species distribution modelling of Mauritius Thorn and River Red Gum in the VBR.

Keywords: classification; remote sensing; GIS; producer accuracy; user accuracy; overall accuracy;
Kappa coefficient

1. Introduction
1.1. The Invasive Alien Species Problem

Nearly all ecosystems on Earth have problems associated with invasive alien plant
species (IAPS). The invasions of these species into natural systems pose a challenge to the
functioning of global biodiversity, habitats and economic costs [1]. Invasive alien plant
species detection processes are usually localised. Remote sensing (RS) and geographic infor-
mation systems (GIS) thus have the potential to contribute toward high mapping accuracies
for use by both the scientific and management communities [2]. Complemented by field-
based techniques, RS and GIS can simultaneously map and monitor larger scales [3]. RS
and GIS provide potentially valuable resources for mapping and tracking IAPS and provide
data inputs to models that predict areas vulnerable to invasion [2,4]. These technologies
can be regarded as cost-effective and wide-ranging, providing the ability for long-term
reporting and monitoring of IAPS are recognised as basic research needs [2].

Presence records derived from RS and GIS can be used to create permanent records
that could easily be used as inputs into ecological models for management and control
activities [5,6]. The availability of multitemporal RS data makes it possible to predict
trends leading to efficient monitoring of abundance and distribution patterns over time [7].
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Using the presence data of IAPS from RS and GIS allows monitoring and mapping of areas
susceptible to invasion, thus, enabling the set-up of preventive measures that can accurately
deal with problematic species [8]. RS and GIS techniques can effectively map locations at
risk of invasion. Alternatively, upon the establishment of IAPS, RS and GIS can be used to
map potential invasion pathways.

1.2. The Use of GIS and RS in Identifying IAPS

For the effective use of RS and GIS in identifying and monitoring IAPS, it is essential
to understand the characteristics of the IAPS at the species level and their surroundings [9].
RS and GIS can then be used to map and monitor IAPS based on the ability to discrim-
inate between IAPS and surrounding species, e.g., an understory species whose direct
detection is from RS and GIS [10,11]. RS and GIS detection approaches rely on plant pheno-
logical, biochemical, structural and observable spatial patterns as IAPS proliferate in the
vegetative canopy.

1.2.1. Aerial Photography

When selecting imagery to map IAPS, aerial photography is cheap and provides
acceptable spatial resolution (0.1–2 m). The high spatial resolution of aerial photos meets
most criteria for sampling IAPS to satisfy management interest, even when considering
small patch sizes, albeit only for some understory species that do not form distinct patches.
Aerial photography is thus considered suitable when the IAPS exhibit visual traits that
separate them from surrounding vegetation.

Based on its characteristic pale yellow flower, aerial photography was utilised to detect
the Mauritius Thorn [12]. Many woody invasives, including blackberry (Rubus fruticosus),
European olive (Olea europaea), and Pinus species, have previously been mapped using high-
resolution colour infrared aerial photography [13]. Using visual and computer-assisted
digital colour infrared photographs analysis, invasive Vachellia species were efficiently
mapped from surrounding indigenous plants and South Africa’s fynbos habitat [14].

While high spatial resolution aerial photography can be affordable, visual processing
takes time, making interpretation difficult in most instances since it requires both ability and
experience [15]. In addition, field measurements must be appropriately calibrated to find
spectral variations in the target species rather than capturing photos of surrounding plants.
Due to these restrictions, data can only be collected in relatively limited geographical areas.

1.2.2. Multispectral Imagery

Multispectral imaging is based on sensors that measure reflected energy within several
specific bands, varying from 3 to 10 bands across the electromagnetic spectrum. For
example, SPOT images were used to identify Cogon grass (Imperata cylindrica) infiltrating
savanna habitats [16]. In Nepal’s lowland forests, Landsat ETM+ data were utilised to
indirectly map IAPS in the understory based on the density of forest canopies and the
intensity of light penetrating the understory [17]. Multispectral imaging outperforms aerial
photography. However, some of the most common and economically important IAPS may
be intermingled with other species or have thin canopies that make distinction difficult.

1.3. Trade-Offs Between Image Resolution and Mapping Accuracy

The mapping accuracy of IAPS-infected vegetation communities is highly influenced
by spatial and spectral resolution. Even though systematic comparisons of several sensors
across the same spatial region are critical for understanding temporal changes, there are few
clear instances of IAPS, providing no direction to explain the selection of suitable sensors
for invasion. While mapping IAPS in South African riparian habitats, researchers noticed
that visual interpretation using 1:10,000 panchromatic aerial photos produced the most
accurate results [18]. Landsat 8 imagery resulted in lower accuracy [19]. This is mainly
because of the accessibility and affordability compared to hyperspectral techniques.
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Research findings in South Africa indicated that Colour Infrared Red images, a form of
aerial photographs with a more excellent spectral resolution, produced higher accuracy [20].
Furthermore, when comparing imagery with various spatial and spectral resolution combi-
nations, results indicate higher mapping accuracies for IAPS with distinct features beyond
the visible spectrum, with better spectral resolution than spatial resolution.

