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Introduction: The identification of classes of nutritionally similar food items is 
important for creating food exchange lists to meet health requirements and for 
informing nutrition guidelines and campaigns. Cluster analysis methods can 
assign food items into classes based on the similarity in their nutrient contents. 
Finite mixture models use probabilistic classification with the advantage of taking 
into account the uncertainty of class thresholds.

Methods: This paper uses univariate Gaussian mixture models to determine the 
probabilistic classification of food items in the South African Food Composition 
Database (SAFCDB) based on nutrient content.

Results: Classifying food items by animal protein, fatty acid, available carbohydrate, 
total fibre, sodium, iron, vitamin A, thiamin and riboflavin contents produced 
data-driven classes with differing means and estimates of variability and could 
be clearly ranked on a low to high nutrient contents scale. Classifying food items 
by their sodium content resulted in five classes with the class means ranging 
from 1.57 to 706.27  mg per 100  g. Four classes were identified based on available 
carbohydrate content with the highest carbohydrate class having a mean content 
of 59.15  g per 100  g. Food items clustered into two classes when examining their 
fatty acid content. Foods with a high iron content had a mean of 1.46  mg per 
100  g and was one of three classes identified for iron. Classes containing nutrient-
rich food items that exhibited extreme nutrient values were also identified for 
several vitamins and minerals.

Discussion: The overlap between classes was evident and supports the use of 
probabilistic classification methods. Food items in each of the identified classes 
were comparable to allowed food lists developed for therapeutic diets. This data-
driven ranking of nutritionally similar classes could be considered for diet planning 
for medical conditions and individuals with dietary restrictions.
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1. Introduction

The study of single nutrients in food items has played an important 
role in our understanding of the basic causes and treatment strategies 
of nutrition-related diseases (1). Establishing the relationships 
between specific nutrients and food items and determining the 
association between specific nutrient intakes and diseases, may help 
with the interpretation of dietary patterns found in a population and 
the explanation of the association between dietary patterns and 
disease (2). In addition, a reasonable first step toward the development 
of food-based dietary guidelines (FBDGs) is identifying the food 
sources of the nutrient of interest. This information can be ascertained 
from food composition databases (FCDBs) and understanding food 
items and their nutrients promotes a basic knowledge of nutrition 
amongst the population (3). The analysis of dietary patterns is 
dependent on the categorization of food items but the rules 
determining this categorization, which are based on conceptual and 
compositional similarity, are not always well-defined (2).

The need to group foods by nutritional content was recognized 
by Khan (4) who proposed categorizing foods as having a either a 
low, medium or high specific nutrient content to assist dietitians 
with food recommendations. However, the proposed category 
thresholds were suggestive and a more rigorous method of 
determining the thresholds was needed. More recently, a more 
suitable, data-driven categorization was proposed, using k-means 
clustering to group foods by nutrient content (5). Other methods 
that have been used to classify food items are hierarchical 
clustering, principal component analysis (PCA), factor analysis 
and fuzzy clustering (6). Thus, employing statistical clustering 
methods to food composition data can produce objectively 
determined classes. A previous study (7) applied PCA to food 
composition data to identify nutritionally similar groups. However, 
evaluating similar food items through PCA does not account for 
the uncertainty in assigning food items to classes. In addition, 
while food items were able to be grouped by overall nutritional 
similarity, food items were unable to be ranked by the level of a 
specific nutrient content. The ability to rank food items by the level 
of nutrients is essential for creating food lists for therapeutic diets. 
Some common therapeutic diets that involve nutrient modification 
are renal diets for the management of chronic kidney disease (8) 
and low carbohydrate diets for the management of diabetes (9).

A recent review has shown that mostly centroid-based and 
hierarchical clustering techniques have been applied to food 
composition data (6) but mixture models have yet to be investigated 
in this context. The application of mixture models to identify dietary 
patterns in food consumption studies has shown advantages over 
nonparametric approaches (10, 11). Nonparametric approaches result 
in classes wherein each food item belongs exclusively to one class, thus 
assuming that the classification uncertainty is zero. However, if 
arbitrary thresholds existed to separate low and high nutrient content 
foods, there is a weak separation between food items containing 
nutrient levels that are near the threshold. Mixture models 
accommodate for this uncertainty by measuring the probability of 
class membership, which takes values between zero and one (10). 
With probabilistic clustering, the focus is not on whether a food is in 
a class, but rather to what extent it is associated with that class (12). 
The consideration of the uncertainty in determining nutritional 
classes allows for greater precision and reduced allocation bias (13).

Probabilistic clustering or distribution-based clustering assumes 
that the nutrient values are generated by a mixture of probability 
distributions and that each distribution forms a class. Each food item 
is assigned a probability of class membership (these being the 
posterior probabilities), thus supporting multiple class membership 
and also the assignment of outliers to classes. The most popular 
algorithm of this approach is the Gaussian mixture model (GMM). 
For a dataset of n food items that one wants to classify into k 
compositionally similar groups, the GMM assumes that the overall 
nutrient content distribution consists of a mixture of k Gaussian 
(normal) distributions. In this study, we apply univariate GMMs to 
food composition data to determine classes that contain similar levels 
of specific nutrients and to allow for the estimation of the class 
membership probabilities for each food item.

