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Biological data are frequently nonlinear, heteroscedastic and
conditionally dependent, and often researchers deal with
missing data. To account for characteristics common in biological
data in one algorithm, we developed the mixed cumulative
probit (MCP), a novel latent trait model that is a formal
generalization of the cumulative probit model usually used
in transition analysis. Specifically, the MCP accommodates
heteroscedasticity, mixtures of ordinal and continuous variables,
missing values, conditional dependence and alternative
specifications of the mean response and noise response. Cross-
validation selects the best model parameters (mean response and
the noise response for simple models, as well as conditional
dependence for multivariate models), and the Kullback–Leibler
divergence evaluates information gain during posterior inference
to quantify mis-specified models (conditionally dependent
versus conditionally independent). Two continuous and four
ordinal skeletal and dental variables collected from 1296
individuals (aged birth to 22 years) from the Subadult Virtual
Anthropology Database are used to introduce and demonstrate
the algorithm. In addition to describing the features of the MCP,
we provide material to help fit novel datasets using the MCP.
The flexible, general formulation with model selection provides a
process to robustly identify the modelling assumptions that are
best suited for the data at hand.
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1. Introduction
A statistical approach called transition analysis (TA) made a substantial impact in biological
anthropology when it was introduced in 2002. TA is a statistical approach—or, more accurately, a set
of similar approaches—within the broader family of ordinal response models. More precisely, it is a
cumulative link generalized linear model [1–5]. It typically uses a probit link function and a probit
regression to fit an intercept and slope to the interior term, which allows one to calculate the
probability of each ordinal stage as a function of the outcome. Combined with a prior distribution
over the outcome variable, one can then do such things as calculate the average change from one
stage to the next (and the standard deviation for that transition) and calculate the posterior
probability as a function of the outcome given a particular ordinal observation and prior age
distribution. When there is more than one transition or, equivalently, when there are more than two
stages, the model is a cumulative probit. TA could theoretically use any ordinal trait to estimate any
continuous outcome; however, in biological and forensic anthropology, TA is overwhelmingly
associated with age estimation. While it has been used in subadult age estimation (e.g. [6–8]), it is
more commonly associated with adult age estimation using the pubic symphysis, auricular surface
and cranial sutures (i.e. ADBOU) [1,3,9–11].

In this article, we describe a novel algorithm, the mixed cumulative probit (MCP), that is a formal
generalization of the single-variable cumulative probit model that underlies most TA models. We
mean something quite precise by this: when the MCP is used to model a single ordinal variable with
a linear mean response and homoscedastic noise response (concepts we describe below) one exactly
recovers a cumulative probit model. The algorithm retains the underlying conceptual approach of TA,
but with increased flexibility; for example, it accommodates continuous variables via a natural
extension and allows nonlinear mean and noise responses. There is great practical benefit to the
general approach we take because users need not decide beforehand which modelling assumptions
are consistent with their data. The flexible, general formulation with model selection (e.g. via cross-
validation in this paper) provides a process to robustly identify the modelling assumptions that are
best suited for the data at hand.

The primary goal of this article is to provide a conceptual introduction to the MCP algorithm. The
functions used to implement the algorithm are housed in a R package hosted on GitHub called yada,
which stands for ‘Yet Another Demographic Analysis’ (https://github.com/MichaelHoltonPrice/
yada). Although we were motivated to develop the MCP by an interest in age estimation, the current
intent is not to validate the MCP’s utility as an age estimation model; a separate article will assess the
performance of the MCP for subadult age estimation. The secondary goal is to provide a practical
grounding for practitioners to use our algorithm. We provide both a static, fully reproducible pipeline
or set of code to recreate the analyses presented in the manuscript (https://github.com/
MichaelHoltonPrice/rsos_mcp_intro), and a vignette, which can yield fully reproducible results, but
users can also easily implement the algorithm to answer their own research questions using the
provided templates (RPubs.com/elainechu/mcp_vignette). The vignette describes each function and
their arguments as one moves from univariate to multivariate models. There are copious comments
and documentation in the code, and, furthermore, the greater than 1000 tests exercise all the
functionality of the yada R package and provide example code that can be modified.

1.1. The impetus
The Bayesian framework of TA provides a number of advantages over frequentist, regression-based
approaches, such as the reduction of downstream consequences of age mimicry (i.e. age-at-death
distributions mimic those of the reference sample on which age estimation methods were based)
[1,3,12]. The probabilistic nature of Bayesian approaches captures the relationship between prior
beliefs (prior) and the inclusion (or exclusion) of evidence (likelihood). Specifically, the Bayesian
approach calculates the posterior probability distribution, which is the likelihood (evidence present)
times the prior (prior beliefs) divided by the normalization constant (evidence regardless of other
dependence). The posterior probability distribution provides a formal quantification of uncertainty
that has the capacity to be updated with new information (via the likelihood and prior). Therefore,
Bayesian approaches are considered the most appropriate for assessing scientific evidence inside and
outside of anthropology [13–20].