The well-known trade-off between spectral and spatial resolution and data picture
processing costs complicates choosing the suitable image resolution even further (Figure 1).
Although a comparison of analysis of multispectral (Landsat 8) with moderate resolution
imagery from SPOT and aerial photos for a 100 km2 study area [21,22] points to Landsat
ETM+, CDA and SPOT 6 to be the cheapest as they are freely available, with DigitalGlobe
Worldview 2 imagery the most expensive, there have been few systematic cost comparisons
of RS and GIS in comparable research locations.

Figure 1. Relationship between spectral, spatial resolutions and usage type [23].

1.4. Identifying the Potential Distribution of Invasive Alien Species

While not a replacement for rigorous systematic field surveys, distribution models may
be a viable option for estimating IAPS distribution [24]. As a result, prioritising precious
resources such as people, time and cash for control and monitoring is accelerated [25]. The
bulk of prediction models is statistical, with the presence or presence-absence data used to
infer environmental circumstances that comprise most of the presence locations [26]. Re-
motely sensed variables such as vegetation, atmosphere, soil, geomorphology, proximity to
roads or pathways and knowledge of management practices may be predictors in most en-
vironmental niche models (ENM). Mechanistic models are used to simulate physiologically
limiting elements in a species’ tolerance to the environment [27–29]. In correlative species
distribution models, environmental factors are statistically linked to species occurrence or
abundance [30]. On the other hand, process-based models establish a species’ ecology as
mathematical functions that define causation; the species’ presence or abundance is an indi-
rect, emergent result [30]. The mechanistic niche model uses comprehensive biophysical
modelling tools to understand species distribution [31].

The spread of IAPS presents a complex and costly problem to most countries [32]. Typ-
ical characteristics of IAPS include fast growth, expansion, massive distribution, phenotypi-
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cal plasticity, survival in different forms of foods and various environmental conditions [33].
A good indicator of invasion depends on a species’ success in invading a new area [34].
Therefore, remotely sensed images should be coupled with indirect mapping methods,
including the use of GIS data layers and modelling [35]. In the case of IAPs that occur in the
vegetation canopy, successful detection approaches have generally capitalised on unique
phenological or biochemical properties, structural characteristics or spatial patterns created
by invasions. It is thus essential to provide a brief synopsis of phenological or biochemical
properties and structural features that can be used to map IAPs successfully. The potential
for regional invasion in South Africa was examined locally using climatic envelope models
for 71 IAPS and existing presence data collected at a geographical resolution of 25 km [36].
To identify invasion hotspots for several species, there has been a shift toward an alternate
method to multiple species modelling [37].

Indirect Identification of Areas Vulnerable to Invasion Using RS and GIS

RS and GIS can detect landscape and site features, making mapping IAPS distribution
possible [38]. RS and GIS can be used to identify regions with excessive rates of defor-
estation that can result in plant invasions by integrating propagule transportation and
micro-disruption (it should be acknowledged that defoliation due to grazing can also affect
IAPS) [39]. The ability to detect changes in the terrain over time may be used to define
disturbance regions prone to invasion. Land degradation of the natural environment means
edge ecosystems are more vulnerable to plant invasions than core ecosystems [40]. The
spatial distribution of natural habitats in images and degradation indices can help identify
invasion-prone locations.

1.5. Limitations of RS Applications to IAPS

For more accurate species distribution and risk maps, there is a need to complement
MaxEnt with Generalised Linear Mixed Models (GLMMs) to identify areas of possible
spread for conservation purposes [41]. Ref. [42] modelled hotspots of IAPs through Ecologi-
cal Niche Modelling (ENM) using MaxEnt to guide the formulation of an effective policy for
controlling the IAPs. The area under the curve (AUC) scores obtained for predictions can
be sufficiently accurate [43]. However, SDMs have some limitations, such as overestimation
of the presence of species. The assumption of a random sampling of species’ existence on
the grid cells made by SDMs predicts each cell’s significant probability of fact, which could
be overestimated [44].

