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Abstract23

Inter-specific interactions can influence species’ activity and movement patterns. In particular,24

species may avoid or attract each other through reactive responses in space and/or time.25

However, data and methods to study such reactive interactions have remained scarce and26

generally limited to two interacting species. Nowadays, the deployment of camera traps opens27

new opportunities but adapted statistical techniques are still required to analyze interaction28

patterns with such data. We present the multivariate Hawkes process (MHP) and show how it29

can be used to analyze interactions between several species using camera trap data. Hawkes30

processes use flexible pairwise interaction functions, allowing us to consider asymmetries and31

variations over time when depicting reactive temporal interactions. After describing the32

theoretical foundations of the MHP, we outline how its framework can be used to study33

inter-specific interactions with camera trap data. We design a simulation study to evaluate the34

performance of the MHP and of another existing method to infer interactions from camera35

trap-like data. We also use the MHP to infer reactive interactions from real camera trap data36

for five species from South African savannas (impala Aepyceros melampus, greater kudu37

Tragelaphus strepsiceros, lion Panthera leo, blue wildebeest Connochaetes taurinus and38

Burchell’s zebra Equus quagga burchelli). The simulation study shows that the MHP can be39

used as a tool to benchmark other methods of inter-specific interactions inference and that this40

model can reliably infer interactions when enough data is considered. The analysis of real41

data highlights evidence of predator avoidance by prey and herbivore-herbivore attraction.42

Lastly, we present the advantages and limits of the MHP and discuss how it can be improved43

to infer attraction/avoidance patterns more reliably. As camera traps are increasingly used, the44

multivariate Hawkes process provides a promising framework to decipher the complexity of45

interactions structuring ecological communities.46
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1 Introduction47

Inter-specific interactions affect many aspects of ecological communities. For instance, they influence48

ecosystem services (Valiente-Banuet et al., 2015), species assembly via biotic filtering (Ovaskainen et al.,49

2017) and the behavior of interacting species. In particular, interactions are one of the factors that structure50

the way in which animal species move in the landscape and adjust their habitat choices or activity times51

(Palmer et al., 2022). Mobile animals can respond to interactions by avoiding or seeking proximity with52

individuals of other species, depending on the positive or negative outcome of the interactions. For53

instance, prey can avoid their predators (Say-Sallaz et al., 2019), competing species can avoid each other54

(Cornhill et al., 2022; Searle et al., 2021), or herbivores can forage together to reduce predation risk or55

increase access to preferred foraging resources (Beaudrot et al., 2020). In this paper, we will use the term56

“interaction” to refer to the attraction or avoidance of a species by another one, even though “interaction”57

also refers to the underlying process to the attraction/avoidance pattern.58

These interactions (as defined above) can occur in space and/or time, at different scales. Species can adjust59

their space use in response to the expected distribution of other species (proactive spatial interaction,60

Palmer et al., 2022). Species can also alter their daily activity patterns (e.g. Karanth et al., 2017) in61

response to other species (proactive temporal interaction). However, some species could also exhibit a62

reactive response to the presence of other species, i.e. change their behavior in response to the actual63

presence of a species sometime before at a given location (e.g. Karanth et al., 2017; Parsons et al., 2016).64

This type of response could be mediated, for instance, by olfactory (Cornhill and Kerley, 2020; Kuijper65

et al., 2014) or auditory cues (Hettena et al., 2014). Investigating these reactive interactions is particularly66

promising as it allows us to identify fine-grained patterns that could be missed by approaches aggregating67

data in space or in time (Cusack et al., 2017; Frey et al., 2017; Parsons et al., 2022).68

Investigating such fine-scale responses is very challenging, as it requires an intensive sampling effort to69

monitor multiple species in space and time. In this context, camera traps open new opportunities to study70

the spatial and temporal activities of multiple species (Caravaggi et al., 2017). Camera trap arrays allow for71
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the collection of multiple species occurrences and, therefore, the monitoring of entire communities for large72

areas continuously in time (Pardo et al., 2021). Hence, camera traps can produce massive amounts of data73

and offer new possibilities to study interactions between several species at multiple scales. Moreover, they74

are relatively cheap and easier to set up than classical fieldwork survey techniques (e.g. transects),75

especially for rare or elusive species or in remote areas. As camera traps become more affordable and76

automated species identification methods from pictures are being developed with deep learning, camera77

trap data (and other passive sensors data) will likely become more abundant in the future (Caravaggi et al.,78

2017).79

With camera trap data, interspecific interactions are mostly studied at a broad spatial or temporal scale. To80

do this, data are often aggregated so that either the spatial or the temporal aspect is completely ignored.81

There are two main approaches for this purpose: comparing species’ daily activities patterns (Ridout and82

Linkie, 2009) or spatial occupancy patterns (e.g. with the multispecies occupancy model of Rota et al.,83