One component of a Bayesian approach that is challenging and debated is the elicitation of the prior,
or the probability distribution that represents the uncertainty about the parameter prior to examining the

https://github.com/MichaelHoltonPrice/yada
https://github.com/MichaelHoltonPrice/yada
https://github.com/MichaelHoltonPrice/rsos_mcp_intro
https://github.com/MichaelHoltonPrice/rsos_mcp_intro
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evidence. The complexities of the prior have been discussed at length in forensic settings when the target
population is not known (e.g. [17,21]). An uninformative prior assumes, in the case of age estimation, that
all ages at death are equally likely. In contrast with this, an informative prior can be derived from any
source with available background information. For example, with age estimation, this would be a
distribution of ages at death in a population [19,21–23]. Informative priors yield more accurate age
estimates compared with using an uninformative/uniform prior because they in fact provide useful
information [21,24].

TA has been used for a myriad of research endeavours in biological anthropology (e.g. [6–
8,13,17,21,25–34]). There has been an impressive shift from simple models to multi-variable and/or
multi-factorial models (e.g. [29,34–41]). Even though TA models have progressed to multivariate or
multi-factorial models, they have been restricted to ordinal input variables. The only exception we are
aware of is provided by Gueorguieva & Agresti [42] who describe a cumulative probit model
consisting of a single binary and a single continuous variable (i.e. a mixed model). For clarity, all
mixed models are multivariate, but not all multivariate models are mixed. However, to our
knowledge their model has never been used in biological anthropology, let alone age estimation.

Notable non-TA age estimation models can accommodate a mix of variable types, such as multivariate
adaptive regression splines [43–45], but these are mostly regression models in a frequentist framework.
Regression models have some inherent failings and, ultimately, may be more restrictive than useful in
biological anthropology [41]. Biological data rarely fits the assumptions of linearity (shape) and
homoscedasticity (spread). Importantly, the shape and the spread of the data are used to quantify
uncertainty around the predicted ages (i.e. 95% prediction interval), and therefore, if the core
assumptions are not met, the downstream reporting of the uncertainty may not be valid. Subsequently,
anthropologists will transform the data or subset the data according to changes in slopes or in the spread
of variance to fit the assumptions of the chosen statistical analyses. Examples of this can be seen
throughout the human biology and biological anthropology literature, whether the analyses are
conducted in bioarchaeology, forensic anthropology, demography or allometry (e.g. [43,44,46–55]).

When data are nonlinear, present with a non-normal distribution, or are heteroscedastic,
transformations can be implemented to mitigate the downstream impacts [56,57]. Even if the
transformation(s) yield(s) a more suitable match to statistical modelling assumptions, the results of
statistical tests performed on transformed data are often not relevant for the original, non-transformed
data and subsequently may be difficult to interpret [56]. For example, if researchers log transform
data and then compare the means, the lack of significance in the transformed data does not equate to
a lack of significance in the original dataset. Furthermore, if using log-transformed data in linear
regression analyses, the interpretation of the results requires downstream modifications to the
coefficients. The appropriate interpretation of the results is dependent on what was modified, which
could be the dependent variable, independent variable, or both variables.

Some researchers have dealt with nonlinearity by subsetting the data to fit two, or more, unique
linear regression models (e.g. individuals above 2 years have a specific linear model and individuals
below 2 years have a specific linear model) [48,49]. This is circular and counterproductive when used
for age estimation since any division of an age estimation model into two or more ‘sub-models’
requires one to estimate (or guesstimate) an unknown’s age prior to selecting the appropriate sub-
model and then estimating age. Other researchers have implemented nonlinear regression methods
[43–45], but still face issues with heteroscedasticity and subsequent interpretation.

Other components that are specifically difficult to deal with in regression models are missing data
and mixes of ordinal and continuous data. More variables yield more information, but more variables
also yield a higher propensity for instances of missing data. In anthropological research, missing data
are usually considered to be the result of taphonomy, trauma or recovery rates. Less discussed, but
just as important, is how missing data can be inherent to a subject and vary because of biological
reasons, for example, differential growth and development trajectories. Using this example, missing
data can be developmentally absent, which is informative compared with missing at random. This is
an obvious issue if the data collection method starts at ‘first stage of appearance’ rather than
‘absence’. While seemingly trivial, the differential data collection strategies are apparent when
visualizing missing data in subadult age indicators (electronic supplementary material, figure S4). For
instance, in contrast with epiphyseal fusion data, approximately 50% of data are missing from the
dentition in individuals younger than 10 years of age because it is not accounted for by
developmental staging systems (electronic supplementary material, figure S4). Konigsberg et al. [38]
incorporated a ‘crypt absent’ and ‘crypt present’ stage, which yields fewer missing data for younger
individuals. Another instance of missing data is when age indicators transition into non-age indicator
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variables. For example, as long bones increase in length during active growth, they are considered an age
indicator for subadults. However, as soon as epiphyseal fusion is active, the length of the bone is no
longer considered an age indicator. Fusion stages of proximal and distal long bone epiphyses, which
indicate active maturation, are used instead. These examples are quite specific to growth and
development, but conceptually are important to consider because of how cumulative probits result in
average ages of transition between ordinal stages.