The high data, software and hardware costs significantly impact the uses of RS and
GIS in monitoring IAPS; this is typical for contemporary high-resolution images. However,
notable trends are showing declining imagery costs, such as the free access provisions
being given by Landsat [45]. Technical expertise is required to process images (visual
interpretation) and multispectral (image processing). As indicated by comparing aquatic
and terrestrial ecosystems, the ability to map IAPS and the accuracy with which they may
be identified changes between environments [46,47]. When spatial data and satellite images
are integrated with field measurements, the best classification results are produced, giving
vital inputs for classifying and validating image classifications. Because of a better grasp
of plant phenology and its implications on spectral resolution, practical awareness and
familiarity with the environment enhances classification accuracy significantly.

Notwithstanding the constraints above, remote sensing remains the most significant
approach for effectively gathering information across broad regional extents at high spatial
resolution while allowing for the most significant percentages of spatial sampling. Develop-
ments in remote sensing, such as increased temporal image acquisition and approaches that
combine passive, radar and thermal sensors and texture analysis, will almost certainly ex-
pand the resources available to map IAPS. The trade-offs between satellite image resolution
continuously shift as remote sensing technologies advance and new data sources become
accessible. Policies governing access to remote sensing data are evolving; a casing point is
the benefit of high-resolution imagery in structured, searchable, well-documented libraries
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locally and globally. The South African National Space Agency (SANSA) and other govern-
mental satellite datasets have made great strides in earth observation data democratisation
in South Africa. This study aimed to evaluate the accuracy of the NGI-CDA, DigitalGlobe
Worldview 2 and CNES SPOT 6 for species-level plant species discrimination.

2. Materials and Methods
2.1. Study Region

The research site discussed falls within the VBR. The VBR is a member of the World’s
Reserve Network organised by Man and Biosphere (MAB, UNESCO), located in the
northern part of South Africa, covering five local municipalities of the Limpopo Province
(Blouberg, Collins Chabane, Makhado, Musina, and Thulamela). International borders
to the north and east include Botswana, Zimbabwe, and Mozambique. This site was se-
lected due to the invasion by River Red Gum and Mauritius Thorn and the contrast in
climatic conditions.

The VBR covers an area of 3,070,000 ha (30,701 km2), including part of the Kruger
National Park (KNP) north of the Shingwedzi River. The Mogalakwena River forms the
eastern border. The southern boundary spans from south of the Blouberg–Makgabeng and
Soutpansberg Mountain range to the east, over the Luvuvhu River catchment. The VBR lies
between the following coordinates (23◦30′S and 22◦14′S and 28◦45′E and 31◦29′E). Within
the VBR, the altitude ranges from 2500 m above mean sea level (asl), 719 m asl (Hangklip)
and 1748 m asl (Lajuma).

The extreme maximum and minimum temperatures recorded in the VBR are
43.2 ◦C and −3.4 ◦C [48]. The winters in the VBR are generally mild, and frost some-
times occurs only in the southern valleys [49]. In Entabeni, the highest observation station
in the region, the average seasonal rainfall surpasses 850 mm, and occasionally the total
annual rainfall may exceed 2000 mm. On the other hand, stations in the mountain’s rain
shadow or low-lying locations, such as Pafuri and Alldays, receive barely 200 to 300 mm of
seasonal rain. However, because of the area’s poor rainfall measurement network, local
fluctuations cannot be precisely assessed.

The VBR’s bushveld vegetation unit of the savannah biome is officially classified as
vulnerable. The bushveld vegetation unit comprises a rainfall gradient distribution of thick
deciduous woods and evergreen montane forests, with a weakly established grassy layer
and open savannah in certain areas. In addition, exotic eucalyptus and pine plantations on
the Soutpansberg range further strained the Soutpansberg Mountain bushveld vegetation
unit’s survival. In general, vegetation groups in the Soutpansberg Mountains appear in
east–west bands along the easterly moisture flow from the Indian Ocean, following the
direction of the mountain range’s ridges.

The VBR consists of three biomes: savanna, grassland and forest, as well as four
bioregions and twenty-three distinct plant types or biotopes. South Africa is home to eight
of these biotopes. The region is also a bio-geographical node, comprising the Kalahari and
Lowveld bioregions with mild to tropical temperatures. This produces zones of biologically
significant interactions, which must be safeguarded for conservation to be viable. Based on
a combined examination of species, ecosystems and biological processes, the South African
National Spatial Biodiversity Assessment (NSBA) has designated the Blouberg and Sout-
pansberg complex as one of nine priority sites for conservation efforts [50]. Additionally, it
is the same region as a biodiversity and endemism hotspot in South Africa.

