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Abstract
Neural architecture search (NAS) is a rapidly growing field which focuses on the 
automated design of neural network architectures. Genetic algorithms (GAs) have 
been predominantly used for evolving neural network architectures. Genetic pro-
gramming (GP), a variation of GAs that work in the program space rather than a 
solution space, has not been as well researched for NAS. This paper aims to contrib-
ute to the research into GP for NAS. Previous research in this field can be divided 
into two categories. In the first each program represents neural networks directly or 
components and parameters of neural networks. In the second category each pro-
gram is a set of instructions, which when executed, produces a neural network. This 
study focuses on this second category which has not been well researched. Previ-
ous work has used grammatical evolution for generating these programs. This study 
examines canonical GP for neural network design (GPNND) for this purpose. It also 
evaluates a variation of GP, iterative structure-based GP (ISBGP) for evolving these 
programs. The study compares the performance of GAs, GPNND and ISBGP for 
image classification and video shorts creation. Both GPNND and ISBGP were found 
to outperform GAs, with ISBGP producing better results than GPNND for both 
applications. Both GPNND and ISBGP produced better results than previous studies 
employing grammatical evolution on the CIFAR-10 dataset.
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1  Introduction

Deep neural networks (DNNs), in particular convolutional neural networks, have 
been very effective for image, video and text processing and classification [3, 16]. 
Designing architectures to perform these tasks can be done manually; however, it 
is quite cumbersome and time-consuming. It can be difficult to determine which 
architecture would be the best for solving the task at hand, and the process of 
determining this structure can take time, with multiple attempts involving trial-
and-error. It takes experienced researchers to determine the correct architecture 
for highly accurate neural networks in a reasonable amount of time. Due to this, 
the process of determining a DNN architecture is now automated resulting in the 
area of Neural Architecture Search (NAS) [6] which involves automating neural 
network architecture design. NAS involves employing optimization techniques to 
determine the most suitable neural network architecture for the problem at hand.

At the inception of the field, reinforcement learning (RL) was used for the 
automation, however, as the field developed evolutionary algorithms have proven 
to outperform the RL [8]. Evolutionary Computation (EC) methods exist for NAS 
[37]. Genetic algorithms, in particular, have been predominantly used for NAS 
[28]. There also exist one-shot and training-free approaches for NAS [11, 46] 
Additionally, genetic programming (GP) [19] has been investigated for NAS, but 
has not been as well researched as GAs for this purpose [27]. GP explores a pro-
gram space rather than a solution space. In previous work applying GP for NAS, 
the programs take one of two forms. In some studies the programs represent the 
neural network directly [42, 43, 47] or a representation of the neural network and 
parameters [29, 33, 38]. In others the program is comprised of instructions which 
when executed produce a neural network [5, 25]. The research presented in this 
paper focuses on the latter.

Grammatical evolution [35] has generally been used to evolve a program of 
instructions to construct a neural network for the problem at hand. This paper 
investigates canonical genetic programming for this purpose, namely, genetic pro-
gramming for neural network design (GPNND). The performance of GPNND is 
compared to that of GAs which is traditionally used for NAS. GPNND is also 
compared to a variation of genetic programming, namely, iterative structure-
based genetic programming (ISBGP) [17] which takes both fitness and structure 
into consideration when directing the search in the program space. In this paper 
ISBGP is improved based on the findings in [17]. Firstly, a more accurate similar-
ity index, that compares all nodes, instead of estimating similarity, is used. Sec-
ondly, early stopping is removed, giving the algorithm more time to converge. We 
refer to this version of the algorithm as ISBGP-II.

A GA, GPNND and ISBGP-II have been implemented for NAS and evaluated 
on image classification (4 datasets) and video shorts creation problems (4 data-
sets). For all datasets GPNDD and ISBGP-II outperforms the GA, with ISBGP-
II outperforming GPNDD. Furthermore, ISBA-II produces better results than 
ISBGP. Hence, the contributions of this research include:
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•	 An investigation into canonical GP for NAS, with each program a set of instruc-
tions that is executed to produce a neural network.

•	 A comparative study of the performance of genetic algorithms, canonical genetic 
programming, and iterative structure-based genetic programming for NAS.

•	 An improvement over the original ISBA algorithm for NAS.

The remainder of this paper is structured as follows: Sect.  2 briefly goes through 
some related work on the topic and states the differences between the related work 
and our work. The genetic algorithm is detailed in Sect. 5. Section 3 describes the 
GPNND and Sect. 4 the ISBGP-II. The experimental setup is presented in Sect. 6. 
Section 7 discusses the results of the experiments, and finally the research conclu-
sions and some possible future work is presented in Sect. 8.

2 � Related work

This section firstly provides a brief introduction to the application domains, namely, 
image classification and video shorts creation followed by an overview of NAS. Pre-
vious work on GAs and GP for NAS for image processing is then outlined. NAS has 
not previously been applied for video shorts creation.

2.1 � Image classification

Image classification represents a foundational challenge in the domains of artificial 
intelligence and machine learning [21]. This problem involves the automated assign-
ment of predefined categories or labels to images based on their inherent content. 
The fundamental objective of image classification is to allow machines to discern 
and categorize various objects, scenes, or patterns depicted in images, thereby emu-
lating the cognitive prowess of humans.

