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Abstract

This study investigated the use of a limit equilibrium model to simulate the time-dependent scaling of hard rock pillars. In
the manganese bord and pillar mines in South Africa, extensive scaling is observed for pillars characterised by a high joint
density. It appears that the scaling occurs in a time-dependent fashion. Evidence for this is the ongoing deterioration of pillars
in old areas, even after the pillars are reinforced with thin spray-on liners. Monitoring of selected pillars were conducted in an
attempt to quantify the rate of time-dependent scaling. Contrary to expectations, almost no additional scaling was recorded
for the pillars during a 3-month monitoring period. The scaling distance for pillars of different ages could be measured
and it seems as if most of the scaling occurred soon after the pillars are formed. Only a limited amount of additional time-
dependent scaling seems to occur after this. Numerical simulations of the time-dependent scaling were conducted using a
displacement discontinuity code and a limit equilibrium constitutive model. The postulated exponential decay of the failed
rock mass strength at the edges of the pillars resulted in simulated behaviour that is qualitatively similar to the underground
observations. The results from this study are encouraging and the method can be used to investigate the long-term stability
of bord and pillar excavations. Further work is required to improve on the calibration of the model and to better quantify the
rate of scaling of the underground pillars.

Highlights

e Time-dependent scaling gradually reduces the strength of pillars. This paper presents a study of this behaviour in a hard
rock bord and pillar mine.

¢ A numerical modelling approach to simulate time-dependent pillar failure, on a mine-wide scale, is described in the paper.
It consists of a displacement discontinuity boundary element method with a time-dependent limit equilibrium model.

e The behaviour of the hard rock pillars in the manganese mines in South Africa is used to test the proposed model. It
provides valuable data for researchers interested in case studies of time-dependent pillar strength.

e The proposed modelling methodology seems valuable to design layouts where long-term stability is a requirement.
Although the focus in this paper is on hard rock mines, it can also be used for coal pillars.

Keywords Time-dependent pillar failure - Limit equilibrium model - Bord and pillar layout

pillar strength studies and formulae are summarised in Mar-
tin and Maybee (2000). Examples are also given in Gonza-
lez-Nicieza et al. (2006) and Esterhuizen et al. (2011). These

1 Introduction

Extensive research has been conducted on the strength of

hard rock pillars. Owing to its simplicity, empirical strength
formulae are popular and it is used extensively by practicing
rock engineers to design layouts. A number of the historic
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formulae are based on observed pillar failures and typically
takes the form of either a power- or linear-type equation.
These equations have been used to predict pillar strengths
for a wide range of pillar shapes and rock mass strengths.
The pillar strength is mostly dependent on some rock mass
strength parameters and the width and height of the pillar.
A significant drawback of this approach is that the pillar
strength estimates are empirical and the results should not be
extrapolated beyond the range of the data which were used
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to derive it. For example, the use of the Canadian Hedley
and Grant (1972) formula in South African platinum mines,
where there is occasionally a weak clay layer present in the
pillars, has led to spectacular mine-wide collapses (Malan
and Napier 2011). It is therefore important to also consider
the mode of failure of the pillars. This was highlighted by
Esterhuizen et al. (2019) who presented a case study in
which tall, slender (18 m high, 9 m wide) pillars collapsed
at a limestone mine in Pennsylvania. The large angular dis-
continuities in the pillars contributed to the collapse and
these were not accounted for when the pillar strength was
estimated. A further drawback is that the empirical strength
equations does not consider the possible time-dependent
failure of the pillars. Martin and Maybee (2000) mention
that: “Observations of pillar failures in Canadian hard-rock
mines indicate that the dominant mode of failure is progres-
sive slabbing and spalling”. The time-dependent nature of
this progressive slabbing was not quantified in the study,
however, and further work is required.

In terms of coal mining, Van der Merwe (2003, 2004,
2016) describes observations made on the progressive weak-
ening of coal pillars from the edges towards the core of the
pillar. He noted that at some stage the remaining pillar core
will be too small to handle the imposed load and it will fail
completely. The time of failure can possibly be predicted by
investigating the rate of scaling for different areas and seams.
The rate of scaling was studied by comparing the actual life
spans to the predicted time of failure for pillars in a database
of failed pillars. Van der Merwe (2003) indicated that the
scaling rate has an inverse relationship to time and a direct
relationship to the mining height. The pillar data indicated a
relationship between the scaling rate and the mining height
over time (1/T). Based on the data, he proposed the follow-
ing empirical equation to determine the rate of scaling, R,
for coal pillars:

R= m[%] (1)

where x and m are dimensionless constants. Van der Merwe
(2016) published calibrated values for these parameters
based on an extended database, namely x = 0.7549 and
m = 0.1799.