2016). Such methods provide a measure of the proactive attraction or avoidance strategy, with species84

adapting their space or time use in anticipation to other species’ presence or absence (Palmer et al., 2022).85

However, other approaches have combined spatial and temporal aspects to infer reactive86

attraction/avoidance strategies (frequently called spatio-temporal interactions in the literature (Karanth87

et al., 2017; Murphy et al., 2021; Niedballa et al., 2019; Prat-Guitart et al., 2020)). Most methods using88

camera trap data quantify only the temporal aspect of reactive interactions: therefore, we will call the89

inferred patterns reactive temporal interactions. The majority are based on the computation of time90

intervals between the detections of two species at a given place (e.g., Harmsen et al., 2009): here, we call91

this family of methods inter-event times methods. The distribution of time intervals can then be contrasted92

according to the order of appearance of species (Parsons et al., 2016; Prat-Guitart et al., 2020) or93

summarized by a statistic that is compared to values obtained under a null model (usually data permutation,94

Cusack et al., 2017; Galindo-Aguilar et al., 2022; Karanth et al., 2017; Murphy et al., 2021). For a95

comparison of different approaches to infer reactive temporal avoidance with time interval measures, see96
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Niedballa et al. (2019). Other more recent approaches use point processes, which allow us to integrate97

temporal dependence in a model-based framework (Kellner et al., 2022; Schliep et al., 2018).98

Although all methods described above are useful to study reactive interactions, they usually focus on pairs99

of species and can therefore be unsuitable for studying complex interaction networks. For instance, these100

methods can identify spurious interactions between two species if other species are involved in the101

interaction network but not considered in the analysis. Moreover, they summarize the effect of a species on102

another one by a single value (e.g., the median of the time interval, Karanth et al., 2017), thus ignoring the103

multiscale and possibly time-dependent changes in the attraction/avoidance patterns (but see Cusack et al.,104

2017).105

In this paper, we propose the multivariate Hawkes process (MHP) (Hawkes, 1971; Lambert et al., 2018) as106

a modeling framework to infer reactive interactions between multiple species from passive sensors such as107

camera traps. Hawkes processes belong to the family of point processes which allow for the analysis of108

species capture events in continuous time, thus avoiding any data aggregation procedure. In Hawkes109

processes, species’ interactions are modeled as pairwise interaction functions which depend on the time110

elapsed between species detections. The MHP used in this article is generative and offers the possibility to111

simulate occurrence data, given parameters specification. It also comes with an inference procedure which112

allows to adjust the pairwise interaction functions from observed data. It deals properly with indirect effects113

caused by species interaction chains, thus minimizing the risk of inferring spurious interactions. We believe114

that this model is a useful conceptual framework which is is well-suited for assessing reactive temporal115

interactions between species. We first present the Hawkes process and how it can be used to analyze camera116

trap data. Then, we describe the MHP used in this article, which was developed by Lambert et al. (2018)117

and implemented in the R package UnitEvents (Albert et al., 2021). We then show how this model can be118

used to simulate data to evaluate the performance of statistical methods or to infer interactions from camera119

trap data. We also apply the MHP on real camera trap data from the Snapshot Safari monitoring program120

(Pardo et al., 2021) to infer reactive temporal interactions between five mammal species. Finally, we121
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discuss on the usefulness of the MHP and the perspectives on how to develop this model further.122

2 Material and methods123

All analyses were performed using R statistical software (v4.3.0; R Core Team, 2023) and the code and data124

(Nicvert et al., 2023) are available at https://doi.org/10.6084/m9.figshare.24552157.v3.125

2.1 Model: the multivariate Hawkes process (MHP)126

Hawkes processes are a family of point processes used to describe dependencies between punctual events.127

These processes belong to the class of self-exciting point processes for which the probability of occurrence128

at time t depends on the previous events occurrences. The first Hawkes process was introduced in 1971 by129

Alan G. Hawkes (Hawkes, 1971). Originally applied to model aftershocks following earthquakes (e.g.130

Ogata, 1988), Hawkes processes have been applied in various fields (Reinhart, 2018), for instance to model131

crime recurrence in cities (Mohler et al., 2018), the evolution of prices on the stock market (Hawkes, 2018)132

or the transmission of action potentials in a network of neurons (Reynaud-Bouret et al., 2013). Theoretical133

properties of Hawkes processes have also been thoroughly studied, and numerous extensions have been134

proposed.135

Throughout this article, we define an occurrence as a detection of an individual at a camera at a given time,136

and we do not take imperfect detection into account. To describe the model, we consider data on the137

occurrences of S species collected on C cameras. In our framework, the data collected on C cameras are138

seen as C independent realizations of the MHP. Let T li
m denote the m-th instant of punctual occurrence for139

species i at camera l. Let N l
i be the total number of occurrences for species i at camera l. We model the140

occurrence times (T li
m)m=1...N l

i , i=1...S, l=1...C as C realizations of a MHP.141

To model punctual occurrences, point processes use a latent intensity function, which is a measure of the142

rate at which events occur in time. When modeling species occurrences from camera trap data, the intensity143

for a given species represents the rate at which this species occurs at a camera. For species i, the intensity144
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λl
i(t) at camera l is formally defined as (Daley and Vere-Jones, 2003):145