The principal aim is the development of algorithms and models proficient in rec-
ognizing and categorizing objects within images, also accommodating variations in 
pose, lighting, and occlusion. This allows for the extraction of features and repre-
sentations from raw pixel values, empowering the technique to comprehend visual 
attributes that differentiate distinct classes. The process of converting data into 
semantically rich features allows for the development of accurate image classifiers.

The inherent challenges in image classification, including the management of 
extensive and diverse datasets, the mitigation of overfitting, and the attainment of 
high accuracy, propel the exploration of innovative techniques in machine learning. 
[21]

Some of the most notable approaches to image classification include work from 
[37], where evolutionary algorithms to perform NAS for image classification, 
achieving accuracies comparable to recent publications on CIFAR-10 and CIFAR-
100 datasets, are used. A fine-tuning of differential architecture search by [44] for 
performing classifications and also reducing the number of trainable parameters. An 
approach by [45] employs a semi-supervised learning framework which improves 
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the accuracy of many semi-supervised image classification algorithms. Work by [7] 
employs a procedure which minimizes both the loss value and loss sharpness and 
has a great improvement in the accuracy of models.

2.2 � Video shorts creation

This area goes by multiple names, for example video highlight detection is also 
used. Certain names in their contexts may have small nuances, however they all fol-
low the same general principle. The method will be referred to as video shorts crea-
tion in this paper.

Video shorts creation is the process whereby a video is condensed into a shorter 
form of itself. This shortened video should retain the most important parts of the full 
video, and should still convey the intended message of the full video to the viewer, in 
its condensed form. A common example of this is sports match or movie highlights. 
This process was initially performed manually, however AI models are now being 
developed to perform this task. A model for VSC can take in the original video as 
input and produce the frames corresponding to the highlight areas as output.

Some examples of Video Shorts Creation are researched in [16, 32, 48]. [48] 
used CNNs to detect highlights in construction footage, allowing for only the most 
important parts of the footage to be stored, saving storage space. In the work by 
[16], soccer match events are detected by making use of CNNs and recurrent neu-
ral networks. [32] also used a CNN for video summarisation for Internet of Things 
devices.

2.3 � Neural architecture search

Neural architecture search is the process of finding the appropriate architecture of a 
neural network to efficiently solve the problem at hand [6]. Initially, NAS was per-
formed manually. As the field of neural networks grew, neural network architecture 
design became time-consuming and difficult, hence this process was automated and 
led to the emergence of NAS. Initially reinforcement learning [15] was used for 
NAS and as the field developed evolutionary algorithms, in particular, genetic algo-
rithms, were shown to outperform those using RL [8]. Currently NAS employs opti-
mization methods, predominately genetic algorithms [28] to find the neural network 
architecture. More recently GP has been investigated for this purpose. The following 
sections report on previous work using GAs and GP for NAS respectively. The stud-
ies reported on are restricted to image processing and video shorts creation.

2.4 � GAs for NAS

Image classification is probably the most researched subfield in AI and ML. It serves 
as a good test bed for many AI problems. There is a fair amount of research into 
using NAS for image classification. This section provides an overview of the studies 
that are relevant to the study in this paper.
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The approach by [4] employs a GA to design a model for facial expression rec-
ognition. The algorithm makes use of a novel encoder-decoder model for automatic 
evolution of CNN models. In [26] a GA for network topology optimisation is used 
and evaluated on the MNIST dataset. A GA is used for acoustic scene classification 
in [13]. The model is split into sub-models which are optimized individually and as 
a combination. These methods work well and achieve good accuracy on the datasets 
they test on.

2.5 � GP for NAS

GP explores a program space rather than a solution space [19]. Thus, each element 
of the population is a program which when executed will produce a solution. This 
section provides an overview of previous studies investigating GP for NAS for image 
processing. There has been no research into NAS for video shorts creation. These 
studies can divided into two categories based on what each program represents.

The first category includes those studies in which a program represents a neural 
network directly or a simplified representation of the neural network. One of the 
earlier studies is that conducted by Ritchie et al. [38] in which each program rep-
resented the connections between nodes in a neural network and the correspond-
ing weights. In the study conducted by McGhie et al. [29] each neural network and 
associated parameters is represented as a tree. Narajan [33] represents each neural 
network as a directed graph consisting of convolutional and pooling operators and 
their corresponding parameter values. Various studies [42, 43, 47] have employed 
Cartesian genetic programming (CGP) [30] in which the neural network is repre-
sented as an acyclic graph.

The second category are those studies in which each program is comprised of 
instructions for creating a neural network, e.g. add a layer. In the study conducted 
by Diniz et al. [5] grammatical evolution [35] is used to evolve programs that con-
struct neural networks. Similarly, Lima et al. [25] also use grammatical evolution to 
generate programs that construct neural networks. The study presented in this paper 
focuses on this second category, i.e. using GP to evolve programs of instructions 
to create a neural network. Canonical GP is investigated for this purpose. In addi-
tion to this, a variation of GP that takes both fitness and structure into consideration 
when exploring the program space, namely, iterative structure-based GP, will also 
be evaluated for NAS. The study compares the performance of canonical GP, itera-
tive structure-based GP and genetic algorithms for NAS for image classification and 
video shorts creation.

