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Abstract
Purpose Accurate segmentation (separating diseased portions of the lung from normal appearing lung) is a challenge in radi-
omic studies of non-neoplastic diseases, such as pulmonary tuberculosis (PTB). In this study, we developed a segmentation 
method, applicable to chest X-rays (CXR), that can eliminate the need for precise disease delineation, and that is effective 
for constructing radiomic models for automatic PTB cavity classification.
Methods This retrospective study used a dataset of 266 posteroanterior CXR of patients diagnosed with laboratory confirmed 
PTB. The lungs were segmented using a U-net-based in-house automatic segmentation model. A secondary segmentation 
was developed using a sliding window, superimposed on the primary lung segmentation. Pyradiomics was used for feature 
extraction from every window which increased the dimensionality of the data, but this allowed us to accurately capture the 
spread of the features across the lung. Two separate measures (standard-deviation and variance) were used to consolidate 
the features. Pearson’s correlation analysis (with a 0.8 cut-off value) was then applied for dimensionality reduction followed 
by the construction of Random Forest radiomic models.
Results Two almost identical radiomic signatures consisting of 10 texture features each (9 were the same plus 1 other feature) 
were identified using the two separate consolidation measures. Two well performing random forest models were constructed 
from these signatures. The standard-deviation model (AUC = 0.9444 (95% CI, 0.8762; 0.9814)) performed marginally better 
than the variance model (AUC = 0.9288 (95% CI, 0.9046; 0.9843)).
Conclusion The introduction of the secondary sliding window segmentation on CXR could eliminate the need for disease 
delineation in pulmonary radiomic studies, and it could improve the accuracy of CXR reporting currently regaining promi-
nence as a high-volume screening tool as the developed radiomic models correctly classify cavities from normal CXR.
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Introduction

Tuberculosis (TB) is one of the top ten causes of death 
worldwide according to the World Health Organization [1]. 
However, an estimated 66 million lives were saved in the 
past two decades through TB diagnosis and treatment [1]. 
Early and accurate diagnosis is vital in fighting this global 
battle against TB spread and infections. Planar chest X-rays 
(CXR), in combination with biological methods, are com-
monly used to screen for or diagnose pulmonary TB (PTB) 
in patients at high risk of TB disease. CXR is the most 
widely accessible imaging modality in high TB burdened 
countries and is regaining prominence as a high-volume 
screening modality [2]. Advantages of CXR include that 
it is relatively inexpensive, fast, noninvasive and a good 
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indicator of the extent of disease in the lungs [3]. Some dis-
advantages are that expert X-ray interpreters are often scarce 
in resource-limited countries [4], and results are influenced 
by intra-observer subjectivity [5]. To lower the subjectivity 
associated with X-ray interpretation, data science research 
has focussed on quantifying and analyzing features on CXR 
[6, 7].

Radiomic feature extraction is one such tool that can 
be used to quantify disease characteristics, or features, 
and assess progression from serial medical images in the 
same patient, as it makes use of statistically based imaging 
analysis algorithms to convert medical images into mine-
able high-dimensional data [8, 9]. Radiomics can extract 
relevant image information that can comprehensively assess 
the entire two-dimensional landscape in the region-of-inter-
est (ROI) [10]. Radiomic libraries can extract hundreds to 
thousands of features per image. As an image mining tool 
generating such big data, radiomics naturally lends itself 
to the application of machine learning or deep learning 
approaches for developing signatures or advanced model 
building [10, 11].

Radiomics is a trending research technique in oncology 
imaging, but it is less studied in non-neoplastic pathologies 
such as PTB [12, 13]. A recent systematic review showed 
that radiomic feature extraction, for the purpose of PTB 
diagnosis or differentiation from other pulmonary pathol-
ogy, has only been applied in five studies [12]. In all five 
studies, CT or PET/CT scans were used as the input imag-
ing modality [12]. The review highlighted the need, and the 
challenges, of applying feature extraction to chest X-rays 
[12]. One challenge is that PTB has diverse radiological 
presentations: cavities, adenopathy, infiltrates and plural 
effusions, miliary pattern with the disease spreading across 
either a relatively small proportion of a single lung, or with 
extensive bilateral disease. Accurate segmentation of these 
diverse disease presentations is difficult and time consum-
ing and not always feasible with large data sets [14] and 
can result in significant observer-bias [6]. This is a major 
limitation in the quantification of non-neoplastic diseases, 
because variability in segmentation is the biggest cause of 
irreproducible radiomics outcomes [10].