λl
i(t) = lim

δ→0

P{nli
]t,t+δ] > 0}

δ
(1)

where nli
]t,t+δ] is the number of points occurring between times t and t+ δ for species i at camera l and δ is146

an infinitesimally small amount of time. Informally, the intensity of a point process multiplied by a small147

amount of time can be viewed as the probability that there will be at least one point occurring around time t.148

In this article, we use the R package UnitEvents (Albert et al., 2021), available at149

https://sourcesup.renater.fr/frs/?group_id=3267, to simulate and infer MHPs. UnitEvents is only available150

on Linux and Mac OS. However, in the code and data repository for the article (Nicvert et al., 2023), we151

provide a Dockerfile allowing to run the analyses from any operating system (including Windows).152

UnitEvents implements the MHP described in Lambert et al. (2018). In this framework, the intensity of153

species i seen on camera l for a Hawkes process with S interacting species is written as:154

λl
i(t) =

νi +

S∑
j=1

∑
m | T lj

m<t

fj→i(t− T lj
m)


+

(2)

where λl
i(t) represents the intensity for species i (as defined above) at camera l. νi is a positive parameter,155

the background rate: it represents the basal intensity of species i (in time−1, e.g., day−1) unrelated to156

previous occurrences. For instance, νi would be low for a rare species and higher for a common species.157

fj→i is the interaction function which represents the influence of an occurrence of species j on species i as158

a function of time delay: positive values of fj→i represent an attraction of species i by species j, negative159

values represent a repulsion and null values independence. In the case j = i, the function fi→i represents160

the interaction between individuals of the same species i. In that case, we will call fi→i the auto-interaction161

function: it could reflect for instance the fact that some species are solitary or gregarious. fj→i are defined162

as piecewise constant functions with K time bins of equal length δ:163
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fj→i =
K∑
k=1

akj→i1](k−1)δ, kδ] (3)

where 1](k−1)δ, kδ] denotes the indicator function between delays (k − 1)δ and kδ. The K coefficients akj→i164

represent the average number of occurrences of species i gained (if positive) or suppressed (if negative) by165

an occurrence of species j in the k-th interval after this occurrence of species j.166

In this framework, fj→i can take negative values, thus allowing to model repulsive effect of species j on167

species i. As the intensity λl
i must be positive by definition, Equation (2) includes a positive part (·)+.168

However, for mathematical reasons, in the following developments we will assume that the negative values169

of fj→i are never too strong so that the intensity never becomes negative, and the positive part is not170

needed. To enforce this assumption, the repulsion terms can only be as strong as the other terms making up171

the total intensity.172

Figure 1 illustrates a realization of a MHP with five species (measured at a single camera) simulated with173

UnitEvents. In this example, some species attract each other (see the interaction network on Figure 1a)174

with the same decreasing discrete exponential interaction function with K = 12 time bins of width δ = 4175

hours (Figure 1b). The background rate is the same for all species and is fixed to 0.2 occurrences day−1.176

The right panel (Figure 1c) shows the simulated species occurrences and associated intensities over time.177

When nothing happens, the intensity is fixed at the background rate. When an attracting species occurs, the178

intensity of the attracted species peaks, making an occurrence more likely. For instance, each occurrence of179

species s1 gives rise to a peak in the intensity of s2. Moreover, when several attracting events occur, the180

interaction functions add up, which makes the occurrence of the target species even more likely.181

2.2 Model inference182

The inference procedure implemented in the UnitEvents package is a fast and scalable LASSO-penalized183

(least absolute shrinkage and selection operator) least-squares criterion. It allows to estimate a single MHP184

from C realizations (in our setting, this corresponds to C cameras).185
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Let (β1, . . . ,βS) denote the parameters of interest for each species i= 1, . . . , S. Each βi is a vector of size186

1 + SK containing the background rate of species i (νi) and the parameters of the interaction functions187

targeted to this species i for the S species and the K bins: βi = (νi, (a
k
j→i)j=1...S, k=1...K). Each βi is188

estimated as:189

β̂i = argmin
βi

LASSO(βi) where LASSO(βi) = −2
C∑
l=1

bli
T
βi + βT

i

C∑
l=1

Glβi︸ ︷︷ ︸
least-squares

+ 2dT
i |βi|︸ ︷︷ ︸

penalization

(4)

where T denotes transposition and |βi| is the vector containing the absolute values of the coordinates of βi.190

bli is an observable vector of size 1 + SK. If camera l is active between times αl and ηl, then191

bli =

(
N l

i ,

(∫ ηl

αl

nlj
[t−kδ, t−(k−1)δ[ dn

li
t

)
j=1...S, k=1...K

)
. (5)

