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A B S T R A C T   

The utilisation of Tenebrio molitor L. (the yellow mealworm) as a cheaper, alternative and readily available 
ingredient for food and feed is gaining interest globally. However, there has been limited research on locally and 
readily available substrates for mealworm mass rearing in South Africa. This study evaluated the impact of four 
substrates; wheat bran (control diet), wheat flour, maize flour, and Lucerne (pellets) on the rearing of mealworm 
larvae under controlled conditions over two generations and analysed the nutrient composition using standard 
nutritional analysis techniques. The results revealed that the crude protein contents of T. molitor larvae ranged 
between 28 – 36 % when raised on different substrates and varied significantly in the order Lucerne > wheat 
bran > wheat flour > maize flour. The major minerals found in the larvae included sodium, magnesium, 
phosphorus, potassium, copper, and zinc. The larvae were also rich in saturated, mono and polyunsaturated Fatty 
Acids (FAs) with oleic, linoleic, and palmitic as the main FAs. The nutritional profiles of first- and second- 
generation larvae raised on the same substrates remained the same. Wheat flour was found to be the best 
alternative to wheat bran. The finding demonstrates the suitability of local, inexpensive substrates for com-
mercial production of yellow mealworm without compromising their nutritional quality and utilisation for food 
and feed.   

1. Introduction 

There are over 2000 edible insect species that are used by humans as 
food, feed for their animals and for therapeutic purposes (Meyer-Ro-
chow, 2005; van Huis, 2020; Devi et al., 2023; Tanga and Ekesi 2024). 
Edible insects provide protein and essential nutrients and contribute to 
the daily food requirements of people in countries where insects form 
part of their traditional diets (Anankware et al., 2015; Banjo et al., 2006; 
Bukkens, 1997; DeFoliart, 1999; Elemo et al., 2011; Ladrón de Guevara 
et al., 1995; Ramaswamy, 2015; Ramos-Elorduy, 1997). More recently, 
the use of edible insects as food and feed is being addressed with more 
urgency due to changing lifestyles, rising cost of food sources and the 
quest for sustainable and alternative protein sources. Some of most 
reared and researched insects used by humans around the world include 
domestic crickets, palm weevils, giant water bugs (van Huis et al., 2013; 
Melo-Ruíz et al., 2016; Fernandez-Cassi et al., 2019; Anankware et al., 
2019), black soldier flies, locusts, silkmoths, honeybees, termites, ci-
cadas and mealworms (Usman and Yusuf, 2021; Grau et al. 2017; Tanga 

and Ekesi 2024). 
Insects as food or feed have been found to be beneficial to humans, 

the environment, livelihoods, and economies and can aid in attaining 
most of the United Nations Sustainable Development Goals (SDGs) 
(Tanga and Ekesi, 2024; Oonincx et al., 2015; van Huis et al., 2013; 
Ramos-Elorduy, 1997; Nakagaki and Defoliart, 1991). Malnutrition and 
land use remain a global concern, and the use of edible insects could 
represent an inexpensive and environmentally sustainable solution to 
food security (Tanga and Ekesi, 2024) and the land crisis. Furthermore, 
establishing a strong foundation for the novel edible insect market, re-
quires research on their nutritional value and their use as a source of 
food. 

Tenebrio molitor L. (Coleoptera) larvae commonly known as the yel-
low mealworm (here after referred to TM) is an insect that is easy to rear 
with modest requirements for space, water, resources, and maintenance 
(Langston et al., 2023 and references therein). Mealworms have a 
relatively short life cycle (4 – 6 months) and a high reproductive rate. 
Tenebrio molitor is currently used as food by humans or feed for animals 
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in Africa, Asia, Americas, and Australia (Alves et al., 2016), and has 
recently been approved for use as food by the European Union (Alves 
et al., 2016; Petrescu-Mag et al., 2022). 