Several radiomic features are interpreted differently when 
subjected to inter- and intra-observer assessments in delimit-
ing ROIs [14]. Some articles use manual segmentation by 
expert readers as the ground truth for segmentation [15], 
but both manual and semi-automatic segmentation have 
limitations, while fully automatic segmentation models 
are fast and have good reproducibility. Many segmentation 
algorithms have already been trained with deep-learning 
methods to perform automatic segmentation tasks for vari-
ous imaging modalities, including CXR [14]. These models 
are used primarily for organ segmentation but cannot yet 
identify the pathology [16], especially in non-neoplastic 

pulmonary diseases. The principal aim of our study was to 
develop a segmentation method, applicable to chest X-rays 
that could eliminate the need for precise disease delineation 
in the lungs. This segmentation method will be applicable to 
any CXR quantification study, but we developed it specifi-
cally for radiomic feature extractions.

In recent years, radiomics has gained increasing popular-
ity due to its ability to quantify medical images and for the 
construction of radiomic signatures, nomograms, machine 
learning classifiers and models to assist in disease diagnosis, 
prediction of disease status, response to treatment and dis-
ease prognosis [17]. Radiomics improve discrimination per-
formance and detection of medical images compared with 
those made by radiologists alone [9, 17, 18]. Our study used 
radiomics to develop a model to automatically differentiate 
normal CXR from CXR with cavities, to assist clinicians 
with improved and faster PTB diagnosis.

PTB has many radiological presentations, but thick-
walled cavities are generally an excellent radiological indi-
cator of active PTB that with treatment and time resolve 
into thin-walled smooth cavities in treated TB [19]. These 
cavities cause textural changes in the lung that are visually 
apparent. Cavities were therefore selected as the radiological 
TB expression under investigation for this study.

Methods

Every step in a the multi-step workflow of radiomics can 
influence the results and reproducibility [20]. To address 
this, the Imaging Biomarker Standardization Initiative 
(IBSI), published in 2019, aims to standardize image bio-
marker nomenclature and definitions to standardize image 
biomarkers extraction [21]. The IBSI guidelines were 
adhered to where possible during this study.

Patient selection

This is a retrospective study that used a dataset consisting 
of 266 posteroanterior (PA) CXR of patients diagnosed with 
laboratory-confirmed PTB between August 2013 and July 
2018. The CXR were radiologically reported on by clini-
cians who were part of the initial study. Additionally for 
this study, a single experienced TB clinician was asked to 
retrospectively review the X-rays individually, blinded to the 
previous reports. The second observer confirmed the CXR 
classifications as either normal (n = 71) or with the presence 
of cavities (n = 195). All CXR with discordant or indeter-
minate classifications were removed from this analysis. In 
this retrospective dataset, the acquisition equipment was not 
recorded, but it can be assumed that various imaging units 
were used.
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X‑ray pre‑processing

The original dataset included images in DICOM format 
which were acquired using non-standardized patient posi-
tions, image sizes, orientations, photometric interpretations 
and bit depths using a range of different imaging units. Total 
Image Converter version 8.2.0.237 (by CoolUtils.com file 
converters) was used for initial pre-processing to ensure a 
uniform dataset. The following pre-processing steps were 
applied: Manually cropped all images to square dimensions, 
corrected unconventional photometric interpretations on 
some images and converted DICOM images to PNG format. 
Python version 3.7.6 was used to interpolate all images to 
256 × 256 pixels with bilinear interpolation and to convert 
the conventional RGB type for PNG format to scalar type as 
required by the radiomics library.