Numerical modelling to simulate time-dependent pillar
failure is an alternative method to study the time-dependent
behaviour. Napier and Malan (2012) simulated the time-
dependent crush pillar behaviour in South African plati-
num mines using a limit equilibrium model. This model is
explored further in this current paper using underground
data from a hard rock bord and pillar mine. An example
of the complex modelling of time-dependent pillar scaling
is given in the paper by Sainoki and Mitri (2017). A non-
linear rheological constitutive model is used in the code. The
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numerical study considered pillar failure occurring over a
long period of time. The objective of the study was to deter-
mine the risk of surface subsidence caused by the eventual
collapse of the pillars. The simulated damage in the pillar is
shown in the paper and it illustrates that the depth of scaling
increases with time. This clearly demonstrates the value of
these models, but a major drawback is that the complex con-
stitutive models are difficult to calibrate. A numerical mod-
elling study was also conducted by Wang and Cai (2021)
to investigate the time-dependent deformation of pillars. A
grain-based time to failure model (GBM-TtoF) was used to
study the time-dependent deformation of a pillar. To govern
the creep deformation of the grains in the model, a Burgers
creep model was adopted (Aydan et al. 2013).This model
is also complex and, although the expected behaviour can
be simulated, the constitutive model is difficult to calibrate.

In summary, very little work has been done on the time-
dependent scaling of hard rock pillars in the past. Although
hard rock pillars are not intuitively associated with time-
dependent scaling, the authors collected underground data
from a manganese mine (described in Sect. 2), where this
pillar behaviour was observed in some of the old mining
areas (Fig. 1). The ongoing scaling of the pillar after the
application of the thin spray-on liner is considered as evi-
dence that the scaling occurs in a time-dependent fashion.
This behaviour may affect the long-term stability of sec-
tions of the mine and it should be quantified. The key objec-
tive of the paper was therefore an attempt to simulate the
time-dependent scaling of pillars in a hard rock bord and
pillar mine and to compare the numerical results with field
observations.

Fig. 1 Time-dependent scaling of a manganese pillar in a hard rock
bord and pillar mine in South Africa. The pillar was covered with
thin spray-on liner to prevent the scaling, but the ongoing failure
destroyed the liner and the scaling continued
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2 Underground Observations of Pillar
Behaviour

The manganese mining operations in the Kalahari region
(Northern Cape Province) of South Africa is a major con-
tributor to the economy of the country. The Kalahari Man-
ganese Field is approximately 2.2 Ga years old and is the
world’s premier land-based manganese ore reserve. The
deposit contains an estimated 150 Mt of manganese ore
reserves (Beukes et al. 2016). The manganese ore is found as
shallow tabular deposits and it is exploited using both open
cast and underground bord and pillar mining operations.

In terms of rock engineering designs, there is uncertainty
regarding the strength of the manganese pillars, and it is
not clear if the current bord and pillar layouts are optimised
for maximum, safe extraction. There is almost no empirical
data on the strength of the pillars. The Hedley and Grant
pillar strength formula, with a typical rock mass strength
parameter of K=133 MPa, is currently used to design these
pillars at most of the operations. There is no scientific justi-
fication to use this formula and the generally accepted value
of K=133 MPa needs further verification. The strength of
intact manganese laboratory-sized specimens is exception-
ally large and uniaxial compressive strength values exceed-
ing 400 MPa have been recorded. A lower average value of
280 MPa is quoted in some reports from the mines.

In spite of the large intact rock strength, underground
studies by the authors indicated that the pillar behaviour is
mostly controlled by the joint sets and the spacing of the
joints in the manganese ore. Typically, in the high-grade
areas, very few joints are present and these joints are widely
spaced. The pillars appear solid, even for pillars with a w:h
ratio of less than 1.5 (typically 7 m wide, 5.5 m high). In

other areas, there are a number of intersecting joint sets with
some of the joints at a very small spacing (< 10 cm). These
pillars are characterised by intensive scaling. The differences
in pillar behaviour are illustrated in Fig. 2. The rock mass
rating clearly controls the pillar behaviour and a power-
law strength formula with a single “calibrated” rock mass
strength value does not cater for this.