The larvae of TM are generally reared on wheat bran (Mancini et al., 
2020). However, in South Africa a kilogram of wheat bran is sold for US$ 
1.03 compared to Lucerne pellets, maize and wheat flours which are sold 
at USD$ 0.46, 0.53 and 0.73 respectively. Thus, making wheat bran 
expensive and out of reach for many (Langston et al., 2023). This 
coupled with other multi-competitive uses of wheat bran by humans, 
makes it an unsustainable substrate in the long run. Hence the need to 
explore other locally and cheaper alternatives that are readily available 
and accessible. Previously, we evaluated the suitability and affordability 
of different substrates for mass rearing of TM larvae (Langston et al., 
2023). Here we evaluated the effect of four promising substrates [wheat 
bran (control diet), wheat flour, maize flour, and Lucerne pellets] on the 
nutritional composition of TM larvae. TM larvae were reared for two 
generations (F1 and F2) on the same substrate type to ensure that sub-
strate quality mirrored the nutrients of the larvae without compromising 
its nutrient quality and biomass over time for use as food and feed. 

2. Materials and methods 

2.1. Tenebrio molitor adult rearing 

Tenebrio molitor adults (60 mating pairs = 120 individuals) were 
obtained from the colony at the Department of Zoology and Entomology, 
University of Pretoria, and maintained in plastic boxes containers (68.4 
× 38.4 × 20.9 cm), placed in a climate-controlled chamber, kept at a 
constant temperature of 26 ± 1 ◦C, 50 % relative humidity, and a 0-h 
light: 24-h dark photoperiod on a standard wheat bran substrate 
(Langston et al., 2023). 

2.1.1. Substrates and their sources 
White self-raising wheat flour (Supreme Foods Limited), Lucerne 

pellets (Midfeeds Limited), maize flour (IWISA® Premier Foods,), and 
wheat bran (Standard) were obtained locally in South Africa and used as 
substrates to rear TM larvae. Two (2) kg of each substrate was evenly 
distributed into clean black plastic rearing containers (68.4 × 38.4 ×
20.9 cm) previously sterilised using 75 % ethanol (v/v). A total of 48 
rearing containers were used with each treatment group replicated 
thrice. This was also repeated for the two generations (F1 and F2). 

2.1.2. Rearing of T. molitor 
Ten pairs of adult T. molitor (10 males and 10 females) were placed in 

each container together with the rearing substrate for three weeks and 
then removed. This was to allow them enough time to mate and lay eggs. 
Ten (10) g of fresh carrots were added twice a week in each container to 
serve as a source of moisture. After approximately three months, the TM 
larvae were removed from each container. 

After each generation of rearing on the substrates, three (3)– five (5) 
kg of the TM larvae were harvested and frozen at − 20 ◦C until needed for 
nutritional composition analysis. About 20 % of the larvae were allowed 
to pupate and thereafter the pupae were transferred into separate con-
tainers until adult emergence. Once the adults of the first generation 
emerged, they were allowed to mate and lay eggs in their respective 
substrates for three (3) weeks, after which they were removed from the 
rearing boxes. The second generation was then reared using a similar 
approach as those of the first generation. 

2.2. Nutrient analysis 

2.2.1. Sample preparation 
One hundred (100) g of TM larvae produced from each treatment 

from the two generations were removed and starved for 48 h to remove 
all gut contents. Then washed with water, and frozen at − 20 ◦C until 
required for analysis. When required for analysis, the frozen samples 

were freeze-dried over a period of 48 h, ground to a powder using a 
pestle and mettle and sieved through a number 30 sieve (600 µm). The 
powdered sample was then packed in pre-labelled air-tight capped 
bottles until required for nutrients analysis. This was repeated for each 
of the two generations of TM larvae reared. 

2.2.2. Proximate analysis of TM larvae fed on different substrates 
Ash and crude fat contents were determined according to the Asso-

ciation of Official Analytical Chemists methods 942.05, and 920.39, 
respectively (AOAC 2006). A Memmert UM500 dry oven at 105 ◦C was 
used to determine the dry matter of the TMs. To determine the ash 
content, samples were incinerated by heating to 600 ◦C for 2 h. Crude 
fibre was determined by exhaustive Soxhlet extraction using petroleum 
ether (AOCS, 2005) while gross energy value (GEV) was determined 
adiabatically using an IKA oxygen bomb calorimeter (C5000; IKA Werke 
GmbH, Germany). 