Its first value is the total count of species i observed on camera l. The other values represent the total192

occurrence counts of the species j observed in the k-th bin before the occurrences of species i at camera l.193

Gl is also an observable matrix defined as:194

Gl =

∫ ηl

αl

cltc
l
t
T
dt (6)

where clt is a vector of size 1 + SK defined as clt =
(
1,
(
nlj
[t−kδ, t−(k−1)δ]

)
j=1...S, k=1...K

)
. Its first value195

is 1 and other values represent the occurrence counts of species j occurring on camera l in the k−th bin196

before time t.197

The term 2dT
i |βi| of Equation (4) corresponds to the LASSO penalization: it can make some parameter198

values shrink to zero and thus avoid overparameterization. The strength of this LASSO penalization is199

controlled by the weights vectors di, which are computed from the data and tuned by a unique user-chosen200

parameter γ (equation derived from Lambert et al. (2018) adapted from Hansen et al. (2015)):201
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di =

√√√√2γ log(S + S2K)
C∑
l=1

∫ ηl

αl

clt
2
dnli

t +
γ log(S + S2K)

3
max
l=1...C

(
sup

t∈[αl,ηl]
|clt|

)
. (7)

The choice of a suitable value for γ is crucial for model selection, because γ ensures that only relevant202

nonzero parameters are kept in the model. However, choosing a good value for γ is difficult: it has been203

evaluated by simulations in Lambert et al. (2018) and Hansen et al. (2015), and we proceeded likewise in204

this article.205

In the current implementation of UnitEvents, three flavors of the LASSO penalization are available. We206

choose the "Bernstein Vanishing LASSO" (BVL), where the penalization in Equation (4) is first applied to207

discard weak interaction parameters. Then, the estimates of the remaining non-null parameters are obtained208

by minimizing the least-squares criterion. Lastly, an additional step is introduced to remove parameters209

smaller than a data-computed threshold (see Lambert et al., 2018, for details and justification).210

In the implementation of UnitEvents, the bins width δ and the number of bins K for the interaction211

functions are fixed by the user, who also needs to choose a value of γ a priori. The other parameters212

(interaction functions coefficients akj→i and background rates νi) are fitted as described before.213

2.3 Simulation study214

We generated camera trap-like data under the MHP and used these simulated data to (i) evaluate the215

performance of a method and (ii) tune the penalization parameter for inference on real data.216

2.3.1 Simulation parameters217

For these two objectives, we conducted two sets of simulations in the same conditions. We considered an218

interaction network with five species si=1...5 where s1 attracts s2 and s2 attracts s3 and s4 (network from219

Figure 1a). This network represents a difficult case as an inference method should detect direct interactions,220

but not spurious indirect interactions (e.g., s1 → s3) and identify that species s5 is not interacting with221

others. In this simulation, we define the true interactions by decreasing exponential functions until two days:222
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f(t) =


a exp

(
− ln(2)

0.5 t
)

if t < 2

0 if t ≥ 2

(8)

where a is the interaction strength. The half-life of this function is the denominator of the decrease rate, so223

that this function will reach half of its initial value at t = 0.5 day. The interaction strength a for the true224

model varied from 0.01 to 1 day-1. Here, the interaction strength represents the maximum intensity of the225

pairwise interaction function for t = 0. An analogous interaction function is shown in Figure 1b with a = 1226

and with discrete bins. The background rate was fixed at 0.1 day-1 for all species.227

The simulated trapping length varied from 20 to 500 trapping days for each camera over 25 cameras228

(making up to 12 500 trapping days in total). For each condition, 30 different data sets were generated to229

evaluate the variability of the inference.230

We evaluated the performance of the inference by computing the true positive and true negative rates. The231

true positive rate is the proportion of inferred nonzero interactions over the count of true nonzero232

interactions. The true negative rate is the proportion of inferred null interactions over the count of true null233

interactions.234

2.3.2 Evaluating a method to infer reactive temporal interactions235

We illustrated how synthetic data generated with the MHP can be used to evaluate the performance of a236

method to infer inter-specific interactions, considering the inter-event times method of Murphy et al.237

(2021). We applied the method of Murphy et al. (2021) on simulated data (simulation settings are238

described in Section 2.3.1). This method consists in computing the median time between directed pairwise239

species occurrences (excluding pairs from the same species) for observed and randomly permuted data (999240

permutations). The permutation procedure involved randomly changing the cameras’ labels of species241

occurrences (for details, see Murphy et al., 2021). Finally, the statistical significance of interactions was242

estimated by comparing the median time for observed and permuted data. We used a significance threshold243

of 5 % with a Holm correction for multiple testing.244
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2.3.3 Choice of the penalization parameter245

