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A B S T R A C T   

The design of pile foundations that are expected to develop significant lateral loading is a complex procedure that 
requires the development of objective and accurate design formulae that will not be based on semi-empirical 
know-how. For this reason, the main objective of this research work is to develop predictive models that will 
be able to compute the overall mechanical response of reinforced concrete (RC) piles embedded in unsaturated 
clay. To achieve this goal, experimental data, and advanced nonlinear 3D detailed finite element (FE) modelling 
were used to construct datasets comprising multiple results related to the ultimate capacity and corresponding 
horizontal deformation of RC piles that are loaded horizontally until failure. In total, three datasets were 
developed and then used to train and test predictive models through the use of various machine learning (ML) 
algorithms. After successfully developing various predictive models, an out-of-sample dataset was developed and 
used to further validate the accuracy and extendibility of the predictive models. Finally, the most accurate ML- 
generated predictive model was used to predict the mechanical response of a RC pile embedded in unsaturated 
clay that was experimentally tested. The ability of the proposed predictive model is demonstrated through this 
pilot research work.   

1. Introduction 

When engineers design the foundation systems of any type of 
structure, design codes that are based on semi-empirical formulae are 
used. In cases where the design of the foundation involves reinforced 
concrete (RC) piles that support structures that are expected to develop 
significant horizontal loads, the current design procedures do not offer 
the required accuracy. This is due to the lack of accurate design formulae 
developed based on the real mechanical response of RC piles. For this 
reason, the development of improved and more accurate design 
formulae that will be able to predict the capacity of RC piles embedded 
in soil is of significant importance. 

Piled foundations are frequently used as a common type of deep 
foundation for providing support to structures situated in loose or soft 
soils. In contrast, shallow foundations are recognized for their incapacity 
to prevent substantial settlements and shear failure in such soil 

conditions [36]. Piles can effectively resist vertical loads, lateral loads, 
or a combination of both. Analysing piles under combined loading is a 
complex task, as highlighted by Karthigeyan et al. [18], therefore, it is 
recommended to model the load cases independently [5,33]. 

It is well known that prior to the development of advanced 3D finite 
element (FE) models, the soil-structure interaction (SSI) phenomenon 
proved to be somewhat difficult to define and analyze, as highlighted by 
Kausel (2010). This difficulty arose from the complex dynamic in
teractions resulting from the amplification of seismic waves within soil 
layers, where the nonlinear modelling of RC piles was also challenging, 
especially when nonlinearities due to large deformations occur ([33]; 
Braun et al., 2023). Another study conducted by Kavitha et al. [20] 
examined the nonlinear behaviour of laterally loaded piles, specifically 
investigating the impact of pile-soil interaction when loaded laterally. 
The findings indicated that the pile-soil interaction effect was dependent 
on several factors such as soil properties, loading conditions, ground 

* Corresponding author. 
E-mail addresses: u17031215@tuks.co.za (K.T. Braun), george.markou@up.ac.za, g.markou@nup.ac.cy (G. Markou), sw.jacobsz@up.ac.za (S.W. Jacobsz), 

DCalitz@srk.co.za (D. Calitz).  

Contents lists available at ScienceDirect 

Structures 

journal homepage: www.elsevier.com/locate/structures 

https://doi.org/10.1016/j.istruc.2024.106532 
Received 18 February 2024; Received in revised form 14 April 2024; Accepted 2 May 2024   

mailto:u17031215@tuks.co.za
mailto:george.markou@up.ac.za
mailto:g.markou@nup.ac.cy
mailto:sw.jacobsz@up.ac.za
mailto:DCalitz@srk.co.za
www.sciencedirect.com/science/journal/23520124
https://www.elsevier.com/locate/structures
https://doi.org/10.1016/j.istruc.2024.106532
https://doi.org/10.1016/j.istruc.2024.106532
https://doi.org/10.1016/j.istruc.2024.106532
http://crossmark.crossref.org/dialog/?doi=10.1016/j.istruc.2024.106532&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Structures 64 (2024) 106532

2

slope, as well as the pile material, and diameter. 
SSI is a multidisciplinary field encompassing soil mechanics, struc

tural mechanics, and dynamic mechanics, with a focus on understanding 
the mechanics and interactions between a structure and the soil it is 
embedded in Kausel [19]. In foundation engineering, SSI analyses pre
dict deformation and stresses in soil interacting with the load structure, 
crucial for addressing challenges in scenarios such as lateral loads on 
piles [2,35]. A crucial consideration in the lateral load analysis of piles is 
the interconnection between the pile deflection and the lateral resis
tance of the soil domain, referred to as the pile-soil interaction effect 
[20]. 

Efforts to capture the elastoplastic behaviour of soil in SSI problems 
involve solutions with more complex soil property descriptions [17]. 
The accuracy of predictions is related to determining in-situ elastic 
moduli parameters and their depth-dependent variations [17]. Howev
er, these parameters have proven to be challenging to measure, often 
producing lower values in conventional laboratory tests compared to 
field measurements. Field measurements using linear elastic theory for 
back analysis have seen success, but are limited by occurrences of 
localized regions displaying fully plastic behaviour, deviating signifi
cantly from elastic behaviour [17]. Consequently, obtaining 
high-quality stress-strain data from SSI problems proves challenging, 
necessitating sensitivity studies using advanced soil models to explore 
nonlinearity at small strains and local failures. Despite the evident 
nonlinear behaviour of soil, current SSI analyses often rely on linear 
elasticity theories, emphasizing the need for more sophisticated and 
computationally efficient numerical models. 

When analysing the behaviour of piles under lateral loading condi
tions, Moussa and Christou [30] grouped investigation methods into the 
following categories:  

I. Ultimate Limit State Methods  
II. Subgrade Reaction Approaches  

III. Continuum Methods  
IV. Finite Element Methods 

Among these methods, the finite element method (FEM) stands out as 
the most versatile, prominent, and effective technique, capable of 
addressing complex problems by accounting for geometrical and mate
rial nonlinearities [30]. In recent years, FEM has been extensively used 
for various structural engineering applications such as analysing the 
behaviour of RC structures considering damage effects [29], deter
mining the shear capacity of RC deep beams [1], predicting the funda
mental period of RC and steel structures [15,40], investigating wind 
turbine structures [14], and analysing the behaviour of pile foundations 
[7,33]. 

The exponential growth of numerical methods has provided realistic 
and satisfactory results for soil-structure problems, overcoming the 
limitations associated with traditional approaches [10]. For this reason, 
the FEM-based software Reconan FEA [34] is used for the needs of this 
research work. Reconan FEA [34] was also used by Gravett and Markou 
[14] to conduct a study involving the modelling of battered RC piles 
embedded in unsaturated clay. Their findings indicated that the effi
ciency of the Reconan FEA [34] software for accurately capturing the 
mechanical response of SSI problems was adequate. Building upon the 
work of Gravett and Markou [14] and incorporating the recent ad
vancements by Braun et al. [7], the current study adopted a similar 
modelling approach as it will be presented herein. 

Even though FEM has allowed the solution of numerous complex 
problems, the required time for developing 3D detailed models in 
combination with the specialized know-how that engineers typically do 
not have, makes its use prohibitive and time-consuming. 