Crude protein analysis was carried out using method 968.06 of the 
methods of the Association of Official Analytical Chemists (AOAC 2006). 
Briefly, nitrogen (N2) was freed by pyrolysis and combustion, and the 
residual N2 measured and converted to equivalent protein using 4.76 
(Janssen et al. 2017) as Crude protein conversion factor instead of 6.47 
which overestimates the protein contents of insects. 

2.2.3. Mineral analysis of TM larvae reared on different substrates 
Minerals were analysed by subjecting the samples to dry-ashing at 

550 ◦C according to the AOAC method (AOAC 2006), and content 
determined using inductively coupled plasma-atomic emission spec-
trometry and calibration curves for each mineral standard. 

2.2.4. Fatty acid (FA)analysis of TM larvae reared on different substrates 
Lipid were extracted using variation of Folch et al. (1957) method 

followed by trans-esterification of the FAs from the TMs into FAs Methyl 
Esters (FAMES) as described in Webster et al. (2006) and O’Fallon et al. 
(2007) with a slight modification. To enable quantification of the 
FAMES, 1 mL of 0.5 mg C15:0/mL (prepared in methanol) was added to 
the samples as an internal standard. The hexane layer containing FAMEs 
was transferred into a 2 mL gas chromatography (GC) vial and 1 µL of 
the sample analysed on the GC. 

The identification and quantification of the FAMEs was achieved on 
a SCION 456 gas chromatograph (Bruker, UK) equipped with a flame 
ionisation detector and an Rt-2560 (100 m × 0.25 mm × 0.20 µm) 
column (Restek, USA) using methods described in Webb et al. (1999). 
Chromatograms were analysed using the Compass CDS Software Version 
3.0.1 (Scion Instruments, UK) and FAs were identified by comparing 
retention times to a Supelco FAME mix standard of 37 FAMEs (Merck 
Life Science South Africa). The FA composition for each sample was 
calculated based on the peak areas of the analytes relative to that of an 
internal standard in comparison with the FAME mix standards. 

2.3. Statistical analyses 

The nutrient composition of TM larvae reared on the different sub-
strates was analysed using ANOVA with substrates as the independent 
variables and nutritional composition as dependent variables. There-
after, a Dunnett’s Test for multiple comparisons was used to compare 
between means from the different experimental groups. In order to test if 
there are differences in nutrient composition between the two TM 
generations, a Student’s T-test was performed. All data analyses were 
conducted in R using the interface R studio (RStudio Team, 2020). 

3. Results 

3.1. Proximate and mineral contents of TM larvae reared on different 
substrates 

The proximate composition of the TM larvae reared on the different 
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substrates are shown in Table 1. Dry matter contents of the TM larvae 
were between 82.25 – 87.95% and did not differ significantly between 
substrates (Table 1). The crude protein of the TM ranged between 28.57 
- 36.24% and differed across the substrates (Table 1) with TM reared on 
maize flour and Lucerne having the lowest and highest crude protein 
content respectively. The crude fibre contents were between 4.87 - 
8.67% and varied among the substrates (Table 1). Similarly, crude fat 
contents of TM larvae also varied significantly across substrates and was 
between 27.11 - 36.07% with maize flour producing larvae with highest 
crude fat content in F1 and highest gross energy values (Table 1). There 
were no variations in nutrient contents between larvae from F1 and F2 
generations except for crude fibre (t (6) = 3.8090, p > 0.05), fat (t (6) =
6.8819, p > 0.05) from wheat flour, crude fibre (t (6) = 13.2504, p >
0.05) and GEV (t (6) = 4.3295, p > 0.05) from maize flour and Lucerne (t 
(6) = 6.0333, p > 0.05). 

