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Abstract

MicroTom has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development,
metabolism, and plant–microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant
RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression
networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during
plant growth, e.g. arbuscular mycorrhizal symbiosis and fruit development. Additionally, non-coding RNAs, including miRNAs, lncRNAs,
and circRNAs were also identified, together with their potential targets. Interacting networks between different types of non-coding
RNAs (miRNA-lncRNA), and non-coding RNAs and genes (miRNA-mRNA and lncRNA-mRNA) were constructed as well. Our results
and data will provide valuable information for the study of organ differentiation and development of this important fruit. Lastly, we
established a database (http://eplant.njau.edu.cn/microTomBase/) with genomic and transcriptomic data, as well as details of gene co-
expression and interacting networks on MicroTom, and this database should be of great value to those who want to adopt MicroTom
as a model plant for research.

Introduction
Tomato (Solanum lycopersicum) is one of the most popular fruits
(although usually referred to as a vegetable) in the world. In 2020,
its annual worldwide production was estimated at ∼186 millions
of tons and has been increasing every year (http://www.fao.org/
faostat). Tomato is also an emerging model plant system for
developmental biology and, in some cases, can be an better option
than Arabidopsis thaliana, e.g. for studies of fruit development
[1, 2], metabolism [3–5], plant–pathogen interactions [6, 7], and
arbuscular mycorrhizal (AM) symbiosis [8, 9].

MicroTom is a tomato cultivar and currently a widely applied
experimental model plant for laboratory studies. This cultivar
has a smaller size than regular tomato cultivars (e.g. Heinz 1706
and M82), which, together with a shorter growth cycle and higher
transformation efficiency, makes it one of the best choices for
a laboratory model among tomato cultivars. However, a high-
quality genome has been lacking for this model cultivar, despite
the fact that hundreds of tomato cultivars/accessions have been
(re-)sequenced already [4, 10–12]. Nowadays, developmental biol-
ogists rely on the Heinz tomato genome as a reference, whereas

functional experiments are mainly performed using MicroTom
as the transformation system. Many re-sequencing studies
have indicated considerable sequence diversity among cultivar/
accession genomes [4, 12–14] and the newly developed pan-
genome strategy revealed the existence of specific genes only
belonging to certain cultivars/accessions [11, 15, 16]. Such obser-
vations suggest that the different genetic background between the
reference genome and others might complicate experiments, e.g.
in cloning target genes, potentially leading to failure of the entire
experimental design. Therefore, the availability of a high-quality
MicroTom genome was badly needed.

In this study, we provide a high-quality genome of Micro-
Tom and conducted comparative genomic analysis with the pre-
viously published Heinz tomato genome. Additionally, together
with large amounts of RNA-seq data obtained in this study and
collected from public databases, we present the RNAome land-
scape of MicroTom across different organ/developmental stages/
treatments and performed comprehensive analyses of the tran-
scriptome of MicroTom protein-coding genes, with respect to
(aspects of) gene expression and alternative splicing (AS). With
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Table 1. Statistics and comparison of MicroTom and Heinz genomes

MicroTom Heinz 1706 (SL4.0)

Contigs Pseudomolecules Contigs Pseudomolecules

Size (bp) Number Size (bp) Number Size (bp) Number Size (bp) Number

N50 41 367 923 8 66 788 879 6 6 007 830 37 65 269 487 6
Maximum length 68 578 620 94 893 795 26 291 688 90 863 682
Total number 60 12 448 12
Gap number 47 435
Assembled length 798 935 606 782 475 302
BUSCO completeness 98.57% 97.40%
Gene model number 35 213 34 690

the reference genome and abundant gene expression data, we
constructed co-expression networks for tomato organ develop-
ment, which will provide valuable information for the regula-
tion of organ development in the life cycle. Non-coding RNAs
were also identified by combining different sequence strategies,
and their interaction networks were predicted. Finally, we con-
structed a database (MicroTomBase, http://eplant.njau.edu.cn/
microTomBase), available for data download, online searching,
and demonstration of analytical results. This database will be
invaluable for researchers who employ the MicroTom tomato as
the laboratory model plant.

