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ABSTRACT
In this article, the estimation of CuO-liquid paraffin nanofluid viscosity was assessed using
response surface method (RSM) and artificial neural network (ANN) methods. Since CuO-
liquid paraffin nanofluid is Newtonian, two parameters of temperature and mass fraction
were introduced in ANN and RSM techniques at 25–100 �C, 0.25–6wt.%. Both methods
map the three-dimensional input space to one-dimensional space (viscosity). A response sur-
face cubic model was approved by applying ANOVA and calculations showed an R2 value of
0.923 and a maximum margin of deviation of 10.482%. Efforts revealed that ANN with five
neurons takes precedence over others. The R2 and maximum deviation margin were 0.994,
and 3.266%, respectively. Finally, the comaprison of ANN and RSM methods indicated that
the ANN method is more accurate than the RSM for conducting the nanofluid viscosity. The
accuracy of ANN was such that for 50% of points, MOD was less than 1%. For MOD in the
range of 0–2%, 90% of points can be predicted with an error of less than 2%. This figure for
RSM was only 37%.
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Introduction

The need for energy in various sectors is a growing
trend that brings with it major problems such as
air pollution and carbon dioxide emissions
(Jahangiri et al. 2016, 2019, 2020; Pahlavan et al.
2018; Mostafaeipour et al. 2020). In addition, the
shortage of fossil energy resources must be incor-
porated. Reducing energy consumption in various
sectors, especially in the building and industry sec-
tors should be on the agenda of researchers and in
this regard, many studies have been conducted
(Jahangir et al. 2018; Mahdavi, Garbadeen, et al.
2019; Mahdavi, Sharifpur, et al. 2019; Menni et al.
2020; Giwa et al. 2020a, 2020b). Applying energy
storage technique can lead to energy saving. Phase
change materials (PCMs) store a lot of energy
when undergoes the phase change process and

consequently can be used as the main candidate in
this regard (Bayat, Faridzadeh, and Toghraie 2018;
Dardir et al. 2019; Miansari et al. 2020; Ho et al.
2021). These materials have been used in various
sectors such as buildings (Nariman, Kalbasi, and
Rostami 2021), cooling (Yang et al. 2019; Zhang
et al. 2019; Abdollahi and Rahimi 2020; Aqib et al.
2020; Chen et al. 2020), solar collectors (El
Khadraoui et al. 2017; Abuşka, Şevik, and
Kayapunar 2019; Algarni et al. 2020; Palacio,
Rinc�on, and Carmona 2020), etc. The major chal-
lenge in using PCMs is their low thermal conduct-
ivity (Rathore and Shukla 2019; Rostami, Afrand,
et al. 2020; Yang, Huang, and Zhou 2020), which
causes incomplete or long-delayed phase change.
Since nanoparticles have increased the thermal con-
ductivity and thermal performance of base fluids,
nanofluid seem to perform better alongside
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nanoparticles (Motamedi, Eskandari, and Yeganeh
2012; Motamedi, Mashhadi, and Rastgoo 2013;
Motamedi et al. 2018; Gomari et al. 2019; Abad
et al. 2020; Alizadeh, Dorfaki, et al. 2020; Alizadeh,
Mohebbi Najm Abad, et al. 2020; Motamedi,
Naghdi, and Jalali 2020; Valizadeh Ardalan et al.
2020; Alizadeh, Abad, Ameri, et al. 2021; Alizadeh,
Abad, Fattahi, et al. 2021; Alizadeh, Mesgarpour,
et al. 2021; Mesgarpour et al. 2021).

In a study conducted by Yan, Kalbasi,
Karimipour, et al. (2021) it was found that adding
MWCNT boosted kParaffin up to 40.86%. The study
on viscosity of paraffin in the presence of
MWCNT was performed by Liu et al. (2020).
Although the viscosity behavior of paraffin was
Newtonian, MWCNTs nanoparticles, in addition to
changing it to non-Newtonian, increased the vis-
cosity by up to 86%. Colla et al. (2017) inserted
carbon black as well as Al2O3 into paraffin and
revealed that kParaffin intensified up to 25%. They
affirmed that Al2O3 has less positive effects on
kParaffin than carbon black. Ramakrishnan et al.
(2017) added exfoliated graphene nano-platelets to
paraffin by 1 vol.% and found that kParaffin boosted
up to 49%. Lin and Al-Kayiem (2016) loaded
expanded graphite into Paraffin wax led to amplifi-
cation in kParaffin by 14% and 46.3% at 0.5 and
2wt.%. Hussain et al. (2017) added carbon nano-
sheets to composite PCM (combination of oleic
and capric acid) and revealed that kcomposite PCM