3 � Genetic programming for neural network design (GPNND)

This section describes the GPNND. The genetic programming algorithm is the gen-
erational algorithm depicted in Algorithm 2. The sections that follow describe the 
processes comprising the algorithm.
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3.1 � Representation and initial population generation

Each element of the population is a parse tree representing a program consisting 
of instructions to produce a neural network to solve the problem at hand. The 
function and terminal sets used to create the programs are described in Tables 1 
and 2 respectively.

Each program is used to build a neural network. Hence, the function set con-
tains primitives to add different layers and set parameters for the neural network. 
The terminal set contains elements which are building blocks of a neural network, 
such as the parameter actual values. Therefore, in this approach, an activation 
function of a layer in a neural network would be seen as a terminal node, since it 
is part of the building blocks of the neural network.

Table 1   Function nodes for the GPNND approach

Name Arity Description Input

Layer 2 A layer type for the neural network
Can either be:
convolution (C), max pooling (MP), average pooling 

(AP),
 dropout (Dr), densely connected (D) or flattening (F) 

layer

- Layer
parameter
(A ’Shape’ terminal,
defined in Table 2)
 - Activation
function

(A ’LFunc’ terminal,
 defined in Table 2)

AddLayer 2 Adds two layers together Two layers
AdjustLayer 2 Adjusts the parameters for a layer. 

Can change the layer size, dimensions or activation 
function 

- Layer
- Layer parameter 
(A ’Shape’ terminal,
defined in Table 2)

AdjustNet 1 Changes the parameters for the neural network.    - Neural network
parameter
(A ’NOpt’ or a 

’NLRate’ terminal,
defined in Table 2)

Can change the learning rates or optimiser

If-Then-Else 3 Performs the function of a standard - Condition
if-then-else statement.  - True Branch

- False Branch
CheckLayer 1 Checks if a specific layer is in the - Layer

neural network and returns a boolean value
SwapLayers 2 Swaps the order of two layers  - Two layers
ContainsParams 2 Checks if there is a specific parameter defined for a 

layer. 
For example, it can check to see if a layer contains
 a activation function or certain dimensions

- Layer
- Parameter
(A ’Shape’ terminal,
 defined in Table 2)

Comb2 2 Combiner used to combine two subtrees together AddLayer or Layer
Comb3 3 Combiner used to combine three subtrees together.  AddLayer or Layer
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Table 1 details the name, arity, and imputs, and gives a description of the purpose 
of each primitive.

In Table 2 the names of the terminals and a description of the values they may 
take are provided. The sets of possible vales of the neural network layer parameters 
for GPNND are the same as the set of possible values for GA. This is to enforce the 
same experimental conditions for both approaches. The justification of these values 
is stated in Sect. 5.1.

An example of an element of the population and the corresponding neural net-
work that it produces is depicted in 1. In order to evaluate the tree in Fig. 1, a pre-
order traversal will take place. Starting from the root, moving along the left branch, 
the left most primitive is the node labelled ’C’, which indicates a convolution layer. 
The left child of this primitive is a node labelled ’16’ which indicates that the convo-
lution layer will have 16 convolutions. The right child of the ’C’ primitive is labelled 

Table 2   Terminal Nodes for GPNND approach

Name Description

Shape This represents the options which a layer can take as a parameter
Depending on the layer type, one of these options are randomly chosen
Convolution layer (C)
 - 016, 032, 048, 064, 128, 256, 512, 1024 (The number of convolu-

tions)
Max pooling and average pooling layers (MP, AP)
- 03, 05, 07, 09, 11, 13 (The size of the kernel, for example ’05’ repre-

sents a 5x5 kernel)
Dropout layers (Dr)
- 0.2, 0.4, 0.5  (The dropout proportion)
Densely connected layers (D)
- 0, 16, 32, 48, 64  (The number of neurons in the layer)
(except for final dense layer which takes on number of classes as its size)

LFunc The activation function for a layer, which could be one of the following
- ReLU
- tanh
- sigmoid
- softmax
One of these values are randomly selected from the oprions specified

NOpt The Optimiser of the network
-  Adam, AdaGrad, AdaDelta. or SGD
One of these values are randomly selected from the options specified

NLRate The Learning Rate of the neural netowrk
Learning rates can be 0.1, 0.01, 0.001
One of these values are randomly selected from the range specified