The preceding review of anthropological and statistical literature makes it abundantly clear that a
Bayesian framework is best for modelling biological data; however, no algorithm is currently available
that can accommodate common features of biological data. The MCP was developed to accommodate,
in a single algorithm, multiple statistical characteristics of the underlying data that are empirically
salient. Specifically, the MCP accommodates heteroscedasticity, ordinal and continuous response
variables, missing values, conditional dependence and alternative specifications of the mean response
(shape) and noise response (spread). Additionally, we used the Kullback–Leibler (KL) divergence
statistic to quantify the severity of model mis-specifications, such as incorrectly assuming conditional
independence. Importantly, although we developed the MCP algorithm for use in biological
anthropology, the algorithm is applicable to any situation with the same data structure and modelling
needs. Therefore, this algorithm could be used to estimate adult age at death, stature and time since
death, among other topics, as well as being used beyond the boundaries of biological anthropology.
i.10:220963
2. Materials and methods
The data used are part of the Subadult Virtual Anthropology Database (SVAD), a database comprising
growth and development markers of geographically diverse children aged between birth and 22 years
[58]. Data were primarily collected from computed tomography (CT) images generated in the past
approximately 10 years, which offered the ability to collect up to 64 variables on each individual. The
variables currently available in SVAD include 18 measurements of the six long bones (humerus,
radius, ulna, femur, tibia and fibula), dental developmental stages of the 32 permanent teeth, and
epiphyseal fusion stages of the proximal and distal long bone epiphyses, carpals, tarsals, the patella,
the calcaneal tuberosity, the ilium and the ischium. The magnitude of data (both in the number of
samples and the number of variables) is a remarkable feature of ‘virtual samples’ and provides an
extreme advantage when compared with ‘classic’ skeletal collections comprising solely physical
remains. As such, we were able to develop a model using a high-dimensional data frame with
coverage across the growth and development period.

For the data-driven and visual explanation of the MCP, we included individuals between the ages of
birth and 22 years from the United States. The sample (n = 1296) is composed of individuals from two
medical examiner’s offices in the United States: University of New Mexico Health Sciences Center,
Office of the Medical Investigator (n = 1053, 81% of total) and the Office of the Chief Medical
Examiner in Baltimore, Maryland (n = 243, 19% of total). Because the purpose of the manuscript is to
describe the algorithm and illustrate its capacities and not discuss the performance of the resulting
age estimation models, we chose to randomly sample six of the 64 variables in the SVAD, while
retaining an even representation of the variable types (continuous, binary and ordinal). The six
variables randomly chosen for inclusion are femoral diaphyseal length (FDL), radius diaphyseal
length (RDL), humerus medial epicondyle epiphyseal fusion (HME_EF), tarsal ossification (TC_Oss),
mandibular lateral incisor development (man_I2) and maxillary first molar development (max_M1).
The two diaphyseal lengths were taken to the nearest hundredth of a millimetre on three-dimensional
surface reconstructions of the corresponding skeletal elements following definitions for virtual
elements. The four ordinal variables were scored directly on CT scans of the individuals using three
different scales [59]. Epiphyseal fusion for the humeral medial epicondyle (HME_EF) was collected
using a seven-stage system but collapsed into a four-stage system of absent (0), present (1), active
fusion (1/2, 2, 2/3, 3) and fused (4) [60]. The number of tarsal bones (TC_Oss) present ranged from 0
(none present) to 7 (all present) though similar appearance times led to collapsing into six stages
(calcaneus and talus were collapsed). Dental development (man_I2 and max_M1) was scored using a
13-stage system ranging from 1 (initial cusp formation) to 13 (apex closed) [61], though the last two
apical stages were collapsed. All data were collected through the Amira™ three-dimensional
visualization and reconstruction software (Amira™ v. 6.7.0. 1999–2018 FEI SAS, a part of Thermo
Fisher Scientific), and detailed methodologies for all variables and their associated error rates can be
found in the SVAD data collection protocols [59,60] and in Corron et al.’s study [62].
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Figure 1. (a) FDL versus known age with a heteroscedastic maximum-likelihood fit. Red dots are observations, the black line is the
mean response, and the blue shaded region marks the noise bounds. (b) Maxillary first molar (max_M1) developmental score versus
known age. (c) Probability of observing the dental developmental stage of 7 (v = 7) as a function of age for max_M1. The grey
band that extends from the middle to bottom plot marks the range of ages for which v = 7 is observed in the data. The black curve
is the predicted probability the model preferred by cross-validation (power law for the mean and heteroscedastic noise). The red
dots are the observed proportions in the underlying data, which are calculated by binning observations by known age value and
calculating the proportion of observations in each bin for which v = 7.
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2.1. The algorithm
Below is a high-level, conceptual introduction to the MCP algorithm. A complete description of the model is
provided in the electronic supplementary material, all source code to replicate the results are provided in a
GitHub repository at GitHub.com/ElaineYChu/mcp_s-age_pipeline and a vignette providing the code on a
step-by-step basis is provided at RPubs.com/elainechu/mcp_vignette. We begin by describing the special
cases of single-variable (univariate) continuous and ordinal models, then discuss how cross-validation
determines the best parametric specifications and how information theory helps with further interpretations.
Next, we summarize our multivariate model, which accommodates mixtures of ordinal and continuous
variables, as well as missing response variables. We also describe a second, distinct cross-validation step used
to identify the conditional correlation structure that links variables and, again, how information theory helps
with interpretations. Where appropriate, we refer the reader to figures and other results that underscore or
reinforce the description of the statisticalmethods. All analyseswere performed in the R statistical language [63].