To study the time-dependent pillar scaling, the authors
established a number of monitoring stations (Fig. 3). A
problem with the quantitative monitoring of time-depend-
ent pillar scaling is that stable reference points are required.
Distance measurements from stable reference points to par-
ticular points on the pillar sidewalls should be recorded over
a period of time. As the pillar sidewalls are subjected to
scaling, however, it is difficult to ensure that the measure-
ments are conducted between the same positions on the pil-
lar and the reference points. As a first attempt to overcome
this problem, large crosses were painted on the sidewalls
of the pillars, as well as the pillars adjacent to the pillar
being monitored (Fig. 4). The distance between the crosses
of opposing pillar sidewalls was recorded using a laser dis-
tance meter (Fig. 5). If parts of a cross are lost owing to
scaling, the centre position can still be estimated from the
remaining portions of the lines. If both pillars scale, the scal-
ing distance will then be simply estimated to be half the
increase in measured distance. Although rather crude, this
method proved useful to indicate that no scaling occurred
during a 3-month monitoring period for all the pillar sta-
tions. This indicated that the measurement period was too
short to record any time-dependent scaling. It seems as if
the bulk of the scaling occur very soon after the pillar has
formed and then the rate of scaling decreases with time. The
pillars typically assumed an “hourglass” shape.
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Fig. 2 Different manganese pillar behaviours caused by the number of joint sets and the spacing of the joints
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Fig.3 Layout of a bord and pillar manganese mine and the areas
where monitoring was conducted. Areas 1, 2 and 3 were in the low-
grade area, with a high joint density, and Areas 4 and 5 were in the
high-grade areas

As an alternative, another type of measurement was
conducted. This was the estimated distance that the pillars
have already scaled. The original position of the pillar edge
against the hanging wall could be easily identified and the
distance from this position to the maximum scaling depth
was measured as illustrated in Fig. 6. In many cases, the
scaling resulted in the pillar assuming an “hourglass” shape.
Van der Merwe (2004) also found this to be the most com-
mon shape formed by the time-dependent scaling of coal
pillars. The measured scaling distance for the various pillars
monitored is given in Table 1. Rock mass ratings (RMR)

were done on the selected pillars, but these values should
be viewed as approximations only, as drill cores for each
pillar was not available to do RQD ratings. The RQD was
estimated along a horizontal line on the pillar edges, so it
is essentially the vertical joint spacing. It was nevertheless
very valuable to compare the rock mass quality of pillars in
different areas.

The area with the lowest pillar rock mass rating (Area 1)
has the largest scaling distance. Values as large as 2 m were
measured with an average value of 0.8 m. The areas of the
pillars have been substantially reduced as a result and this
increases the stress on the pillars and reduces the factor of
safety. The pillars in Area 1 were cut during the period from
March to June 2018, whereas the pillars in Areas 2 and 3
were only cut during January and February 2021, respec-
tively. As a first crude estimate of the scaling rate of the
pillars with a low rock mass rating (RMR < 50), it appears
that 0.5 m of scaling occurs during the first 3 months after
the pillar is formed and then another 0.3 m occurs during the
next 3 years. As the time-dependent scaling is such a slow
process, it explains why no prominent scaling was recorded
by the authors during the short 3-month monitoring period.
For the pillars with a higher rock mass rating (Areas 4 and
5), some “scaling” was also recorded based on the measure-
ment methodology shown in Fig. 6. These pillar sidewalls
appeared solid, however, and this value may simply reflect
blast damage. There is also no time-dependent scaling for
pillars with a high rock mass rating (RMR > 60) as the scal-
ing distance is approximately similar for pillars of different
ages.

The simulation of time-dependent pillar failure in bord
and pillar layouts is a difficult numerical modelling prob-
lem. It should be noted that codes based on the finite ele-
ment method (FEM) or distinct element method (DEM) can

Fig.4 A measurement cross painted on a manganese pillar. The photograph on the left was taken on 6 May 2021 and the photograph on the right
on 18 August 2021. The lines were still pristine on the second date and no scaling occurred during this 3-month period
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Measurement 2

Measurement 1
>

Measurement 3
>

Measurement 4

Fig.5 A plan view of the pillars illustrating the measurements
between the reference crosses painted on adjacent pillars

simulate the pillar scaling illustrated in Fig. 6 if an appro-
priate time-dependent constitutive model is used. Some
examples illustrating these approaches are described in
the introduction of this paper. In contrast, a displacement
discontinuity boundary element approach was used for this
study owing to the advantages described below. A large area
needs to be simulated to accurately model the stress acting
on the pillars. In these large models, it is often not practical
to include the failure of pillars owing to constraints in the
codes, such as the requirement of small element sizes to
accurately represent the depth of failure in the pillar side-
walls. Furthermore, in hard rock bord and pillar mines, the
pillar cutting is typically poor and the resulting pillar shapes
are irregular. Building an accurate geometry of the layout
and the irregular pillar shapes is a daunting task. As a result,
three-dimensional finite element or finite difference models