Primary image segmentation

A fully automatic in-house segmentation model was used to 
segment the lung fields [22]. This U-net-based model was 
trained and validated on a publicly available Chest X-ray 
14 Dataset (CX14) [22]. It was then tested on an unseen 
publicly available dataset, the JSRT dataset, and achieved a 
maximum Intersection over Union (IoU) of 0.8301, 0.9210, 
and 0.7791 for the heart, lungs and clavicles, respectively 
[22]. The segmentation model resizes images to 256 × 256 
pixels with bilinear interpolation before segmenting the 
lungs as a 256 × 256 pixel mask output. Because all images 
had been previously interpolated to the same dimensions as 
the masks, they could simply be multiplied with the masks 
to visually evaluate the accuracy of the segmentation model 
on our unseen dataset (Fig. 1). All CXR were correctly seg-
mented, and no manual corrections were needed.

Secondary segmentation

To create the secondary sliding window segmentation a 
square mask of n x n, pixels was created and called the sam-
pling window (w). This sampling window was selected to 
be large enough for the enclosed region to exhibit similar 
characteristics to those of the underlying region and at the 
same time to be as small as possible to enable the accurate 
detection of borders between adjacent textural regions. This 
window will slide over the image in both vertical and hori-
zontal dimensions with a predetermined window step size 
(wstep). Wstep therefore determines the number of pixels that 
the sampling window slides across at each step and deter-
mines how well boundaries between features are resolved. 
There is a trade-off: if wstep is too large boundaries will be 
unresolved, while if wstep is too small then extended times 
are devoted to computation, and the window would place 
bounds on many of the features and increase their variability.

The sliding window masks were created in Python (ver-
sion 3.7.6) using Numpy.array() and PIL.Image() functions. 
A square window (w) of 16 × 16 pixels and a window step 
size (wstep) of 4 pixels was selected. The window will move, 
or slide, from one side of the CXR to the other in both x- and 
y-dimensions to create a window matrix of 61 × 61 windows. 
The number of windows in the matrix can be calculated 
using Eq. 1 where [Px, Py] is the dimensions of the window 
matrix, [nx, ny] is the dimensions of the image in pixels, w is 
the window size and wstep is the window step size.

The sliding windows will therefore cause the effective 
dimensionality of each image’s features to increase by a fac-
tor 3721 (61 × 61). This resolution is adequate to resolve the 

(1)Px =

(
nx − w

)

wstep

+ 1 and Py =

(
ny − w

)

wstep

+ 1

Fig. 1  Output of the segmentation model (from left to right): The original image, the mask output (multiplied by 255 to be visible) and the mask 
superimposed with the image that was used to evaluate the segmentation accuracy



1096 La radiologia medica (2023) 128:1093–1102

1 3

change in the radiomic features across the lung, within an 
acceptable computational time.

Radiomic feature extraction

The sliding window masks were superimposed on the pri-
mary segmented lung mask of each CXR (see Fig. 2). Radi-
omic features were extracted from each window in the win-
dow matrix if the window was not masked off by the lung 
segmentation.

The Pyradiomics library (version 3.0) was used to extract 
93 two-dimensional (2D) first-order and texture-features 
from each sliding-window on each CXR. Shape-based fea-
tures will be meaningless for the purpose of this study, as 
these features use the masked ROI for calculating the values 
and was omitted.

Dimensionality reduction

Statistical analysis was performed using R Software (ver-
sion 4.1.3; http:// www.r- proje ct. org/). The secondary seg-
mentation caused an approximately 3000-fold increase in the 
dimensionality of the features extracted. Before traditional 
dimensionality reduction methods could be applied, addi-
tional measures were introduced, namely standard deviation 
(SD) and variance, to quantify and capture the change in 
features over the lung region [23].

These two measures were calculated for each of the 93 
features in the cavity dataset (195 CXR) and the normal 
dataset (71 CXR), respectively. Using the resultant expres-
sions of the features in these two measures formed the first 
step in the feature selection process to limit the complica-
tions of dimensionality which arise from the over-abundance 

of features. For dimensionality reduction, Pearson’s correla-
tion coefficient � was used to identify the uncorrelated fea-
tures [24, 25].

The Pearson correlation coefficients between 0 and 1 indi-
cate a positive correlation, correlations equal to zero indicate 
no correlation and correlations between -1 and 0 indicate 
a negative correlation. These correlation coefficients were 
calculated for each feature pair. Feature pairs with abso-
lute correlations ( |�| ) greater than a pre-determined cut-off 
value were removed. Three cut-off values were considered 
for this study, namely 0.7, 0.8 and 0.9, and later examined 
to decide which was the most appropriate for the purpose 
of dimensionality reduction. In addition to the removal of 
highly correlated features, only features common in both the 
cavity- and normal datasets were retained.