To choose the best penalization parameter γ in the context of interactions inference, we used a simulation246

approach (simulation settings are described in Section 2.3.1). We inferred MHPs with different values of γ247

(between 0.3 and 1) from the simulated datasets. For the inference parameters, we chose K = 12 bins of248

width δ = 4 hours (2 days in total, corresponding to the length of the simulated interactions functions).249

Then, we defined any inferred interaction function as null if all bins were zero over the function’s support,250

and non-null if at least one bin was not null.251

2.4 Application: analysis of interactions between five species in the African252

savanna253

We used the MHP to infer interaction functions between five species of the southern African savanna:254

impala Aepyceros melampus, greater kudu Tragelaphus strepsiceros, lion Panthera leo, blue wildebeest255

Connochaetes taurinus and Burchell’s zebra Equus quagga burchelli.256

2.4.1 Data collection257

Camera trap data were collected as part of the long-term Snapshot Safari monitoring program (Pardo et al.,258

2021). Snapshot Safari is a network of camera trap grids set up in more than 30 locations in southern259

Africa. The camera trap design consists in grids of 5 km2 in each location, in which cameras were fixed at260

about 50 cm high. Cameras were automatically triggered by motion or heat using passive infrared sensors.261

Each camera was programmed to take a series of three images within 1–5 seconds of each other by day, and262

only one image by night to minimize disturbance occasioned by white flash. For this analysis, we focused263

on six camera trap grids in the savanna biome in northern South Africa: the Associated Private Nature264

Reserves (around Kruger National Park), Kruger National Park, Madikwe Game Reserve, Pilanesberg265

National Park, Somkhanda Game Reserve and Venetia Limpopo Nature Reserve (see Figure 2).266
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2.4.2 Data pre-processing267

Pictures were classified by citizen science using the Zooniverse platform (www.zooniverse.org), where268

pictures were available online and annotated by more than 150 000 volunteers (see Pardo et al., 2021, for269

more details).270

For this analysis, we filtered out cameras where capture events were too rare (less than 2 pictures in total or271

less than 1 picture every 30 days on average). We did not filter for independence between occurrences of272

the same species. However, since the Hawkes model does not allow two capture events to occur273

simultaneously, if two or more individuals of different species were seen on the same capture event, their274

occurrence time was randomly shifted from one minute in advance to one minute later. For multiple275

individuals of the same species seen simultaneously, the occurrences of the individuals were counted as a276

single event (i.e. an occurrence corresponds to an individual or a group of individuals of a given species).277

After the filtering procedure, there were 72 703 occurrence events (corresponding to 70 409 unique278

pictures) collected on 179 cameras in total. Cameras were active during 503 ± 224 (sd) days on average279

(min: 19 days, max: 851 days), amounting to 90 176 trapping days on all cameras. All pictures were taken280

between June 2017 and November 2019.281

2.4.3 Parameters inference282

We inferred the parameters of a MHP using interaction functions defined by K = 6 bins of δ = 6 hours (36283

hours in total). This parametrization should allow us to capture the dynamics of reactive temporal284

interactions with enough granularity while keeping a relatively low number of parameters to estimate to285

allow reliable inference. Using results of the simulation study (see Section 3.1.2), we decided to set the286

value of the penalization parameter γ to 0.5.287
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3 Results288

3.1 Simulation study289

3.1.1 Evaluating a method to infer reactive temporal interactions290

We used data simulated under the MHP to evaluate the method of Murphy et al. (2021). As expected, the291

ability to detect interactions (true positive rate) increases with the strength of the interactions (Figure 3).292

Provided the interaction strength a is big enough (at least 0.1 day-1), the ability to detect interactions293

increases with the number of trapping days, which indicates that a significant sampling effort is required to294

infer interactions from camera trap data (at least 300 trapping days for 25 cameras when the interaction295

strength is above 0.2 day-1). More surprisingly, when the interaction strength is high (at least 0.5 day-1), the296

true negative rate decreases with increasing sampling effort. This indicates that the method wrongly detects297

interactions between non-interacting species. Additional investigations (Appendix S1: Section S1) show298

that these errors mainly concern the detection of spurious indirect interactions between species involved in299

interaction chains (e.g., s1 → s3).300

3.1.2 Choice of the penalization parameter301

The simulation study to find suitable values for the penalization parameter γ led to the results shown in302

Figure 4. Unsurprisingly, the ability to detect true interactions (true positive rate) increases with the303

number of trapping days and the strength of interactions. When the penalization is too low (γ = 0.3; top304

row), the model tends to identify interactions between non-interacting species (reducing the true negative305

rate) but this problem vanishes when sampling effort increases. On the other hand, a high penalization306

(γ = 1; bottom row), moderately improves the true negative rate, but more importantly dramatically307

hampers the ability to detect non-null interactions for small interaction strengths. A value of γ = 0.5 seems308

to be a good compromise allowing to efficiently detect true interactions when their strength is not too small309

