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Soils are home to a wide variety of microorganisms. The collective genome of these
organisms is vast, and so individual strains perform some functions that few others can.
In addition to the consumption of specific metabolites, many soil microbes excrete unique
compounds into their direct environment in soils, at root surfaces, and inside plants as
endophytes. The ensuing localized build-up of compounds impacts other organisms by
exerting a variety of functions: promoting growth, activating signal transduction, suppress-
ing cellular functions, or changing the physicochemical environment. Microorganisms
share soils with plants, whose roots exude cocktails of organic compounds [1,2] that further
impact the surrounding microbiota and their ensuing interactions. This Special Issue shares
findings on three higher levels of interactions, and how these can affect microbial diversity:

• Plant genotype influences interactions among associated bacteria and fungi;
• Plant-growth-promoting bacterial communities lead to outcomes exceeding the sum

of individual effects; and
• Environmental conditions impact how microbes in communities interact.

Plant breeding has focused largely on improved agronomic traits, such as yield and
disease resistance, invariably losing some parental traits not selected for. Rhizomicrobiome
analysis of modern cultivars versus ancestral accessions has revealed significant differences
in the bacterial and fungal communities of rice [3]. The progeny of crosses between
female parent Oryza rufipogon wild rice and male parent Oryza sativa cultivated rice had
significantly different bacterial and fungal communities than either of the parental lines.
Similarly, sorghum lines have different rhizo- and endosphere bacterial communities that
contribute to plant performance to different degrees under low nitrogen stress conditions [4].
Cultivation of sugarcane leads to shifts in both fungal and bacterial community composition
in soil. These microbial community shifts were associated with decrease in yield [5].

A unique three-way interaction has been reported among plants, their endophytes,
and the associated rhizomicrobial community. Fungal endophytes of Tall Fescue are not
only associated with improved biomass yield and stress tolerance, but also with soil fungal
community composition and increased diversity [6]. These shifts were associated with
enhanced phosphate availability.

Physicochemical conditions are well known to affect the growth of individual microbial
cultures. Invariably, shifts in environmental conditions also impact the fitness of individual
species and strains. Farda et al. reviewed the literature on actinomycetes in caves [7]. The
scarcity of carbon in cave environments acts as a unique evolutionary stressor, leading to
unique biosynthetic capabilities in these actinomycetes. Similarly, heavy-metal-containing
soils were reported to contain novel actinobacteria, including Streptomyces [8]. Tarin et al.
outlined shifts in soil fungal microbiota after the incorporation of bamboo biochar into soil [9].

Various microbial strains isolated from soils have been shown to benefit crop pro-
duction through mechanisms such as nutrient acquisition or suppression of pathogens.
Wang et al. present an analysis of how the consortia of disease-suppressing microorgan-
isms bring about enhanced protection when compared to individual strains [10]. They
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go on to point out criteria for selecting specific disease-suppressive strains to identify
effective consortia.

The contributions to this Special Issue all point to the complexity of specific interactions
that lead to shifts in microbial communities under specific conditions. Much remains to be
done to unravel the specific components of these interactions.

Conflicts of Interest: The author declares no conflict of interest.
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