Model development

To apply this developed radiomic signature in a meaningful 
manner, a random forest model was constructed to differ-
entiate cavities seen on CXR of people suffering from PTB 
and normal CXR [26]. This random forest model was used 
due to its attractive computational features and classifica-
tion performance as it is robust to overfitting data by design 
[26]. Due to the imbalance between the cavity and normal 
samples, a random walk oversampling technique was applied 
to improve the model’s performance [27, 28]. Four other 
sampling strategies were also considered and recorded in the 
results section. After adjustments to the data were made to 
ensure equal representation, the entire dataset was split into 
the training and testing sets with a 70/30% split, respectively.

Two separate random forest models were built, using the 
same CXR set on which the SD- and variance signatures 

Fig. 2  Above: Example of 5 sliding windows, sliding horizontally in the y axis (window coordinates [Px, Py] = [30, 9], [30, 10], [30, 11], [30, 12] 
and [30, 13]) superimposed on the lung mask and the CXR. Below: The same sliding windows, inverted to allow visualization of the lung mask

http://www.r-project.org/
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were developed, respectively [29]. For both random for-
est models, a grid search cross-validation method was 
employed to determine the ideal number of variables to 
try at each tree split with 15-folds and 5 repeats to fur-
ther limit overfitting. Across both random forest models, 
the grid search cross-validation indicated that the ideal 
number of variables to try at each tree split was 1. The 
performance of the models was validated using the testing 
set, AUC measure, accuracy, sensitivity, and specificity.

Results

Signature results

The first step in finding the signature was to determine 
the optimal cut-off value for the Pearson’s correlation. To 
evaluate this, only the number of features common to both 
the cavity- and normal datasets were considered. Figure 3 
indicates the number of features retained for the two differ-
ent consolidation measures when different cut-off values 
were considered in the correlation analysis.

The results shown in Fig. 3 will be conversed in the 
discussions section, but due to the number of features 
retained, 0.8 was considered as the optimal cut-off value 
for dimensionality reduction in this study. When the cavity 
and normal datasets were considered separately, the num-
ber of features retained with a 0.8 cut-off value in the two 
different consolidation measures were 11 and 12 in the SD 
measure and 12 and 12 in the variance measure, respec-
tively. For both measures, only 10 features were common 
to the normal and cavity dataset (as seen in Fig. 3), with 
either 1 or 2 additional unique features retained. The fea-
tures retained are recorded in Table 1 with the unique fea-
tures emphasized in bold.

Model results

The radiomic signatures obtained for both the SD and vari-
ance measures contained the same number of features (10), 
but the features included in their respective signatures dif-
fered (see Table 1). Two separate random forest models 
were therefore built, using a random walk oversampling 
technique, to model each of the two radiomic signatures, 
respectively. We note similar model performance for both 
models across all performance metrics (see Table 2).

Discussion

The prompt diagnosis of PTB is vital for providing timely 
and accurate treatment, as a delay in treatment can lead to 
poor outcomes [17]. Biological methods are the gold stand-
ard for TB diagnosis, but culture or smear analysis takes 
time [30]. CXR are immediately available but cannot be 
used as a standalone tool for diagnosis. It has been shown 
that radiomics can improve discrimination performance and 
detection of medical images compared with those made by 
radiologists alone [9, 17, 18]. In this study, we developed a 
well performing radiomic model that could assist clinicians 
with the diagnosis of cavities due to TB on CXR. When 
added to the clinical signs and symptoms, this might reduce 
requirements for laboratory results and shorten time to treat-
ment. It can also improve the accuracy of CXR reporting 
currently regaining prominence as a high-volume screening 
tool. The radiomic model that can detect cavities will also be 
useful in future PTB management studies when serial CXR, 
with their corresponding models, are studied.