Results
Assembly of the MicroTom genome and
comparative genomics between MicroTom and
Heinz
Using a combination of 92.40 Gb Nanopore data and 54.38 Gb
Illumina data, we first obtained a MicroTom genome assem-
bly of 799 Mb with 60 contigs (contig N50 = 41.37 Mb). Then,
using the genome of Heinz as a reference, 58 MicroTom contigs
were further merged to 12 corresponding pseudochromosomes.
Protein-coding gene annotation of the MicroTom assembly cap-
tures 98.57% of the Embryophyta BUSCO (odb10) genes, with
97.89% single-copy genes and 0.68% duplicates. These results
indicate that our assembled MicroTom genome has reached a high
standard of quality and completeness (Table 1).

With the assistance of three full-length transcriptome RNA-
seq, 12 ribo-minus RNA-seq data, and 69 poly-A-enriched
RNA-seq datasets derived from different organs/tissues under
different developmental stages and/or treatments (see Materials
and methods) from this and previous studies [3, 17], 35 213
protein-coding genes were annotated in MicroTom. Among these,
31 891 genes (90.57%) received transcriptomic data support from
at least one RNA-seq sample. Although MicroTom has a similar
number of protein-coding genes to Heinz (34 690), these two
cultivars share only 2/3 one-to-one orthologous genes according
to synteny analysis and bi-directional BLAST (Fig. 1a), yet each
cultivar encodes thousands of specific genes, comprising real
specific genes, paralogs by duplications, and genes missed by
annotation (mainly in Heinz, probably due to inadequate RNA-
seq data) (Supplementary Data Fig. S1). For the two cultivars,
phylogenetic trees indicated that MicroTom was sister to Heinz,
and wgd analysis indicated that the two cultivars shared the same
polyploidy events (Supplementary Data Fig. S4, Supplementary
Data Fig. S5, Supplementary Data Fig. S6). However, 4449
MicroTom genes were ‘hiding’ in the Heinz genome (gene length
coverage and DNA sequence identity >90%), i.e. not annotated,

while the corresponding number of Heinz genes not annotated in
MicroTom was about half of 4449. This comparison indicates that
adequate and diverse transcriptomic data are critical to a more
comprehensive genome annotation.

While AS has been widely detected in eukaryotes to gener-
ate functionally divergent transcripts from a common parental
gene [18], the Heinz genome did not provide multi-transcript
annotation for protein-coding genes. By incorporating dozens of
RNA-seq datasets from PacBio and Illumina platforms, 14 873
(42.24%) MicroTom protein-coding genes were identified to have
multiple transcripts (Fig. 1b), with an average of two transcripts
per gene. Among all AS transcripts, intron retention accounts for
the largest proportion (23.57%), followed by alternative acceptor
(18.86%) and alternative donor (11.74%) (Fig. 1c). The expression
patterns of all transcripts were examined based on the transcrip-
tomic data (Supplementary Data Table S1). Among the AS tran-
scripts, the majority (>70%) showed obvious differential expres-
sion in different organs and/or developmental stages (Supplemen-
tary Data Table S1), suggesting that these AS transcripts may be
functionally distinct and regulate organ differentiation and devel-
opment in a more prevalent manner than we previously thought.

Due to the large amount of transcriptomic data, more compre-
hensive information for the untranslated regions (UTRs) was also
available. About 71.28% of MicroTom genes have annotated UTRs,
showing an obviously higher percentage than that in the Heinz
and rice genomes (Fig. 1d), and the median lengths of 5′ and 3′

UTRs are 125 and 271 bp, respectively (Fig. 1e). The annotation of
UTRs should provide useful information for gene regulation and
expression studies.

Comparing the genomes of MicroTom and Heinz, >1 000 000
single-nucleotide polymorphism (SNP) sites and 40 000 insertion–
deletions (indels) (<150 bp) were detected. Additionally, a great
number of larger structural variations were also identified
(Fig. 1f), such as bigger-sized genomic insertions, deletions,
duplications, contractions, translocations, and inversions. These
small and large structural variations indicate genomic divergence
between the two tomato cultivars, which may affect experimental
results that demand high accuracy, e.g. SNPs and indels in
the coding regions would greatly affect the design of CRISPR
guide RNAs.