Over the past few decades, significant growth and development has 
been witnessed in the application of Artificial Intelligence (AI) and 
Machine Learning (ML) in engineering problems, particularly in the 
domain of structural analysis and design problems [26]. This progress is 

notable for its effectiveness in handling complex nonlinear structural 
systems, especially when faced with extreme actions [37]. Furthermore, 
the integration of AI and ML with validated FE modelling [23] has 
provided engineers with the capability to evaluate a wide range of en
gineering applications without the need for physical specimens. 

Implementing ML in solving these types of engineering problems 
[26] involves several key steps, beginning with database preparation, 
followed by the application of learning algorithms, and concluding with 
model evaluation. Initial data consists of features (input variables) and 
target labels (output variables), divided into training and testing sets for 
effectiveness assessment. During the learning phase, ML algorithms are 
used to develop predictive models, where various algorithms are 
compared to identify the most suitable one. Model evaluation and 
validation are then carried out by assessing overall effectiveness and 
performance using a separate testing dataset, utilizing error metrics. 

Van der Westhuizen et al. [39] have emphasized that ML algorithms 
do not offer a “one-size-fits-all solution”, and it is crucial to consider 
different methods to find the most accurate predictive model for a given 
problem. The primary challenge in ML lies in ensuring good perfor
mance on out-of-sample data, a concept known as generalization and 
extendibility. Furthermore, two critical factors influencing the ML al
gorithm performance are minimizing the training error and reducing the 
gap between training and test errors, addressing challenges related to 
under- and over-fitting [6]. 

Recently, under the umbrella of the WindAfrica project, researchers 
conducted an on-site experiment [13] involving RC piles embedded in 
an unsaturated clay profile. Despite the valuable insights offered by 
these in-situ experiments, their limitations arise from cost and time 
constraints, particularly when conducting a parametric investigation 
involving variations in soil material properties, pile size, and pile ma
terial properties. Through advanced 3D detailed numerical modelling, 
Braun et al. [7] successfully replicated the nonlinear mechanical 
response of the laterally loaded system, offering insights beyond the 
experiment’s scope. Braun et al. [7] concluded that their model pro
vided an accurate representation of the experimental response, which 
was verified through the experimentally obtained horizontal 
load-displacement curve. Additionally, it was found that Reconan FEA 
[34] effectively modelled the ultimate failure mechanism, allowing the 
back-calculation of the actual soil properties that influenced the overall 
mechanical response of the pile-soil system. This served as the founda
tion for this research, which aimed to develop various SSI models with 
RC piles embedded in unsaturated clay to generate numerical results for 
the construction of a dataset that will consist of ultimate load capacities 
and their respective horizontal displacements. The generated dataset 
served as training data for different ML algorithms, allowing the crea
tion of predictive models capable of estimating forces and displacement 
outputs for various RC pile geometries and soil domains. To validate the 
predictive models’ capabilities, an additional out-of-sample dataset was 
developed and used to assess their predictive capabilities on data that 
were excluded from the training and testing phase. To further validate 
the proposed predictive models’ accuracy, a comparison was performed 
through the use of the experimental results presented in Braun et al. [7] 
and with the proposed predictive models developed and presented in 
this research work. 

2. Material models used for the dataset development 

For the purpose of this research work, it is important to investigate 
the various material models for concrete, steel, and soil. This investi
gation is based on the incorporation of the models that were outlined in 
the preparatory work published by Braun et al. [7]. The significance of 
these models lies in their ability to accurately depict the mechanical 
response of the pile-soil system, and accordingly, they have been inte
grated into the Reconan FEA [34] software. 

The Kotsovos and Pavlovic [21] concrete material model, as modi
fied by Markou and Papadrakakis [24], was used to model the concrete 
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material for the needs of this study. This material model was created 
through a process of numerical regression using experimental data from 
concrete specimens subjected to both uniaxial and triaxial stress con
ditions [25]. The consideration of out-of-plane stresses is a fundamental 
aspect of 3D modelling. According to this concrete material model, the 
stress-strain relationship for each stress state is described by two com
ponents: the hydrostatic (σ0) and deviatoric (τ0) components. Gravett 
and Markou [14] recently presented a study that explains how the 
corresponding hydrostatic and deviatoric strains (ε0, γ0) are utilized to 
calculate the hydrostatic and deviatoric stresses when used for different 
FE sizes. The Willam [42] formula (Eq. 1) presents the formulation that 
describes the strength envelope of concrete [21]. When the failure sur
face is projected onto the deviatoric plane perpendicular to σ0, it forms a 
convex curve (Fig. 1) that represents the geometric path of the ultimate 
deviatoric stress. 

τ0u =
2τ0c

(
τ2

0c − τ2
0e
)
cosθ + τ0c(2τ0e − τ0c) × SQ

4(τ2
0c − τ2

0e)cos2θ + (2τ0e − τ0c)
2 (1)  

Where: 
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In Eq. 1, θ denotes the angle of rotation between the deviatoric stress 
vector and one of the principal stress axes projected on the deviatoric 
plane. Fig. 1 also highlights τ0e and τ0c as the deviatoric stresses that 
develop at angles of θ = 0◦ and θ = 60◦, respectively. In addition, upon 
meeting the failure criteria, the model adopts a smeared crack approach 
in which macro-cracking is simulated [24]. The model presented in this 
section is also the method adopted for the needs of this research work. 

The available constitutive material models for predicting the steel 

behaviour of reinforcement include the nonlinear Menegotto and Pinto 
material model (Fig. 2), which has been enhanced with the isotropic 
strain hardening by Filippou et al. [12], as well as the standard bilinear 
steel material model. The Reconan FEA [34] software incorporates the 
Menegotto-Pinto method, which accounts for the Bauschinger effect to 
ensure comprehensive analysis and accurate results [27]. The Mene
gotto and Pinto material model is widely acknowledged for its 
straightforward numerical formulation, which offers the essential tools 
to predict the behaviour of steel elements, such as rebars, with a satis
factory level of accuracy [22]. The stress-strain relationship for the steel 
material is represented in Eq. 2. 

σ* = bε* +
(1 − b)ε*

(1 + ε*R)
1/R (2)  

Where the strain hardening ratio is denoted as b. The normalized stress 
and strain are expressed in Eqs. 3 and 4, respectively. 

σ* =
(σ − σr)

(σ0 − σr)
(3)  

ε* =
(ε − εr)

(ε0 − εr)
(4) 

Additionally, the parameter R (Eq. 5) influences the shape of the 
transition curve and enables an accurate representation of the Bau
schinger effect [11]. 

R = R0 −
a1ξ

(α2 + ξ)
(5)  

Where the parameter ξ represents the normalized plastic strain, R0 de
notes the value of R during the initial yielding loading, while the pa
rameters a1 and a2 are experimentally derived to describe the decrease 
in curvature with each subsequent cycle. 

When it comes to soil modelling, the incorporation of elasticity, 
plasticity, and friction offers several possibilities for representing soil 
behaviour. Over the past three decades, several researchers have tried to 
understand and predict the nonlinear behaviour of different soil aspects 
by developing various constitutive models. These models are also uti
lized in FE modelling for applications in geotechnical engineering. 
However, the behaviour of soils in practice is highly complex, exhibiting 
a wide range of responses under different loading conditions [38]. As 
discussed by Ti et al. [38], there is currently no soil constitutive model 
that can fully describe the complex behaviour of real soils when 
considering all conditions. 