2. Materials and methods

2.1. Data

The 2017 SAFCDB (11) contains nutritional information for 1,667 
food items and 169 food components (hereon termed ‘nutrients’). The 
compilation of food composition data for the SAFCDB comprises 
various number of data sources ranging from national projects 
involving direct methods and indirect methods, to the sourcing of 
scientific literature, certificate of analyses and product nutritional 
information from various data generators.

Of the 169 food components, we selected the most common 
nutrients with the least amount of missing values for inclusion. 
We  also considered nutrients that were non-collinear. For 
example, since total carbohydrate is the sum of available 
carbohydrate and dietary fibre, available carbohydrate and dietary 
fibre were included instead of total carbohydrate. Using these 
criteria, we  selected 28 nutrients (nine macronutrients, nine 
minerals and ten vitamins) for analysis and included food items 
(n = 971) which had non-missing nutrient information for all 
28 nutrients.

For each of the 28 nutrients, each of the 971 food items had 
either a known nutrient value, a zero nutrient value or a trace 
value. Food items with a zero nutrient value for a particular 
nutrient are excluded from the univariate GMM analysis since 
we are interested in classifying only food items known to have the 
nutrient of interest. Trace values were imputed with half the limit 
of detection for each nutrient (14). Thus, only food items 
containing either a known nutrient value or trace value are 
included in the analysis. Extreme nutrient values were retained in 
the dataset. Raw food items, cooked food items and combined 
dishes (where nutrient composition has been calculated using 
standard recipes) from various food groups were included in the 
analysis (Table 1). All nutrient values were expressed per 100 g 
edible part.

2.2. Methods

2.2.1. Univariate Gaussian mixture model
In the case of food composition data, the univariate Gaussian 

mixture model assumes that the nutrient content values arise from a 
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mixture of two or more Gaussian distributions. Each Gaussian 
distribution represents a class of food items. Since Gaussian 
distributions can be described by the mean and variance, the means 
and variances for each class of food items can be estimated.

The means and variances for each class of food items can 
be  estimated via an iterative process called the Expectation–
Maximization (EM) algorithm (15). Since we  do not know the 
means and variances for each class of food items beforehand, 
we  begin with an initial guess for each and iterate between an 
expectation step (E-step) and a maximization step (M-step). In the 
E-step, we calculate the probability that a food item belongs to a 
specific class. In the M-step, we update the mean and variances for 
each class, based on the probabilities calculated in the expectation 
step. The steps are repeated until there are no significant changes in 
either the means and variances or the log-likelihood (how well the 
model fits the data). The mathematical definitions of the univariate 
GMM follow.

Suppose that ijx  is the amount of nutrient j  for food item i  
( 1,2, ,971; 1,2, ,28)i j= … = … . We assume that the nutrient value 

ijx  arises from a mixture composed of k  unobserved classes. 
Formally, ijx  is a sum of class-specific nutrient distributions as
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Assuming ( ) ( )2,k ij k kp x N µ σ= , then ( )k ijp x  follows a 
Gaussian distribution and ( )ijp x  becomes a Gaussian mixture 
distribution. Thus, for the univariate GMM

 ( )~ijz Cat π
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where π  is the vector of proportions, kµ  is the mean nutrient 
content for class k  and kσ  is the associated standard deviation for 
class k .

The EM algorithm can be utilized when we need to conduct a 
maximum likelihood estimation of parameters in the presence of 
missing data or latent variables. The E- and M-steps for the univariate 
GMM are outlined below.

2.2.2. The E-step
Calculate the responsibilities izγ  (posterior probabilities) for the 

ith food item and zth class:
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2.2.3. The M-step
Calculate the new parameters zµ∗ , zσ∗ , and zπ∗  via 

maximization using
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The EM algorithm begins with initialization and is iterated until 
convergence of the parameters or log-likelihood is reached (16).

TABLE 1 Number of food items analyzed by food group.

Food group n (%)

Cereals and cereal products 195 (20.08)

Vegetables 245 (25.23)

Fruit 132 (13.59)

Legumes and legume products 26 (2.68)

Nuts and seeds 20 (2.06)

Milk and milk products 41 (4.22)

Eggs 27 (2.78)

Meat and meat products 120 (12.36)

Fish and seafood 36 (3.71)

Fats and oils 26 (2.68)

Sugar, syrups and sweets 17 (1.75)

Soups, sauces, seasonings and flavorings 30 (3.09)

Beverages 27 (2.78)

Infant and paediatric feeds and foods 10 (1.03)

Therapeutic/special/diet products 7 (0.72)

Miscellaneous 12 (1.24)

Total 971 (100)
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2.2.4. Statistical analysis
After examining the distributions for each nutrient, we aimed to 

fit a univariate GMM for each natural log-transformed nutrient. 
‘Moisture’ was kept on the original scale. We used the ‘mclust’ (17) and 
‘mixtools’ (18) R packages to fit the models. The steps followed are 
outlined below. For each of the 28 nutrients:

 1. We determined the optimal number of classes to fit using 
quantiles to initialize the EM algorithm. Ten GMMs were fitted 
in succession for k (the number of classes) ranging from 1 to 
10 and the Bayesian Information Criterion (BIC) (19) was 
computed for each model. The k that minimized the BIC was 
selected as the optimal number of classes.