Co-expression networks
Co-expression networks underlying the development of organs
and response to stimuli were inferred using transcriptome data
derived from 22 different tissues/organs and at different devel-
opmental stages and/or different treatments (three replicates
for each sample). All expressed genes were classified into 123
modules (Fig. 2a, Supplementary Data Fig. S2, Supplementary
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Figure 1. Genome annotation of MicroTom and comparison with Heinz and other species. a Protein-coding gene numbers for Heinz and MicroTom
varieties. Shared one-to-one orthologs in MicroTom and Heinz genomes are presented in the cross-section of the two tomato cartoon pictures.
b Proportion of genes with multiple transcripts and genes with different transcript numbers. c Categories and frequency of AS events in MicroTom. IR,
intron retention; AA, alternative adaptor; AD, alternative donor; ES, exon skipping. d Proportion of genes with annotated UTRs in MicroTom (MT), Heinz
(HZ), Arabidopsis thaliana (AT), and Oryza sativa (OS). e Dot plot of annotated UTR lengths in MicroTom, Heinz, A. thaliana and O. sativa. f Detected
structural variation events of MicroTom compared with Heinz. The minimum insertion, deletion, duplication, and contraction size is 150 bp, the
minimum inversion size is 1 kb, and the minimum translocation size is 10 kb.

Data Table S2), whereby each module contains genes that
share a similar expression pattern, and possibly function in
the same regulatory network, defining and/or regulating a
specific phenotype. When a specific phenotype is defined, the
corresponding module can be identified, and the hub genes,
as well as the entire network linked to the phenotype, can be

extracted. This way, unknown genes in the pathway can be iden-
tified, potentially providing important clues of targets and gene
interactions.

For instance, our results indicate that the AM symbiosis in
MicroTom (root, low phosphorus, and arbuscular mycorrhizal
fungi) is significantly associated with module 100 (Fig. 2a and b,

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad147#supplementary-data
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Figure 2. MicroTom co-expression networks established based on 22 transcriptome samples of different organs/developmental stages/treatments.
a One hundred and twenty-three modules and their correlation with 22 phenotypes or molecular processes. b Module 100 and its network,
significantly correlated with AM symbiosis. Gene names (instead of IDs) indicate that these genes have been functionally characterized and are
involved in AM symbiosis. Threads indicate correlation between genes. c Top five enriched KEGG pathways in the early stage of fruit development
(10 days after anthesis; Fruit10Days in panel a) in the most correlated modules 62 and 63. d Top five enriched KEGG pathways in the fully mature
stage of fruit development [55 days after anthesis Fruit55Days (Breaker15) in panel a] in the most correlated modules 17 and 23.

Supplementary Data Table S2). It could be noticed that sev-
eral important genes for known functions in the AM symbiosis
pathway are present, and the majority of them are even hub
genes in the network, including PT4, NSP1, RAD1, RAM1, Exo70I,
KIN2, and two WRI5a orthologs (designated WRI5a-1 and WRI5a-
2). It is well known that RAM1, RAD1, and NSP1 are regulators

relatively upstream in the AM symbiosis pathway [19–23], and
WRI5a is even considered as a master regulator [24], so they
should have broad associations with other genes in the same
pathway. Therefore, this co-expression result makes good sense,
not only in identifying the right (expected) genes, but likely also
in suggesting other critical, potentially even hub, genes. In this

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad147#supplementary-data
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case, other unknown genes in the pathway can also be identified
through such expression association (guilt by association), and
co-expression analysis should serve as an effective means to
explore unknown functional genes in pathways.