The mineral content of TM larvae reared on the four different sub-
strates in F1 and F2 showed that those reared on wheat flour had higher 
sodium; potassium, calcium, phosphorus, magnesium and manganese 
(Table 2). Iron (0.24 and 1.27 mg/100 g) and Zinc (2.21 and 2.87 mg/ 
100 g) were higher for TM reared on wheat bran and maize flour, 
respectively. While TM reared on Lucerne contained more copper (5.14 - 
6.83 mg/100 g) than those from other substrates (Table 2). 

3.2. FA composition of TM larvae reared on different substrates 

The FA composition of TM larvae reared on the four different sub-
strates in F1 and F2 are presented in Table 3. Larvae produced on all four 
substrates contains predominantly (51.92–60.70%) monounsaturated 
FAs (MUFA), followed by saturated FAs (SFA) and polyunsaturated FAs 
(PUFA) respectively (Table 3). There were no differences in the 
composition of MUFA (t (6) = 0.6288, p > 0.05), PUFA (t (6) = − 1.2778, 
p > 0.05) and SFA ((t (6) = 0.4055, p > 0.05) between F1 and F2 gen-
erations. The most abundant individual FA from the profiles were C18 
FAs (oleic acid, C18:1; linolenic acid C18:2) accounting for between 
49.2 − 56.67% and 16.34 − 25.95 % of the total FA contents respectively 
(Table 3). 

4. Discussion 

We evaluated the nutritional composition of T. molitor larvae on four 
substrates reared over two generations on the same substrate and found 
differences between rearing substrates but not between generations. 
Thus, confirming earlier reports by Langston et al. (2023) showing dif-
ferences in the suitability of alternative substrates for rearing TM larvae 
and those by van Broekhoven et al. (2015) and Rumbos et al. (2020) who 
reported differences in nutrient composition of larvae based on the 
rearing substrates. The finding that nutritional composition does not 
differ between generations indicates the suitability and affordability of 
TM larvae rearing as a tool to reduce waste, as a future food and feed 
(Hong et al., 2020; Errico et al., 2022a), and for attaining the UN SDG 

goals (1, 2, 3, 5, 8, 10, 11, 13, 15) due to its negligible impact on the 
environment in comparison to other animal products (Oonincx and de 
Boer, 2012). This is one of the reasons why T. molitor became the first 
insect to be approved by the European Food and Safety Authority as a 
novel food pursuant to EU Regulation 2015/2283. (EFSA NDA, 2021). 

The crude protein content of our TM larvae were higher than those 
from silkworm (16% protein) (Bombyx mori) (Longvah et al., 2011) but 
lower that the ranges reported from other studies on T. molitor (Errico 
et al. 2022b). It is worth noting that, we used 4.76 as a 
nitrogen-to-protein conversion factor instead of 6.25 because the latter 
overestimates the protein contents in insects due to the presence of 
nonprotein nitrogen fraction like chitin, nucleic acids, phospholipids, 
residues of excretion etc. (Janssen et al. 2017). There are about two 
other nitrogen to protein conversion factors that have been proposed for 
T. molitor, 5.41 by Boulos et al. (2020) and 5.60 by Janssen et al. (2017). 
Irrespective of the conversion factor used, protein content of TM larvae 
is comparable to those of beef sirloin (20.1 g/100 g), chicken breast 
(21.5 g/100 g) and pork shoulder (16.89 g/100 g) (Orkusz, 2021). And 
edible insects are known to be richer in proteins (Bukkens, 1997; 
Ramos-Elorduy, 1997) than most conventional meat sources such as 
beef, chicken or pork (Nakagaki and Defoliart, 1991; Oonincx et al., 
2010, 2015; Orkusz, 2021). 