Fig.6 Measurement (left) of
the maximum scaling distance
for pillars with an “hourglass”
shape (right)

are seldom used to simulate bord and pillar layouts on a large
scale. These codes are nevertheless valuable to simulate the
failure of a single pillar and to study the detailed failure
mechanisms (e.g. Sainoki and Mitri 2017). In contrast, dis-
placement discontinuities boundary element (DD) models
(e.g. Crouch and Starfield 1983; Brand and Bray 1978) over-
come the problem of building the large-scale models with
many pillars, but it is typically impossible for most of these
codes to simulate the failure of the pillars. This problem
can be circumvented by using a limit equilibrium model in
a displacement discontinuity code and this is described in
the next section.

The TEXAN code used in this study is a displacement
discontinuity code and it was developed specifically to
simulate a large number of small pillars in tabular layouts
(Napier and Malan 2007). Owing to the restrictions on
the number of elements that can be practically solved in
TEXAN, smaller areas were simulated in detail and one
of these areas are shown below. To simplify the digitising
of the outlines and the meshing procedure, the pillar out-
lines were approximated by using straight line segments.
The mined areas were covered using a triangular mesh. In
terms of element sizes, the centroids of adjacent triangu-
lar elements are spaced approximately 1.5 m apart. The
pillars of interest also had to be covered with a triangular
mesh to enable the calculation of the APS in these pil-
lars. Not all the pillars had to be meshed as the nature of
the displacement discontinuity codes is such that any area
not covered by elements is considered as solid rock mate-
rial. Regarding element size, it is known that when using
displacement discontinuity boundary element modelling,
the average pillar stress (APS) is affected by the element
size. This was explored by Napier and Malan (2011). For
known analytical solutions of APS, it was found that the
simulated APS approximates the analytical values closely
if the element size tends to zero. Small element sizes are
therefore needed for these simulations. For the purposes of
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Table 1 Measured scaling distance for the various pillars studied

Table 1 (continued)

Scaling Age (months) RMR APS (MPa) Scaling Age (months) RMR APS (MPa)
distance distance
(m) (m)
Pillar (Area 1) N3-33C 0.3 36 83 60
N3-1A 2.0 36 46 68 N3-33D 0.3 36 83 60
N3-1B 1.0 36 46 68 N3-38A 0.3 12 63 73
N3-1C 1.7 36 46 68 N3-38B 0.4 12 63 73
N3-1D 09 36 46 68 N3-38C 0.5 12 63 73
N3-2A 0.8 36 46 71 N3-38D 0.3 12 63 73
N3-2B 1.3 36 46 71 Average 0.3
N3-2€ 0.8 36 46 7 The letters A, B, C and D after the pillar number refer to the different
N3-2D 05 36 46 71 sides of a particular pillar
N3-9A 14 36 49 76
N3-9B 0.7 36 49 76
N39C 12 36 49 76 this study, the 1.5 m sizes were considered adequate. The
N39D 09 36 49 76 APS values for the pillars of interest were estimated using
N3-3 05 36 Not recorded Not simulated numerical modelling. These values are given in Table 1.
N34 08 36 Not recorded Not simulated The parameters used for the initial simulations to deter-
N3.5 07 36 Not recorded Not simulated mine the pillar APS values are given in Table 2. The only
N3-6 07 36 Not recorded Nof simulated ~ PArameter that is different for the five areas is the depth
N3-10 06 36 Not recorded Not simulated ?elow surfac:,. "£he dlp of the reef is gmall in th1§ par-
N3-11 05 36 Not recorded Not simulated icular area (= 7°) and it was therefore simulated with no
N3-12 05 36 Not recorded Not simulated Q1P 1D the models for simplicity. Some uncertainty exists
N3-13 06 36 Not recorded Not simulated regarding the correct average density of the overburden
N343 07 36 Not recorded  Not simulated 20 this will have an effect on the simulated APS values.
N3-44 11 36 Not recorded  Not simulated This was assumed to be 3000 kg/m® and the virgin stress
N3-45 05 36 Not recorded Not simulated  K-Yatio was assumed to be unity in both horizontal direc-
N3-46 05 36 Not recorded  Not simulated  tions- The boundary element modelling used in this study
N347 06 36 Not recorded Not simulated  1Mplicitly assumes that the rock is homogenous, elastic,
N3-48 04 36 Not recorded Not simulated  a0d 1sotropic. Figure 7 illustrates the simplified geometry
N3-49 06 36 Not recorded  Not simulated ~ ©f Area 1 used to simulate the APS values of the pillars
N3-50 0.6 36 Not recorded Not simulated in this area.
Average 0.8
P;Hil(?;eaziand & 5 59 e 3 ATime-Dependent Limit Equilibrium
N320A 0.3 4 59 69 Model.to Simulate the Observed
N3-20B 0.8 4 59 69 Behaviour
N3-20C 0.6 4 59 69
N3-20D 0.4 4 59 69 Napier and Malan (2014, 2018) describe a time-dependent
N3-25A 0.1 3 44 71 limit equilibrium model to simulate the time-dependent
N3-25B 0.5 3 44 7 response of the rock mass in deep gold mines. This model
N3-25C 03 3 44 7 was explored to simulate time-dependent pillar scaling in
N3-25D 0.5 3 44 71
Average 0.5
Pillar (Areas 4 and 5) Ta.ble.Z .Par.arneters used in the TEXAN code for the elastic models
N3-28A 0.3 10 59 56 with rigid pillars
N3-28B 0.3 10 59 56 Parameter Value
N3-28C 0.4 10 59 36 Young’s modulus 90 GPa
N3-28D 0.3 10 59 56 K-ratio 1
N3-33A 04 36 83 60 Average overburden density 3000 kg/m®
N3-33B 0.3 36 83 60 Poisson’s ratio 0.25
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Fig.7 Simplified geometry of Area 1 simulated with the TEXAN code. The three pillars of interest (N3_1, N3_2 and N3_9) are highlighted by