NSize Size (number of layers) of the neural network.
C Ephemeral constant in the range -2 and 2
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’ReLU’, which indicates that the layer will make use of a ReLU activation function. 
These three nodes, together represents a convolutional layer of a neural network 
which perform 16 convolutions and uses a ReLU activation function, indicated by 
the first block in the neural network representation on the right hand side of the fig-
ure. The ’C’ node is the left child of the Add (+) primitive. The same process takes 
place with the right child of the Add primitive. It is labelled ’MP’ which represents 
a max pooling layer. The ’MP’ primitive has two children. The left child is labelled 
’3’. This indicates that the max pooling layer has a 3x3 kernel size. The left child is 
labelled ’ReLU’, indicating a ReLU activation function. These three nodes, together 
represents a max pooling layer of a neural network which perform 16 convolutions 
and uses a ReLU activation function. The ’MP’ node is the right child of the Add 
(+) primitive. The + primitive adds its children together, and therefore adds the con-
volution layer and max pooling layer together. The neural network representation on 
the right thus shows the max pooling layer underneath the convolution layer. The 
left hand side of the tree has now been traversed. The same process occurs with the 
right child of the root. The right child of the root is another Add primitive. Its left 
child is a ’F’ node which represents a flattening layer. Flattening layers do not have 
parameters. The right child of the Add primitive is labelled ’D’ which represents a 
densely connected layer. Its left and right children are labelled ’10’ and ’Softmax’, 
which indicate a size of 10 and a softmax activation function respectively. These 
three nodes represent a densely connected layer with size 10 which uses a softmax 
activation function. The Add primitive then adds these layers together. The right 
hand side of the tree has been traversed. The root is labelled ’Comb’ which repre-
sents a combiner primitive, which combines two subtrees together. The left hand 
side of the tree which contains the convolution layer and the max pooking layer is 
combined with the right hand side of the tree which contains a flattening and densely 
connected layer, resulting in the neural network depicted on the right hand portion 
of the figure.

Fig. 1   Example of GP tree and the corresponding neural network derived from the tree
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The population is created using the ramped half-and-half method [19]. A default 
min and max depth is chosen and an equal number of trees in the range of this depth 
are generated. Half of these will be generated using the grow method (trees of vari-
able shape adhering to depth bounds) and the other half are generated using the full 
method (trees of full shape, no missing nodes).

3.2 � Genetic operators

GPNND uses the mutation and crossover operators to create offspring. These opera-
tors are described in the sections that follow.

3.2.1 � Mutation

An individual is selected, a mutation point is randomly selected. The subtree rooted 
at the point is deleted and a new subtree is generated using the grow method and 
inserted at this point. Figure 2 illustrates an example of mutation. In Fig. 2, the top 
of the figure represents the chosen tree before mutation, along with the correspond-
ing neural network the tree evaluates to, and the bottom of the figure depicts the tree 
after mutation with its corresponding neural network. The mutation point is circled 
in red. The subtree rooted at this point is replaced with a newly generated subtree, 
and the bottom tree below shows the newly generated subtree along with the neural 
network which this offspring will create.

3.2.2 � Crossover

Two individuals are selected, and a crossover point in both individuals is selected. 
The subtrees rooted at each of these points are swapped with each other. An exam-
ple of crossover is shown in Fig. 3. In Fig. 3, the top shows two trees, along with 
the neural networks they evaluate to, before crossover takes place and the bottom 
of the figure shows the trees and corresponding neural networks after crossover has 
taken place. Crossover points are shown in red and blue. The subtrees rooted at these 
points are interchanged between the two program trees.

3.3 � Fitness evaluation and selection

The fitness function is multi-objective. The objective functions are: 

1.	 Maximise the model accuracy
2.	 Minimise the training time
3.	 Minimise the size of the model

The accuracy of the neural network is the most important objective. However, it can-
not be that the size of the model grows to be too large, or that it takes too long for 
the GP to evolve to produce the neural network. Therefore, these values have been 
log scaled and summed as follows:
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Where F(i) refers to the fitness of the individual, acc(i) the accuracy, train(i) the 
training time in seconds, and size(i) the size of the model in Kilobytes after train-
ing. GPNND uses tournament selection. A tournament size is chosen, and a random 
selection is made from the population, comprising the chosen number of individu-
als. Thereafter, the individual with the best fitness within the tournament is selected 
for the application of a genetic operator.

F(i) = 100acc(i) − 10log(train(i)) − 5log(size(i))

Fig. 2   Example of mutation (Mutation point circled in red)
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4 � Iterative structure based genetic programming (ISBGP‑II)

This section describes the ISBGP-II algorithm. ISBGP-II uses both fitness and 
structure to direct the search. Structure is taken into consideration by preventing the 
algorithm from exploring areas that previously resulted in local optima. A similarity 
index is used to compare new elements of the population to elements in areas of the 
search space already visited. This done at both a local level to promote exploitation, 
as well as a global level to promote exploration.

The ISBGP-II algorithm is depicted in algorithm 1.
Algorithm 1   ISBGP-II

The algorithm operates by firstly executing the GPNND algorithm over mul-
tiple iterations and analyzing nodes in the tree up to a predefined cutoff depth 
parameter, denoted as the global level search. The global level search identifies 
various global areas, with each iteration revealing a new area by comparing it 

Fig. 3   Example of crossover (Mutation points circled in red and blue)
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with those found in previous iterations. If the similarity of the new global area is 
below the defined threshold, it is accepted; otherwise, it is discarded. The similar-
ity is quantified using the global index, defined in Sect. 4.1. Within each global 
level search, a local level search occurs.

In the local level search, nodes from the tree root to the cutoff depth are fixed, 
initiating the local level search of the algorithm. In this phase, nodes above the 
cutoff depth cannot be modified. If the similarity of the new local area is below 
the defined threshold, the search continues. If not, the search moves to a new 
global search. The similarity is quantified using the local index, defined in 
Sect. 4.1

This iterative process continues until the termination criterion is satisfied. 
Termination occurs either when the algorithm achieves a fitness surpassing that 
of GPNND for the same dataset or when the design time matches that of the 
GPNND approach.