2.2. Land-Cover Classes and Invasive Alien Plant Species

Twelve land-use/land-cover classes were classified, including two genera of inva-
sive alien trees. The identified land-use/land-cover classes: (i) Unclassified, (ii) Water,
(iii) Buildings, (iv) Bare Area, (v) Road, (vi) Plantation, (vii) Orchard, and (viii) Forest.

A McNemar test was run to test the difference between the three satellite platforms
used in the land-cover classification. This was performed through a nonparametric test that
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compared the classification results from the three satellite platforms with binary responses
for randomised complete blocks.

2.3. Datasets

This study used classification and accuracy assessment methods using colour digital
aerial imagery (CDA), Worldview 2 and SPOT 6 imagery. All the image analysis was
performed using ENVI 5.3 and ESRI’s ArcGIS 10.8.1 software. A summary of the imagery
used in this study is presented in Table 1.

Table 1. Specifications of the satellite data used in this study.

Sensor Scene Date of Acquisition Resolution (m) Spectral Bands

C
D

M
aerial

photographs

2329BB 2018-07-16 0.25 Blue, Green, Red

SPO
T

6

SPO
T6_20181102_

13303316qth9tssm
80h_2

2018-11-02 8 m Blue
(0.455 µm–0.525 µm)

2018-11-02 8 m Green
(0.530 µm–0.590 µm)

2018-11-02 8 m Red
(0.625 µm–0.695 µm)

2018-11-02 8 m Near-Infrared
(0.760 µm–0.890 µm)

W
orldview

2

012969746010_01_003 2017-05-12 1.8 m Coastal: 400–450 nm
012969746010_01_003 2017-05-12 1.8 m Blue: 450–510 nm
012969746010_01_003 2017-05-12 1.8 m Green: 510–580 nm
012969746010_01_003 2017-05-12 1.8 m Yellow: 585–625 nm
012969746010_01_003 2017-05-12 1.8 m Red: 630–690 nm
012969746010_01_003 2017-05-12 1.8 m Red Edge: 705–745 nm
012969746010_01_003 2017-05-12 1.8 m Near-IR1: 770–895 nm
012969746010_01_003 2017-05-12 1.8 m Near-IR2: 860–1040 nm

2.4. Training Data

Training data were gathered using two sources of information: (i) ecological input on
target groups and (ii) field surveys (Table S1) [51]. These training data were used to produce
the classifications, which were ground-truthed using locations highlighted in Table S2. In
addition, a local ecological expert was engaged to provide coordinates and shapefiles of
infestations of these target invasive alien plant groups. During the field surveys, an effort
was made to obtain a reasonable spatial spread of points across classes, with a specific focus
on the Soutpansberg mountains and the Luvuvhu Valley (Figure 2). For each land-cover
class, there are 7271 points for 12 classes.

2.5. Classification

Classification of images is a means of decryption of satellite images, identification
and delineation of any objects on the image. Classification can also be defined as a pro-
cess of automatic decryption. The classification algorithms are divided into two classes
according to user involvement: unsupervised (pixel-based classification and essentially
computer-automated classification) and supervised (spectral signatures obtained from train-
ing samples to classify an image) classification. Supervised classification was performed on
the CDA, SPOT 6 and Worldview 2 images to differentiate the various vegetation types in
the study area. Each pixel in an image is assigned to a group or class in the pixel-based
classification process. Then, using spectral pattern recognition, each pixel is allocated to a
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class based on its spectral properties. Object or feature-based classification methods use
what is known as feature space to classify the pixels. Feature space is a scatter plot of
the two bands’ spectral values for all the image’s pixels. Because the classes in this study
are land-cover, the purpose is to map the land-cover types throughout the image. This
study collected ground reference land-cover information during the three field sampling
excursions in June–July 2019 and February 2020.

Figure 2. Locality Map of Vhembe Biosphere Reserve in the Limpopo Province [52].

2.6. Supervised Classification

Supervised classification aims to extrapolate land-cover type information from a
known segment of a remotely sensed image using data acquired during fieldwork to un-
known areas of the whole image. As a result, for each land-cover category, the analyst
defines many ‘training’ regions. Based on this information, the computer develops spectral
signatures using specialised spatial analysis tools. The maximum likelihood descriptor
is the most common method to measure the spread of values around the mean of the
class. Each image pixel is allocated to one of the groups covered by the land as far as
feasible by the spectral signature. ENVI 5.3 software used for classification in this study
has four different classification algorithms to choose from when running the supervised
classification procedure. These include Minimum Likelihood Distance (MLD), Mahalanobis
Distance and Spectral Angle Mapper (SAM). The SAM method was chosen because of
its ability to compute the spectral angle between an image spectrum and a reference
spectrum using vectors in n-dimensional spectral space, where n is the number of bands
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and reduces the influence of shading effects to emphasise the intended reflectance quali-
ties [53]. SAM is also a simple and quick approach for mapping picture spectral similarity to
reference spectra.