 2. We used the EM algorithm with random initialisation to fit the 
GMM with the optimal k. To avoid local optima, the model was 
fitted 10 times and the model with the highest log-likelihood 
was selected. Convergence was declared when the change in 
the observed log-likelihood increased by less than 810− .

 3. The parameter estimates for the mean ( µ ), standard deviation 
(σ ) and proportion (π ) from the selected model were 
recorded and the GMM density function was plotted.

 4. Food items were assigned to classes based on their highest 
estimated probability of class membership. The class validity of 
the GMM solutions was assessed using the Davies-Bouldin 
(DB) (20) index and silhouette coefficient (21).

The DB index measures the average separation between each class 
and its next nearest class. The index is bounded between zero and 
infinity with values closer to zero indicating a better partitioning. The 
silhouette coefficient measures how similar an observation is to 
observations in its own class (compactness) compared to observations 
in other classes (separation). The silhouette coefficient is bounded 
between −1 and 1, where negative values indicate incorrect 
classifications, values close to 1 indicate highly dense classifications 
and scores around zero indicate overlapping classifications 
(observations lying between two classes). Scores greater than 0.5 are 
generally desirable for good classifications (22).

3. Results

3.1. Model selection

The BIC was compared for the 1- to 10-class GMMs. The most 
frequent model selected was the two-class model (n = 14/28) followed 
by the four-class model (n = 6/28). The highest number of classes was 
found when food items were grouped based on sodium content and 
niacin content with five and seven classes, respectively. Plant protein, 
calcium and vitamin B6 were best described by a single class, that is, 
the univariate normal model.

3.2. Identified classes

The parameter estimates corresponding to the classes are 
presented in Table  2. Figures  1–3 depict each nutrient-based 
classification, which can be  described as a mixture of Gaussian 

distributions. Hence, each Gaussian distribution on the plots 
represents a class.

Five classes of food items were identified when classifying food 
items by sodium content and the mean sodium content of the classes 
ranged from 1.57 mg to 706.27 mg per 100 g (Table 2). Food items 
identified as having the highest sodium content were bread, potato 
crisps, breakfast cereals, canned vegetables, dehydrated potato mash, 
milk powders, processed meat, canned/cured/smoked fish, butter, 
margarine, mayonnaise and packaged soup mix (Table 3). Grouping 
foods by their available carbohydrate content resulted in four 
identified classes (Table 2). Class 4 contained foods with the highest 
mean available carbohydrate content of 59.15 g per 100 g and consisted 
of baked goods, starchy vegetables, and sugar and sweets (Table 4). 
Food items grouped by their fatty acid content were found to consist 
of two classes for each of the fatty acids, suggesting that food items 
could naturally be grouped into having either a low or a high fatty acid 
content. Food items associated with having a high fatty acid content 
were baked goods, fried foods, nuts and seeds, dairy products, eggs, 
meat products, caviar, high-fat fish and fats and oils (Table 5). Three 
classes of food items were identified when the grouping was based on 
iron content. Class 2 had the highest mean iron level of 1.46 mg per 
100 g and contained mainly wheat products, dehydrated raw 
vegetables, green vegetables, beetroot, mushroom, dried fruit, 
legumes, nuts and seeds, milk powder with added iron, eggs, meat 
(excluding white meat chicken and veal) and certain seafood (Table 6).

The study found that the classification of food items using 
moisture (Supplementary Table  1), animal protein (Table  7) and 
sodium (Table 3) content could be described by low, moderately-low, 
moderately-high and high nutrient content classes. Based on the 
saturated, mono-unsaturated and polyunsaturated fatty acid content, 
food items could be  described by low- and high-content classes 
(Table 5). When examining their available carbohydrate content, food 
items could be described as having an extremely low, low, moderate 
and high available carbohydrate content (Table 4). Low, moderate and 
high nutrient content classes of food items were also identified based 
on vitamin A (RE) and thiamin content (Supplementary Table 3). 
While most food items exhibited a clear belonging to classes, a few 
food items exhibited multiclass membership. For example, for vitamin 
A (RE) content, raw leaves other than amaranth had an approximately 
equal probability of belonging to either the moderate content or high 
content class while amaranth leaves had a clear belonging to the high 
content class. Other classes of interest are shown in 
Supplementary Tables 2–5. Food items with a high copper content 
were identified by class 2 and consisted of wheat flour, maize meal, 
leafy greens, mushrooms, potatoes, beans, lentils, nuts and seeds, 
organ meat, shellfish and chocolate (Supplementary Table 2). The 
distributions for cholesterol and manganese did not display classes 
that could be intuitively ranked (Supplementary Table 6).

Classes capturing foods exhibiting extreme values of nutrients 
were also identified. These classes contained both foods having low or 
extremely low nutrient content and foods having a high or extremely 
high nutrient content. This class was present in the distributions for 
magnesium, potassium, sodium, copper, riboflavin and pantothenic 
acid. The distribution of phosphorous also contained two classes with 
class 1 describing foods with extremely low phosphorous content such 
as marrow squash, tomato juice, butter ghee, margarine, tea and 
baking powder.
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TABLE 2 Parameter estimates for the univariate Gaussian mixture model§.