For model construction, we first had to address the chal-
lenge of PTB disease segmentation that is required when 
quantifying X-rays using radiomic feature extraction. We 
developed a sliding window segmentation that allowed the 
extracted radiomic features to mimic the textural changes 
across the lung region caused by the disease. Inspiration for 
this newly developed segmentation method was obtained 
from a previous study that used deep learning approaches to 
sub-divide the lung region on a CXR into multiple stationary 
blocks [31]. They then used multi-instance learning (MIL) to 
classify each block as either a normal or a TB-manifestation 
class for TB diagnosis [31]. Instead of the stationary blocks, 
we introduced a sliding window approach to ensure that the 
boundaries between feature windows are well resolved.

An advantage of the secondary segmentation is that it 
eliminates the need to accurately delineate the diseased ROI 
which is time consuming and difficult in non-neoplastic 
diseases. It is also completely automated which eliminates 
observer-bias and increases reproducibility. The disad-
vantage of the secondary segmentation is that it increases 
the dimensionality of the data significantly, but this was 

22
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Variance
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0.7 Cutoff 0.8 Cutoff 0.9 Cutoff

Fig. 3  The number of common features retained for the two different 
consolidation measures when different cut-off values were considered 
in the Pearson’s correlation analysis
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addressed by introducing two different consolidation meas-
ures before performing traditional dimensionality reduction 
and model construction.

In previous studies on radiomic signature or nomogram 
construction for PTB, feature extraction was used to quan-
tify digital medical images for the purpose of comparing, 

or differentiating, PTB from other pulmonary diseases, 
mainly tumors [13, 24, 32–34]. To the best of our knowl-
edge, radiomics has not yet been used for the purpose of 
PTB diagnosis or disease management. The previously 
mentioned radiomics studies were performed from CT or 
PET/CT images [13, 24, 32–34], which seems redundant 
when patients in countries where PTB is most prevalent 
have very limited access to three-dimensional imaging 
modalities [35, 36]. For this reason, we used relevant 2D 
CXR for segmentation and feature extraction.

Although planar images are an unpopular modality 
for radiomic studies, a previous study was found where 
they applied a unique segmentation using a deep learn-
ing approach to train a model to automatically identify 
the thoracic disease in the lung and to generate bounding 
boxes around it [37]. In this study, radiomics features were 
used to create heat maps to assist the model in identifying 
the disease, rather than to quantify disease characteristics 
[37].

Table 1  Details of the features retained for the two different consolidation measures in the cavity and normal datasets, respectively, when a 0.8 
cut-off value was used in the Pearson’s correlation analysis

The features not common to both datasets are highlighted in bold
glcm gray level cooccurrence matrix, gldm gray level dependence matrix, glrlm gray level run length matrix, glszm gray level size zone matrix, 
ngtdm neighboring gray tone difference matrix

Measure Cavity CXR dataset Normal CXR Dataset

SD glcm_Correlation glcm_Correlation
gldm_DependenceEntropy glcm_DifferenceEntropy
gldm_DependenceNonUniformityNormalized gldm_DependenceEntropy
gldm_DependenceVariance gldm_DependenceNonUniformityNormalized
gldm_SmallDependenceLowGrayLevelEmphasis gldm_DependenceVariance
glrlm_RunEntropy gldm_LargeDependenceHighGrayLevelEmphasis
glrlm_RunLengthNonUniformityNormalized gldm_SmallDependenceLowGrayLevelEmphasis
glrlm_ShortRunLowGrayLevelEmphasis glrlm_RunEntropy
glszm_ZoneEntropy glrlm_ShortRunLowGrayLevelEmphasis
ngtdm_Busyness glszm_ZoneEntropy
ngtdm_Contrast ngtdm_Busyness

ngtdm_Contrast
Variance glcm_Correlation glcm_Correlation

gldm_DependenceEntropy glcm_DifferenceEntropy
gldm_DependenceNonUniformityNormalized gldm_DependenceEntropy
gldm_DependenceVariance gldm_DependenceNonUniformityNormalized
gldm_SmallDependenceLowGrayLevelEmphasis gldm_DependenceVariance
glrlm_RunEntropy gldm_LargeDependenceHighGrayLevelEmphasis
glrlm_RunLengthNonUniformityNormalized gldm_SmallDependenceLowGrayLevelEmphasis
glrlm_ShortRunLowGrayLevelEmphasis glrlm_ShortRunLowGrayLevelEmphasis
glszm_GrayLevelNonUniformity glszm_GrayLevelNonUniformity
glszm_ZoneEntropy glszm_ZoneEntropy
ngtdm_Busyness ngtdm_Busyness
ngtdm_Contrast ngtdm_Contrast