the blue fill colour

general and the observations made regarding the manganese
pillars described above.

Consider a pillar with two adjacent mined bords as illus-
trated in Fig. 8. The results presented here are essentially for
the plane strain case of a strip pillar. The pillar is fractured
on its edges and it has a solid intact core. The force equilib-
rium of a thin section of rock in the fractured portion of the

pillar is also indicated in the figure and it is assumed that
this section is in limit equilibrium. The reef normal stress is
depicted by o, and the reef-parallel stress by o,. The mining
height is H.

At the contact with the hanging wall and footwall, there is
a parting present. The friction angle on these interfaces are
given by ¢ and the coefficient of friction is y; = tang. This
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Fig.8 Force equilibrium of a
slice of rock in a pillar
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v

Fracture zone

is one of the drawbacks of this simplified limit equilibrium
model as it assumes a symmetrical model with the same fric-
tion on both contacts. The edges of the pillar will fail if the
stress exceeds the rock strength. For high stress levels, the
pillar may be completely fractured. Alternatively, at lower
stresses, the core of the pillar may still be intact.

For this basic model, it is assumed that the material is
unconfined at the edge of the pillar. For the thin section of
rock to be in equilibrium, it is required that:

Ho (x4 Ax) = Ho(x) + 27Ax. 2)

This can be written in the form of a differential equation
if the width of the slice tends to zero:

. o(x+Ax)—0,(x) 27 dog
lim = — = —
Ax—0 Ax H dx

3

The following assumptions are made to solve this equa-
tion. As indicated in the diagram, 7 is related to the normal
stress o, by the following frictional condition:

7 = 0, = tang(o,,), )

where ¢ is the friction angle on the interface. A failure rela-
tionship is also assumed to relate the reef normal stress, o,,,
to the reef-parallel stress, o, and this is given by:

o, =mo,+ S,

®

where S and m are specified strength constants. Once failure
occurs, S can be considered as the strength of the failed pillar
material and m is a slope parameter. Inserting Egs. (4) and
(5) into Eq. (3) gives:

% _ 2tang

P I (mcrs + S) (6)

Integration of Eq. (6) and by considering that at x = 0,
it is known that o, = 0, and gives the solution as:

@ Springer

In(mo, +5S)  2xtang 4 )

(7N
m H m
This can be simplified to
mO-SS+ S — emeTanqb/H, (8)

and from this the solution of the reef-parallel stress follows
as:

G = S (emeta.nq)/H ).

ST ©
Substituting Eq. (9) into Eq. (5) gives:
G, = Semeland}/H' (10)

Equation (10) predicts that for this simple limit equi-
librium model, the normal stress increases exponentially
away from the pillar edge. It should be noted that when
assigning parameter values, it is a requirement that S > 0O;
otherwise, 6, = 0 for all values of x. A valid solution can
also be determined, even if § =0, provided a confining
stress is applied at x = 0.