(at least 0.1 day-1) but avoiding the identification of false interactions. It gives good results especially when310
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the sampling lasts more than 400 trapping days per camera. Hence, we decided to use a penalization311

parameter of γ = 0.5 to infer the parameters of a MHP from real data (see Section 3.2). Lastly,312

supplementary analyses show that the spurious interactions are randomly distributed and not biased towards313

indirect interactions as with the inter-event times method (Appendix S1: Section S1).314

3.2 Analysis of real data315

We fitted a MHP using the occurrence data of five species (impala, greater kudu, lion, blue wildebeest and316

Burchell’s zebra) collected with camera traps. Adjusting the model only took a few seconds on a personal317

computer. The resulting interaction functions are shown in Figure 5 and the inferred background rates in318

Appendix S1: Section S2.319

Background rates represent the basal intensity for each species, independently of the others. They vary320

greatly between species, with impala having a much higher background rate than other species (impala:321

0.212 day-1; zebra: 0.040 day-1; kudu: 0.035 day-1; wildebeest: 0.022 day-1 and lion: 0.003 day-1). As322

expected, they are strongly related to the total occurrence count of each species.323

Regarding the interaction functions, the inferred parameters highlight a strong auto-attraction for the first324

bin (0-6h), varying between 1.5 and 2.25 day-1 depending on the species. Regarding the cross-species325

interaction functions, many herbivores are attracted to each other. Impalas follow or avoid kudus326

(depending on the delay), wildebeests and zebras; zebras follow impalas, kudus and wildebeests;327

wildebeests mainly follow zebras. Other interactions between herbivores are negligible. These328

herbivore-herbivore interactions are composed of a short-term attraction (during the first six hours after an329

occurrence) and of a medium-term attraction (twelve to thirty-six hours after an occurrence), except330

impalas that are not attracted by zebras on the short-term. Additionally, impalas seem to avoid kudus six to331

twelve and thirty to thirty-six hours after an occurrence. We notice that these interactions are asymmetrical332

(impalas and zebras follow other species much more than they are followed). Regarding prey-predator333

interactions, lions do not follow or avoid any other species. Zebra and impala seem to avoid lion in the next334
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6 hours following an occurrence of this predator. Finally, the inferred interactions are relatively robust to a335

change in bin width, as we show in Appendix S1: Section S4, where we performed the inference on the336

same dataset with different bins widths (3 and 9 hours).337

4 Discussion338

It is now well established that identifying the signature of inter-specific interactions from species339

occurrence data is generally difficult (Blanchet et al., 2020; Popovic et al., 2019). However, camera trap340

data provide additional information (time and order of occurrence of species) that can help to relate341

occurrence patterns to underlying inter-specific interactions. In this context, the Hawkes model provides a342

new theoretical framework to analyze species occurrences sampled in continuous time using camera traps.343

This model aims to predict the probability of occurrence of a given species at a given time taking into344

account the previous occurrences for several species. By considering the exact time at which species occur,345

this model provides a detailed picture of species reactive temporal interactions under the form of interaction346

functions (here, the term “interaction” refers to the attraction/repulsion pattern). These functions allow a347

multiscale description of interactions as they characterize how the interaction strength varies with time,348

contrary to other methods that provide a single measure of attraction/avoidance. Moreover, these functions349

are directed: the inferred interactions can be asymmetrical, as expected for ecological interactions. The350

toolbox associated to this model offers the possibility to generate data and design simulation studies or to351

infer parameters from real data.352

We used the multivariate Hawkes process to generate camera trap-like datasets with different properties353

(sampling effort, strength of interactions) and showed how these simulated data can be used to evaluate the354

performance of a method or to tune inference parameters. Both simulation studies demonstrate that camera355

trap data can be used to detect reactive temporal interactions between species but this requires a substantial356

sampling effort, especially when the strengths of interactions are low. In our simulation setup (five species,357

background rates of 0.1 day-1 and only attractions), results suggest that at least one year of sampling with358
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25 cameras is required to obtain reliable inference, and this holds only if the interaction is strong enough359

(interactions of strength 0.01 day-1 are not reliably detected in our simulations). These requirements would360

probably be higher if more species were considered, especially for rare species (smaller background rate).361