The crude fat contents we found in this study are within the ranges 
(19–43 %) reported previously for TM larvae (reviewed in Errico et al., 
2022b). Fat is essential to living organisms, particularly humans and 
animals, where its plays a major role in the supply of energy and pro-
tection of body organs and cell membranes as well as absorption of vi-
tamins to vital parts of the body. Insects store fats in the form of fat 
bodies that play an important role in energy storage, metabolism, and 
nutrient reserves (Arrese and Soulages, 2010), thus making them a rich 
source of fat (Rumpold and Schlüter, 2013; Dobermann et al., 2017). 

Minerals are necessary to maintain normal physiological functions 
(Fritz et al., 2019; Kinyuru et al., 2015; Rempel et al., 2021). Tenebrio 
molitor larvae raised on the four substrates were rich in all minerals 
except calcium. However, TM larvae raised on wheat flour were richer in 
Na, K, Fe, Zn, Cu compared to those raised on the other three substrates. 
This explains why previous studies have recommended that substrates 
used to rear TM larvae should be supplemented with additional calcium 
to improve their performance and nutrient profile if they have to be used 
for food and feed (Finke, 2002; Niassy et al., 2018; van Huis et al., 2013). 
Although TM larvae reared on wheat bran, flour, maize flour, and 
Lucerne contain essential minerals, these are not at the recommended 
dietary intake allowances (RDA) for humans (NHI, 2018) except for 
magnesium. This implies that future research using these substrates 
should consider supplementing the mineral content of these substrates. 
The high value of magnesium in the TM larvae is important because 
magnesium has been reported to facilitate the active movement of cal-
cium and potassium ions across cell membranes, which is essential for 
the transmission of nerve impulses, muscle contraction, and a regular 
heartbeat (Musso, 2009). Manganese, on the other hand, is essential to 

Table 1 
Proximate composition (mean ± SD) of mealworm larvae Tenebrio molitor reared on four different substrates over two generations.  

Substrate Wheat bran F1 Wheat flour 
F1 

Maize flour 
F1 

Lucerne F1 Wheat bran F2 Wheat Flour 
F2 

Maize flour 
F2 

Lucerne F2 df f statistic 

Dry matter 87.90 ± 4.40a 82.80 ± 4.14a 84.75 ± 4.24a 86.65 ± 4.33a 82.25 ± 4.11a 84.75 ± 4.24a 85.45 ± 4.27a 82.25 ± 4.11a 7 0.722 
Crude 

protein 
34.68 ± 1.73a 32.10 ±

1.61ab 
28.57 ± 1.43b 36.24 ± 1.81a 32.34 ±

11.62ab 
29.25 ± 1.46a 29.64 ± 1.48a 34.81 ± 1.74b 7 9.473 

Crude fibre 5.46 ± 0.27abc 6.01 ± 0.30b 4.87 ± 0.24c 5.63 ±
0.28abc 

5.82 ± 0.29a 7.03 ± 0.35b 8.67 ± 0.43c 5.61 ± 0.28a 7 43.770 

Crude fat 30.84 ±
1.54ab 

27.11 ± 1.36a 34.68 ± 1.73b 27.20 ± 1.36a 27.85 ± 1.39a 36.07 ± 1.80b 3.15 ± 0.16a 22.84 ± 1.14c 7 15.340 

Ash 3.35 ± 0.17a 3.45 ± 0.17a 3.15 ± 0.16a 3.25 ± 0.16a 3.25 ± 0.16a 33.74 ± 1.69b 3.25 ± 0.16a 22.07 ±
1.10bc 

7 1.106 

GEV (MJ/kg) 25.56 ± 1.28a 25.24 ± 1.26a 26.27 ± 1.31a 24.74 ± 1.24a 26.30 ± 1.31a 30.34 ± 1.52a 3.25 ± 0.16a 19.28 ± 0.96b 7 12.450 

Different letters in the same rows indicates significant differences (p < 0.05), GEV = Gross energy value, F1 = first generation and F2 = second generation. 
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our bodies only in small amounts as we obtain it from food as a sup-
plement that assists enzymes involved in breaking down carbohydrates, 
proteins and cholesterol. Although we found amounts of manganese that 
were more than the recommended RDAs, these were within the range 
reported by Jajić et al. (2019) for TM larvae reared on different sub-
strates. This further emphasises the need to evaluate edible insects for 
their safety and potential biological and chemical risks during rearing, 
processing and utilisation to prevent consumption of harmful contami-
nants (Charlton et al., 2015; Belluco et al., 2018). 