Atkinson and Bransby [3] identified three distinct behaviours in the 
stress-strain relationship: elastic-perfectly plastic, elastic-plastic hard
ening, and elastic-plastic softening. For the purpose of this research 
work, the soil material was modelled to behave in a simple 
elastic-perfectly plastic manner, using a von Mises yielding criterion. In 

Fig. 1. Continuous plastic strain of an elastic-perfectly plastic material [24].  

Fig. 2. Continuous plastic strain of an elastic-perfectly plastic material [22].  

K.T. Braun et al.                                                                                                                                                                                                                                



Structures 64 (2024) 106532

4

this behaviour (Fig. 3), constant stress leads to continuous strain, 
resulting in plastic deformation occurring under plastic strain (εp). The 
material undergoes elastic strain (εe) before experiencing plastic strain, 
and beyond the yield point, continued deformation occurs without 
changes in stress. This perfectly plastic behaviour during plastic defor
mation allows the soil to retain the same stress state without any in
crease in stress during unloading [3]. 

3. Machine learning algorithms 

In this section, all the ML algorithms used to meet the objectives of 
this study are presented. A variety of ML algorithms proposed by Mar
kou et al. [26] was used, including polynomial regression with hyper
parameter tuning (POLYREG-HYT), extreme gradient boosting with 
hyperparameter tuning, and cross-validation (XGBoost-HYT-CV), 
random forests with hyperparameter tuning (RF-HYT), artificial neural 
networks by neighbourhoods (ANNbN), and deep learning with hyper
parameter tuning with a message-passing interface (MPI) and Horovod 
(DANN-MPIH-HYT). The linear regression (LR), which was also used as 
the base algorithm in this work, and the POLYREG-HYT algorithm have 
the advantage of deriving an explicit closed-form formula, whereas 
XGBoost-HYT-CV, RF-HYT, ANNbN, and DANN-MPIH-HYT generate a 

“black-box” solution. 
In the case of the LR ML algorithm, it utilizes the least squares fitting 

approach to determine the optimal curve fitting through a given set of 
points. This involves minimizing the sum of squared residuals, which are 
vertical and perpendicular offsets between points and the curve, as 
illustrated in Fig. 4. The squared approach may be impacted by extreme 
outliers. Residuals, representing differences between observed and 
predicted outcomes, help assess the fit’s quality. Eq. 6 expresses the 
vertical least squares fitting technique for a collection of n datapoints, 
which is a foundational LR method. Fig. 5 shows its extension to poly
nomials, where the residuals for kth-degree polynomials are defined in 
Eq. 7. 

R2 =
∑

[yi − f(xi, a1, a2,…, an) ]
2 (6)  

R2 =
∑n

i=1

[
yi −

(
a0 + a1xi + … + akxk

i
) ]2 (7) 

Polynomial regression (PR) involves least squares to fit a curve 
(Fig. 5b), linking dependent and independent variables. LR serves as the 
basis for simple relationships, while multiple linear regression extends 
LR to incorporate multiple predictors. PR provides flexibility to fit 
nonlinear data, with polynomial degree determining model complexity. 
This research adopts a PR ML algorithm with hyperparameter tuning, 
POLYREG-HYT, that identifies nonlinear features, enhancing prediction 
accuracy. The POLYREG-HYT algorithm [26] automates the derivation 
of closed-form prediction formulae, offering computational efficiency. 
This algorithm uses nonlinear combinations of independent variables up 
to a desired degree. It automatically identifies nonlinear features with 
the least prediction error, rapidly reducing combinations with 
increasing features and polynomial degrees. Eq. 8 defines the relation
ship between combination number (c), number of features (n), and 
polynomial degree (k). Due to the limited nature of datasets, selecting 
the most appropriate nonlinear feature is crucial to enhance algorithmic 
performance. Consequently, the maximum number of features m is 
constrained to ensure enough degrees-of-freedom (DOFs) for regression 
and obtaining statistically reliable outcomes (Eq. 9). The study employs 
an improved feature selection algorithm, an advancement in embedded 
optimization for polynomial feature selection. The algorithm’s objective 
is to identify indices to minimize regression error during iterations, 
enhancing feature selection efficiency [26]. 

c =

((
n
k

))

=

(
n + k − 1

k

)

=
(n + k − 1)!
k!(n − 1)!

(8)  

cf =

(
c
m

)

=
(c)!

k!(m − k)!
(9) 

Extreme gradient boosting (XGBoost) is a powerful gradient-boosting 
library designed for supervised learning tasks like classification and 
regression [28]. Known for speed and scalability, it handles large, 
high-dimensional datasets, addressing challenges such as missing values 
and imbalanced classes. To address overfitting, XGBoost incorporates 
built-in features for feature selection and regularization, which is a 
common concern in the field of ML [26]. XGBoost is based on decision 
trees (DTs), which, while prone to overfitting, become robust when 
combined in an ensemble [37]. The study introduces hyperparameters, 
while also including grid search with cross-validation (XGBoos
t-HYT-CV) to optimize the training process. The hyperparameters 
considered include the number of rounds, tree depth, learning rate, and 
subsample [26]. The inclusion of k-fold cross-validation [32] enhances 
evaluation robustness, balancing between computational efficiency and 
accurate hyperparameter tuning. 

Random Forests (RF) is a robust ML algorithm developed by Breiman 
[8], that significantly impacts various scientific fields, offering high 
accuracy and versatility. This ensemble learning method combines 
multiple DTs, addressing overfitting by aggregating predictions through 

Fig. 3. Continuous plastic strain of an elastic-perfectly plastic material (as 
adapted from Park [31]). 

Fig. 4. Vertical and perpendicular offset for least squares fitting [41].  

Fig. 5. Least squares fitting showing the best-fit line (a) and best-fit polynomial 
(b) [41]. 
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majority voting or averaging [37]. RF is effective in both classification 
and regression, excelling in handling large datasets. Markou et al. [26] 
introduced RF-HYT, a hyperparameter tuning approach, focusing on 
crucial parameters such as the number of DTs, maximum tree depth, 
partial sampling, subfeatures’ percentage, and the minimum samples at 
a leaf node. These parameters enhance RF’s performance and stability, 
with the flexibility to control model complexity, variance, and robust
ness. The default parameters in RF are generally effective, but hyper
parameter tuning provides a means to optimize for specific tasks, 
offering a trade-off between accuracy and computational efficiency. 

The Artificial Neural Network (ANN), widely used in ML and data 
mining, emulates the human brain’s intricate neural networks, offering 
advantages in discovering patterns without predefined constraints [16]. 
The ANN’s architecture includes input layers, hidden layers, and output 
layers, enabling the identification of complex nonlinear relationships in 
data. The ANNbN ML algorithm [4] utilized in this study, introduces a 
new approach by dividing responses into clusters (or neurons), calcu
lating weights for each cluster, and aggregating them for a global 
approximation (global weight vk and biases b0). The training process 
involves computing local weights 

(
wjk

)
and biases (bk), crucial for 

adjusting network parameters [4]. The ANNbN ensemble further en
hances performance by averaging outcomes across multiple models, 
trained on distinct data segments. This ensemble strategy, detailed in 
Bakas et al. [4], leads to improved generalization and overall perfor
mance for the ANNbN ML algorithm. 