boosted by 55% at 0.1wt.%. The use of linear
(Milani Shirvan et al. 2016; Hatami and Jing 2017;
Kalbasi et al. 2019; Hemmat Esfe and Sadati
Tilebon 2020) and nonlinear regression methods
(Longo et al. 2012; Toghraie et al. 2019; Nguyen
et al. 2020; Sadeghi et al. 2020) has been used by
many researchers to determine whether the use of
this technique can be advantageous in extracting
results without performing further experimentation.
Hemmat Esfe, Kiannejad Amiri, and Bahiraei
(2019) applied the RSM technique on kSiO2=water

and lSiO2=water to navigate the parameters of
kSiO2=water
kwater

and
lSiO2=water
lwater

at 1–5 vol.%. Based on R2, it was found

that the R2 for the former and latter one was
0.9952 and 0.9971, respectively. Iranmanesh et al.

(2016) used RSM to navigate
kGr=water
kwater

and
lGr=water
lwater

:

Introducing of T, VF and nanoaprticles specific as

the input parameters, they proved that R2 for the
former and latter one is 0.9925 and 0.9619, respect-
ively. Hemmat Esfe and Motallebi (2019) applied
the RSM technique on the measured experimental
results for kAl=oil and lAl=oil, and affirmed these
parameters were predictable with an R2 values of
0.9734 and 0.9914, respectively. In another study,
Milani Shirvan et al. (2017) used RSM to derive a
mathematical correlation for evaluation of mean
Nusselt number and heat exchanger effectiveness.
Based on the R2 criteria, for the former and latter
parameters, the R2 was reported to be 0.9993 and
0.8501, respectively (Table 1).

Experimental data

In this research, the results of the experimental
study conducted by Ghasemi and Karimipour
(2018) were investigated to examine the useful-
ness of applying RSM and ANN. The authors
produced many nanofluid samples containing
CuO and liquid paraffin to study the nanofluid
rheological behavior. The authors performed a
TEM test for evaluating the CuO molecules struc-
tures and after dispersing them into the paraffin,
conducted DLS test and affirmed that the nano-
particles diameter was within the 30 to 40 nm
which implies that the suspension can be consid-
ered as nanofluid. To ensure the stability of
CuO/paraffin, zeta potential test was performed
and it was found that the critical zeta potential
was not within the –30 to 30mV. They conclude
that the prepared samples at 0.25 to 6wt.% were
stable. They measured lCuO=paraffin by Brookfield

viscometer (DV2T) at 25–100 �C and 10–1601s :
They showed that lCuO=paraffin did not follow the
non-Newtonian behavior, hence temperature and
volume fraction are the main input parameters.
The experimental measurements were illustrated
in Figure 1.

Regression-based methods

Among the various numerical approaces studied
by various researchers (Afrand et al. 2015; Karimi
and Afrand 2018; Guthrie, Torabi, and Karimi
2019; Hunt et al. 2019; Saeed et al. 2019;
Christodoulou et al. 2020; Habib et al. 2020;
Kalbasi 2021). Regression is a set of statistical
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computations that try to establish a correlation
between input and output parameters. In the
simplest case, the correlation is linear and with
increasing complexity, second-order, third-order

regression as the linear combination can be used.
In nonlinear regression, correlations are more
complex. One of the most complex correlations
between input and output variables is created by
an artificial neural network. An artificial neural
network (ANN) is a computing machine based
on animal brains(Esfe et al. 2018; Hemmat Esfe
et al. 2018). ANN is consists of several computa-
tional units called neurons in which neurons
together form an interconnected network. The
connection of neurons in the living organism’s
neural network is based on synapses, while in the
artificial neural network it is based on the signal.
Each neuron receives a signal (or real number)
and performs calculations on it using mathemat-
ical functions. In other words, neurons receive
input signals from previous neurons and convert
them into a new signal for subsequent neurons.
Neural networks consist of three layers called
input, hidden and output. The first layer consists
of several neurons (exactly equal to the number
of independent input parameters) in which each

Table 1. Applications of ANN and RSM in forecasting nanofluid properties.
References Output parameter Findings Technique

Tian, Kalbasi, Qi, et al. (2020)
kAl2O3�MWCNT=10w40

k10w40
R2, MSE and

MODmax were 0.9948,
0.0008485 and 0.97%,

RSM

Rostami, Kalbasi, Sina, et al. (2021)
kMWCNT=paraffin

kparaffin
R2 ¼ 0:972 RSM

Tian, Kalbasi, Jahanshahi, et al. (2020)
rGr=EG
rGr

R2 ¼ 0:982
MSE ¼ 8:194� 10�8

MOD ¼ 1:608%

RSM

Alsarraf et al. (2021)
rZnO�SiO2=EG�water

rEG�water
R2 ¼ 0:9877

MSE ¼ 1:122� 10�5

MOD ¼ 0:7%

RSM

Rostami, kalbasi, Jahanshahi, et al. (2020) Consistency index for
evaluating lSiO2=EG