Figure 3 shows the supervised classification process.

Figure 3. Classification of CDA, Worldview 2 and SPOT 6 datasets.

After visually assessing many classification approaches in Environment for Visualising
Images (ENVI 5.3) (Exelis Visual Information Solutions, 2013), the spectral angle mapper
(SAM) classifier was chosen for our purposes because of its more remarkable ability to
recognise active vegetation. The SAM is a supervised machine learning approach that uses
statistical learning theory to achieve classification. The SAM classifies data by extracting
a hyperplane from a multidimensional feature space that optimally divides classes. This
hyperplane is the ideal decision surface for class separation. The ideal hyperplane max-
imises the margin, which is the distance between the hyperplane and the nearest positive
and negative training examples. The optimisation problem is addressed using training
samples to discover the hyperplane, resulting in a sparse solution. Even though the SAM is
a binary classifier in its most basic form, the SAM classifier implementation in ENVI was
enlarged to more than two classes by breaking the problem down into a series of binary
class separations [54].

Several kernels, including the polynomial, radial basis function and sigmoid, may clas-
sify SAM in ENVI to represent more complicated forms than linear hyperplanes. The SAM
was used with the radial basis function kernel for paired classification. During training,
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the SAM classifier can additionally implement a penalty parameter for misclassification.
The penalty parameter was set to its maximum value, whereas a classification probability
threshold of zero was used to classify all pixels [55]. For picture classifications, the clas-
sifier’s default settings were utilised. During the classification phase, the spectral subset
option in ENVI was used to select only the NIR band of the NAIP imagery.

The approach taken in this study is to assess all three images (CDA photograph,
Worldview 2 and SPOT 6) individual performance to classify land covers in the study area
and evaluate their errors and accuracy to select the imagery with the highest accuracy for
species-level extraction.

Accuracy Assessment of CDA, Worldview 2 and SPOT 6 Classification

Classification accuracy was evaluated by developing an error matrix for each clas-
sified image that analyses the relationship between reference categories on the ground
and matching classified categories on the image group-by-group basis. By comparing the
identified classes to the ground verification data, error matrices for each classification map
were constructed. To assess classification accuracy, error matrices were generated, which
included overall, producer and user accuracies. Using site verification data, field valida-
tion (accuracy evaluation) was undertaken (ground control points). Verification data for
175 sites were randomly generated using the “Generate Random Sample Using Ground
Truth Image in the post-classification tool” function in ENVI 5.3 software.

The verification points were loaded into a real-time differential Trimble GeoXH Global
Positioning System (Trimble Navigation Limited, Sunnyvale, CA, USA) outfitted with the
ArcPad software package, a 4 m external antenna, providing submeter horizontal accuracy
(10 cm), and navigated at sites before image classification. This resulted in an unbiased
field validation technique based on visited sites without prior knowledge of whether the
classification method had demarcated areas for the relevant land-cover groups. Next, the
land-cover type in the 175 regions was evaluated and allocated to GPS locations. Following
the classification of the images, these locations were placed on the land-cover map, and a
one-to-one matching was performed to create an error matrix for each site.

The error matrix was used to calculate the accuracy evaluation for classified maps,
individual land-cover classes and the kappa coefficients and variances. To compare image
classification at 95% confidence level sites, a two-tailed Z-test (Z/2 = Z0.025) was used. The
kappa statistic calculates the degree of agreement or accuracy between the classification
map obtained from images and the ground verification data. When the row and total
column estimations are considered, this is characterised by the significant diagonal and
the chance agreement. For example, the Kappa values for CDA, Worldview 2, and SPOT
6 classification vary from 0 to 1, with values more than 0.80 indicating high agreement
between the categorised map and ground truth, and values less than 0.40 indicating
poor agreement—scores ranging from 0.40 to 0.80 show moderate agreement with the
underlying data.