Lastly, this research focuses on implementing Deep Learning (DL) 
using ANNs with hyperparameter tuning, specifically employing 
message-passing interface (MPI) and Horovod. This methodology, 
referred to as DANN-MPIH-HYT, leverages DL’s foundation in neural 
networks to address complex tasks. The DL process involves replicating 
the human brain’s architecture, where interconnected nodes in hidden 
layers facilitate the understanding of intricate patterns [9]. However, 
the deep nature of DL architectures demands significant computational 
resources, often necessitating parallel training on GPUs. Markou et al. 
[26] outline the integration of Horovod and MPI in the 
DANN-MPIH-HYT algorithm, which was used for the needs of this 
research work. 

4. Development of numerical models and dataset 

The primary objective of this research work is to establish a large 
dataset that includes multiple SSI numerical models. The models 
developed herein were based on the validated numerical model pre
sented by Braun et al. [7]. These numerical models encompass a variety 
of geometrical configurations, incorporating changes in pile diameter, 
embedded pile depth, and the reinforcement ratio of RC piles. Addi
tionally, a range of material properties, including Young’s moduli and 
the compressive strength of both concrete and soil, are taken into ac
count. Through the use of the newly developed open-source Notebook for 
Machine Learning (nbml) software,1 the developed dataset was used as 
input for the training and testing of ML algorithms. 

The research utilized a modelling technique based on the work by 
Braun et al. [7] to develop numerical models for laterally loaded piles in 
stiff unsaturated clay. A total of 81 base models were created, varying in 
geometric configurations (see Table 1) such as pile diameter (D), 

embedded pile depth (H), and reinforcement ratio (ρ). The FE Pre- and 
Post-processing modelling software FEMAP was employed, with 
auto-discretization using 8-noded isoparametric solid hexahedral FEs for 
both the concrete piles and surrounding soil. Hexahedral element sizes 
were adjusted based on the pile diameter to optimize computational 
efficiency. Tension elements behind the pile were removed up to 0.5H 
depth, following the "Gap" model proposed by Braun et al. [7]. Similar to 
that of Braun et al. [7], the reinforcement of the pile was discretized 
through the use of embedded rod elements. Longitudinal reinforcement 
diameters were determined considering specified reinforcement ratios, 
resulting in 12 equally positioned rebars with a concrete cover of 
50 mm, while 10 @ 150 stirrups were assumed throughout all pile di
ameters for all numerical models. Fig. 6 illustrates 1 of the 81 base 
models, while also providing a detailed view of the pile reinforcement 
layout and the removal of tension elements behind the pile. The inter
face between the concrete and unsaturated clay hexahedral elements 
was assumed to be fully bonded, as described by Braun et al. [7]. 

The numerical models in this research incorporated both constant 
and varying material properties as parameter inputs. Constant proper
ties adopted by Braun et al. [7], including soil’s Poisson’s ratio (0.3), 
concrete’s Poisson’s ratio (0.2), concrete’s strength under tension 
(2 MPa), 5 % of remaining concrete shear strength, and an elastic con
crete limit of 50 % (Markou and Papadrakakis, 2013), were maintained 
across all models. Steel properties, such as Young’s modulus of 200 GPa, 
a Poisson’s ratio of 0.3, a yield strength of 500 MPa, and a steel strain 
failure of 12 %, were consistently applied. Varying material properties 
considered minimum, medium, and maximum values as shown in  
Table 2, totalling 81 combinations for concrete and soil input features. 
These material variations, employed in 81 base models with diverse 
geometries, resulted in 6561 numerical models analyzed through 
Reconan FEA [34], providing a comprehensive exploration of multiple 
pile-soil combinations. 

As it was reported by Braun et al. [7], their model was calibrated 
using the WindAfrica project’s field experiment, where the horizontal 

Table 1 
Geometrical parameters.  

Geometrical Parameter Value Units 

Pile Diameter (D) 20, 30, 40, 50, 60, 70, 80, 90, 100 cm 
Embedded Pile Depth (H) 6, 9, 12 m 
Reinforcement Ratio (ρ) 0.5, 2, 4 %  

Fig. 6. Base model with a D of 60 cm, H of 9 m, and ρ of 2 %; reinforcement 
layout and interface of pile and soil detachment. 

Table 2 
Material parameters that were considered for the development of the numerical 
models.  

Material Parameter Value Units 

Soil Young’s modulus (Esoil) 50, 100, 150 MPa 
Soil compressive strength (CSsoil) 20, 85, 150 kPa 
Concrete Young’s modulus (Econ) 20, 40, 60 GPa 
Concrete compressive strength (CScon) 20, 40, 60 MPa  

1 https://github.com/nbakas/nbml/blob/main/docs/__nbml__.pdf 
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load was applied to piles at a height of 0.5 m above the soil surface. 
Therefore, to simulate this experimental setup, it was decided to perform 
nonlinear static pushover analyses that involved the application of 
horizontal displacements (x-global axis) equal to 20 % of the pile 
diameter, as illustrated in Fig. 7 (left). A displacement-controlled 
Newton-Raphson algorithm incorporated in Reconan FEA [34] was 
used, where the imposed displacement was applied through the use of 
40 displacement increments. The soil cylindrical domain had trans
lational restraints in the x and y directions along the perimeter 

boundaries, and translational restraints along the x, y, and z directions at 
the domain’s bottom, as depicted in Fig. 7 (right). 

Using the FEMAP application programming interface, a visual basic 
analysis (VBA) code (see Аppendix A1) was used to replicate each of the 
81 base models by considering each possible combination of material 
property input, reproducing 6561 different numerical models contain
ing all geometrical and material property combinations. The resulting 
neutral input files (with a total combined size of 41 GB) were then 
analyzed through Reconan FEA [34] using a Python multi-run code (see 
Appendix A2), producing 5.7 TB of output files. Post-simulation, a sec
ond Python code (see Appendix A3) extracted relevant results from 
output files, storing data in Excel spreadsheets, including the number of 
displacement increments, horizontal failure force, horizontal failure 
displacement, and the horizontal displacement at half the failure force. 
It is important to note that it was selected to use results from models that 
achieved at least 10 displacement increments (NR ≥ 10) during the 

nonlinear analysis, deliberately excluding instances of premature fail
ure. By adopting the criterion of NR ≥ 10, the number of models that 
were eventually selected for the final dataset was reduced to 2529. This 
selection ensured a sufficient number of data points, thus preserving the 
full range of minimum, medium, and maximum geometrical and mate
rial property parameters. 

As it was described by Markou et al. [26], the structure of the input 
dataset required by the nbml software necessitates a specific tabular 
format. This prescribed format requires all of the input features 

Fig. 7. Location and magnitude of imposed displacement for 60 cm pile 
diameter (left), and translational fixity (right). 

Fig. 8. Correlation matrix for all independent features and target variables with (a) Fx Max, (b) Disp Max, and (c) Disp Fx2.  
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occupying the first set of columns, followed by the target variable 
positioned in the last column, with each column denoted by its respec
tive parameter name. Therefore, the complete dataset underwent further 
refinement into three distinct datasets for target variables:  

i. maximum horizontal failure force (Fx Max),  
ii. horizontal displacement at failure force (Disp Max), and  

iii. horizontal displacement at half failure force (Disp Fx2). 