These search strategies encourage the algorithm to both exploit and explore 
more of the search space, thereby minimizing the risk of converging to a local 
optimum. The utilization of similarity indices prevents excessive exploration of a 
single area in the search space. This control was not possible when solely relying 
on genetic operators.

Population generation, genetic operators, and the fitness function for ISBGP-II 
mirror those used in the GPNND approach.

4.1 � Similarity indices

Two similarity indexes are used for this purpose:

•	 Global index (GI) - The global similarity index is a count of the number of 
function nodes that the individuals being compared have in common from the 
root to a specified cut-off depth.

•	 Local index (LI) - The local similarity index counts the number of function 
and the number of terminal nodes that both the individuals being compared 
have in common, after the cut-off depth.

5 � Genetic algorithm for NAS (GA)

Genetic algorithms have predominantly been used for NAS. To get an idea of 
the contribution of GPNND and ISBGP-II, a genetic algorithm for NAS is also 
applied to the same datasets used to evaluate GPNND and ISBGP-II. The genetic 
algorithm is described in this section. The GA is based on that by employed by 
Klos et  al. [18] for NAS. Both GPNND and the GA presented in this section 
employ the standard generational algorithm depicted in Algorithm 2.
Algorithm 2   Generational algorithm
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This section firstly describes the representation used for the chromosome, fol-
lowed by an overview of each of the processes that make up this algorithm.

5.1 � Chromosome representation

Each chromosome represents a neural network. Each gene corresponds to a layer 
in the neural network, its corresponding parameters and activation function. The 
parameters and the options for the parameter values for each layer type is depicted in 
Table 3. The table lists the set of parameter values for a layer, one of which are ran-
domly chosen when a chromosome is generated. The reason for choosing the values 
in this table as possible values for the algorithm to make use of is that high perform-
ing neural network designs tend to use multiples of 16 for convolutions and multi-
ples of odd numbers for kernel sizes for pooling [14, 40]. The values for dropout 
were chosen as they help to reduce overfitting, the range was chosen as having drop-
out values which are too high could lead to underfitting, slow convergence or loss 
of information [10, 41]. One of the following three activation functions is randomly 
selected for each layer: ReLU, TanH, Softmax.

In Fig.  4, the left hand side depicts the chromosome of the GA, and the right 
hand side depicts the neural network this chromosome represents. Reading from the 
chromosome on the left, the first block is labelled ’C016R’. This represents the first 
gene of this chromosome. C indicates that this gene represents a convolution layer, 

Table 3   Layer types and parameters for chromosomes

Name Parameters Parameter values

C - Convolution Number of convolutions 16, 32, 48, 64, 128, 256, 512, 1024
MP - Max pooling Kernel size 3x3, 5x5,7x7, 9x9, 11x11, 13x13
AP - Average pooling Kernel size 3x3, 5x5,7x7, 9x9, 11x11, 13x13
F - Flattening layer – –
D - Dense Number of neurons 10, 16, 32, 48, 64. 128, 256, 521, 1024
Dr - Dropout Dropout proportion 0.2, 0.4, 0.5
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016 indicates that this convolution layer has 16 convolutions as its parameter, and 
R indicates that this layer uses a ReLU activation function. In the neural network 
on the right hand side, the top most block depicts the layer that the ’C016R’ gene 
represents, which is shown as a convolution layer with 16 convolutions and a ReLU 
activation function. The second block in the chromosome, representing the second 
gene, is labelled ’MP03R’. M indicates that this gene represents a max pooling layer, 
03 indicates that this layer has a 3x3 kernel as its parameter, and R indicates that this 
layer uses a ReLU activation function. The layer in the neural network which this 
gene represents is depicted in the second block in the neural network on the right, 
that being a max pooling layer with a 3x3 kernel and a ReLU activation function. 
The third block in the chromosome, representing the third gene, is labelled ’F’. F 
indicates that this gene represents a flattening layer. Fattening layers do not have any 
parameters. Looking again at the neural network on the right, the third block depicts 
the representation of this layer. The fourth and final blocks of the chromosome on 
the left and the neural network on the right represent the final layer. The gene is 
labelled ’D010S’. D indicates that this gene represents a densely connected layer, 
010 indicates that this layer has a size of 10 as its parameter, and S indicates that this 
layer uses a Softmax activation function.

The initial population is created by randomly creating each chromosome. The 
value for each gene is randomly selected from the set of options described above. 
The size of the population and the length of the chromosome are parameters of the 
GA.

5.2 � Fitness evaluation and selection

The GA employs the same fitness function as GPNND, outlined in Sect. 3.3. The 
GA employs tournament selection. In tournament selection, a specific tournament 
size is chosen, and a random selection is made from the population, comprising the 
chosen number of individuals. Subsequently, the individual with the highest fitness 
within the tournament is selected for the application of a genetic operator.

5.3 � Genetic operators

Mutation and crossover are used to create the new population of each generation. 
These operators are described in the sections that follow.