Tomato is one of the most important model plants, if not the
most important plant, for fruit development studies. Therefore,
we collected transcriptomes derived from fruits of nine different
development stages (10, 20, 30, 35, 40, 43, 47, 50, and 55 days
after anthesis with three replicates each), and observed fruits at
different development stages showing specific associations with
different transcriptional modules (Fig. 2a). For instance, fruits
10 days after anthesis are associated with modules 62 and 63
(Fig. 2a, Supplementary Data Table S2), the genes of which are
functionally enriched in the categories of ‘Cell motility’, ‘Organis-
mal systems’, ‘DNA replication’, and ‘Transcription factors’, sug-
gesting that early development of tomato fruits mainly involves
cell division, cell proliferation, and regulatory network develop-
ment of this organ (Fig. 2c), whereas fruits 55 days after anthe-
sis are associated with modules 17 and 23 (Fig. 2a, Supplemen-
tary Data Table S2), the genes of which are functionally enriched
in the categories ‘Fructose and mannose metabolism’, ‘Base exci-
sion repair’, ‘Mismatch repair’, and ‘Translation factors’, suggest-
ing biosynthesis of metabolites, which mainly seems to occur
in fully mature fruits (Fig. 2d). These different modules indicate
distinct major regulatory priorities at different developmental
stages of tomato fruits.

Diverse non-coding RNAs, their targets and
interactions
Non-coding RNAs, including miRNA, lncRNA, and circRNA, were
comprehensively annotated using multiple RNA-seq data sets.
These datasets were generated from six development stages/or-
gans of MicroTom tomato plants (root, stem, leaf, flower, green
fruit, and red fruit), and under phosphorus deficiency and AM
symbiosis status. A total of 210 miRNAs were identified from the
sRNA datasets, of which 164 belong to 48 known tomato miRNA
families in miRBase (Fig. 3a). We identified 19 tomato miRNA fam-
ilies previously documented in the miRBase with increased family
sizes, with one to seven more members discovered for each family.
Notably, five miRNA families that have not been documented
in tomato (only documented in other plants) were identified
in this study, namely miR157, miR1446, miR1886, miR2111, and
miR3627. Additionally, 46 novel miRNAs were identified (Fig. 3a).
The lengths of MicroTom miRNAs range from 20 to 24 nt, with
21-nt miRNAs accounting for the largest proportion. Expression
analysis revealed that most of the identified miRNAs were organ-
/developmental stage-specific or were only expressed upon stim-
ulation by Pi deficiency and/or AM symbiosis. Only a few of them
could be detected in multiple samples, e.g. miR403-3p, miR9472-
5p, and miR166a/g.

Altogether, 4835 lncRNAs were annotated from MicroTom
transcripts, and >2944 of them (60.89%) were transcribed from
intergenic regions, whereas 720, 511, and 210 lncRNAs were
transcribed from the genomic regions overlapping with protein-
coding genes at the sense/antisense strand, or from the intronic
sequences, respectively (Fig. 3b). The length of MicroTom lncRNAs
ranged from 200 to 15 073 nt, with an average length of 986 nt.
Similar to miRNAs, the majority of lncRNAs showed development
stage-/tissue-specific or stimulus-induced expression. To explore
the potential regulatory roles of miRNAs and lncRNAs, pairwise
interaction analyses were performed for combinations of miRNA–
mRNA, miRNA–lncRNA, and lncRNA–mRNA. The results showed
that 266 mRNAs and 7 lncRNAs could be predicted as targets of

miRNAs with a significant negative expression correlation.
Significant expression correlation was also observed for 8672
lncRNA–mRNA pairs, suggesting potential regulatory relation-
ships. Putting these predicted interactions together, networks
integrating miRNAs, lncRNAs, and mRNAs were constructed
(Fig. 3c, Supplementary Data Table S3), and these networks should
serve as a basic resource for elucidating the regulatory roles of
miRNAs and lncRNAs in tomato development and response to
stimuli.

A comprehensive annotation of circRNA was performed by
incorporating the sequencing results from this study and our
previous study [17]. A total of 19 840 circRNAs supported by
three independent software tools were identified by mapping the
sequencing reads onto the MicroTom genome. The lengths of 1428
identified high-confidence circRNAs ranged from 197 to 27 820 nt,
with an average of 1428 nt.