These three datasets, which are available online,2 were then used to 
develop the predictive models that are proposed in this manuscript for 
the prediction of the capacity and horizontal deformation of RC piles 
embedded in unsaturated clay. 

5. Proposed predictive machine learning models 

In this section, the results of the LR-generated model as well as the 
proposed predictive models obtained from the five enhanced ML algo
rithms (POLYREG-HYT, XGBoost-HYT-CV, RF-HYT, ANNbN, and 
DANN-MPIH-HYT), will be presented, analyzed, and discussed. In order 
to develop a predictive model, the three distinct datasets served as input 
into ML algorithms within the nbml software, which was then trained 
and tested using an 85–15 train-test ratio. According to the developed 
datasets, the following seven input features with their specified units 
were assumed:  

D pile diameter (cm)

H embedded pile depth (m)

RR reinforcement ratio ρ of the longitudinal reinforcement in the pile (%)

Esoil Young’s modulus of the clay soil material (MPa)
CSsoil Uniaxial compressive strength of the clay soil material (kPa)
Econ Young’s modulus of the concrete pile (GPa)
CScon concrete’s compressive strength of the pile (MPa)

Table 3 
Fx Max performance metrics.  

ML Method Dataset Pearson (%) MAPE (%) MAMPE (%) MAE RMSE alpha beta 

LR Train  89.14  76.77  30.82  86.041  122.825  0.750  80.249 
LR Test  88.77  80.21  33.49  93.710  136.028  0.705  86.211 
POLYREG-HYT-3 Train  98.53  18.97  10.81  30.182  45.812  0.971  7.922 
POLYREG-HYT-3 Test  98.48  20.43  11.91  33.313  50.899  0.942  15.689 
XGBoost-HYT-CV Train  99.11  13.24  8.54  23.845  35.709  0.980  5.498 
XGBoost-HYT-CV Test  98.71  14.77  10.41  29.121  47.147  0.946  14.487 
RF-HYT Train  99.10  9.81  7.69  21.472  36.055  0.968  8.967 
RF-HYT Test  98.52  13.02  10.56  29.548  52.206  0.916  21.156 
ANNbN Train  98.38  31.88  11.72  32.708  48.090  0.968  8.981 
ANNbN Test  86.12  62.15  34.21  95.731  147.833  0.699  80.016 
DANN-MPIH-HYT Train  92.45  49.57  25.26  70.533  105.994  0.760  64.442 
DANN-MPIH-HYT Test  92.38  53.35  26.88  75.206  118.851  0.720  69.001  

Table 4 
Disp Max performance metrics.  

ML Method Dataset Pearson (%) MAPE (%) MAMPE (%) MAE RMSE alpha beta 

LR Train  63.83  25.90  23.23  0.010  0.013  0.477  0.022 
LR Test  66.10  26.48  23.86  0.010  0.013  0.513  0.020 
POLYREG-HYT-3 Train  74.00  23.02  19.79  0.008  0.011  0.548  0.019 
POLYREG-HYT-3 Test  71.89  24.92  21.42  0.009  0.012  0.551  0.019 
XGBoost-HYT-CV Train  78.40  20.82  17.97  0.008  0.010  0.597  0.017 
XGBoost-HYT-CV Test  72.65  24.20  20.59  0.009  0.011  0.570  0.018 
RF-HYT Train  80.73  19.83  17.04  0.007  0.010  0.612  0.017 
RF-HYT Test  71.81  24.69  20.71  0.009  0.012  0.562  0.019 
ANNbN Train  75.77  22.16  19.22  0.008  0.011  0.574  0.018 
ANNbN Test  66.83  27.66  23.74  0.010  0.012  0.509  0.021 
DANN-MPIH-HYT Train  76.12  22.25  19.83  0.008  0.011  0.454  0.021 
DANN-MPIH-HYT Test  72.16  25.09  21.90  0.009  0.012  0.438  0.022  

Table 5 
Disp Fx2 performance metrics.  

ML Method Dataset Pearson (%) MAPE (%) MAMPE (%) MAE RMSE alpha beta 

LR Train  59.46  24.67  21.97  0.003  0.003  0.449  0.007 
LR Test  61.11  24.94  22.50  0.003  0.003  0.501  0.006 
POLYREG-HYT-3 Train  74.10  20.19  17.55  0.002  0.003  0.549  0.005 
POLYREG-HYT-3 Test  70.14  22.07  19.01  0.002  0.003  0.545  0.006 
XGBoost-HYT-CV Train  77.48  18.90  16.41  0.002  0.003  0.577  0.005 
XGBoost-HYT-CV Test  70.41  21.59  18.60  0.002  0.003  0.549  0.005 
RF-HYT Train  81.32  17.03  15.00  0.002  0.002  0.600  0.005 
RF-HYT Test  69.72  21.76  18.65  0.002  0.003  0.526  0.006 
ANNbN Train  74.31  19.80  17.39  0.002  0.003  0.552  0.005 
ANNbN Test  58.00  27.03  23.50  0.003  0.003  0.467  0.006 
DANN-MPIH-HYT Train  62.84  25.84  21.35  0.003  0.003  0.269  0.009 
DANN-MPIH-HYT Test  60.65  28.26  22.44  0.003  0.003  0.260  0.009  

2 https://github.com/nbakas/nbml/ 
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Before presenting the prediction accuracy of the various ML- 
generated models, a descriptive analysis was performed for each of 
the 3 developed datasets. Fig. 8 presents the correlation matrix for all of 
the seven input features, along with the correlations of the three 
different target values. It is easy to observe that the correlations of Esoil 
and CSsoil with D are stronger compared to the rest. When observing the 
correlation between Fx Max (pile’s ultimate horizontal load capacity) 
and the input features (Fig. 8a), a strong positive correlation is evident 
between D and Fx Max. Additionally, Esoil and CSsoil exhibit reasonably 
strong correlations with D and Fx Max, which is a finding that aligns 
with the findings during the parametric investigation presented by 
Braun et al. [7]. Fig. 8(b) and (c) yield similar results in terms of the 
correlation between Disp Max (maximum horizontal displacement at 
ultimate load capacity) and Disp Fx2 (horizontal displacement at half of 
the ultimate load capacity). 

After employing the six ML methods, the performance metrics for 
predicting the three target variables (Fx Max, Disp Max, and Disp Fx2) 
are presented in Tables 3, 4, and 5, respectively. These tables provide 
insights into the model performance during both training and testing 
phases, with metrics such as Pearson correlation, Mean Absolute Per
centage Error (MAPE), Mean Absolute Mean Percentage Error 
(MAMPE), Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), alpha, and beta. Figs. 9, 10, and 11 present the Target versus 
Predicted plots for each target variable in the test set, offering perfor
mance plots of the five enhanced ML models. 

For the Fx Max target variable (Table 3), the RF-HYT method ex
hibits the best performance on the test set (Fig. 9c), achieving the lowest 
MAPE of 13.02 %. This method also demonstrates high Pearson corre
lation (98.52 %) and low errors across other metrics, indicating its ac
curacy in predicting the horizontal failure force. The XGBoost-HYT-CV 

Fig. 9. Test set target versus predicted plot for Fx Max. (a) POLYREG-HYT-3, (b) XGBoost-HYT-CV, (c) RF-HYT, (d) ANNbN, (e) DANN-MPIH-HYT.  