Table 2  Performance comparison of the SD and variance radiomic 
signature-based models showing the AUC measures with the corre-
sponding confidence intervals (95% CI), accuracy, sensitivity, speci-
ficity, and precision

SD Variance

AUC (95% CI) 0.9444 (0.8762; 0.9814) 0.9288 
(0.9046; 
0.9843)

Accuracy 0.8333 0.8750
Sensitivity 0.7708 0.8542
Specificity 0.8958 0.8958
Precision 0.8810 0.8913
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Signature development

To develop a radiomic signature for PTB from CXR, dimen-
sionality reduction was required to highlight the most impor-
tant features and to remove redundant features. Pearson cor-
relations analysis used in this study assumes that the data are 
normally distributed. We noted that most of the variables 
being analyzed are normally distributed and only a small 
proportion of the variables violate the normality assumption 
which was tested using the Shapiro–Wilk test. The correla-
tion coefficients should therefore be largely unbiased and 
unaffected. Furthermore, various studies have indicated that 
Pearson correlations are robust to violations in the under-
lying assumptions [38], particularly when the normality 
assumption is violated. This then eliminated the considera-
tion to use nonparametric alternatives to calculate the cor-
relations between each feature given the few violations of 
the underlying normality assumption. Other less successful 
dimensionality reduction models considered for this study 
were: Inter-class correlation (ICC), Lasso regression, Fac-
tor analysis, Standardizing and Mean-absolute-deviation 
(MAD).

No recommendation on an optimal cut-off value for Pear-
son Correlations dimensionality reduction could be found in 
the literature. One study did, however, mention using 0.8, 
without validation [24]. We therefore evaluated three dif-
ferent cut-off values, 0.7, 0.8 and 0.9, in this study. When 
a cut-off value of 0.7 was used in the correlation analysis, 
it retained very few common features (3 and 5 features: 3.2 
and 5.3%) in the different measures. This was found to be 
too conservative and eliminated some features that might be 
useful. A 0.9 cut-off value retained the most features (21 and 
22 features; 22.5 and 23.6%), but this is too liberal and not 
useful in the context of dimension reduction. It was decided 
that 0.8 is therefore a balanced cut-off value to be applied.

Two general statistical methods were considered to quan-
tify and consolidate the 3721 windows’ extracted features for 
each CXR. By statistical definition variance and standard 
deviation gives an indication of how much each data entry 
in a group differs from the mean of the group [23]. Average, 
median and IQR measures were also initially considered, 
but by definition they all average out the data and give no 
indication of the spread in the data [23]. From their statisti-
cal definition, these three related measures should produce 
results similar to when the secondary segmentation would 
have been disregarded. These three consolidation methods 
are therefore meaningless to achieve the study's aim to evalu-
ate the spread in the radiomic features across the lung region 
and were ignored.

Two separate signatures for the SD and variance meas-
ures were developed by only including the features that 
were common to both the normal and cavity dataset for each 
measure, respectively. Each signature consists of 10 features, 

9 common and 1 different feature (see Table 1). No first-
order statistical features were included in this signature as 
these features use basic statistical algorithms to describe the 
value and distribution of the pixels in the ROI [15] and has 
no concern for spatial relationships [39]. Texture features are 
calculated by using the statistical inter-relationship between 
the pixels in the ROI [39].

Model construction

The objective of model construction was to develop a non-
invasive tool which can automatically differentiate cavities 
seen on CXR of people suffering from PTB and normal 
CXR to further assist with PTB diagnosis. As an additional 
benefit, a successful model will also prove the effectiveness 
and accuracy of the secondary segmentation introduced. 
The classification results (Table 2) of both models devel-
oped using the SD and variance radiomic signatures showed 
strong diagnostic power across most measures.