Nutrient N Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

% Mean SD % Mean SD % Mean SD % Mean SD % Mean SD % Mean SD % Mean SD

Moisture (g) 964 12 6.68 4.33 15 33.8 14.35 43 71.1 10.65 29 87.2 5.03

Plant protein (g) 749 100 1.49 1.17

Animal protein (g) 487 13 0.02 0.81 55 2.86 1.1 11 13.87 0.24 20 25.53 0.14

Saturated fatty acids (g) 956 37 0.03 0.96 63 2.2 1.17

Mono-unsaturated fatty acids (g) 955 39 0.03 1.06 61 2.83 1.12

Polyunsaturated fatty acids (g) 957 47 0.08 1.23 53 2.1 1.2

Cholesterol (mg) 434 65 30.3 1.59 35 70.81 0.34

Carbohydrate, available (g) 879 4 0.48 1.64 22 2.75 0.56 58 13.07 0.64 15 59.15 0.22

Fibre, total (g) 752 38 0.73 1.67 62 2.23 0.77

Calcium (mg) 961 100 27.39 1.28

Iron (mg) 965 18 0.34 1.31 58 1.46 0.89 25 0.48 0.46

Magnesium (mg) 960 62 14.01 0.48 38 24.29 1.35

Phosphorous (mg) 959 2 6.11 3.55 98 66.69 1.1

Potassium (mg) 963 23 156.02 1.53 77 186.79 0.56

Sodium (mg) 959 9 1.57 0.45 27 6.23 0.79 3 13.07 3.75 54 78.26 0.83 8 706.27 0.48

Zinc (mg) 962 72 0.44 0.99 6 0.39 0.06 13 0.34 1.87 9 3.6 0.32

Copper (mg) 958 44 0.09 0.45 56 0.1 1.34

Manganese (μg) 957 75 93.69 1.81 25 165.67 0.53

Vitamin A (RE) (μg) 817 18 1.51 1.25 78 48.42 1.33 4 1844.57 0.76

Thiamin (mg) 954 77 0.06 0.87 2 0.003 0.29 20 0.31 0.7

Riboflavin (mg) 960 24 0.02 0.45 26 0.08 0.59 22 0.11 1.68 28 0.2 0.33

Niacin (mg) 954 1 0.003 0.33 5 0.1 0.02 14 0.48 0.33 33 0.36 0.94 10 5.26 0.28 33 1.62 0.67 3 12.06 0.24

Vitamin B6 (mg) 952 100 0.08 1.14

Vitamin B12 (μg) 487 10 0.005 0.22 32 0.34 0.48 45 0.45 1.97 13 1.7 0.29

Pantothenic acid (mg) 954 45 0.29 1.49 55 0.28 0.57

Vitamin C (mg) 721 68 2.03 1.93 32 11.7 0.93

Vitamin D (μg) 471 13 0.03 1.14 87 0.85 1.19

Vitamin E (mg) 924 98 0.51 1.5 2 0.005 1.05

§Mean estimates are presented on its original scale per 100 g. Standard deviation (SD) estimates are presented on the natural-log scale. The percentage (%) of food items belonging to the class is also reported.
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FIGURE 1

Univariate Gaussian mixture model for macronutrients.

FIGURE 2

Univariate Gaussian mixture model for minerals.
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3.3. Class validity

The internal class validity indices are presented in Figure  4. 
Nutrient-based classifications with good DB indices and silhouette 
coefficients are indicated by green shading. The median DB index was 
0.78 (IQR 0.45–4.08), suggesting that the GMM resulted in good 
classification. The minimum score was 0.3 for the vitamin E 
classifications and the highest scores, ranging from 4.65 to 9.7, were 
found for the potassium, sodium, zinc, copper and vitamin B12 
classifications. An outlying score of 151.06 was found for the 
classification by pantothenic acid. Each of the classifications that were 
found to have a high DB score, contained a class that simultaneously 
captured foods with extremely high nutrient levels and foods with 
extremely low nutrient levels. For example, class 2 of the copper 
classification accounted for 56% of the food items and contained foods 
with both extremely low and extremely high levels of copper. Thus, 
classifications that contained such a class, tended to have the most 
overlap of classes and were congruent with having high DB scores.

The median silhouette coefficient was 0.5 (IQR 0.39–0.62), also 
suggesting that the GMM resulted in good classification. Negative 
silhouette coefficients were found for the zinc and manganese 
classifications, both of which had a significant overlap of classes. 
When examining the coefficients for each class, both the zinc and 
manganese classifications had some classes with high coefficients, 
suggesting that observations within these classes displayed good 
cohesion. Again, individual class coefficients were low for classes that 
captured both extremely high and extremely low values. For example, 
the first class of cholesterol accounted for 65% of the food items and 
described foods with either an extremely low cholesterol value or an 
extremely high cholesterol value. This class had a silhouette coefficient 

of −0.12 compared with the second cholesterol class which scored 
0.81. This similar pattern was also seen for the potassium, sodium, 
zinc, copper, manganese, riboflavin, niacin and vitamin B12 
classifications. Classes that had a significant overlap with other classes 
tended to have a negative silhouette coefficient.