K.T. Braun et al.                                                                                                                                                                                                                                



Structures 64 (2024) 106532

9

method performs second best in terms of MAPE on the test set, achieving 
a value of 14.77 %, while obtaining the highest Person correlation 
(98.71 %) among all other methods for the test set (Fig. 9b). The 
POLYREG-HYT-3 method also performs well, with a MAPE of 20.43 % 
and a slight reduction in Pearson correlation, obtaining a value of 
98.48 % on the test set (Fig. 9a). 

In the case of Disp Max (see Table 4), the XGBoost-HYT-CV method 
outperformed all methods when used on the test set (Fig. 10b), achieving 
the lowest MAPE (24.20 %). XGBoost-HYT-CV is closely followed by the 
RF-HYT method (Fig. 10c) and then by the POLYREG-HYT-3 method 
(Fig. 10a), which achieved a MAPE of 24.69 % and 24.92 %, respec
tively. It is important to note here that the POLYREG-HYT-3 method 
assumes a 3rd-degree polynomial order, generating closed-form 
formulae for each target variable (see Appendix A4.1, A4.2, and A4.3, 
respectively). According to the numerical analysis, these three methods 

demonstrated relatively weak Pearson correlations (72.65 %, 71.81 %, 
and 71.89 % for the test set, respectively) and low errors in MAE and 
RMSE. This is attributed to the double nonlinearities that control the 
horizontal deformation of the RC piles near the failure load. Concrete 
cracking, rebar yielding, and soil plastification are the major mechanical 
phenomena that determine the final deformed shape, rendering this SSI 
problem highly nonlinear and in many cases unpredictable. 

For the case of predicting the Disp Fx2 (see Table 5), the XGBoost- 
HYT-CV method again emerges as the top performer for the test set 
(Fig. 11b), with a MAPE being equal to 21.59 %. The RF-HYT method 
(Fig. 11c) follows with a MAPE of 21.76 %, and then the POLYREG-HYT- 
3 method (Fig. 11a) with a MAPE of 22.07 %. These methods showcase 
slightly weaker Pearson correlations than that of Disp Max (70.41 %, 
69.72 %, and 70.14 % for the test set, respectively) and exhibit low er
rors in terms of MAE and RMSE. 

Fig. 10. Test set target versus predicted plot for Disp Max. (a) POLYREG-HYT-3, (b) XGBoost-HYT-CV, (c) RF-HYT, (d) ANNbN, (e) DANN-MPIH-HYT.  
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The ANNbN algorithm demonstrated varying performance in pre
dicting the mechanical response of the pile-soil system. In Table 3, it is 
evident that ANNbN achieved a robust Pearson correlation of 98.38 % 
for Fx Max in the training set, which, however, significantly decreased 
to 86.12 % in the testing set (Fig. 9d). Notably, the prediction errors, 
specifically MAPE, exhibited a substantial increase from the training to 
the testing set (31.88 % to 62.15 %). Although a slightly improved 
MAPE was observed for both Disp Max (Fig. 10d) and Disp Fx2 (Fig. 11d) 
(27.66 % and 27.03 %, respectively, in Tables 4 and 5 for the testing 
set), similar trends of higher prediction errors for the test set compared 
to the train set derived. 

For the case of the DANN-MPIH-HYT model, Table 3 shows a Pearson 
correlation of 92.45 % for Fx Max on the training set, with a similar 
value (92.38 %) when the predictive model is used for the testing set 

(Fig. 9e). However, prediction errors, were notably higher, reaching a 
49.57 % MAPE for the training set and a 53.35 % for the testing set. 
Similarly, to ANNbN, an improved MAPE was achieved for both 
Disp Max (Fig. 10e) and Disp Fx2 (Fig. 11e) (25.09 % and 28.26 %, 
respectively, as seen in Tables 4 and 5 for the test set). Consequently, like 
ANNbN, DANN-MPIH-HYT demonstrated better performance in pre
dicting displacements compared to horizontal failure forces. 

Comparing the performance of the methods across the three target 
variables, the XGBoost-HYT-CV and RF-HYT-generated predictive 
models consistently demonstrate strong predictive capabilities, 
achieving the lowest MAPE in multiple instances. The POLYREG-HYT-3 
method also was found to perform well, particularly when predicting 
Fx Max. However, it is essential to note that the performance of each 
method varies across the different target variables, highlighting the 

Fig. 11. Test set target versus predicted plot for Disp Max. (a) POLYREG-HYT-3, (b) XGBoost-HYT-CV, (c) RF-HYT, (d) ANNbN, (e) DANN-MPIH-HYT.  
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importance of selecting an appropriate method based on the specific 
prediction task. The RF-HYT-generated predictive model was found to 
be the most accurate one in predicting Fx Max deriving the lowest error 
metrics when tested on the test dataset. Conversely, the XGBoost-HYT- 
CV model outperforms RF-HYT in terms of prediction accuracy for 
both Disp Max and Disp Fx2. This further emphasizes the superior 
robustness of the RF-HYT and XGBoost-HYT-CV predictive models 
compared to POLYREG-HYT-3 models across all three datasets. 

Fig. 12 shows the sensitivity analysis performed by the XGBoost- 
HYT-CV algorithms during the training and testing of the predictive 
model of Fx Max, Disp Max, and Disp Fx2, respectively. According to the 
Fx Max sensitivity analysis graph (Fig. 12a), it is evident that the most 
important input feature is the pile diameter D, where the second most 
important is the reinforcement ratio RR. Therefore, even though these 
parameters were not investigated by Braun et al. [7], XGBoost-HYT-CV 
indicated features that were more sensitive to the system, specifically 
when predicting ultimate horizontal capacity Fx Max. Nevertheless, 
according to this sensitivity analysis the CSsoil was found to be the 3rd 
most important input feature, further validating the findings by Braun 
et al. [7]. 

Similar sensitivity graphs for the case of Disp Max and Disp Fx2 are 
provided in Fig. 12 (b) and (c), respectively. It is evident that both the 
Esoil and the CSsoil are the two most important parameters when it comes 
to computing the horizontal deformation of RC piles embedded in soil. 

This numerical finding further reinforces the findings reported by Braun 
et al. [7], where the parametric investigation of these parameters 
revealed that they were sensitive and strongly correlated to the ultimate 
capacity of the RC pile. It is also interesting to note here that the 
embedded pile length was found to be the least sensitive input feature 
that would affect the pile’s horizontal deformation. This is attributed to 
the fact that all piles were embedded into soil for 6 or more meters, 
removing the case where the pile would have been under tension along 
its entire length. Therefore, the lower half of the piles would serve as a 
fixation during the horizontal deformation of the head of the pile. 

6. Validation of predictive models 

The validation of the proposed predictive models was performed 
with both the development of additional out-of-sample numerical data, 
as well as with the experimental results obtained from the WindAfrica 
project [13]. It is important to note at this point that the developed 
datasets did not include the numerical results obtained from the cali
brated FE model presented by Braun et al. [7]. It is also of significant 
importance to note that the experimental results obtained from the 
WindAfrica project were also not included in the datasets that were used 
to train and test the proposed predictive models. 