2.1.1. Univariate continuous models

For continuous variables, we assume that the observed response, w (the y-axis variable figure 1a), is
normally distributed with a mean of h(x, c) and a s.d. of c(x, k),

w � N (h,c):
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For the parametrization of the mean, we use a scaled, offset power law, h(x, c) ¼ c2xc1 þ c3: For the
parametrization of the s.d., we consider either constant noise, c(x, k) ¼ k1 (homoscedastic) or linear
positive noise, c(x, k) ¼ k1[1þ k2x] (heteroscedastic). To ensure that the standard deviation is always
positive, we require all parameters to be positive; since the intercept for the heteroscedastic model must
be positive, we refer to this noise model as ‘linear positive intercept.’ Figure 1a shows the FDL value (w)
as a function of age (x). The red dots are pairs of values for individuals of known age. The solid line is
the function h(x, c) that resulted from a maximum likelihood, univariate fit to the known age data for the
heteroscedastic model. The shaded region shows the noise level as a function of age (h+ c).

2.1.2. Univariate ordinal models

For ordinal variables, it is the latent (unobserved) response that is normally distributed, with mean g(x, b)
and s.d. g(x, b),

v� � N (h,g):

The observed ordinal response, v, is related to the latent response, v�, via a vector of boundary
parameters, t, per

v ¼
0 if �1 , v� � t1
m if tm , v� � tmþ1
M if tM , v� � 1

8<
: :

These boundary parameters, tm, are part of the model parametrization and included in the
maximum-likelihood fitting. The assumption that the noise is normally distributed makes this a probit
model. This assumption of a probit link function is an entirely distinct assumption from the choice of
the mean and noise responses. For statistical identifiability reasons (see electronic supplementary
material, §1.3), we allow three specifications of the mean: (i) an unscaled, unshifted power law,
g(x, b) ¼ xb1 ; (ii) a logarithm, g(x, b) ¼ log x; or (iii) a linear function, g(x, b) ¼ x. The response
functions are unscaled and unshifted to ensure statistical identifiability (see electronic supplementary
material, §1.3). Often, in previous work, one of these specifications of the mean is assumed without
being checked, usually either the logarithm or the linear specification (e.g. [2,24]). We adopt the same
noise specifications for ordinal variables as for continuous variables. In total, therefore, there are 3�2 =
6 distinct models that we cross-validate for univariate ordinal fits (see §2.13 and table 1). Figure 1b
shows the ordinal value of max_M1 as a function of known age. It is more challenging to visualize
ordinal fits; in figure 1c we visualize the fit for one ordinal response, v = 7, which refers to the dental
developmental stage of 7.

2.1.3. Cross-validation of univariate models (Step 1)

Visually, there is clearly greater variability in the FDL values of older individuals compared with younger
individuals, which is reflected in the increasing value of noise as a function of age for the heteroscedastic fit
(the shaded region in figure 1a). Similarly, there is greater variability in the max_M1 values of
older individuals compared with younger individuals (figure 1b). Both visualizations suggest that a
heteroscedastic noise model is needed. However, rather than relying on visual interpretations to choose
parametric forms, we used fourfold cross-validation to determine, for each individual variable, the best
parametric model, accounting for both the mean and noise responses. For clarity, researchers can use any
number of folds or AIC to choose the parametric forms.

To accomplish this, we assigned each observation to one of four evenly sized test-folds, using the
same cross-validation folds for all six variables. The remaining observations constitute the training
data for that test fold. The vector of responses, y, is for a single variable (and multiple individuals); it
is equivalent to the vector of responses w (for continuous variables) and v (for ordinal variables).
A different symbol is used since the univariate response vector can be either continuous or ordinal.
In the electronic supplementary material (e.g. §1.5), the symbol y is also used for a vector of mixed
responses for a single individual. We consider this ‘abuse of notation’ acceptable since the way the
symbol is used is always clear from the context.