The FA content of edible insects is considerably different from those 
of other animal fat, with insects generally having higher FAs both in 
quality and quantities of individual FAs and classes (saturated and un-
saturated) (Nakagaki and Defoliart, 1991; Xiaoming et al., 2010). This is 
consistent with the results from TM larvae we raised on all four sub-
strates which had more MUFA than PUFA and SFA respectively as pre-
viously reported (Errico et al. 2022b). Polyunsaturated FAs (PUFA) are 
vital to human health, even though humans are unable to synthesise 
them de novo but have to acquire them through food. Tenibrio molitor 
larvae had high amounts of C18 FAs responsible for lowering blood 

pressure and blood cholesterol in humans (Degirolamo and Rudel, 
2010), linoleic acid (C18:2); responsible for the lipid component of cell 
membranes, and palmitic acid (C16); responsible for lung secretions and 
generating energy (Mancini et al., 2019), which were consistent with the 
results from other studies (Ravzanaadii et al., 2012). Although TM 
larvae cannot meet human requirements of total FAs, they can provide a 
good amount depending on the substrate used and environment (Errico 
et al. 2022b). 

5. Conclusion 

We demonstrated the possibility of rearing TM larvae for use as food 
or feed on alternative and cheaper food substrates other than the 
traditionally used wheat bran. We have shown that, although nutrient 
contents vary based on rearing substrates, they are consistent when used 
to rear more than one generation of TM larvae. Thus, further demon-
strating the use of TM larvae for biotransformation of plant materials 
into other usable products or energy sources. Future studies should 
adapt the use of different combinations/mixture of biowastes as food for 

Table 2 
Mineral composition (mg/100 g) of TM larvae (Tenebrio molitor) reared on four different substrates with the recommended dietary allowances for adult humans.  

Substrate Wheat bran 
F1 

Wheat flour 
F1 

Maize flour 
F1 

Lucerne F1 Wheat bran 
F2 

Wheat 
Flour F2 

Maize flour 
F2 

Lucerne F2 RDA(mg) df f 
statistic 

Minerals            
Sodium (Na) 93.15 ±

4.66a 
107.16 ±
5.36bc 

116.98 ±
5.85bc 

93.56 ±
4.68ac 

94.77 ±
4.74a 

91.72 ±
4.59a 

95.05 ±
4.75a 

97.19 ±
4.86a 

1500 7 9.842 

Potassium (K) 97.45 ±
4.87a 

101.96 ±
5.10a 

110.48 ±
5.52a 

102.46 ±
5.12a 

87.47 ±
4.37a 

91.42 ±
4.57a 

87.04 ±
4.35a 

93.91 ±
4.70a 

2300–3400 7 8.503 

Calcium (Ca) 29.57 ±
1.48a 

41.41 ±
2.07b 

20.71 ±
1.04c 

29.57 ±
1.48a 

28.81 ±
1.44a 

35.47 ±
1.77b 

41.44 ±
2.07c 

41.16 ±
2.06c 

100–1200 7 59.09 

Phosphorus 
(P) 

125.72 ±
6.29abc 

140.64 ±
7.03b 

120.29 ±
6.01c 

135.17 ±
6.76abc 

119.78 ±
5.99ab 

106.79 ±
5.34a 

104.46 ±
5.22a 

125.99 ±
6.30b 

700 7 12.44 

Magnesium 
(Mg) 