Construction of MicroTom genomic and RNAomic
database
To make our MicroTom genomic data and analytical results
conveniently accessible, we constructed a database (Micro-
TomBase, http://eplant.njau.edu.cn/microTomBase), providing
online search and download possibilities for our data and
results (Fig. 4). Through gene ID or sequence BLAST searches,
interesting genes can be found, together with detailed informa-
tion, including genomic positions, gene sequence with detailed
structure information [UTRs and coding sequences (CDSs)],
functional annotation, multi-transcripts, and expression profiles.
Information on non-coding RNAs and their targets as well as
interacting networks is also provided under the ‘Non-coding RNA’
section, which can also be accessed through BLAST search. All
MicroTom protein-coding genes are ascribed to 123 co-expression
modules and can be found under the ‘Co-expression’ section.
Genome assemblies and annotation files of the MicroTom tomato
are available for download. The MicroTom database will facilitate
comparative genomics, transcriptional regulation, and functional
studies for tomatoes.

Discussion
Tomato has been playing an increasingly important role as a
model plant for studies of fruit development, plant disease resis-
tance, and symbiosis. Despite being the most employed cultivar,
and the largest amount and a wide diversity of multi-omic data
being available, until now MicroTom tomato has lacked a high-
quality genome. This study fills this gap by providing a high-
quality MicroTom genome assembly, obtained by a combination
of Nanopore and Illumina sequencing. Moreover, we integrated
a diversity of transcriptome data (obtained from both public
resources and our own data) to achieve a comprehensive annota-
tion and profound analyses for this genome, reporting more genes,
more and longer UTRs, multiple AS transcripts, co-expression net-
works, non-coding RNAs, and their interaction networks, results
which should serve as a great resource for further genetic and
functional studies.

AS is considered a mechanism to generate multiple transcripts
with different functions [18], and a number of studies have
reported its extensiveness in organismal life cycles, e.g. organ
differentiation and development [25, 26], disease ontogenesis [27,
28], and response to abiotic and biotic stimuli [29–31]. However,
the Heinz tomato genome did not provide information for AS. The
MicroTom genome annotation fills this gap by including multiple
transcripts generated by AS. Over 40% of MicroTom genes are

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad147#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad147#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad147#supplementary-data
http://eplant.njau.edu.cn/microTomBase
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Figure 3. Non-coding RNAs and interaction networks in the MicroTom genome. a Identification of MicroTom miRNAs. The right panel represents
known miRNA families and their members identified in this study and their expression, and the left panel represents novel miRNA families. The
circular heat map shows miRNA expression (outer to inner): 1, roots symbiotic with AM fungi for 6 weeks under low phosphorus condition; 2, roots
without AM fungi under low phosphorus condition; 3, red fruits; 4, green fruits; 5, flowers; 6, leaves; 7, stems; 8, roots under normal phosphorus
condition. The histogram represents members identified in the known miRNA families of MicroTom, and divides into two parts. One is the newly
discovered members filled with red color, another is the existing members of miRBase filled with blue color. The hexagon represents miRNA families
previously not identified in tomatoes but identified in other plants. b Proportion of four different types of lncRNAs. c An integrated interaction
network between miRNAs, lncRNAs, and mRNAs. d Venn diagram representing the comparison of circRNAs predicted using three softwares. e
Distribution of circRNA lengths.

alternatively spliced and the majority of AS transcripts show
differential expression under different conditions, suggesting a
broad functional role of AS.

Other than assisting in-depth genome annotation, the large
amounts of transcriptomes also provide data for our co-
expression network analyses, which classified MicroTom
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Figure 4. Demonstration of the database MicroTomBase. a Home page of MicroTomBase and the main functions, providing service/information of
sequence blast, genomic position anchoring, gene ID search, co-expression modules, non-coding RNAs, and data download. b The BLAST tool of
MicroTomBase. Users can input genomic, PEP, or CDS sequences as the query sequence and the resulting alignment scores are ranked from high to low.
c The JBrowse tool for visualization of MicroTom genomic details, including gene visualization interface and detailed data on individual genes.
d Detailed information about genes, including protein and CDS sequence, RNA editing sites, KEGG and GO annotation, gene family, expression profile,
and co-expression module.

transcripts into different expressional modules, and accordingly
established diverse networks associated with different pheno-
types (different organs, developmental stages and treatments).
Potential genes with important functions that have not been
recognized can thus be identified based on their association and
applied for further functional characterization. Therefore, our
co-expression networks should provide useful information for

a more precise targeting of candidate genes related to specific
phenotypes in the tomato life cycle.