3. Results
3.1. Extraction of Training Samples from the Colour Digital Aerial Imagery

The spatial coverage of the Colour Digital Aerial (CDA) is illustrated in Figure 4
within the study area. Bare lands are distinguished by a lighter reddish tone on the CDA
composite image, herbaceous vegetation by a greyish response (with intermittent stream
segments) and water by black or blue tones. Figure 4a reveals distinct spatial patterns of
plantations, forests, orchards, water, bare area and other land-cover classes on each site.
Image classification resulted in 3.49% Unclassified, 36.21% Buildings, 6.28% Plantations,
20.81% Forest, 2.83% Tar and 11.17% water. With a kappa value of 0.757, the overall
accuracy of land-cover classifications was 70.50%.
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3.2. Extraction of Training Samples Digital Globe Worldview 2 Imagery

The spatial coverage of the Worldview 2 imagery is illustrated in Figure 5 within the
study area. Figure 5a shows the Digital Globe Worldview 2 Imagery with 1.24 m images for
sites. The actual colour composite imagery reveals distinct spatial patterns of plantations,
forests, orchards, water, bare area and other land-cover classes on each site. Plain regions
are distinguished by a light greyish tone, herbaceous plants with a dark green response, and
water with brown or blue tones in the actual colour composite image. Image classification
resulted in 35.92% Unclassified, 0.22% BuiltUp Area, 25.51% Plantation, 34.91% Forest,
0.53% Road and 0.43% Water. Land-cover classes were identified with an overall accuracy
of 80.50% with the associated kappa coefficient of 0.80.

Figure 4. The colour digital aerial with 0.25 m spatial resolution and validation polygons represented
with (a) yellow dots, while (b) is the true colour imagery, and (c) is the classified aerial imagery for
the study site.

3.3. Extraction of Training Samples SPOT 6 Imagery

The spatial coverage of the SPOT 6 imagery is illustrated in Figure 6 within the study
area. Figure 6a shows the SPOT 6 Imagery; the true colour composite imagery reveals
distinct spatial patterns of plantations, forests, orchards, water, bare area and other land-
cover classes on each site. The SPOT 6 composite image shows that a brownish tone,
herbaceous plants with a light green response and water with blue tones characterise
bare regions. Image classification resulted in 23.39% Unclassified, 0.820378% Water, 1.50%
Buildings, 13.66% Bare Area, 7.88% Road, 5.47% Plantation, 12.72% Orchard and 34.55%
Forest. The associated kappa coefficient of 0.857 was used to identify land-cover classes
with an overall accuracy of 88.89%.

The McNemar test is used to see if there are differences between two related groups in
a dichotomous dependent variable. It is similar to the paired-samples t-test, except that the
dependent variable is dichotomous rather than continuous.
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The null hypothesis cannot be rejected because the computed p-values from the
McNemar test for the three remote sensing platforms are greater than the significance
level alpha = 0.05. The alternative hypothesis that the classification results from the three
remote sensing platforms differ cannot be accepted because the computed p-values from
the McNemar test are more significant than the significance level alpha = 0.05.

Figure 5. The Digital Globe Worldview 2 Imagery with 1.24 m spatial resolution and valida-
tion polygons represented with (a) yellow dots, while (b) is the colour imagery, and (c) classified
Worldview 2 imagery for the study site.
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Figure 6. The SPOT 6 imagery with 6 m spatial resolution and validation polygons represented with
(a) yellow dots, (b) is the colour imagery, and (c) is the classified SPOT 6 imagery for the study site.

3.4. Species-Level Extraction of Training Samples from SPOT 6 Imagery

After running classification, validation and accuracy assessment of the three sets of im-
ages (The DigitalGlobe Worldview 2, NGI aerial photographs and CNES Spot 6 images), the
results indicated that the SPOT images produced the best classification with high levels of
accuracy with 87.50%, 87.50% and 88.89% respectively. Given this backdrop, Spot 6 satellite
images of Mauritius Thorn and River Red Gum were chosen for species-level classification.
Furthermore, based on the spectral difference between living vegetation (forest, plantation,
orchard) and senescent herbaceous or nonvegetative components, the 6 m multispectral
SPOT 6 satellite images enabled unambiguous identification of all prevalent land-cover
classes (paved road, shadow, exposed soil, water).

The spatial coverage of the SPOT 6 imagery is illustrated in Figure 6 within the
study area. Figure 6 shows the SPOT 6 Imagery with 6 m spatial resolution for sites.
The true colour composite imagery reveals distinct spatial patterns of plantations, forests,
orchards, water, bare area and other land-cover classes on each site. For example, on
the SPOT 6 composite image, bare regions are characterised by brownish tones, herba-
ceous plants by a light green response and water by blue tones. Table 2 summarises the
classification analysis, while Table 3 shows the classification performance.

Table 2. Systematic comparison using the McNemar test.

WV-NGI SPT-NGI WV-SPT

Q 3.200 2.250 0.500
z (Observed value) 1.789 1.500 0.707
|z| (Critical value) 1.960 1.960 1.960
p-value (Two-tailed) 0.074 0.134 0.480
alpha 0.05 0.05 0.05



Remote Sens. 2023, 15, 2753 13 of 18

Table 3. The cover classification performance for the three data products.