The model specification consists of a specification of the mean, a specification of the noise and (for
ordinal variables) the number of ordinal categories for ordinal variables, M. For continuous variables,
we allow only a single specification of the mean (power law) and two specifications of the noise
(constant and linear positive intercept), so the cross-validation for each continuous variable includes



Table 1. Variable information and the associated cross-validated results for Step 1 of the cross-validation (univariate models).
The model with the smallest negative log-likelihood is considered the best fit (italicized). For each ordinal variable, six distinct
models were assessed (three choices for the parametrization of the mean and two for the noise). For each continuous variable,
two distinct models were assessed (one choice for the parametrization of the mean and two for the noise). The ‘constant’ noise
specification is the homoscedastic model and the ‘linear positive intercept’ noise specification is the heteroscedastic model. The
heteroscedastic model was preferred by cross-validation for five of the six models.

response variable variable group
variable
type mean specification noise specification

negative log-
likelihood

humerus medial

epicondyle

(HME_EF)

epiphyseal fusion ordinal power law ordinal constant 451.46

power law ordinal linear positive intercept 451.04

logarithmic constant 482.78

logarithmic linear positive intercept 482.78

linear constant 460.03

linear linear positive intercept 452.04

tarsal count

(TC_Oss)

ossification ordinal power law ordinal constant 441.14

power law ordinal linear positive intercept 439.24

logarithmic constant rejected for mean

specification not

able to be fit

logarithmic linear positive intercept rejected for mean

specification not

able to be fit

linear constant 498.58

linear linear positive intercept 452.79

maxillary first molar

(max_M1)

dental

development

ordinal power law ordinal constant 338.54

power law ordinal linear positive intercept 335.88

logarithmic constant 362.05

logarithmic linear positive intercept 362.05

linear constant 432.10

linear linear positive intercept 360.65

mandibular lateral

incisor (man_I2)

dental

development

ordinal power law ordinal constant 352.97

power law ordinal linear positive intercept 358.28

logarithmic constant 365.62

logarithmic linear positive intercept 365.62

linear constant 419.08

linear linear positive intercept rejected for large

beta2

FDL long bone

measurement

continuous power law constant 2464.90

power law linear positive intercept 2352.01

RDL long bone

measurement

continuous power law constant 1958.46

power law linear positive intercept 1887.47
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two models. A maximum-likelihood fit (full details in the electronic supplementary material) is done
using the training data for each cross-validation fold, yielding a best-fit parameter vector, uy. This
parameter vector, the model specification and the test data are used to calculate the out-of-sample
negative log-likelihood for the fold, ĥ; the overall out-of-sample negative log-likelihood is then
calculated by summing those from the four cross-validation folds. The preferred model is the one with



cross validation
flow chart

(Training Data)x, y

θy

θx

Max. Lik.
Fit (y)

x̂, ŷ
(Test Data)

Model
Spec. (y)

Out of Sample
Neg. Log Lik.

(a)
posterior inference
flow chart

Model
Spec. (x)

Model
Spec. (y)

xcalc

p(xcalc�θx)

Calc.
Prior

Calc.
Posterior

Calc.
Lik.

(b)

η̂

p(y�xcalc, θy)
�

p(xcalc�y, θx, θy)
�

θy, y
�

Figure 2. (a) The flow chart summarizes the cross-validation for a univariate model. The vectors x and y are the training data and
the vectors x̂ and ŷ the test data. For each fit, a model specification is needed. This consists primarily of the mean function and the
noise mode (see electronic supplementary material). The metric for choosing among models is the out-of-sample negative log-
likelihood calculated using the test data. (b) The flow chart summarizes the posterior calculation. The vector parametrizes the
prior, and the vector, which results from a maximum-likelihood fit as shown in the left flow chart, parametrizes the likelihood.
Although we use an offset Weibull mixture for the specification of the prior (‘Model Spec. (x)’), yada supports additional
specifications that are more suitable for archaeological and forensic age estimation (notably a uniform prior). A vector of ages
at which to calculate the posterior (calc) must be provided (though yada provides tools for automatically choosing this vector).
The response vector represents the new response variable for which the posterior density (a function of age, calc) is calculated.
The prior and likelihood are multiplied pointwise to yield an un-normalized posterior, which is then normalized to integrate to
1, yielding the final posterior.
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the lowest value of this summed negative log-likelihood (figure 2a). The negative log-likelihood was
selected for model selection because of consistency in research design; for example, negative
log-likelihood was used for optimization.
2.1.4. Multivariate mixed models and conditional dependence

As discussed above, few previous approaches have adequately allowed for the simultaneous use of
ordinal and continuous variables to do posterior inference. The MCP accommodates mixed variables
by assuming that the only difference between ordinal and continuous variables is that the latent
response for ordinal variables cannot be directly observed. One way to form a multivariate model is
to ‘stack’ all the univariate models—that is, to form the likelihood by pointwise multiplying the
likelihoods of all the individual univariate models. Below, we describe how to generalize this
approach to allow conditional dependence among variables. If all the correlation terms in the
covariance matrix are 0, the conditionally independent model obtained via ‘stacking’ is exactly recovered.