For practical implementation of this model in TEXAN,
different values of the parameters S and m are adopted for
intact and failed material. The current model in TEXAN
provides the option to use three strength envelopes having
the form of Eq. (5) (Napier and Malan 2018).

1. The strength of the intact rock can be defined as an
unconfined strength value S° and by a slope parameter
mo.

2. Once the material fails, a strength drop is assumed to
occur immediately to an initial limit strength envelope
defined by intercept and slope parameters S¢ and m¢,
respectively.

3. Once the material has failed, the strength can decay in a
time-dependent manner to a residual strength envelope

specified by parameters S and m?/.



A Limit Equilibrium Model to Simulate Time-Dependent Pillar Scaling in Hard Rock Bord and Pillar... 3781

Intact strength

/ Immediate e mE
S0 strength drop
" Initial failure
strength
se f
Time-dependent
strengthdecay =" 1—’% 7
B JmE— T Residual strength
Ly -
aS

Fig. 9 Different reef strength envelopes adopted for the time-depend-
ent limit equilibrium model

These strength envelopes are illustrated in Fig. 9. The initial
strength drop does not occur if S = §¢ and m® = m¢. Simi-
larly, no time-dependent strength decay occurs if ¢ = § and
m’ =n/.

The transition between the initial limit strength and the
residual limit strength envelopes is assumed to be governed
by a strength decay function F(7) that depends on the elapsed
time 7 = t — T'(x) between the current time t and the initial
time of failure, T'(x), at point x. The model assumes the fol-
lowing (Napier and Malan 2018):

S =8 +F1—T) (S -5, (11)

m(t) =m + F(t — T(x))(m" —m). (12)

It is assumed that F(z) = 1if 7 < 0 and that F(r)is a sim-
ple exponential function of the form:

Fo=(3) =, (13
when 7 > 0. A is a half-life parameter. For Eq. (13):
1 : —QT
In(3)" = (), (14)
2
which is:
%ln(%) = —ar. (15)

This can be simplified to give the exponential decay expo-
nent as:
In(2)

A= . (16)
04

This choice of exponential decay model for the rock
is supported by the work presented in Malan and Napier
(2018). They recorded and simulated time-dependent clo-
sure profiles in gold mine stopes. Exponential decay is also
very common in nature of which the well-known example
is radioactivity.

To obtain some insight into the model, Eq. (11) was plot-
ted using the parameters § = 5MPa and S° = 50MPa, where
t is in months. It was assumed that 7'(x) = 0. Figure 10
illustrates S(¢) against ¢ (months). The effect of the half-
life parameter (strength decay) is illustrated. This indicates
that as the half-life parameter increases, the parameter S(t)
will be larger over the short term than for a smaller half-life
value. A larger half-life value therefore leads to a slower
reduction in strength and a slower rate of scaling when con-
sidering Fig. 10.

It should be noted that the model described above is for
the assumed one-dimensional variation of the limit stress
as a function of the distance to edge of the pillar. The more
general case of stress variation in two-dimensional tabular
layout geometries is described in Napier and Malan (2021)
and the TEXAN code uses a special fast marching solution
technique to determine the seam-parallel gradient direction
in the case of general pillar shapes that are tessellated using
unstructured triangular element meshes.

4 Simulation of Pillar Scaling Using
the Limit Equilibrium Model

The scaling of the pillars in the different geotechnical areas
was simulated using the limit equilibrium model described
above. For the preliminary simulations, no time-dependent
scaling was included. A key objective of this modelling
was to understand if a preliminary calibration of the limit
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Fig. 10 The time-dependent reduction in the value of the “intercept”
parameter for different values of half-life
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equilibrium model can simulate the distinctly different pil-
lar behaviours in the different geotechnical areas. Similar
to other inelastic models, the limit equilibrium model in
TEXAN requires a large number of parameters to be cali-
brated and these are listed in Table 3. The number of param-
eters increases further if time-dependent behaviour is con-
sidered and this is discussed in the next section.