4. Discussion

In this paper, we have applied Gaussian mixture models to the 
South African Food Composition Database to evaluate the application 
of probabilistic classification to food composition data. The 
classification of food items into nutritionally similar food groups is a 
common objective of studies that apply statistical methods for the 
analysis food composition data. Traditional food groupings are not 
enough to describe the nutritional landscape of food and 
compositionally similar food groups also need to be  investigated. 
Identifying compositionally similar food groups can be  achieved 
through clustering algorithms which are simple to employ. However, 
most of the clustering algorithms applied thus far assign food items 
exclusively to one class and the indistinct thresholds that may exist 
between food groups, based on nutritional content, needs to 
be considered. The application of probabilistic clustering can account 
for this uncertainty.

An important application of FCDBs is its role in the design of 
therapeutic diets (23). Renal disease, diabetes mellitus and anaemia 
are some examples of health conditions that require the monitoring of 
specific nutrients. Allowed food lists and food exchange lists are a 
useful tool for health practitioners and patients when managing such 
conditions. They are also useful for healthy individuals to improve 

FIGURE 3

Univariate Gaussian mixture model for vitamins.
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TABLE 3 Food items within the identified sodium classes.

Class Class 1 Class 2 Class 3 Class 4 Class 5

Class description Low content Moderately-low content Extremely low content Extremely 

high content

Moderately-high content High content

Food group

Cereals and cereal products

Cooked maize meal porridges, cooked white rice, 

cooked oats, wheat flour, cooked pasta, uncooked 

semolina, roti

Cooked wheat, cooked egg noodles, cooked, brown rice, 

brown rice flour, cooked barley, raw maize meal, wheat 

germ, wheat flour, cooked wholewheat pasta

Baked goods, pasta dishes
Bread, potato crisps, breakfast cereals, self-

raising wheat flour

Vegetables Squash, potato, melon, boiled pumpkin

Bamboo shoots, green beans, tomato, baby marrow 

squash, brinjal, leaves, peas, mushroom, Brussels sprouts, 

onion, white-fleshed sweet potato, cauliflower, cabbage

Asparagus soup and boiled 

mangetout

Beetroot, vegetables cooked with 

margarine, dehydrated raw vegetables, 

carrots, leaves, baby sweetcorn, celery, 

canned vegetables

Canned baby sweetcorn, canned asparagus, 

canned sauerkraut, dehydrated potato mash, 

spinach, dehydrated cauliflower, canned 

olives

Fruit

Apple, banana, gooseberry, grapes, grapefruit juice, 

guava, lemon juice, mango, naartjie juice, orange 

juice, orange, pineapple, sour plum, prickly pear, 

raspberry, rhubarb, youngberry, date, granadilla, 

kiwifruit, lime, marula, medlar, mineola, nectarine, 

dried peach, dried prune

Canned fruit, stewed fruit, dried fruit, prunes, dates, 

pawpaw, figs, cherries, plums, peaches, rhubarb stems, 

strawberry, watermelon, kumquat, avocado, grapefruit, 

lemon, litchi, pear

Melon, raisins, fruit mincemeat, dried 

apple, candied orange/lemon peel, 

glazed cherry

Legumes and legume 

products
Dried beans, cooked split peas, cooked lentils

Cooked rice and lentils dish, raw lentils, raw split peas, 

tofu, cooked beans, cooked chickpeas
Bean dishes, raw chickpeas, lentil dishes

Nuts and seeds
Almonds (unsalted, blanched), pistachios, 

chestnuts, coconut, pine nuts, walnut

Unsalted peanuts, macadamia nuts, sunflower seeds, 

Brazil nuts, cashew nuts, unblanched almonds

Sesame seeds, desiccated coconut, 

salted peanuts

Milk and milk products Milk, yoghurt, custard, cottage cheese
Cheese, milk powders (low-fat, skim, added 

vitamins)

Eggs Eggs Dried egg

Meat and meat products Meat Processed meat

Fish and seafood
Fish biltong, 

anchovy
Fish, oyster, tuna, crab, mussels

Shrimp/prawn, rollmop/pickled herring, 

caviar, smoked fish, canned sardine

Fats and oils French salad dressing, butter ghee, olive oil Pressurized cream Salad dressing, cream Butter, margarine, mayonnaise

Sugar, syrups and sweets Sugar Honey, dark chocolate, jam/marmalade, jelly (with fruit) Chocolate, icing, molasses

Soups, sauces, seasonings and 

flavorings
Curry sauce, soup mix (with beef and vegetables) Sauces and soups Soup (packet mix)

Beverages Fruit juices, fruit nectars Milk beverages

Infant and paediatric feeds 

and foods
Infant feeds

Therapeutic/special/diet 

products
Therapeutic powders

Miscellaneous Tea, spirits Vinegar, wine, liqueur, sherry, tea Baking powder Liqueur with cream
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their nutrition education (24). Applying clustering methods to food 
composition data provides a data-driven method of establishing foods 
with similar nutritional content, for the development of allowed 
food lists.

Classifications based on cholesterol, total fibre, magnesium, 
potassium, copper and pantothenic acid content, indicated a clear 
overlap of two classes, supporting the use of probabilistic classification 
methods. The differing class variances also suggest that the k-means 

clustering algorithm may be less suitable when applied to food items 
since the k-means algorithm separates items into groups of 
equal variance.