R2 ¼ 0:988
RMSE ¼ 2:1613
MOD ¼ 7:25%

RSM

Rostami, kalbasi, Jahanshahi, et al. (2020) Power law index for
evaluating lSiO2=EG

R2 ¼ 0:934
RMSE ¼ 0:00632
MOD ¼ 1:763%

RSM

Rostami, Kalbasi, Talebkeikhah, et al. (2021)
kMWCNT�TiO2=EG

kEG
R2 ¼ 0:9947

RMSE ¼ 0:0052
RSM

Yan, Kalbasi, et al. (2021a) lMWCNTs�TiO2=EG ANFIS method was slightly
better than the SVM one.

ANN

Rostami, Kalbasi, Sina, et al. (2021)
kMWCNT=paraffin

kparaffin
R2 ¼ 0:993 ANN

Yan, Kalbasi, et al. (2021b)
rMWCNT=paraffin

rparaffin
R2 ¼ 0:997

MSE ¼ 5:568� 10�6

MOD < 1%

ANN

Tian, Kalbasi, Jahanshahi, et al. (2020)
rGr=EG
rGr

R2 ¼ 0:986
MSE ¼ 5:068� 10�8

MOD ¼ 1:427%

ANN

Rostami, Kalbasi, Talebkeikhah, et al. (2021)
kMWCNT�TiO2=EG

kEG
R2 ¼ 0:9992

RMSE ¼ 0:0015
MOD ¼ 0:785%

ANN

Li et al. (2020)
lMgO�water

lwater
R2 ¼ 0:999 ANN

Figure 1. Viscosity ratio variation for nanofluid (Ghasemi and
Karimipour 2018).
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neuron receives its independent parameter data.
The neurons in the first layer do not alter the
input information, in other words, they receive
input data and then transmit it to the second
layer (hidden layer). In this study, viscosity is
dependent on temperature (T) and nanoparticles
mass fraction (MF), hence they are considered as
the independent parameters. Temperature data is
received by a neuron and the other neuron store
the mf data. Temperature and volume fraction
data (as shown in Figure 1) transmit to each neu-
ron in the middle layer. These neurons process
information and produce a signal (real number).
The number of neurons in this layer is not
known and the user must determine it by trial
and error. In this study, the output parameter

refers to the viscosity ratio
lCuO=Paraffin
lParaffin

� �
, and since

the number of neurons in the last layer is equal
to the output parameters number, a neuron is

assigned to
lCuO=Paraffin
lParaffin

� �
: Now the output param-

eter is compared with the exact value (experi-
mental) to examine the accuracy neural network

accuracy. By changing the number of neurons
and the type of mathematical function in the hid-
den layer, the user can greatly improve the accur-
acy (Figure 2).

Response surface methodology (RSM) is a set
of statistical computations in which it is tried to
establish a linear combination between the input
parameters and output. For ANN, although the
output can be more than one variable, but for
RSM method, a unique correlation is established
for each output. In other words, two output vari-
ables cannot be estimated by providing a unique
correlation. Considering the input parameters of

T and MF and output
lCuO=Paraffin
lParaffin

� �
, several poly-

nomial functions containing a linear combination
of T and MF were proposed. Using mathematical
criteria, the polynomial with most closely fits the
data, will be chosen by the user.

lnf ¼ a0 þ a1T þ a2ðMFÞ (1)

lnf ¼ b0 þ b1T þ b2ðMFÞ þ b3TðMFÞ þ b4T
2

þ b5ðMFÞ2 (2)

lnf ¼ c0 þ c1T þ c2 MFð Þ þ c3T MFð Þ þ c4T
2

þ c5 MFð Þ2 þ c6T
2 MFð Þ þ c7T MFð Þ2 þ c8T

3

þ c9ðMFÞ3
(3)

In this study, through calculating of R2, the
margin of deviation (MOD) and mean square
error (MSE), the accuracy of regression-based
methods were evaluated (Rostami, Kalbasi,
Jahanshahi, et al. 2020; Tian, Kalbasi, Jahanshahi,

Figure 2. ANN structure VI ¼ lCuO=Paraffin
lParaffin

� �
:

Table 2. Linear, quadratic and cubic polynomial coefficients.
Linear Quadratic Cubic

a0 0.94735 b0 0.94910 c0 1.0175
a1 0.59272 b1 0.32839 c1 –0.14683
a2 2.2756 b2 6.4576 c2 2.4423

b3 –0.032810 c3 21.744
b4 0.26091 c4 0.93635
b5 –68.377 c5 –100.84

c6 –8.3632
c7 –217.86
c8 –0.31782
c9 1387.3
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et al. 2020; Rostami, Kalbasi, Talebkeikhah, et al.
2021; Yan, Kalbasi, et al. 2021b).