Classification
Overall

Accuracy
(Percent)

Kappa
Coefficient

User Accuracy
(Percent)

Producer
Accuracy
(Percent)

NGI-CDA 88 0.8571 100 94
DigitalGlobe-Worldview 2 88 0.8571 100 94

CNES-SPOT 6 89 0.875 100 94
Species Level CNES-SPOT 6 89 0.857 87 86

Image classification resulted in 23.69% Unclassified, 0.82% Water, 2.91% Buildings,
17.47% Bare ground, 1.26% Shadows, 2.91% Plantation, 2.48% Orchards, 33.03% Forest,
6.60% Eucalyptus and 8.84% Mauritius Thorn. Land-cover classes were identified with an
overall accuracy of 88.89% and an associated kappa coefficient of 0.8750. The producer’s
accuracy ranged from 50% for unclassified to 100% for water, while the user’s accuracy
varied from 50% for unclassified water to 100% for water (Figure 7). At a 95% confidence
level, the Z-statistics (1.75 3.15) revealed an insignificant difference in the site classifications.
A close look at the field-collected spectral, presence and absence data illustrates that, in
most cases, the Mauritius Thorn occurred as mixed pixels within the natural vegetation. At
the same time, the River Red Gum grew as homogeneous assemblages close to plantations
or abandoned plantations.

Figure 7. The SPOT 6 Imagery with 6 m spatial resolution and validation points represented with
classified aerial imagery for the study site.

4. Discussion

Using a timely, low-cost method, accurate information may be obtained about the
current distribution of Mauritius Thorn and River Red Gum across large, challenging areas.
This information can then be used in several types of rangeland ecology and management
sectors. This study investigated the effectiveness of using three satellite platforms based on
their spatial and spectral resolution, classification and statistical results from the McNemar
test to enable further species distribution modelling of the IAPS.



Remote Sens. 2023, 15, 2753 14 of 18

It was feasible to discern the characteristics appearing in an image in terms of the
object or type of land cover these features truly represent on the ground using supervised
classification, making image classification the most significant element of digital image
analysis. However, the results also show that it is not the image platform with the finest
spatial resolution that performs best in classification; it is also necessary to consider the
spectral resolution.

Using three imagery sets in the study shows how remote sensing for IAPS detection
has advanced rapidly. It progressed from CDA and photo interpretation approaches to dig-
ital image processing, with machine learning replacing manual interpretation to discover
small characteristics the human eye cannot detect. Remote sensing technology advance-
ments have resulted in less expensive and faster methods of managing forest resources.
Nonetheless, there are still limitations to their widespread use in IAPS monitoring. Moni-
toring, detection and reporting on forest health concerns have constantly been prioritised
by the Department of Forestry, Fisheries and the Environment (DFFE), Endangered Wildlife
Trust (EWT) and Working for Water (WfW), particularly in protected areas such as the VBR.
The rate of forest area conversion inside the VBR, human-caused changes in land cover,
and the threat of IAPS introduction and establishment have all heightened the demand for
improved near-real-time tools and commodities.

A variety of stakeholders must be included throughout the process to maximise the
usefulness of the established classification:

• Rather than just receiving letters of support, end users and other important stakehold-
ers should be involved in the experimental design from the start;

• The researcher selected and visited practitioners in the study region at prospective
field sites for data collection;

• Including stakeholders in fieldwork, learning from their experience, and instilling a
feeling of ownership in the project increased the likelihood of final product identifica-
tion and adoption.

This was performed to avoid the restricted cooperation required for this study among
land managers, practitioners and decision-makers. The classification results in the study
region of Eastern Soutpansberg using the SPOT 6 image identified that 336 hectares were
covered by Mauritius Thorn and 2629 hectares were covered by River Red Gum. In
comparison, the SPOT 6 image covered a total area of 35,765 hectares. A notable pattern
was with River Red Gum, with which 1l most 30% of the identified trees were located close
to plantations. In comparison, approximately 25% had escaped along watercourses, with
the remainder (45%) being found all over the area of interest.

The management goals inform the spatial scales at which the classification technique
can be adopted within the VBR [56]. Field-based surveys will always obtain the most
detailed and accurate information about IAPS. As a result, researchers may conduct on-site
measurements of foliar chemistry, canopy structure and spectral features. Nonetheless, it is
crucial to stress that the relevance of this study in advising management across the larger
environment is restricted. The operational scale is also suggested for imaging with high
spatial and spectral resolution, which is perfect for detecting IAPS. Unfortunately, such
initiatives may be geographically constrained because of the high cost and computational
requirements. The recent addition of enhanced satellite sensors (e.g., Worldview 2 and
SPOT 6) has dramatically increased the capability to cover large areas at higher spatial
resolutions. However, global evaluations of forest conditions often necessitate decreased
spatial resolution to analyse information over enormous geographic extents. Mixed pixels,
which are far more effective, frequently disguise slight changes in vegetation conditions.
However, they might be helpful in time series analysis when focusing on relative changes
in vegetation indicators at continental sizes.