The classes obtained from the GMMs provided greater detail 
when compared to the groupings identified in a previous study that 
applied principal component analysis to the SAFCDB to identify 
compositionally similar food items (7). While the PCA groupings 
identified the ‘meat and meat products’ food category as a whole being 

TABLE 4 Food items within the identified available carbohydrate classes.

Class Class 1 Class 2 Class 3 Class 4

Class description Extremely low content Low content Moderate content High content

Food group

Cereals and cereal products

Milk tarts, white rice, pancakes, 

puddings, pasta dishes, soft and 

stiff maize meal porridge, scones

Raw maize meal, rice flour, 

wheat flour, potato flour, oats, 

cookies, cakes, bread, breakfast 

cereals

Vegetables Rhubarb

Cucumber, leaves, marrow 

squash, spinach, broccoli, 

cabbage, cauliflower, Brussels 

sprouts, mushroom, brinjal, 

tomato, avocado, rhubarb 

stems, olives

Potato, white-fleshed sweet potato, 

butternut squash, parsnip, 

sweetcorn, carrot, peas, tomato 

paste, tomato purée, onion

Raw dehydrated starchy 

vegetables (carrot, onion, peas, 

potato)

Fruit Grapefruit, melon, youngberry
Canned fruit, stewed fruit, raw 

fruit
Dried fruit

Legumes and legume products Raw tofu, cooked soybeans

Beans, rice and lentil dishes, 

lentils, raw soybeans, cooked 

chickpeas

Dried beans, dried chickpeas

Nuts and seeds Sesame seeds Coconut, pecan nuts Nuts and seeds Chestnuts

Milk and milk products

Some cheeses (medium/

reduced fat, Leicester, 

Gouda)

Cheese, sour milk Milk, yoghurt, custard
Skim and low-fat milk 

powders

Eggs
Raw chicken egg (omega-3 

enriched), raw quail egg
Eggs Soufflé

Meat and meat products
Offal, mutton, beef heart, 

beef kidney, beef patty

Frankfurter, pastrami, offal, 

luncheon meat, bacon, 

sausage, meatball, schnitzel, 

liver, ham, steak and kidney, 

chicken giblets

Commercial meat pies, meat 

spread, biltong, pâté, stews with 

meat and vegetables, corned beef

Fish and seafood Baked/fried fish
Boiled shrimp/prawn, baked 

kipper, oyster, caviar

Battered/crumbed fish, mussel, 

rollmop/pickled herring

Fats and oils Butter ghee, margarine Cream Salad dressing, peanut butter

Sugar, syrups and sweets Sugar and sweets

Soups, sauces, seasonings and 

flavorings

Cucumber soup, meat gravy, 

snakehead soup
Sauces Caramel sauce

Beverages Coffee, tea Fruit juices, milk beverages
Malted milk powder, drinking 

chocolate powder

Infant and paediatric feeds and 

foods
Reconstituted infant feeds Infant feed powders

Therapeutic/special/diet products
Reconstituted therapeutic 

products
Therapeutic powders

Miscellaneous Wine
Baking powder, liqueur with 

cream, sherry
Liqueur
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high in animal protein, the identified GMM classes based on animal 
protein was able to further separate this food category into three 
subclasses. Specific food items, such as red meat and oily/fatty fish 
were identified to be high in animal protein. Similarly, while the PCA 
groupings identified leaves such as lambs quarters and sow thistle 
leaves as containing a high vitamin A content, our analysis has shown 
that only amaranth leaves exhibit a higher than average vitamin A 
content. Thus, within broad food categories, our classification provides 
detailed subcategories with a focus on the individual food items. In 
addition, regarding the vitamin A content of leaves other than 
amaranth leaves, other leaves had an approximately equal probability 
of belonging to either the moderate content class or the high content 
class. This finding emphasizes the uncertain thresholds between 
clusters in food composition data and is possible to quantify through 
evaluating the class membership probabilities, available with 
probabilistic classification and is an advantage over PCA.

Although there was a discernible link between the identified 
classes and the SAFCDB food groups, the identified classes included 
food items from various SAFCDB food groups. This suggests that 
compositional similarity cannot be completely described by traditional 
food groups such as grains, vegetables and dairy, which was a similar 
finding in other studies (25–27). This also supports the nutritional 
practice of disease specific food exchange lists in diet therapy, such as 
renal exchange lists, that are informed by the nutrients of concern. 
Individuals with kidney disease are advised to follow the renal diet (8) 

which limits particular nutrients, such as protein, sodium, phosphate 
and potassium. Our analysis classified food items such as rice, pasta, 
marrow and peach and pear nectars as low potassium foods. Food 
items such as potatoes, dried raw vegetables, some nuts, milk powder, 
fish biltong and molasses were found to have a high potassium 
content. This is consistent with the recommended list of foods to 
consume and avoid when controlling potassium intake according to 
the renal diet (28).

Limiting sodium is also necessary for both kidney disease and 
hypertension (29). Foods identified as having the highest sodium 
content were bread, potato crisps, canned vegetables, processed meat 
and instant soups which is consistent with the recommended foods to 
avoid (30). Foods with the lowest sodium content were mostly fruit 
and vegetables with some fruit and vegetables containing less sodium 
than others, an aspect which was easily identifiable from our results 
and consistent with the recommendations of the DASH diet (31). 
Since this is data from before the current salt regulations (32) were 
implemented, future work could explore the impact of the salt 
regulations on the sodium content of foods using an updated version 
of the SAFCDB.