A preliminary calibration of the parameters was done as
follows: Napier and Malan (2021) studied an experimental
pillar mining section with a number of intact and failed pil-
lars in a platinum mine. They conducted a number of simu-
lations with different parameters until a good fit with the
underground observations was obtained. These parameters
were used as a starting point in this current study, except for

Table 3 Parameters used for the limit equilibrium model

Parameter Value

Intact strength intercept,S° 60 MPa and 85 MPa

Intact strength slope,m® 7

Initial residual strength intercept,S* 4 MPa

Initial residual strength slope,m® 7

Effective seam height, H 5.5m

Intact rock Young’s modulus,E 90 GPa

Intact rock Poisson’s ratio,v 0.2

Intact seam stiffness modulus,k; 16,363 MPa/m
Fracture zone interface friction angle 30°

specifying the much larger reef height of 5.5 m for the man-
ganese pillars. These preliminary parameters gave surpris-
ingly good results for the areas with significant scaling (e.g.
Area 1 and 6) and then as a next step, for Areas 4 and 5, the
intact strength intercept, S, was increased until the absence
of scaling observed underground was also reflected in the
model. The failed and intact pillars are shown in Figs. 11
and 12. This is correct as the model reflect the extensive
scaling in Area 1 and the intact pillars in Area 4. The only
difference in the calibrated values was that S, = 60 MPa was
used for the areas with signficiant scaling and S, = 85 MPa
was used for the areas with no scaling (Table 3). This seems
intuitively correct as the spacing of the joint sets will affect
the intact rock mass strength and a closer joint spacing will
result in a lower strength. These models illustrate qualita-
tively the value of this limit equilibrium model, but it also
highlights the difficulty of calibration of the parameters. If,
for example, the slope and residual strength parameters are
modified, a different intact strength intercept value will be
required to match the observations. Additional work to cali-
brate the parameters will have to be done in future. This will
require an in-depth investigation and is beyond the scope of
this current study.

Fig. 11 Simulation of the pil-
lars using the limit equilibrium
model in TEXAN for Area 1.
Only the pillars of interest are
shown in this plot. The red dots
are the collocation points of the
failed elements and the grey
dots are the collocation points
of the intact elements
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Fig. 12 Simulation of the pil- e
lars using the limit equilibrium P268 P278 P98 P317
model in TEXAN for Area 4. 215
Only the pillars of interest are
shown in this plot and the grey a
dots are the collocation points
of the intact elements 20 G
P279
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195
1%0
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Pillar size 7 m x 7m
Bord width 8 m

78% extraction

Fig. 13 The simple idealised pillar geometry used to test the time-
dependent limit equilibrium model

5 Simulation of Time-Dependent Pillar
Scaling

As an initial geometry to test the time-dependent limit
equilibrium model, a small idealised layout consisting of
twenty-five pillars was simulated (Fig. 13). The standard
pillar and bord dimensions at the mine were used. Three
different types of simulations using the idealised layout
were conducted. For the first set of simulations, no imme-
diate strength drop was assumed and therefore S° = S¢ and
m® = m¢ (see Fig. 9). This was used to illustrate the effect
of the half-life parameter on the time-dependent fracturing
of the pillars. For the second set of simulations, an imme-
diate strength drop of 40 MPa after failure was assumed
in an attempt to better simulate the higher rate of scaling

Table 4 Parameters used for the time-dependent limit equilibrium
model with no immediate strength drop

Parameter Value
Intact strength intercept, S° 50 MPa
Intact strength slope, m° 7

Initial residual strength intercept, S¢ 50 MPa
Initial residual strength slope, m¢ 7

Final residual strength intercept, S/ 5 MPa
Final residual strength slope, m/ 7
Effective seam height, H 55m
Intact rock Young’s modulus, E 90 GPa
Intact rock Poisson’s ratio, v 0.2
Intact seam stiffness modulus, 16,363 MPa/m
Fracture zone interface friction angle 30°

Half-life, A 1, 2 and 3 months

early in the life of the pillars. For the third set of simula-
tions, the limit equilibrium parameters were modified in
an attempt to fit the rate of scaling observed underground.
Small triangular elements were used for these models and
each 7 m X7 m pillar contained 574 elements. This is an
average element size of 0.085 m>. The large number of ele-
ments and the required time steps for the time-dependent
model resulted in very long run times.

The parameters in Table 4 were adopted for the first set
of simulations. The time-dependent limit equilibrium model
resulted in the gradual failure of the pillars. This is illus-
trated in Fig. 14 for pillar A (see Fig. 13). The larger half-life
values resulted in a slower rate of “scaling” of the pillar. Of
significance is that after a period of time, the rate of scaling
becomes very slow and this qualitatively agrees with the
limited data collected underground.
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Fig. 14 Progressive failure of the pillar A for different values of A.
The fraction of the pillar that failed was simply the number of failed
elements divided by the total number of elements in the pillar
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Fig. 15 Progressive failure of the pillar A for different values of A.
For this simulation, there was an immediate strength drop of 40 MPa

For the second set of simulations, an immediate strength
drop was used to simulate the more rapid scaling of the pil-
lars immediately after they are formed. This may be blasting
damage and nearby blasting, as the faces move away, and
may cause the blocky scaling to dislodge from the pillars
(Fig. 15). An arbitrary strength drop of 40 MPa was used.
The parameter values were therefore similar to those in
Table 4, except that §¢ = 10MPa.