Fig. 4   A basic GA chromosome and the corresponding neural network derived from this chromosome
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5.3.1 � Mutation

A mutation point is chosen at random in the parent selected using tournament 
selection. The mutation point corresponds to a gene in the chromosome. One of 
the following operations is applied to the gene:

•	 Replace the gene
•	 Add genes before this gene
•	 Add genes after this gene
•	 Remove the gene

An example of mutation is shown in Fig. 5.
Figure 5 depicts a chromosome and the neural network this chromosome rep-

resents, firstly before mutation occurs and then after mutation has occurred. The 
chosen mutation point is indicated by a red square, in this case highlighting the 
gene labelled ’MP03R’. From here, this mutation has made the choice to generate 
new genes and place them after its position in the chromosome. Two new genes 
were generated, namely ’C032R’ and a ’MP03R’. The neural network on the left 

Fig. 5   An example of the Mutation operator for GA
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shows the effect of the mutations before and after they take place, where two new 
layers have been added.

5.3.2 � Crossover

Two parents from the population are selected using tournament selection. Crossover 
points are randomly selected in each of the parents. The fragments defined by the 
crossover points are swapped to produce two offspring. Figure 6 shows an example 
of the operator for GA The crossover points are indicated by red and blue squares.

In Fig. 6, The two parent chromosomes which have been selected are shown at 
the top of the figure, the two crossover points are indicated by red and blue squares. 
The section, beginning at the crossover points and ending at the final gene of the 
chromosomes, are interchanged with one another. The two offspring are shown at 
the bottom of the figure with the interchanged areas. If the crossover points chosen 
produce invalid chromosomes i.e chromosomes which do not correctly represent a 
correct neural network architecture, the new chromosome is discarded and crossover 
is retried. If crossover produces an invalid chromosome five consecutive times for 
the same two parent chromosomes, mutation is performed instead.

6 � Experimental setup

This section describes the experimental setup used to evaluate GA, GPNND and 
ISBGP-II. Section 6.1 describes the datasets that were used. The performance met-
rics used to report the performance of the approaches are presented in Sect.  6.2. 
Parameters are listed in 6.3 and section 6.4 presents the technical specifications of 
the hardware and software for the experiments.

Fig. 6   An example of the Crossover operator for GA
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6.1 � Datasets

This section describes the datasets used for this research. These datasets were 
chosen because the state-of-the-art approaches mentioned in Sect. 7.3 make use 
of these datasets, allowing for a comparison to be made between this research and 
state-of-the-art methods. Additionally, they contain a large number of samples 
which can be adequately split into training and testing sets. The large number of 
samples will help to reduce neural networks from overfitting. The following data-
sets were used to test the proposed approaches for image classification:

•	 CIFAR-10 - This dataset contains 60,000 32x32 colour images. There are 10 
classes. Each class contains 6000 images. 50,000 images are used for training 
and the remaining 10,000 for testing. [20]

•	 Fashion MNIST - A dataset containing images of various clothing items. 
There are 70,000 28x28 greyscale images in total, with 60,000 being used for 
training and 10,000 for testing. There are 10 classes. [49]

•	 Street View House Numbers (SVHN) - This dataset consists of 600,000 
32x32 RGB images of digits on house number plating. Of these images, 
73,257 are used for training and 26,032 are for testing with 10 classes. [34]

•	 EuroSat - A data set containing satellite images. In total there are 27,000 
images and 10 classes. [34]

The following datasets were used for video shorts creation:

•	 PHD2: Personalized Highlight Detection - This dataset contains a selection 
of various YouTube video IDs, and the timestamp of the highlight of each 
video, along with some user-specific information. There are 12,972 training 
examples and 850 testing examples. [31]

•	 Video2Gif - A dataset containing 100,000 gifs along with the respective vid-
eos and related data which the gifs were extracted from. [12]

•	 YouTube-8  M Segments Dataset - This dataset contains semgments date 
from YouTube videos, of which there are about 237,000 segments on 1000 
classes. There are 5 segments per video. [1]

•	 QVHighlights - This dataset consists of over 10,000 YouTube videos, each 
with annotated highlight information. [22]

6.2 � Performance metrics

The following metrics will be used to evaluate the performance of the GPNND 
system:

•	 Model Accuracy - A measure of the correctness of the predictions of the neu-
ral network, represented as a decimal or percentage.
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•	 Design Time - The time taken for the GPNND system to evolve a suitable 
architecture for the given dataset. This is measured in hours.

6.3 � Parameters

The determination of parameter values for the GPNND and ISBGP approaches were 
guided by a review of related work [2, 4, 13], wherein initial values from previous 
studies were adopted as a foundational starting point. Subsequently, an approach was 
taken for each parameter, involving the exploration of values within ranges slightly 
smaller and larger than the initial settings. Through experimentation and testing, the 
algorithm’s performance was evaluated across various parameter values. The deci-
sion to use the current parameter values emerged from this iterative process, as they 
demonstrated the best results for this research. A table detailing all the parameters 
and their justification is given in Table 4.

6.4 � Technical specification

GA, GP and ISBGP-II are designed using Python 3. The TensorFlow, Keras and 
DEAP libraries are used. The experiments were evaluated on the Google Colab1 
suite, making use of a GPU runtime.