The scope of the inquiry determines the optimum technique for mapping and mod-
elling the spread of IAPS, the amount of information required for the available resources,
and the period if the research was to be upscaled from the VDM to the Limpopo area
of South Africa. In that case, the assessment criterion may have to sacrifice spatial and
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spectral resolution (as well as predictive detail and accuracy) to attain the needed geo-
graphic coverage. On the other hand, a municipality worried about the propagation of a
freshly identified IAPS may forego broad regional coverage to maximise the spatial and
spectral resolution required to identify specific, newly developed IAPS. As with this study,
some typical constraints are accessible images, time and financial resources. Gathering
high-resolution pictures after September 2012 using the SPOT 6 satellite data is difficult.
However, historical broadband satellite images (SPOT 1, 2, 3, 4 and 5) may provide a
general evaluation of former circumstances dating back to 1986.

The comparison of CDA, Worldview 2, and SPOT 6 imagery demonstrated that, even
when not adequately suited to the user’s demands, diverse satellite images may give insight
that traditional monitoring cannot. The results from this study have also raised that the
most comprehensive approach to detecting novel IAPS issues can only be achieved by
combining several methods. One good example is the harmonisation of the SPOT 6 and
Worldview 2 images to improve the resolution of the resultant output. In investigating
the three satellite platforms, the best method was to investigate the relationship between
spectral characteristics from higher-resolution imagery that might be utilised to train
coarser-resolution data for a larger-scale review. The key is to recognise that there is no
single correct strategy and that various remote sensing technologies may be employed to
meet goals. According to the classification findings, SPOT 6 images performed better than
aerial and Worldview images.

Many factors influence the capacity of SPOT 6 images to assess trends and patterns in
woody plant cover. The spatial, spectral and radiometric resolutions, as well as the image
scale, image processing methods, atmospheric haze, shadow, terrain effects, the angle
between the sensor and the vegetative layers, the relative contrast between the vegetative
layers and the background, canopy architecture, crown size and height and plant density,
all have a significant impact on the detection capabilities of remotely sensed images. When
canopies of individuals of the same or different plants overlap, it is impossible to discern
whether a particular image shows one giant plant, numerous plants of the same species or
various plants of different species from a top-down perspective.

5. Conclusions

Remote sensing and GIS techniques provide unique methods for recognising and
mapping plant species. They can characterise the scope of an invasion by differentiating
the invading species from the rest of the vegetation mosaic in a timely and spatially specific
manner. The SAM classifier detected the two IAPS: Mauritius Thorn and River Red Gum.
Given these woody plant invasions’ economic and ecological ramifications, the results
show that SPOT 6 imagery has the best accuracy when mapping the extent of various
vegetation types and invasions.

Except for little mapping plants with less than 1 m diameter canopies, the 6 m scale
level of precision proved appropriate in mapping both Mauritius Thorn and River Red Gum.
A higher-resolution photograph of these plants may be required. This might be significant
if the aim is to identify the early phases of invasion with juvenile plants. These maps may
be used to monitor and plan management efforts for both under study. The SAM classifier’s
capacity to correctly identify diverse plant species has advantages in assessing biomass
levels of each species and determining the quantity and kind of treatments necessary for
woody invasion mitigation, which might differ for different shrub species. This study
demonstrates how to use SPOT 6 images with a spatial resolution of 6 m to evaluate
infestation by undesired rangeland species. This approach and technology should be
explored when high-scale maps are required for study or land management.

The SPOT 6 archive has been operational since September 2012, providing nine years
of historical analysis. The CDA images have great promise; unfortunately, the restricted
spectral resolution prevents precise classification from being used to its full potential.
Nevertheless, when comparing the classification accuracy of the three images, it was
clear that the CDA photographs had a Kappa coefficient of 0.757 (substantial strength of
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agreement), Worldview 2 had a Kappa coefficient of 0.80 (substantial strength of agreement),
and SPOT 6 imagery had a Kappa coefficient of 0.857 (almost perfect strength of agreement).
This is confirmed further by the findings of a thorough comparison of the three remote
sensing platform classification results, which reveal considerable variances between the
platforms for remote sensing.
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