Non-coding RNAs are extensively involved in the post-
transcriptional regulation of gene expression through different
mechanisms, and play important roles in a variety of life
processes in plant growth and development, stress resistance,
and interaction with pathogenic or beneficial microbes [32, 33].
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In tomato, high-throughput sequencing of miRNAs of MicroTom
have been reported [17, 34–36], and functional roles of miRNAs
in fruit developmental regulation have been characterized, e.g.
miRNA156 [37] and miRNA159 [38]. The profiles of lncRNAs and
circRNAs of MicroTom have also been investigated, but by only
a few studies [17, 39]. Moreover, these studies merely focused
on non-coding RNAs at certain specific developmental stages or
treatments, while a full picture of tomato non-coding RNAs is still
lacking. In this study, we comprehensively annotated miRNAs,
lncRNAs, and circRNAs in the MicroTom genome by integrating
multiple datasets generated from diverse organs, developmental
stages and treatments (Supplementary Data Table S3), and our
results greatly extended the non-coding RNA list of tomato.
Furthermore, the expression profile of non-coding RNAs among
different samples indicate that most of the identified miRNAs
and lncRNAs were specifically expressed in different organs
and developmental stages or under AM symbiosis, suggesting
a conditional induction of these non-coding RNAs. Furthermore,
non-coding RNAs can regulate the expression of protein-coding
genes, directly or coordinately affecting the translation and
homeostasis of mRNAs [40]. By constructing the interaction
networks of the MicroTom miRNAs, lncRNAs, and mRNAs, we
uncovered highly complicated regulatory relationships between
non-coding RNAs and their target mRNAs, which provides novel
insights into the post-transcriptional regulation of protein-coding
genes in MicroTom.

In summary, this study presents a high-quality genome for
the MicroTom tomato, and a comprehensive annotation for both
coding and non-coding genes, including splice variants and UTRs.
Taking advantage of large amounts of transcriptomes, the gene
expression profile and co-expression networks are constructed,
which will provide clues for the identification of novel genes
involved in diverse pathways. Non-coding RNAs, including
miRNAs, lncRNAs, and circRNAs, as well as their potential targets,
were identified and interacting networks were constructed,
which will provide valuable information for future studies
dedicated to exploring the post-transcriptional regulation of plant
development by non-coding RNAs. All these findings suggest
diverse and complicated modifications and regulations at the
RNA level. All these results have been integrated into our online
resource, which we hope could provide an invaluable resource
for researchers studying tomatoes and employing tomato as a
model plant.

Materials and methods
Plant material and data sources
Seedlings of S. lycopersicum (cv. MicroTom) were grown in plastic
pots filled with a mixture of sterilized sand/gravel (1:1 ratio)
in a climate-controlled growth room with 16 h light at 24◦C
and 8 h dark at 22◦C. Roots, stems, leaves, flowers, immature
green fruits, and mature red fruits were collected from plants
grown in nutrient-rich soil for 6 weeks, and used for RNAome
sequencing. Green and red fruits were classified using the USDA
Visual Aid TM-L-1 color chart (USDA, Agricultural Marketing
Service, 1975).

We also downloaded 75 Illumina RNA-seq datasets and two
PacBio RNA-seq datasets involving different tissues/organs and
different developmental stages and/or different treatments from
our previous study [17], and a study performed by others [3].
Twelve MicroTom tomato proteomic datasets were retrieved from
the PRIDE Archive database (Proteomics Identifications Database,
https://www.ebi.ac.uk/pride/archive/).

Library construction and sequencing
Fresh leaves of 4-week-old MicroTom that were grown in half-
strength Murashige and Skoog basal medium with sucrose and
Phytagel were collected, and the genomic DNA was sequenced
on the Nanopore platform using a MinION R9 flow cell and the
Illumina NovaSeq6000 platform with an insert size of 450 bp at
Benagen (Wuhan, China).