Out-of-sample model development foresaw the use of geometrical 
features and material properties that were not incorporated in any of the 

Fig. 12. XGBoost-HYT-CV sensitivity graph for input features with (a) Fx Max, (b) Disp Max, and (c) Disp Fx2.  
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models that were used to develop the initial dataset. The aim was to 
ensure these new models no longer retained the same geometric con
figurations and material properties as used in the training and testing 
phases. Following the production of 18 base models through the use of 
the geometrical input features shown in Table 6, each model was then 
used to construct additional models based on all possible material 
parameter combinations. This procedure led to the development of 288 
out-of-sample additional numerical models. Fig. 13 illustrates an 
example of one of the base models which has a specific combination in 
terms of geometry and material properties. 

After the numerical models were analyzed, the same filter was used 
to develop the final validation dataset. This filter foresaw the inclusion 
of the models that derived displacement increments equal to or greater 
than 10 (NR ≥ 10), whereas the final validation dataset foresaw a total 
of 156 out-of-sample datapoints. Notably, this restriction did not 
compromise the representation of the entire range of minimum, me
dium, and maximum geometrical and material property parameters 
according to Table 6. 

Table 7 presents a comprehensive analysis of error metrics for the 
out-of-sample predictions when computing Fx Max by various ML 
models. Notably, POLYREG-HYT-3 and DANN-MPIH-HYT demonstrated 
superior performance, achieving strong Pearson correlations of 97 % 
and 97.32 %, low MAPEs of 17.38 % and 17.41 %, and low MAMPE 
values equal to 13.66 % and 13.06 %, respectively. Despite RF-HYT 
exhibiting a strong Pearson correlation of 97.13 %, it did not manage 
to derive optimum MAPE and MAMPE values compared to the 
POLYREG-HYT-3 and DANN-MPIH-HYT predictive models. Tables 8 and 
9 present the error metrics for out-of-sample predictions of Disp Max and 
Disp Fx2, respectively. While all models showed weak Pearson correla
tions for both datasets, the POLYREG-HYT-3 predictive model was found 
to derive the strongest correlation of 53.49 % and 54.61 %, for the case 
of Disp Max and Disp Fx2, respectively. Interestingly, the ANNbN pro
posed predictive model achieved the lowest MAPE of 23.86 % and 
22.56 % for both horizontal displacement datasets, demonstrating its 
capability to make accurate predictions on out-of-sample data. Fig. 14a 
showcases the predicted versus target plot for the DANN-MPIH-HYT 
model for Fx Max, displaying a strong linear correlation despite some 
outliers. Fig. 14 (b) and (c) illustrate the predicted versus target plot for 
the ANNbN model for Disp Max and Disp Fx2, respectively, indicating a 
weak linear correlation with scattered data points and outliers. 

To further validate the proposed predictive models, their predictions 
were compared with experimental results from the WindAfrica project. 
Notably, and as stated above, the datasets used for training and testing 
the proposed predictive models excluded numerical results from the 
Braun et al. (2023) calibrated FE model and the WindAfrica experiment. 
By utilizing input parameters from the WindAfrica experiment, along 
with the back-calculated soil parameters obtained by Braun et al. [7], 
P-δ curves were generated through the use of the proposed 
ML-generated models presented in this research work. These curves 
were then compared to the experimental curve as shown in Fig. 15. The 
analysis revealed that POLYREG-HYT-3 and DANN-MPIH-HYT provided 
the best fit, demonstrating accuracy in predicting the lateral pile-soil 
system’s mechanical response. Meanwhile, XGBoost-HYT-CV and 
RF-HYT offered acceptable representations, whereas LR and ANNbN did 
not accurately capture the system’s behaviour, deviating from the 
experimentally obtained curve. 

Table 6 
Geometrical (left) and material (right) parameters for out-of-sample models.  

Geometrical 
Parameter 

Value Units Material Parameter Value Units 

Pile Diameter (D) 35, 55, 
75 

cm Soil Young’s 
modulus (Esoil)

75, 125 MPa 

Embedded Pile 
Depth (H)

7, 10 m Soil compressive 
strength (CSsoil)

52.5, 
137.5 

kPa 

Reinforcement 
Ratio (ρ)

1, 2.5, 
3 

% Concrete Young’s 
modulus (Econ)

30, 50 GPa    

Concrete 
compressive 
strength (CScon)

30, 50 MPa  

Fig. 13. Out-of-sample base model with a D of 55 cm, H of 7 m, and ρ of 2.5 %; 
reinforcement layout and interface of pile and soil detachment. 

Table 7 
Fx Max out-of-sample performance metrics.  

ML Method Pearson 
(%) 

MAPE 
(%) 

MAMPE 
(%) 

MAE RMSE 

LR  92.66  41.43  24.48  66.607  81.539 
POLYREG- 

HYT-3  
97.00  17.38  13.66  37.149  47.645 

XGBoost-HYT- 
CV  

95.08  50.70  35.65  96.982  115.203 

RF-HYT  97.13  28.13  21.29  57.929  66.856 
ANNbN  92.71  62.22  41.87  113.922  129.810 
DANN-MPIH- 

HYT  
97.32  17.41  13.06  35.519  43.325  

Table 8 
Disp Max out-of-sample performance metrics.  

ML Method Pearson (%) MAPE (%) MAMPE (%) MAE RMSE 

LR  45.24  24.86  24.11  0.010  0.012 
POLYREG-HYT-3  53.49  24.30  22.00  0.009  0.011 
XGBoost-HYT-CV  49.90  26.85  22.49  0.009  0.011 
RF-HYT  49.56  31.10  30.53  0.012  0.016 
ANNbN  39.50  23.86  23.61  0.010  0.013 
DANN-MPIH- 

HYT  
0.4033  29.57  25.83  0.010  0.013  

Table 9 
Disp Fx2 out-of-sample performance metrics.  

ML Method Pearson (%) MAPE (%) MAMPE (%) MAE RMSE 

LR  42.96  24.47  23.44  0.003  0.003 
POLYREG-HYT-3  54.61  23.52  21.10  0.002  0.003 
XGBoost-HYT-CV  44.11  25.25  21.53  0.002  0.003 
RF-HYT  47.87  28.60  28.25  0.003  0.004 
ANNbN  50.46  22.56  21.11  0.002  0.003 
DANN-MPIH- 

HYT  
46.63  24.88  22.39  0.003  0.003  
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The POLYREG-HYT-3 predictive model was found to provide the 
most accurate P-δ curve among all proposed predictive models, accu
rately capturing the experimental data, whereas the prediction of the 
proposed model was in favor of safety when computing the ultimate 
capacity of the SSI system. To enhance accuracy, a hybrid predictive 
model (Fig. 16) was created by combining the best-performing ML- 
generated models, which foresaw the use of POLYREG-HYT-3 for pre
dicting the Fx Max and Disp Fx2, and the ANNbN-generated predictive 
model for computing the Disp Max. The resulting optimal P-δ curve, 
which can be seen in Fig. 16, demonstrated an acceptable level of ac
curacy when compared to the experimental curve while being in favor of 

safety. 
In Table 10, a summary of the test dataset performance metrics for 

each target variable for all adopted ML methods is presented. The best- 
performing error metric for each target variable has been bolded, indi
cating the ML method that performed the best for each performance 
metric, respectively. Notably, the lowest MAPE values for the test 
dataset are indicative of the best-performing ML method. For the Fx Max 
target variable, the RF-HYT method achieved the lowest MAPE of 
13.02 %, followed closely by XGBoost-HYT-CV with 14.77 %. These 
methods also demonstrate low MAMPE, MAE, and RMSE values, indi
cating their effectiveness in predicting Fx Max. For both Disp Max and 
Disp Fx2, the XGBoost-HYT-CV was the best-performing ML method, 

Fig. 14. Out-of-sample set target versus predicted plot. (a) DANN-MPIH-HYT for Fx Max, (b) ANNbN for DispMax, and (c) ANNbN for Disp Fx2.  