Theoretically, machine learning algorithms are most suit-
able for samples with uniform distributions in the model 
training process [40]. For this reason, the data were adjusted 
using the random walk oversampling technique which is 
an algorithm that generates synthetic instances so that the 
mean and SD of the numerical attributes remain close to 
the original data [27, 28]. This technique did correct the 
imbalance between the cavity and normal groups in the sam-
pling distribution and therefore, improved the classification 
performance of the model. Four other sampling strategies 
were also considered but performed less convincingly: over-
sampling, synthetic minority sampling technique (SMOTE), 
simulation and majority weighted oversampling technique 
(MWMOT).

To construct the random forest models, a grid search 
cross-validation method was employed to determine the 
ideal number of variables to try at each tree split with 15 
folds and 5 repeats to further limit overfitting. The grid 
search method is an exhaustive method commonly used to 
find the optimal parameter value by considering all possible 
combinations of these values for the model so that the clas-
sifier can more accurately predict the unlabelled or testing 
data [29]. Across both random forest models, the grid search 
cross-validation method indicated that the ideal number of 
variables to try at each tree split was 1.

As a result, the SD model performed marginally bet-
ter than the variance model having a higher AUC value of 
0.9444 (95% CI, 0.8762; 0.9814), which is larger than the 
variance model’s AUC value of 0.9288 (95% CI, 0.9046; 
0.9843), but the 95% CI for the variance model is narrower 
which means there is less range in this estimate. This is visu-
ally supported by Fig. 4. The variance model had a better 
classification accuracy than the SD model with 87.50% and 
83.33%, respectively, indicating that the variance model 
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correctly predicted more cavities to the total observations 
in the data than the SD model. The variance model once 
again had a better model sensitivity than the SD model with 
a measure of 85.42% and 77.08%, respectively, which indi-
cates that the variance model correctly identifies 85.42% of 
all cavity CXR. Interestingly, both models have a specificity 
measure of 89.58% which indicates that both models will 
identify 89.58% of patients who do not have cavities, i.e., 
have normal CXR. The variance model once again had a 
higher precision value than the SD model with a precision 
of 89.13 and 88.1%, respectively. This indicates that when 
the variance model predicts a cavity, it is correct 88.1% of 
the time.

Three other popular machine learning algorithms were 
also considered for model construction: Logistic regression 
and Lasso Regression (with a minimum error and one stand-
ard error away). All three performed poorly compared to 
the random forest model in correctly classifying the cavities 
due to the complex nature of the data and the ability of the 
random forest model to classify less distinctive groups with 
overlapping information for the classes.

Although we were able to develop robust radiomics 
models, there are limitations to this study. One major 
restriction is caused by the intrinsically superimposed 
nature of CXR images. Ribs and other higher density over-
lying structures cause noise in the lungs that is detected in 
the radiomic features. Currently, there are some attempts 
to develop bone suppression software that can retrospec-
tively remove the ribs from CXR [41], but these mod-
els were not yet matured enough to apply to our unseen 
dataset. The successful removal of all superimposed high-
density structures might further improve the performance 

of our model. Cavities are a single representation of PTB, 
but it is also a common challenge in image-based studies 
that multiple radiological TB expressions (e.g., adenopa-
thy, infiltrates, and plural effusions) are present on a single 
X-ray. It is important to note that these other radiologi-
cal expressions that might be present on the cavity CXR 
dataset can cause some subjectivity to the outcome of this 
study. Our sliding window segmentation method was only 
tested on a single representation of PTB. Future perspec-
tives will extend this technique to other presentations and 
clinical models.

Conclusion

In this study, two separate radiomic models were con-
structed, both of which achieved good classification accu-
racy for normal chest X-rays and cavities on X-rays of peo-
ple suffering from pulmonary TB. This was achieved by 
the introduction of a secondary sliding window segmenta-
tion that was superimposed on a conventional automatic 
lung segmentation. This reproducible automatic segmen-
tation method eliminates the difficult and labor-intensive 
manual disease delineation task, and it alleviates the sub-
jectivity introduced by human judgement on X-rays. The 
well performing radiomic model could assist clinicians 
with the prompt diagnosis of pulmonary TB using digital 
chest X-rays. Accompanied with clinical signs and symp-
toms, it might aid diagnosis and commencement of pul-
monary TB treatment and improve the accuracy of high-
volume X-ray TB screening or surveillance programs.
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