Fresh tissues of roots, stems, leaves, flower, immature green
fruits, and mature red fruits of plants grown in nutrient-rich soil
were subjected to total RNA extraction using TRIzol (Invitrogen,
Carlsbad, USA) according to the manufacturer’s protocol, and
were used for subsequent RNA sequencing using different strate-
gies. Samples from each tissue were subjected to construct a ribo-
minus RNA library and small RNA library for RNA sequencing,
whereas a mixture of the six samples was used to construction
a PacBio SMRT library and a circular RNA library. The ribo-minus
RNA libraries, small RNA libraries, and circular RNA library were
sequenced using the Illumina HiSeq platform at Novogene Co., Ltd
(Tianjin, China), and the PacBio SMRT library was sequenced using
the PacBio Sequel System at Novogene Co., Ltd (Tianjin, China).

Genome assembly and assessment
Firstly, the raw Nanopore reads were corrected and assembled into
contigs by NextDenovo-v2.5.0 (https://github.com/Nextomics/
NextDenovo) with default parameters. Then, Nanopore reads
were further mapped into primary contigs by the software
Minimap2 v2.17 [41] with the parameter -ax map-ont, followed
by Nextpolish v1.4.1 [42] to polish contigs. Meanwhile, the
Illumina paired-end reads were processed to remove adaptor
and low-quality sequences using Trimmomatic v0.38 [43]. Then,
the clean Illumina short reads were mapped to the polished
contigs using BWA-MEM v0.7.17 [44] with default parameters,
based on three iterative rounds of polishing with parameter —
fix all by Pilon v1.23 [45] (read length N50 = 41.37 Mb). Finally,
the polished contigs were aligned to the Heinz genome to form
pseudomolecules, by the software RaGOO v1.1 [46]. Embryophyta
BUSCO v5.4.2 (odb10) [47] was used to evaluate the integrity of
the final assembly.

PacBio transcriptome processing
The SMRTlink v6.0.0 pipeline was applied to PacBio lso-seq
raw data. Firstly, the circular consensus sequence reads (CCSs)
were extracted from subreads of BAM files with parame-
ters minLength = 300, minZScore = −999, minPasses = 1, max-
DropFraction = 0.8, minPredictedAccuracy = 0.8, minSnr = 4, noP-
olish = TURE. Secondly, CCS reads were divided into full-length
non-chimeric (FLNC) reads and non-full-length (nFL) reads by
identifying whether 5′ and 3′ adapters and the poly(A) tail were
present. Then, we obtained consensus isoforms using the ICE
(Iterative Clustering for Error Correction) algorithm from FLNC
reads, which were further polished with nFL reads to get high-
quality consensus FLNC reads based on Quiver (parameters
hq_quiver_min_accuracy 0.99; others with default parameters).
Finally, the non-redundant FLNC reads were obtained by CD
HIT v4.8.1 [48] with an identity cutoff of 0.95. We also used the
software LoRDEC v0.9 [49] to correct mismatch and nucleotide
indels in FLNC reads.

Repetitive DNA identification and genome
annotation
We identified the repetitive elements in the MicroTom genome
based on a combination of de novo and homology-based

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad147#supplementary-data
https://www.ebi.ac.uk/pride/archive/
https://github.com/Nextomics/NextDenovo
https://github.com/Nextomics/NextDenovo
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strategies. A de novo library was first built through RepeatModeler
v2.0.1 [50] and LTR_retriever v2.9.0 [51]. The repeat region in
the genome was further masked by scanning the de novo repeat
library. Next, we used RepeatMasker v4.0.9 [52] to classify the
repeat sequences using the parameters -poly -html -gff -lib -no_is
-xsmall.

The combination of ab initio, homology-based and RNA-seq-
based annotation strategy was applied to predict and annotate
the protein-coding genes. Firstly, the masked genome was trained
by BRAKER2 v2.1.5 [53] and GeneMark-ET v4.69 [54] for ab initio
gene prediction. Secondly, to find homologous genes, related
species like Solanum tuberosum (686_v6.1) and S. lycopersicum Heinz
1706 (691_ITAG4.0), which were downloaded from Phytozome
v13, were loaded into GenomeThreader v1.7.1 [55] with the
parameters -species arabidopsis -gff3out -intermediate. Thirdly,
81 RNA-seq (Supplementary Data Fig. S3, Supplementary Data
Table S4) data sets were used to assist the annotation. These
were evaluated by FastQC v0.11.9 and Trimmomatic v0.38
[43] to trim low-quality and adaptor sequences. Then, these
high-quality reads were aligned to the genome by HISAT2
v2.2.1 [56]. We assembled transcripts with StringTie v2.1.5 [57]
and TransDecoder v5.5.0 (https://github.com/TransDecoder/
TransDecoder). The PacBio lso-seq was also applied to forecast
complete CDSs by the PASA v2.5.2 pipeline [58]. Finally, the
EVidenceModeler v1.1.1 pipeline was applied to integrate the
above-mentioned prediction strategies [59]. The GTF annota-
tion file, assembled from the Illumina and PacBio data, was
used for identifying AS events using the AStalavista v3.2 tool
[60].