Table 4   Parameters

Name Value Justification

Population size 15 Allows for enough genetic variation and reasonable execution times
Minimum Tree Depth 2 This depth is enough for a minimal working tree
Maximum Tree Depth 20 Allows for ample room for trees to grow and promote variation 

without memory and computational issues
Number of Generations 25 Allows for enough time for the programs to sufficiently evolve
Number of NN Epochs 30 Allows for models to train sufficiently without overfitting
Crossover Probability 0.35 Promotes sufficient genetic variation and genetic collaboration
Mutation Probability 0.45 Introduces sufficient genetic variation without losing good changes
Cut-off depth 4 This depth is before which there are the most similarities between 

trees
Global index threshold 6 Allows for ISBGP to move the search space effectively for global 

areas
Local index threshold value 8 Allows for ISBGP to move the search space effectively for local 

areas

1  https://colab.research.google.com/
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7 � Results

This section discusses the performance of the GA, GPNND and ISBGP-II 
approaches. For each of these approaches, 30 runs were performed for each 
dataset. Average accuracy and design times were collected and P values were 
calculated. The following sections document the results of the approaches.

Table 5   Table of results for image classification

Approach Metrics Dataset

Fashion MNIST CIFAR-10 SVHN EuroSat

GPNND Best Design Time (hrs)  4.6 4.7 4.6 5.3
Best Accuracy  0.9602 0.9531 0.9648 0.9296
Average Accuracy
(Train)

0.9774 0.9693 0.9785 0.9382

Average Accuracy
(Test)

0.9517 0.9396 0.9514 0.9127

GA Best Design Time (hrs) 5.2 5.6 5.6 5.7
Best Accuracy 0.9429 0.8916 0.9098 0.9106
Average Accuracy
(Train)

0.9619 0.9086 0.9191 0.9286

Average Accuracy
(Test)

0.9351 0.8831 0.8896 0.8963

Table 6   Table of results for video short creation

Approach Metrics Dataset

PHD2 Video2GIF 8 M QVHighlights

GPNND Best Design Time (hrs) 9.1 9.6 9.2 9.3
Best Accuracy 0.8912 0.8783 0.8707 0.8376
Average Accuracy
(Train)

0.9105 0.8914 0.8973 0.8649

Average Accuracy
(Test)

0.8827 0.8679 0.8596 0.8297

GA Best Design Time (hrs) 10.8 10.7 10.4 9.8
Best Accuracy 0.7376 0.6891 0.7719 0.8202
Average Accuracy
(Train)

0.7587 0.7114 0.7936 0.8449

Average Accuracy
(Test)

0.7279 0.6825 0.7604 0.8164
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7.1 � GPNND and GA approaches

The performance comparison for GPNND and GA for image classification and 
video shorts creation is documented in Tables 5 and 6 respectively.

A statistical comparison between GPNND and GA was performed. The null 
hypothesis states that the accuracy of GPNND is equal to that of GA and the 
design time of GPNND is equal to that of GA. The alternative hypothesis states 
that GPNND has a higher accuracy and lower design time than GA. The hypoth-
eses were tested with a Welch’s t-test, with a significance level of 0.05. Table 7 
shows the P values for the accuracy and design time for this comparison. In 
the table, all P values are less than the significance level of 0.05 implying that 
the null hypothesis can be rejected in favour of the alternative hypothesis, thus 
GPNND has higher accuracy and lower design time than GA.

Table 7   P values Data set P value

Accuracy Design time

Fashion MNIST (Image) 0.0435 0.0163
CIFAR-10 (Image) 0.0232 0.0388
SVHN (Image) 0.0164 0.0249
EuroSAT (Image) 0.0242 0.0311
PHD2 (Video) 0.0329 0.0302
Video2GIF (Video) 0.0337 0.0226
QVHigilights (Video)  0.0253 0.0219
YouTube 8 M (Video) 0.0104 0.0168

Table 8   Table of results for image classification

Approach Metrics Dataset

Fashion MNIST CIFAR-10 SVHN EuroSat

GPNND Best design time (hrs) 4.6 4.7 4.6 5.3
Best accuracy 0.9602 0.9531 0.9648 0.9296
Average accuracy
(Train)

0.9774 0.9693 0.9785 0.9382

Average accuracy
(Test)

0.9517 0.9396 0.9514 0.9127

ISBGP-II Best design time (hrs) 4.2 4.2 5.1 5.1
Best accuracy 0.9775 0.9786 0.9815 0.9549
Average accuracy
(Train)

0.9847 0.9863 0.9885 0.9692

Average accuracy
(Test)

0.9637 0.9615 0.9753 0.9395
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7.2 � ISBGP‑II and GPNND approaches

The performance comparison for the ISBGP-II approach and GPNND for 
image classification and video shorts creation is documented in Tables 8 and 9 
respectively.

A statistical comparison between ISBGP-II and GPNND was also performed. 
The null hypothesis states that the accuracy of ISBGP-II is equal to of GPNND 
and the design time of ISBGP-II is equal to that of GPNND. The alternative 
hypothesis states that ISBGP-II has a higher accuracy and lower design time than 
GPNND. The hypotheses were also tested with a Welch’s t-test, with a signifi-
cance level of 0.05. Table 10 shows the P values for the accuracy and design time 
for this comparison. In the table, all P values are less than the significance level 
of 0.05 implying that the null hypothesis can be rejected in favour of the alterna-
tive hypothesis, thus ISBGP-II has a higher accuracy and lower design time than 
GPNND.