Carbohydrate content is also often monitored as part of a healthy 
diet to control type 2 diabetes and metabolic syndrome (33). Foods 
identified in the high available carbohydrate class, such as baked 
goods, starchy vegetables and sweets, are often considered as a source 
of low-quality carbohydrates (34, 35) and individuals can use this 
ranking as a guide on foods to monitor when following a 
low-carbohydrate diet. The foods found in our carbohydrate classes 
align with the classification of foods by GI (36). Low GI foods such as 
non-starchy vegetables, fruit and protein-rich foods were grouped 
together as foods with a low carbohydrate content. In addition, milling 
was a common processing method in the high available carbohydrate 
content group and this is known to increase the glycaemic index (GI) 
of certain foods (finer food particles increase absorption contributing 
to a higher GI) (29). Using our results, similar food lists can 
be developed for anaemia and hemochromatosis (requires the control 
of iron intake), Wilson’s disease (requires the control of copper intake), 
coronary heart disease (requires the control of fatty acid and dietary 
cholesterol intake), and gut health (impacted by total fibre intake). 
Using GMM to classify food items for the development of food lists 
provides objective rankings of food items while also accounting for 
the structure of food composition data. Since GMM is a data-driven 
method, the process of ranking food items using this method reduces 
the need for manual categorization and food groups can easily 
be reassessed with the addition of more or updated data.

Food composition data has similar methodological challenges to 
that of food consumption data such as right-skewness and a large 
proportion of food items having zero content of a particular nutrient 
(37). Using a log-transform before applying the GMM adjusted for the 
skewness and enabled the patterns of each nutrient distribution to 
become discernible. This also revealed that the distribution of 
nutrients could be modeled as mixture of Gaussians and foods with a 
zero nutrient content could be easily excluded from the univariate 
analysis. This is a desirable property since we are only interested in 
classifying foods known to have a particular nutrient. The separation 
of zero nutrient content foods from foods known to have the nutrient 
was also advocated for by Khan (4). In addition, classes capturing food 
items with either an extremely low nutrient content or an extremely 
high nutrient content were also identified. This facilitates outlier 

TABLE 5 Food items within the identified fatty acid classes.

Class Class 1 Class 2

Class description Low content High content

Food group

Cereals and cereal 

products
Maize, wheat, barley Baked goods

Vegetables All vegetables

Fruit All fruit

Legumes and legume 

products
Beans, lentils

Nuts and seeds Nuts and seeds

Milk and milk products
Skim milk, fat-free 

cottage cheese

Other milk and milk 

products

Eggs Eggs

Meat and meat products
All meat and meat 

products

Fish and seafood
Tuna, crab, haddock, 

low-fat fish
Caviar, high-fat fish

Fats and oils Fats and oils, fried foods

Sugar, syrups and sweets Molasses Chocolate, icing

Soups, sauces, seasonings 

and flavorings
Sauces

Beverages Milk beverages

Infant and paediatric 

feeds and foods
Infant feeds

Therapeutic/special/diet 

products

Some therapeutic 

powders
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detection which could represent foods with an actual extreme nutrient 
content, foods with added components such as added sugar or added 
salt, or foods with erroneous values for a specific nutrient. Using 
extreme values to identify errors was also previously investigated (38).

Overall, the class validity indices indicated that application of the 
GMM resulted in good classification. Classes with a substantial 
overlap between them were shown to have poorer internal validity 
scores than classes that were more separable. Since internal indices 
focus on separability as one of the criteria for class validity, these 
indices are unsuitable when the data displays mixed class membership. 
Further research is needed on appropriate internal class validity 
indices in the presence of overlapping classes obtained through GMM 
clustering and on the stability of the identified classes.

The univariate GMM provided useful results but multiple 
nutrients are present in food items and thus multiple nutrients are 

consumed simultaneously. While it is important to know which foods 
may have a relatively low or high nutrient content, consuming a food 
high in particular nutrient may also unknowingly increase the intake 
of other nutrients. Thus, it is important to consider the multivariate 
GMM as future work. However, this can be challenging in the case of 
high-dimensional data such as food composition data. GMMs often 
fit extra classes to capture the outliers and can result in poor data fit. 
Future work could investigate the mixture of multivariate 
t-distributions (39) to account for the long tails and outliers seen in 
our data and incorporating the structural zeroes into the clustering 
algorithm using a zero-inflation model could also be explored (40). 
Alternatively, Lo and Gottardo (41) proposed a multivariate 
t-distribution with Box-Cox transformation that could simultaneously 
address data transformation and outlier detection which are 
characteristics pertinent to the analysis food composition data.

TABLE 6 Food items within the identified iron classes.