Hence, we agree with Schliep et al. (2018) that more data are needed to estimate reliable reactive362

interaction patterns than to estimate species occupancy. In this context, the MHP provides a powerful363

simulation tool to design and assess the quality of sampling protocols in camera trap studies by adopting a364

virtual ecologist approach (Zurell et al., 2010). The simulation study also highlights the limits of methods365

focusing on pairs of species to analyze interactions between multiple species. By focusing only on two366

species at a time, these approaches are not able to disentangle direct interactions from indirect effects due to367

other species in interaction chains (Appendix S1: Section S1). Moreover, the correction for multiple testing368

we applied in our study was not sufficient to eliminate these spurious interactions, and we can assume that369

this issue is more important in the literature when no correction is considered. As a consequence,370

inter-event times methods tend to overestimate the number of interactions, especially when their strength is371

high or the sampling effort increases. However, such spurious interactions were inferred only when we372

simulated quite strong interactions, and more investigations would be needed to estimate the range of373

interaction strengths we can expect in natural conditions. On the contrary, the Hawkes process used here is374

multivariate by nature, so it works on all species simultaneously and thus allows to identify interactions375

between two species conditionally to the other species, similar to graphical models in the context of376

co-occurrence analysis (Popovic et al., 2019). This modeling approach thus provides a better picture of the377

interaction network of the whole community.378

The real dataset analysis shows how the MHP can be used to infer reactive interactions between five379

mammal species from the African savanna. In our example, since we defined an occurrence as the presence380

of an individual or a group of individuals, the values of the interaction functions represent the number of381

individuals or groups of individuals that are attracted/repulsed by other occurrences, and the typical group382

size to consider depends of the species. We identified strong auto-attractions for all species but also383
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attractions between different herbivores and avoidance of lion by two herbivore species (impala and zebra).384

Whereas it could be tempting to interpret these results as behavioral responses of species to an underlying385

interaction (e.g. avoidance in response to predation), the Hawkes model only characterizes386

attraction/avoidance patterns and particular care should be taken when interpreting these results, especially387

since no covariates were included in this analysis. We discuss these different interpretations of the observed388

patterns in terms of ecological processes below and we make suggestions to improve the MHP to untangle389

the different hypotheses.390

We identified auto-attractions for all species, indicating that the occurrence of a given species increases the391

probability to have another occurrence of the same species at the same place. This could be due to the same392

individual lingering in front of the camera, especially since no independence filter was applied (although393

cameras are configured to pause for one minute between trigger events), or this could reflect sociality394

among individuals, as an individual or a group may attract other individuals for gregarious species. This395

could also stem from habitat selection processes, so that numerous subsequent occurrences could be396

observed at cameras located in species’ preferred habitats. Lastly, circadian rhythms impose physiological397

constraints on the activity times of each species and thus could increase their occurrence rate at certain398

times of the day. When they are not taken into account, as is the case here, circadian rhythms could affect399

the interaction functions in the short term (0-6h) and also induce a 24-hour periodicity in the interaction400

functions. This issue is clearly illustrated using simulated data (see Appendix S1: Section S3) and could401

partly explain the short-term (0-6h) auto-attraction, and probably most of the weak auto-attraction observed402

around 24h for impala, kudu, wildebeest and zebra (Figure 5).403

Regarding the cross-species interactions, we observed attraction patterns between some herbivores, which404

could be explained by four mechanisms. First, temporal niche convergence could induce attraction between405

species when they are active at the same time of day and if they also share the same location. In our406

example, the four herbivore species are diurnal with crepuscular activity peaks. However, if the apparent407

attraction was due to shared circadian rhythms, we would probably observe a symmetry of interaction408

18



functions (i.e., if s1 → s2 is not null, s2 → s1 is also not null) as the order of appearance of species at a409

camera during the activity time would be random. This is not always the case in the example depicted here,410

for instance between zebra and kudu. Second, species sharing the same kind of preferred environment411

might show apparent attraction. However, as for the temporal niche, this spatial niche should induce a412

symmetrical interaction pattern. Third, the apparent attraction between species could be due to413

mixed-species grouping strategy, whereby some species forage together in mixed groups. Such groups are414

thought to mitigate predation risk and/or to improve access to resources (Beaudrot et al., 2020). Moreover,415

when it comes to predation risk, in addition to the dilution effect (a simple number game), there is a possible416

benefit to being associated with more vulnerable species (Fitzgibbon, 1990). This implies a directionality417

in the choices of association, an asymmetry well captured by the MHP. In our analysis, some species are418

attracted by others in the first hours following an occurrence (impala follows kudu and wildebeest; zebra419

follows wildebeest, kudu and impala; and wildebeest follows zebra). Interestingly, these associations have420

been described in the literature (Meise et al., 2019; Pays et al., 2014; Schmitt et al., 2014). Finally, another421

mechanism that could explain interactions between herbivore species is grazing succession (Bell, 1971),422

which describes a strategy by which species sequentially use the same grazing area: less selective species423

come first (non-ruminants and species with higher body mass), followed by more selective species (smaller424

ruminants). In our results, some herbivore species are attracted with a delay (impala following zebra, kudu425

and wildebeest; wildebeest following zebra; zebra following wildebeest and impala). Impala following426

other (bigger) species and wildebeest following the non-ruminant zebra are compatible with the grazing427

succession theory (Bell, 1971). However, the temporal scale of this potential grazing succession occurs at a428

temporal scale much shorter than the one classically described (McNaughton, 1976, 1985).429