Variables are statistically independent if the value (or realization) of one variable does not influence
the probability of the other. Two variables are conditionally dependent if after conditioning on another
variable, they are not conditionally independent of each other. For example, individuals who have one
long bone measurement that is large for their age (age is the conditioned variable) will frequently
have large values for other long bone measurements. If this is the case, and conditional independence
is nevertheless assumed, posterior inference will be overconfident, which means the posterior density
function will be too narrow. The reason is that, when assuming conditional independence, one
assumes that each variable independently informs on the posterior age distribution. Yet, a variable
that is perfectly correlated with another after conditioning provides no additional information.

For mixed models, the mean response is modelled independently for each individual variable as
described above for univariate models; however, the noise is modelled as a multivariate normal with a
covariance matrix, Σ. The scale of the noise is exactly as before for univariate models. For example, for
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the jth ordinal variable, the corresponding diagonal term of the covariance matrix is S jj ¼ g2j (and similarly
for continuous variables). In principle, we allow arbitrary values for the off-diagonal terms, which we
parametrize using correlation coefficients ρil, Sil ¼ rilSiiSll. However, calculating the likelihood for a
multivariate model (see electronic supplementary material for full details) involves integrating a
multivariate normal density on a rectangular domain, which is computationally expensive. For example,
the six-variable model used in this example took approximately 5 days. As you increase the number of
variables, the processing time increases. Therefore, it is useful to group together variables with similar
conditional dependencies and assign to them the same values for the correlation coefficients. In so doing,
the parametrization for the correlation terms involves fewer terms, and we choose to represent these
terms using the parameter vector z. See the electronic supplementary material for the precise mapping
between the elements of z and the correlation coefficients, ρil.

Adopting such groupings does not reduce the time needed for the likelihood calculation, but it does
reduce the dimensionality of the optimization problem to find maximum-likelihood parameter vectors.
Unlike the overall scale of the noise, we do not allow the correlation coefficients to depend on x (in this
case, age), an assumption that could be relaxed in future work.

2.1.5. Cross-validation of conditional dependence (Step 2)

The second cross-validation step involved comparing a conditionally independent model, in which all
the correlation coefficients (ρil) were set to zero, with a conditionally dependent model, in which they
were varied, along with the other parameters, to maximize the likelihood. In fact, the likelihood of the
conditionally independent model is simply the pointwise product of the likelihoods of the univariate
models, which are statistically independent of each other by construction. The parameter values of the
multivariate conditionally independent model are exactly those of the univariate fits. Essentially,
the conditionally independent model can be constructed directly from the univariate fits. We restricted
the correlation terms in the matter outlined in the preceding paragraph by requiring that the dental
variables (max_M1 and man_I2) behaved identically and that the continuous variables (FDL and
RDL) behaved identically. This yielded eight independent correlation terms (see electronic
supplementary material). Similar to univariate cross-validation (Step 1), fourfold cross-validation is
used to calculate summed negative log-likelihood estimates for the conditionally independent and
conditionally dependent models, of which the lowest summed estimate is the preferred model.

2.1.6. Missing values

Amajor advantage of the mixed model just described is that it can inherently accommodate missing values
for any response variable, since missing variables can be accounted for by marginalizing them—that is,
integrating them on the interval negative to positive infinity. For the likelihood calculation,
marginalizing a variable is exactly equivalent to removing that variable from the likelihood calculation.

2.1.7. Posterior inference, information gain and severity of model mis-specification

Here, we describe how posterior inference is conducted, explain how the KL divergence can be used to
quantify information gain in going from a prior to posterior density, and use the KL divergence to
quantify the severity of model specification with several examples. We provide a brief description of
the procedure for posterior inference, but full details are available in electronic supplementary
material, §1.5 and the process is summarized in figure 2b. The goal of this data-driven example is to
estimate age using a set of response variables. We start with a prior probability density over age. In
practice, this is often assumed to be a minimally informative distribution (probably a uniform
distribution) or, for skeletal age estimation, an informative distribution, such as late twentieth-century
homicides in the United States (e.g. [64]). We use an offset Weibull mixture fit of the vector of known
ages of individuals in the SVAD database (see electronic supplementary material, figure S1). The
likelihood for the Bayesian update step is the likelihood of the known response vector as a function of
age. The prior and likelihood are multiplied pointwise for each x-value, which yields an un-
normalized posterior density vector. This vector is normalized to numerically integrate to 1, which
yields the final posterior. In figure 2, ~y consists of a mixed set of responses for a single individual,
which, as already discussed above, could be considered abuse of notation. This vector ~y provides the
additional information used to update the prior density, yielding the posterior density. We use the
2.5% and 97.5% values of the quantile of the posterior distribution (i.e. equal-tailed interval) rather
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than the highest density interval to determine the confidence interval and we used the posterior mean as
the point estimate. The KL divergence of the posterior distribution P(x) from the prior distribution Q(x) is

DKL ¼ �
X
n

P(xn) log2
Q(xn)
P(xn)

,

where x is a vector of independent variables (i.e. ages) indexed by n where the quantities of interest are
calculated (usually a regularly spaced set of values across the entire domain of interest). We use a
logarithm of base 2 so that the unit of the KL divergence is bits. The KL divergence measures the
information gain in going from the prior to posterior—that is, it quantifies the value of knowing the
response vector, ~y. The larger the value, the more information has been gained.
rnal/rsos
R.Soc.Open