Class Class 1 Class 2 Class 3

Class description Low content High content Moderate content

Food group

Cereals and cereal products

Super/special soft maize meal porridge 

(unfortified), low-fat milk and whole milk 

pudding (blancmange, instant)

Wheat flour, oats, semolina, baked 

goods, pasta dishes, raw maize meal, 

bread

Stiff and crumbly maize meal 

porridge, fortified soft maize meal 

porridge, rice, rice flour

Vegetables Squash, tomato, asparagus

Leaves, dehydrated raw vegetables, 

peas, spinach, broccoli, Brussels 

sprouts, green beans, beetroot, baby 

marrow squash, mushroom, tomato 

juice

Brinjal, cabbage, sweetcorn, squash, 

sweet potato, tomato, onion, potato, 

parsnip, cauliflower, carrots

Fruit

Apple, lemon juice, grapefruit, naartjie, 

pawpaw, watermelon, cherries, nectarine, 

canned peaches, canned pears, rhubarb

Dried fruit, prune juice

Apricot, avocado, guava, canned fruit, 

figs, pears, prunes, granadilla, dates, 

grapes, peaches, plums, pineapple, 

fruits nectars (apricot, pear), fruit 

juices (grapefruit, pineapple, grape)

Legumes and legume products Legumes and legume products

Nuts and seeds Nuts and seeds

Milk and milk products
Milk, yoghurt, custard, reconstituted skim 

milk powder

Milk powder with added iron, cheese 

(feta, cottage, Gouda)

Milk powders, evaporated milk, 

custard

Eggs Eggs

Meat and meat products Meat and meat products
Chicken (white meat), veal, chicken 

stew

Fish and seafood
Anchovy, oyster, sardines, mussels, 

tuna, fried fish, shrimp/prawn

Low-fat fish, shrimp/prawn, crab, 

salmon, sole

Fats and oils

Vegetable oil, cream, French salad 

dressing, butter ghee, butter and hard 

margarine (mixed), coconut oil, soybean 

oil

Peanut butter, canned cream Olive oil, salad dressing

Sugar, syrups and sweets Icing, sugar Chocolate, jam/marmalade, molasses Honey

Soups, sauces, seasonings and flavorings
Curry sauce, soups with meat and 

vegetables
Sauces

Beverages Malted milk beverages, coffee, tea
Malted milk powder, drinking 

chocolate powder

Malted milk beverages, drinking 

chocolate powder

Infant and paediatric feeds and foods Infant feeds

Therapeutic/special/diet products Therapeutic powders

Miscellaneous Spirits, liqueur, vinegar Baking powder Wine, sherry

https://doi.org/10.3389/fnut.2023.1186221
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Balakrishna et al. 10.3389/fnut.2023.1186221

Frontiers in Nutrition 12 frontiersin.org

In conclusion, this study has explored the application of univariate 
Gaussian mixture models to examine the classification of food items 
within the South African Food Composition Database. The identified 
classes exhibited overlap, supporting the use of probabilistic 
classification methods to account for the uncertainty of nutrient 
thresholds between classes. Classifying food items by moisture, animal 
protein, fatty acid, available carbohydrate, total fibre, sodium, vitamin 
A, thiamin and riboflavin content produced classes with differing 
means and estimates of variability and could be clearly ranked on a 
low to high nutrient content scale. Our results highlight that 
classifications within the broader, traditional food groups exist and 
our method focuses on identifying the individual food items within 
these subclasses. The results can be used to inform the development 
of nutrient profiling indices, allowed food lists and food-based dietary 
guidelines. The identified classes could also be incorporated into food 
composition databases to provide an additional level of classification 
and understanding of food items, thus promoting nutrition education 
for the user. Since we  included processed and manufactured food 
items in our analysis, manufacturers can use these findings to inform 
product formulation as well.
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TABLE 7 Food items within the identified animal protein classes.

Class Class 1 Class 2 Class 3 Class 4

Class description Low content Moderately-low content Moderately-high content High content

Food group

Cereals and cereal products

Rice cooked with 

margarine, pastry/

crust made with 

margarine

Puddings, baked goods, pasta 

dishes
Tuna pie

Vegetables Vegetables coated in batter

Legumes and legume products
Beans cooked with 

margarine
Lentils with egg

Milk and milk products Milk, yoghurt Cottage cheese, feta Milk powder, cheese

Eggs Scrambled egg, soufflé Raw egg, fried egg

Meat and meat products

Commercial meat pies, pork/beef 

sandwich spread, ham and tongue 

loaf, offal

Chicken, ham, meat stews/

curries, duck, Frankfurters, 

sausage, pâté, luncheon meat, 

corned beef

Beef, pork, veal, mutton, turkey, 

goose, pork sausage, salami

Fish and seafood
Fish biltong, oyster, low-fat fish 

cakes, fish fingers

Crab, fatty fish, baked/

crumbed fish, sole, rollmop/

pickled herring

Anchovy, tuna, fish, haddock, 

sardines, caviar, kipper, mussels, 

salmon, shrimp/prawn

Fats and oils Butter ghee
Cream, butter, margarine, 

homemade salad dressing

Sugar, syrups and sweets Icing, dark chocolate
Chocolate, jelly, cottage cheese 

icing

Soups, sauces, seasonings and 

flavorings
Sauces, soups with beef

Beverages Milk beverages, eggnog

Infant and paediatric feeds and 

foods
Reconstituted infant feeds

Whey-predominant infant 

feed powder

Therapeutic/special/diet products Reconstituted therapeutic products Some therapeutic powders

Miscellaneous Liqueur with cream
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