249.67 ±
12.48ac 

283.09 ±
14.15b 

277.58 ±
13.88cb 

224.64 ±
11.23a 

207.96 ±
10.40a 

128.23 ±
6.41b 

212.30 ±
10.62ac 

244.08 ±
12.20c 

320–420 7 53.15 

Iron (Fe) 1.27 ± 0.06a 0.98 ±
0.05b 

0.36 ± 0.02c 0.98 ± 0.05b 0.24 ±
0.01a 

0.37 ±
0.02b 

0.37 ±
0.02b 

0.24 ± 0.01a 08–18 7 39.80 

Zinc (Zn) 1.88 ± 0.09a 2.20 ±
0.11b 

2.87 ± 0.14c 1.22 ± 0.06d 0.87 ±
0.04a 

1.88 ±
0.09b 

2.21 ± 0.11c 1.54 ±
0.08d 

08–11 7 126.6 

Copper (Cu) 4.02 ±
0.20ab 

4.55 ±
0.23a 

4.56 ± 0.23a 6.83 ± 0.34b 5.69 ±
0.28ab 

6.32 ±
0.32a 

5.46 ±
0.27b 

5.14 ±
0.26b 

900 7 37.24 

Manganese 
(Mn) 

4.57 ± 0.23a 5.84 ±
0.29b 

5.84 ± 0.29b 6.31 ± 0.32b 6.51 ±
0.33a 

5.29 ±
0.26b 

5.30 ±
0.27b 

5.00 ±
0.25b 

1.8–2.3 7 16.54 

*The nutrition Source, Harvard School of Public Health (https://www.hsph.harvard.edu/nutritionsource/vitamins/). Different letters in the same columns indicate 
significant differences (p < 0.05). F1 = first generation and F2 = second generation. 

Table 3 
Proportions of individual Fatty acids (FAs) and saturated fatty acids (SFA), monounsaturated (MUFA) and polyunsaturated (PUFAs) from TM larvae (Tenebrio molitor) 
reared on four different substrates.  

Fatty Acids (FA) % of Fatty Acids- F1 % of Fatty Acids- F2 

Wheat bran Wheat flour Maize Flour Lucerne pellets Wheat bran Wheat flour Maize Flour Lucerne 

Myristic acid (C14:0) 3.91 3.82 3.93 3.36 3.73 4.48 4.94 4.89 
Palmitic acid (C16:0) 19.76 13.86 15.79 17.07 18.71 16.63 14.31 11.90 
Palmitoleic acid (C16:1) 1.82 3.95 2.29 2.03 2.01 3.09 3.29 4.50 
Heptadecanoic acid (C17:0) 0.06 0.00 2.72 0.10 0.07 0.00 1.30 0.06 
Cis-Heptadecanoic acid (C17:1) 0.04 0.00 0.01 0.00 0.04 0.04 0.00 0.20 
Eliadic acid (C18:1) trans 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
Oleic acid (C18:1) cis 50.02 56.67 55.38 56.09 50.58 55.22 54.20 49.20 
Linoleic acid (C18:2) 20.42 18.46 16.34 17.56 20.76 17.10 19.69 25.95 
Arachidic acid (C20:0) 0.07 0.00 0.00 0.00 0.10 0.19 0.00 0.12 
Eicosenoic acid (C20:1) 0.04 0.08 0.00 0.00 0.05 0.07 0.07 0.03 
Alpha-linolenic acid (C18:3) 0.34 0.01 0.01 0.49 0.48 0.11 0.01 0.66 
Heneicosanoic acid (C21:0) 0.00 0.04 0.00 0.00 0.00 0.00 0.10 0.00 
Eicosadienoic acid (C20:2) 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.04 
Behenic acid (C22:0) 0.00 0.01 0.00 0.00 0.01 0.02 0.01 0.04 
SFA 23.80 17.73 22.44 20.53 22.62 21.32 20.66 17.01 
MUFA 51.92 60.70 57.68 58.12 52.68 58.42 57.56 53.94 
PUFA 20.76 18.47 16.35 18.05 21.25 17.23 19.70 26.65 

Abbreviations: SFA, Saturated Fatty acids, MUFA, monounsaturated Fatty acids, PUFA, polyunsaturated Fatty acids. 
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improved TM larvae production and biomass quality for use in food and 
or pharmaceutical industries. 
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