From the data of scaling distance presented in Table 1,
the fraction of each pillar which was failed was calculated.
The standard planned pillar size of 7 m X7 m was used for
this calculation, so it is only an estimation. The data is illus-
trated in Fig. 16 (blue dots) and plotted as a function of the
age of the pillar. Only the approximate age of the pillars was
known and therefore the data seems to be stacked in col-
umns. There is no clear trend in the data, except that it seems
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Fig. 16 Progressive failure of the pillars as a function of time

Table 5 Parameters used to obtain the numerical modelling results
illustrated in Fig. 16

Parameter Value

Intact strength intercept, S° 50 MPa

Intact strength slope, m® 7

Initial residual strength intercept, S¢ 30 MPa and 50 MPa
Initial residual strength slope, m¢ 7

Final residual strength intercept, S 20 MPa

Final residual strength slope, m/ 7

Effective seam height, H 55m

Intact rock Young’s modulus, £ 90 GPa

Intact rock Poisson’s ratio, v 0.2

Intact seam stiffness modulus, k; 16,363 MPa/m
Fracture zone interface friction angle 30°

Half-life, A 12 months

that the amount of pillar scaling does increase with time. A
numerical solution of the progressive failure of a pillar was
fitted to this data using a trial and error approach. A number
of parameters were tested. The best fit parameters are given
in Table 5. Note that the model with the initial strength drop
seems to be at least a reasonable approximation of the data.
As future work, additional data needs to be collected from
underground to obtain a better understanding of the rate of
scaling. This can then be simulated as further verification
of the model.

6 Conclusions

A limit equilibrium model to simulate the time-depend-
ent scaling of hard rock pillars in bord and pillar layouts
is proposed in this study. A case study of pillar scaling
in a manganese mine is presented. Extensive scaling is
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observed for pillars in areas where there are many inter-
secting joint sets with a small spacing between the joints.
It appears that the scaling occurs in a time-dependent
fashion. Evidence for this is the ongoing deterioration of
pillars in old areas, even after they were reinforced with
thin spray-on liners.

Monitoring of selected pillars were conducted in an
attempt to quantify the rate of time-dependent scaling.
Contrary to expectations, almost no additional scaling
was recorded for the pillars during a 3-month monitor-
ing period. The existing extent of scaling for pillars of
different ages could be measured and it seems as if most
of the scaling occurred soon after the pillars are formed.
Only a limited amount of additional time-dependent scal-
ing seems to occur after this.

Numerical simulations of the time-dependent scaling
were conducted using the TEXAN displacement disconti-
nuity code. It allows for the use of a limit equilibrium con-
stitutive model to simulate on-reef failure. An exponential
decay of the failed rock mass strength at the edges of the
pillars resulted in simulated time-dependent failure that
is qualitatively similar to the underground observations.
The value of this model is that mine-scale simulations
can easily be conducted and the time-dependent failure
of the pillars can now be included in these studies. The
long-term stability of old mining sections can therefore
be investigated.

This work focused on hard rock pillars, but this model
can also be used for coal mines to simulate the progressive
weakening of coal pillars. The necessary calibration of the
limit equilibrium model for the coal pillars will have to be
conducted, however.

Although this model gave encouraging results, further
work is required and this is listed below:

e A more precise calibration of the limit equilibrium
model is required. This should possibly involve labo-
ratory work to determine rock strengths and friction
angles of the manganese ore. A physical model in the
laboratory may be valuable to test the applicability of
this constitutive model and to gain an improved under-
standing of the various parameters.

e It is not clear if the limit equilibrium model is a good
approximation of the pillar failure mechanism at the
manganese mines. The failure is controlled by the vari-
ous intersecting joint sets and these form small blocks
that facilitate the scaling. This mechanism should be
simulated using a distinct element code and the results
should be compared to those provided by a limit equi-
librium model in a displacement discontinuity code.

¢ Underground monitoring of the time-dependent scaling
of the pillars should be conducted over a longer period
of time. Regular monitoring should be conducted, espe-

cially when the new pillars are still close to the face, to
determine if the nearby blasting contributes to the scal-
ing. From this data, the rate of scaling can hopefully be
more accurately determined.
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