Regarding the apparent avoidance of lions by zebras and impalas, here again this could stem from temporal430

niche divergence (lion is a nocturnal species whereas impala and zebra are diurnal). This apparent431

repulsion could also reflect a strategy of impala and zebra to minimize predation risk by reactively avoiding432

lions, i.e. responding to actual cues of lions presence (olfactory or auditory cues for instance) at a fine433
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spatio-temporal scale, as documented for zebras (Courbin et al., 2016).434

As discussed with the real dataset analysis, a major challenge remains linking attraction/repulsion patterns435

identified by the MHP to underlying ecological processes. To date, the implementation used in this paper436

cannot include covariates to model variations in species’ background occurrence rates. This calls for two437

major improvements: first, we could include temporal covariates to account for the variation of species438

occurrence rate through the day according to their diel cycle. Second, we could include environmental439

covariates to account for species habitat preferences across the landscape. Works such as Fujita et al.440

(2018) for temporal covariates or Carstensen et al. (2010) for temporal and environmental covariates could441

be helpful in this perspective. Further developments include accounting for the imperfect detection by442

camera traps, which is known to be an important issue (Burton et al., 2015). In this regard, Kellner et al.443

(2022) recently developed an occupancy model with a detection process occurring in continuous time with444

a Markov-modulated Poisson process, and a similar approach could be envisioned with the MHP.445

Here, we inferred a MHP from camera trap data, but this modeling approach could be extended to other446

types of passive sensors collecting occurrence data in continuous time (e.g., microphones, hydrophones)447

that are increasingly used to monitor biodiversity. In particular, using a spatially explicit extension of the448

Hawkes process (first described by Ogata, 1998, in the context of earthquakes occurrences) could be449

especially suited to include a spatial dependency between camera traps or to analyze GPS collar data and450

estimate interaction functions in time and space.451

The Hawkes process could also be used for other applications than estimating inter-specific interactions, for452

instance to study behavioral synchrony within a group (e.g. Pays et al., 2012) or to infer animal social453

networks from occurrence data (e.g. Jacoby et al., 2016).454

Even if more developments are required to improve ecological inference, we contend that the MHP and455

other point processes methods offer an adapted theoretical framework for the analysis of time-continuous456

occurrence data while contributing to an explanation of interactions among herbivores and between457

herbivores and predators.458
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7 Figure captions616

Figure 1: Example of a realization of a multivariate Hawkes process. (a) shows the interaction network617

between five species (each arrow represents a non-null interaction function). In this example, all618

auto-interaction functions fi→i are null. (b) shows the shape of the interaction functions (K = 12 time bins619

of width δ = 4 hours) corresponding to arrows in the interaction network (a). (c) shows a realization of the620

Hawkes process with the interaction network and the interaction functions shown in (a) and (b). For this621

simulation, the background rate was set to 0.2 occurrences day−1 for all species. For each species i, the622

above panel shows the intensity λi and the bottom panel shows the species occurrences. Each time an623

attracting species occurs, the intensity for the attracted species peaks and then decreases as dictated by the624

interaction function shape.625

Figure 2: Study sites. Six protected areas were surveyed with camera traps for this study: the Associated626

Private Nature Reserves (APN), Kruger National Park, Madikwe Game Reserve, Pilanesberg National Park,627

Somkhanda Game Reserve and Venetia Limpopo Nature Reserve. Data © OpenStreetMap contributors.628

Figure 3: Evaluation of an inter-event times method (Murphy et al., 2021). Panels represent different629

interaction strengths (maximum value of the interaction function). The x-axis represents the sampling630

length and the y-axis represents the performance: true positive rate (full dots, continuous line) or true631

negative rate (circles, dashed line). Points indicate values for the 30 repetitions, lines joins the medians, and632

the colored area represents the 2.5th and 97.5th percentiles.633

Figure 4: Performance of the inference with the multivariate Hawkes model. In columns, the634

interaction strength (maximum value of the interaction function). In rows, the different values of the635

penalization parameter γ. The x-axis represents the sampling length and the y-axis represents the636

performance (true positive rate or true negative rate). Lines, points and colors have the same meaning as for637

Figure 3.638

Figure 5: Inference of interactions from real data using the multivariate Hawkes model. The top plot639

shows the auto-interaction functions (between occurrences of the same species). The bottom plot shows640

28



cross-species interactions, where the intensity of species in rows is affected by species in columns. The641

horizontal dashed line represents zero. Note that the y-axis scale is different between auto- and642

cross-species interactions. Silhouette images from PhyloPic by Lukasiniho (wildebeest), Margot Michaud643

(lion), Robert Hering (kudu), Zimices (zebra) and an unknown author (impala).644
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8 Figures645

(a) Interaction network

(b) Shape of the interaction function (c) Intensities and occurrences over time
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