Functional annotation
Several public databases (PFAM, GO, and KEGG) were used to
map GO terms for searching functional motifs and domains by
InterProScan v5.50–84.0 [61]. When the gene ontology terms for
each gene were obtained, functions of protein-coding genes in the
MicroTom genome were annotated by the Swiss-Prot database,
only retaining the best alignment.

Identification of structural variations and SNPs
between reference genomes
Structural variations (SVs) were identified by genome-wide align-

ment between the MicroTom and Heinz 1706 (ITAG4.0) genomes

using MUMandCo v3.8 [62], which can detect over 1 kb structural

variations in length. We also used the MUMmer package v4.0.0 [63]

to align these two genomes. The reciprocal best alignments were

found using the delta-filter program. Then, the uniquely aligned

fragments were used to identify SNP sites and indels with the

show-snp tool.

Gene expression and construction of
co-expression networks
The RNA-seq dataset for gene co-expression analysis was
obtained from samples with 22 various tissues/organs and at
different developmental stages and/or different treatments. The
normalized expression of RNA-seq data was calculated with FPKM
(fragments per kilobase per million reads) from all samples. FPKM
values <1 were filtered out. We used the R package WGCNA v1.66
[64] to construct co-expression networks, and the soft threshold
value was calculated by pickSoftThreshold integrated in WGCNA.
We used cytoHubba and MCODE to identify candidate hub genes,
and used Cytoscape v3.9.1 [65] to visualize the co-expression
networks.

Identification and annotation of non-coding
RNAs
The prediction of protein-coding potential for transcripts gener-
ated from Illumina and SMRT data was conducted by integrating
CPC2 v0.1, CNCI v2, PLEK v1.2, and PFAM v32 [66–69]. Candidate
lncRNAs were defined as transcripts with the longest representa-
tive sequence lacking any open reading frame (ORF) exceeding 100
amino acids, while having a minimum nucleotide sequence length
of 200 nt. MiRNAs were identified using miRador (https://github.
com/rkweku/miRador) with slight modification [70]. Specifically,
the sequences with the highest abundance of each miRNA locus
were added as candidate miRNAs. Candidate miRNAs were anno-
tated as known or novel miRNAs through referencing the lat-
est miRBase (v22.1) [71]. CIRI2 v2.0.6, CIRIexplorer2 v2.4.0, and
Find_ciric v1.2 were combined to detect potential back-splice
sites of candidate circRNAs [72–74]. Reconstruction of full-length
circRNAs was achieved using CIRI-full [75].

Identification of targets of miRNAs/lncRNAs
Potential miRNA targets (mRNAs and lncRNAs) were firstly pre-
dicted by using the psRNATarget v2 program. Then, the expression
values of resulting miRNA–mRNA/lncRNA pairs for six tissues
(roots, stems, leaves, flower, immature green fruits, and mature
red fruits) were subjected to Spearman correlation coefficient
analysis. MiRNA–mRNA/lncRNA pairs were considered to be a
candidate interactional miRNA target when the Spearman corre-
lation coefficient was <−.80 and the P value was <.01.

To predict lncRNA–mRNA co-expressed pairs, Spearman corre-
lation analysis was performed between lncRNAs and mRNAs in 75
RNA-seq samples. For more accurate prediction of lncRNA–mRNA
correlations, we increased the threshold of the Spearman corre-
lation coefficient to >.9 and the P value <.01. We also screened
the results that met the above requirements based on six or more
samples with FPKM >1, considering these lncRNA–mRNA pairs to
be co-expressed.
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