Table 9   Table of results for video short creation

Approach Metrics Dataset

PHD2 Video2GIF 8 M QVHighlights

GPNND Best design time 9.1 9.6 9.2 9.3
Best accuracy 0.8912 0.8783 0.8707 0.8376
Average accuracy 
(Train)

0.9105 0.8914 0.8973 0.8649

Average accuracy 
(Test)

0.8827 0.8679 0.8596 0.8297

ISBGP-II Design time 9 9.2 9.4 9.0
Accuracy 0.9167 0.8949 0.8985 0.8682
Average accuracy 
(Train)

0.9264 0.9162 0.9095 0.8892

Average accuracy (Test) 0.9016 0.8877 0.8894 0.8573

Table 10   P values Data set P value

Accuracy Design time

Fashion MNIST (Image) 0.0435 0.0163
CIFAR-10 (Image) 0.0232 0.0388
SVHN (Image) 0.0164 0.0249
EuroSAT (Image) 0.0242 0.0311
PHD2 (Video) 0.0329 0.0302
Video2GIF (Video) 0.0337 0.0226
QVHigilights (Video)  0.0253 0.0219
YouTube 8 M (Video) 0.0104 0.0168
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7.3 � Comparison with state of the Art

This section compares the performance of GPNND and ISBGP-II with state 
of the art approaches applied to the same datasets. Please note that this is only 
included for the sake of completeness. The aim of the research is not to obtain a 
performance improvement over the state of the art approaches but rather to inves-
tigate the benefit of using GP rather than GA for NAS. The comparison is shown 
in Table 11.

7.4 � Evolved designs

This section showcases evolved designs which the GA, GPNND and ISBGP-II 
approaches produce for the image classification and video shorts creation. The 
figures depict a graphic representation of the evolved neural networks where 
each block represents a layer of the neural network. The GP trees produced and 
evolved in practice grow to be too large to plot effectively, thus making them 
not interpretable. The trees are therefore treated as a black box, and future work 
will investigate methods for making the classifiers more readable. The final neu-
ral network architectures, which are created by evaluating the evolved trees are 
therefore shown.

7.4.1 � Evolved designs for image classification

Figure 7 shows the architecture of three neural networks, each evolved using the 
GA, GPNND and ISBGP approaches respectively for image classification:

In Fig.  7, graphic representations of three neural networks for image classi-
fication are shown. These are labelled ’GA’, ’GP’ and ’ISBGP’, referring to the 
three approaches. The best performing neural network is evolved by ISBGP and 
achieves an accuracy of 97.75%.

Table 11   Comparison to state 
of the art methods for image 
classification

Approach Dataset

Fashion MNIST CIFAR-10 SVHN

GPNND 0.9602 0.9531 0.9646
ISBGP 0.9775 0.9786 0.9815
Other Methods 0.9691 0.9891 0.9901

[44] [45] [7]
0.9641 0.972 0.99
[7] [50] [36]
0.9444 0.0653 0.989
[9] [23] [24]
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7.4.2 � Evolved designs for video short creation

Figure 8 shows the architecture of three neural networks, each evolved using the 
GA, GPNND and ISBGP approaches respectively for video shorts creation:

Fig. 7   Neural network architectures evolved by GA, GP and ISBGP-II for Image Classification

Fig. 8   Neural network architectures evolved by GA, GP and ISBGP-II for Video Shorts Creation
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In Fig. 8, graphic representations of three neural networks for video shorts crea-
tion are shown. These are labelled ’GA’, ’GP’ and ’ISBGP’, referring to the three 
approaches. The best performing neural network is evolved by ISBGP and achieves 
an accuracy of 91.07%.

For both image classification and video shorts creation, the neural netowrk for 
GPNND contains fewer layers than the neural network for GA, while achieving a 
higher accuracy. The same can be seen for ISBGP-II where the neural network con-
tains fewer layers but achieves a higher accuracy. The layer parameter values are 
also different in the approaches. GPNND and ISBGP-II use different numbers of 
convolutions and kernel sizes for pooling in their respective layers.

8 � Conclusions and future work

The main aim of the research presented in this paper was to study the use of genetic 
programming for NAS. Both canonical GP (GPNND) and a variation of GP which 
takes both structure and fitness into consideration when directing the search, ISBGP-
II, were examined for NAS for image processing and video shorts creation. The per-
formance of GPNND and ISBGP-II was also compared to a genetic algorithm (GA) 
for NAS. Both GPNND and ISBGP-II outperformed the GA for NAS for image 
classification and video shorts creation. ISBGP-II was found to perform better than 
GPNND as well as a previous version of the approach.

Given the effectiveness of transfer learning in GP [39], future work will exam-
ine the use of transfer learning in ISBGP-II for NAS. In addition to this, fitness 
approximation techniques will also be examined to reduce the computational cost 
of ISBGP-II. Future work will also investigate combination operators that will form 
part of the GP function set to combine layers in a neural network architecture.
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