Fig. 15. Experimental and ML-generated model validation.  Fig. 16. Hybrid predictive model.  
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producing the lowest MAPE values of 24.20 % and 21.59 %, respec
tively. For both displacement target variables, XGBoost-HYT-CV also 
showed the highest Pearson correlation and the lowest MAMPE, MAE, 
and RMSE values, enhancing the proposed predictive models’ effec
tiveness in predicting displacements. 

Table 11 presents a summary of the out-of-sample performance 
metrics for each ML method for each target variable that was investi
gated for the needs of this research work. As seen within the table, the 
best-performing error metric for each target variable has been bolded, 
indicating the ML method that performed the best for each performance 
metric. For Fx Max, the POLYREG-HYT-3 ML algorithm achieved the 
lowest MAPE equal to 17.38 %. Furthermore, for both Disp Max and 
Disp Fx2, the ANNbN ML algorithm derived the lowest MAPE values of 
23.86 % and 22.56 %, respectively. 

7. Conclusions and recommendations 

This study aimed to create multiple numerical models using various 
geometrical configurations and material properties, generating a large 
dataset to train and test ML algorithms. Once this was achieved, pre
dictive models were created to predict the horizontal failure force and 
displacement of RC piles for a given set of input features. The three 
developed datasets were based on experimentally validated 3D detailed 
models. 

The modelling process involved a VBA code for automating the 

replication of base models and adjusting material parameters system
atically. This resulted in 6561 numerical models, constituting the largest 
pile-soil interaction dataset in the international literature. After simu
lating each numerical model through Reconan FEA [34] and generating 
three datasets, ML algorithms were then used to train predictive models 
for computing the horizontal failure force and displacement of the piles. 

Results showed that RF-HYT outperformed all predictive models 
during training, achieving low MAPE values. For the case of the test set, 
RF-HYT excelled in predicting horizontal forces, while XGBoost-HYT-CV 
outperformed all the methods when dealing with the prediction of 
horizontal displacements. Sensitivity analysis revealed that pile diam
eter influenced force predictions, while soil properties influenced the 
prediction of horizontal displacements. The predictive models were 
further validated using an out-of-sample dataset, with POLYREG-HYT-3 
emerging as the most accurate for force predictions, while DANN-MPIH- 
HYT performed optimally for displacements. 

To further validate the predictive models, a RC pile embedded in 
unsaturated clay that was experimentally tested was used. The predic
tive models that managed to capture the P-δ curve most accurately were 
the POLYREG-HYT-3 and DANN-MPIH-HYT reproducing the nonlinear 
mechanical response with an acceptable accuracy. Thereafter, a hybrid 
predictive model was proposed that combines the optimal features of the 
different proposed predictive models that were developed for the needs 
of this research work. According to the proposed hybrid predictive 
model, POLYREG-HYT-3 is used for force capacity computations and the 

Table 10 
Test set ML performance metrics for each Target Variable.  

Target Variable ML Method Pearson (%) MAPE (%) MAMPE (%) MAE RMSE 

Fx Max LR  88.77  80.21  33.49  93.710  136.028 
POLYREG-HYT-3  98.48  20.43  11.91  33.313  50.899 
XGBoost-HYT-CV  98.71  14.77  10.41  29.121  47.147 
RF-HYT  98.52  13.02  10.56  29.548  52.206 
ANNbN  86.12  62.15  34.21  95.731  147.833 
DANN-MPIH-HYT  92.38  53.35  26.88  75.206  118.851 

Disp Max LR  66.10  26.48  23.86  0.010  0.013 
POLYREG-HYT-3  71.89  24.92  21.42  0.009  0.012 
XGBoost-HYT-CV  72.65  24.20  20.59  0.009  0.011 
RF-HYT  71.81  24.69  20.71  0.009  0.012 
ANNbN  66.83  27.66  23.74  0.010  0.012 
DANN-MPIH-HYT  72.16  25.09  21.90  0.009  0.012 

Disp Max LR  61.11  24.94  22.50  0.003  0.003 
POLYREG-HYT-3  70.14  22.07  19.01  0.002  0.003 
XGBoost-HYT-CV  70.41  21.59  18.60  0.002  0.003 
RF-HYT  69.72  21.76  18.65  0.002  0.003 
ANNbN  58.00  27.03  23.50  0.003  0.003 
DANN-MPIH-HYT  60.65  28.26  22.44  0.003  0.003  

Table 11 
Out-of-sample ML performance metrics for each Target Variable.  

Target Variable (Out-of-sample) ML Method Pearson (%) MAPE (%) MAMPE (%) MAE RMSE 

Fx Max LR  92.66  41.43  24.48  66.607  81.539 
POLYREG-HYT-3  97.00  17.38  13.66  37.149  47.645 
XGBoost-HYT-CV  95.08  50.70  35.65  96.982  115.203 
RF-HYT  97.13  28.13  21.29  57.929  66.856 
ANNbN  92.71  62.22  41.87  113.922  129.810 
DANN-MPIH-HYT  97.32  17.41  13.06  35.519  43.325 

Disp Max LR  45.24  24.86  24.11  0.010  0.012 
POLYREG-HYT-3  53.49  24.30  22.00  0.009  0.011 
XGBoost-HYT-CV  49.90  26.85  22.49  0.009  0.011 
RF-HYT  49.56  31.10  30.53  0.012  0.016 
ANNbN  39.50  23.86  23.61  0.010  0.013 
DANN-MPIH-HYT  0.4033  29.57  25.83  0.010  0.013 

Disp Fx2 LR  42.96  24.47  23.44  0.003  0.003 
POLYREG-HYT-3  54.61  23.52  21.10  0.002  0.003 
XGBoost-HYT-CV  44.11  25.25  21.53  0.002  0.003 
RF-HYT  47.87  28.60  28.25  0.003  0.004 
ANNbN  50.46  22.56  21.11  0.002  0.003 
DANN-MPIH-HYT  46.63  24.88  22.39  0.003  0.003  
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prediction of the horizontal displacement for a horizontal force that is 
half of the ultimate capacity, where ANNbN is used to predict the hor
izontal displacement at the point of failure. Finally, it is recommended 
that the proposed predictive models be used for values that are within 
the minimum and maximum values used to train and test the proposed 
models. 

According to the parametric investigation and the predictive model 
analysis, future research work is required to further extend the existing 
datasets that will allow the development of predictive models that will 
be applicable to a larger spectrum of geometries. Additionally, the 
investigation of multilayered soil profiles is required to be performed, 
where piles will be assumed to be found within a rock layer. For the 
needs of further validating the proposed predictive models, it is of sig
nificant importance to perform additional experiments with RC piles 
that have different diameters and are found within soil domains of 
various mechanical properties. 
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