Sci.10:220963
3. Results
3.1. Univariate models
Table 1 summarizes the cross-validation results for univariate ordinal and continuous models. For ordinal
variables, we allow three specifications of the mean (power law ordinal, logarithmic and linear) and the
same two noise specifications as for continuous variables, so the cross-validation for each ordinal
variable involves six models. The power law was chosen for all six variables, regardless of being ordinal
or continuous. The heteroscedastic model had the smallest negative log-likelihoods for the two
continuous variables and three of the four ordinal variables, indicating that for five of the six variables
the more complex heteroscedastic model was preferred to the homoscedastic model (table 1). These
results demonstrate that, for this data, heteroscedasticity and nonlinearity must be accounted for in the
statistical modelling for each variable; failure to do so leads to poor, mis-specified models.

3.2. Multivariate mixed models
We fit a conditionally dependent model to the full set of six variables and found that, indeed, conditional
correlations exist. The conditional correlations are captured by the z-parameters in electronic
supplementary material, §1.4. We used the KL divergence to quantify the effect of incorrectly
assuming conditional dependence. We used the same cross-validation folds for the second cross-
validation step as for the first. The out-of-sample negative log-likelihood for the conditionally
independent six-variable model was 5818.61, whereas that of the conditionally dependent six-variable
model was 5534.68. Since the latter is smaller, the conditionally dependent mode is preferred.

Figure 3 presents three examples of posterior inference, in each case involving the ‘good’model and a
‘poor’ or mis-specified model. All three plots share the same x-axis, have the same y-axis range, and are
for an individual with a response vector y ¼ [1,5,10,11,317:11,167:5]T, where the variable ordering is
‘HME_EF’, ‘TC_Oss’, ‘max_M1’, ‘man_I2’, ‘FDL’ (mm) and ‘RDL’ (mm). In the vector, ‘1’ corresponds
to a developmental score of ‘present’ for the HME_EF, ‘5’ corresponds to the ‘present’ tarsal count,
and so forth. The individual has a known age of x = 9.945205 years. Figure 3a uses only the FDL
value for posterior inference. As discussed above, the cross-validation favours the heteroscedastic
model, so it is the specified model (i.e. the good model), and the homoscedastic model is the mis-
specified model. The reconstructed uncertainty for a variable that exhibits heteroscedasticity is usually
too high (for young individuals) or too low (for old individuals) if a homoscedastic model is
incorrectly used. In figure 3a, the individual is relatively old, so the homoscedastic is overconfident,
and that is quantified by the KL divergence, which is 4.61 bits for the homoscedastic FDL model and
3.64 bits for the heteroscedastic FDL model.

For some observations in an intermediate range, or if the amount of heteroscedasticity is small, the
heteroscedastic model and mis-specified homoscedastic model can yield similar uncertainties. This is
illustrated in figure 3b, which shows the posterior density if only the max_M1 (v = 10) is used for
posterior inference. The KL divergence is 3.87 for the homoscedastic max_M1 model and 3.65 for the
heteroscedastic max_M1 model. Whereas the homoscedastic FDL model is 0.97 bits too confident,
the homoscedastic max_M1 model is only 0.22 bits too confident.

Figure 3c compares the posterior density of the good, conditionally dependent, six-variable model
with the mis-specified (overly confident), six-variable, conditionally independent model. The KL
divergence for the conditionally independent model is 4.78 and that of the conditionally dependent
model is 3.94, with the former being 0.84 bits too confident. To calculate the KL divergence, one must
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Figure 3. Posterior density estimates for a variety of models for an individual of known age (the vertical green bars). The plots share
the same x-axis and y-axis ranges. The legend provides the KL divergence values for each of two models, one bad (mis-specified)
and one good. (a) Posterior density estimate using only the FDL response. The mis-specified homoscedastic model is overconfident,
which is reflected by a larger value for the KL divergence (4.76 versus 3.73). (b) Posterior density estimate using only the max_M1
response. The mis-specified homoscedastic model is slightly overconfident. (c) Posterior density estimate using all six variables. The
mis-specified conditionally independent model is overconfident.
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specify the response vector to use for posterior inference. In the electronic supplementary material §4, we
describe how one can instead treat the response vector as a random variable (conditioning on a baseline
age). This yields an alternative information theoretic measure, the mutual information, which indicates
on average how much information is gained, at each age, from learning the response vector. In the
electronic supplementary material, figure S3 visualizes the mutual information of FDL as a continuous
measure and FDL as an ordinal measure. The plot demonstrates that information is necessarily lost
when turning the continuous FDL measurement into an ordinal measure.
4. Discussion and conclusion
To the authors’ knowledge, the MCP is the only cumulative link-generalized linear TA algorithm that
accommodates heteroscedasticity, a mix of ordinal and continuous response variables, missing values,
conditional dependence and alternative specifications of the mean and noise response functions. The
model supports, in principle, any number of variables and any numbers of categories for each ordinal
variable. We allow only one independent variable (demonstrated here with age) and use a specific
parametric form for the dependence of latent dependent variables on the independent variable. This
combination of features into one model is primarily what makes it so unique; other models may
incorporate a number of these features, but none combine all of them. Therefore, while the MCP was
developmentally driven by the needs of subadult age estimation, it has a wide range of potential
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applications. Specifically, the MCP algorithm is useful in any situation where the predictor variables are
continuous and/or ordinal, the response variable is continuous, the predictor variables’ relationship to
the response variable is nonlinear and/or linear and homoscedastic and/or heteroscedastic, and—if
using multiple variables—conditional dependence can be incorporated. This combination easily extends
the algorithm’s application beyond the boundaries of biological anthropology, including scaling,
behavioural ecology and forensic sciences, among others.

Information theory (the KL divergence andmutual information) can be used to assess information gain
when doing posterior inference, including quantifying the impact of a mis-specified model. The reason we
can identifymis-specifiedmodels is thatwe conductedmodel selection using fourfold cross-validation. This
contrastswithmuch, though certainly not all, previouswork in biological anthropology,where no checks on
the validity of core modelling assumptions were done. As Gelman & Shalizi [65, p. 10] point out, however,
‘allmodels in use arewrong—notmerely falsifiable, but actually false’. The implication of this observation is
that theremay be bettermodels than the oneswe assessed in the cross-validation. Indeed, it seems likely that
one assumption we made will not hold up to future scrutiny in biological anthropology in particular: the
assumption that the conditional correlations (the z-parameters described above and in electronic
supplementary material, §1.4) do not depend on x, which in this example is age. That is, while we allow
for the possibility that the mean response and diagonal terms of the multivariate covariate matrix are
age dependent, we do not allow for age dependence in the correlations, which contradicts preliminary
findings we report in Stull et al. [60]. In assessing the presence of conditional correlations, we only
tested a four-group model (conditionally dependent model) for comparison against a conditionally
independent model. Second, we already know that future work should assess the time-dependence of
the conditional correlation parameters, so any effort put into assessing groupings of non-age-dependent
correlations may be wasted. In short, we acknowledge these limitations in our modelling, but think it is
better to report our findings in their current manifestation before tackling these challenging complications.

Scientific integrity depends on the reproducibility of research, which is achieved through
transparency [66]. Anthropologists are recognizing the importance of an ecosystem that recognizes
reproducibility and transparency as an ethical responsibility and a scientific obligation (e.g. [67,68]);
however, restricted access to algorithms and data have hampered innovation and the widespread use
of state-of-the-art algorithms, especially for age estimation in biological anthropology. Our work is
fully reproducible following the source code and data available via open access (https://github.com/
MichaelHoltonPrice/rsos_mcp_intro) and the full algorithm is documented in the electronic
supplementary material. The yada package (GitHub.com/MichaelHoltonPrice/yada) contains all the
original functions used in the MCP pipeline.

While reproducibility is essential, one of the largest disconnects in biological anthropology is between
researchers and practitioners. As such, innovative contributions like the MCP, have a risk of minimally
impacting the larger scientific community because of perceived or real limitations to their application
both within the anthropological realm and in other research contexts. Scientists have different niches,
expertise, backgrounds and, therefore, the capability of each to use computationally demanding
statistical models. ‘Better models’ are theoretically preferred, but if there is no ‘easy’ way to apply them
(i.e. through graphical user interfaces (GUIs)), then they will not be applied. Thus, accessibility is crucial
for methodological and other overall advancements in any field. While advancing the overall scientific
endeavours, accessibility concurrently lessens the learning curve associated with a complex analytical
approach, and increases the implementation of appropriate statistics, no matter the economic means of
the practitioner or the population one is serving [69]. Therefore, a step-by-step vignette (RPubs.com/
elainechu/mcp_vignette) provides users with an easy-to-follow format to fully reproduce the MCP
models discussed in this article. Additionally in the vignette, we have provided an R script for easy-
to-use code for future researchers interested in applying the MCP to their own research questions.

As we have learned in preparing this manuscript, building and fitting models that can accommodate
the complexity of biological data can be quite challenging. Hindrances to innovation are therefore linked
to computational limitations, a prevailing culture of restricted access to data, and limited knowledge and
skills in the biological anthropology community for designing novel algorithms. There are, of course,
some anthropologists (e.g. Dr. Lyle Konigsberg) who make their code freely available, and we
applaud for his transparency and openness. While these anthropologists have set the precedent, fully
reproducible research has not been the prevailing practice in biological anthropology [70]. Active
collaboration to develop and improve open-source code is, in our minds, the only answer to the
modelling challenges faced by biological anthropologists working with inherently complex biological
data and forensic scientists needing advanced analytical techniques.

https://github.com/MichaelHoltonPrice/rsos_mcp_intro
https://github.com/MichaelHoltonPrice/rsos_mcp_intro
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