MSE ¼ 1
24

X24
i¼1

lCuO=Paraffin
lParaffin

� �
Pred

� lCuO=Paraffin
lParaffin

� �
Exp

 !2

(4)

R2 ¼

P24
i¼1

lnf
lbf

h i
Exp

� lnf
lbf

h i
Exp

� �
lnf
lbf

h i
Pred

� lnf
lbf

h i
Pred

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP24

i¼1
lnf
lbf

h i
Exp

� lnf
lbf

h i
Exp

� �2
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

lnf
lbf

h i
Pred

� lnf
lbf

h i
Pred

� �2
2

s
0
BBBB@

1
CCCCA

2

lCuO=Paraffin
lParaffin

¼ lnf
lbf

(5)

MOD ¼
lCuO=Paraffin
lParaffin

h i
Exp

� lCuO=Paraffin
lParaffin

h i
Pred

lCuO=Paraffin
lParaffin

h i
Exp

� 100 (6)

Results

As mentioned in the previous section, regression-
based techniques can be used to establish the cor-
relation between T and MF as independent input

parameters and
lCuO=Paraffin
lParaffin

as an output parameter.

Figure 3. Statistical parameters for linear, quadratic and cubic and their comparison.

Figure 4. Viscosity ratio for RSM and comparison with experi-
mental data.
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Applying statistical calculations, the linear
(Equation (1)), quadratic (Equation (2)) and
cubic (Equation (3)) polynomial coefficients were
determined and recorded in Table 2.

The R2 criteria can be used to select the most
appropriate polynomial. It shows the correlation
between T, MF and

lCuO=Paraffin
lParaffin

and the closer it is

to one, the more desirable it is. To calculate R2,
we can refer to Equation (5). At best, if
lCuO=Paraffin
lParaffin

h i
Exp

and
lCuO=Paraffin
lParaffin

h i
Num

are the same for

all points, the R2 value is equal to one, in which
case there is no error. Therefore, MSE and MOD
parameters will not have values greater than zero.

However, the statistical indicators for linear,
quadratic and cubic polynomials are illustrated in
Figure 3. Focusing on Figure 3 reveals that the
cubic polynomial has the most appropriate R2,
while MSE and MOD parameters for it are much
closer to the ideal conditions (zero value), indi-
cating the superiority of cubic polynomial over
linear as well as quadratic ones.

If R-square is equal to unity, it means that
lCuO=Paraffin
lParaffin

h i
Exp

and
lCuO=Paraffin
lParaffin

h i
Num

are the same,

and so if they are plotted on a graph, they form
a bisector line (Figure 4). Figure 3 affirmed that
although the cubic case was the most appropriate

Figure 5. Residual values for RSM technique.

Figure 6. Laboratory and numerical values of viscosity ratio
lCuO=Paraffin
lParaffin

for RSM technique.
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polynomial correlation, the accuracy of the cubic
polynomial is not high. In particular, Figure 3(c)
illustrated that the maximum MOD for cubic one
is 10.48%, which is far from the desired value.

One of the best methods to evaluate the accur-
acy of regression-based methods is to analyze the
residual value. The residual value (i.e.,
lCuO=Paraffin
lParaffin

h i
Exp

-
lCuO=Paraffin

lParaffin

h i
Num

) for the RSM

method is illustrated in Figure 5, and as can be
seen, there is a large scatter relative to the ideal
line (zero line) which indicates that cubic polyno-
mial (RSM) cannot be used to predict

lCuO=Paraffin
lParaffin

Figure 8. Residual values for ANN technique.

Figure 9. Average MOD for ANN and RSM at each temperature.

Figure 10. MOD distribution at the various intervals for ANN
and RSM.

Figure 7. Viscosity ratio for ANN and comparison with experi-
mental data.
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with confidence. The next question that needs to
be answered is the ability of RSM technique to

predict the chart trend. Hence, Figure 6 is drawn
to measure the ability of RSM approach. At

Figure 11. The superiority of the ANN approach over RSM one in estimating the trend of changes in viscosity ratio
lCuO=Paraffin
lParaffin

� �
:
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25 �C, this method could predict the trend of
lCuO=Paraffin
lParaffin

with insignificant accuracy, while at

other temperatures, it could not forecast the

trend, so the use of RSM to predict
lCuO=Paraffin
lParaffin

is

not recommended.
In the following, the ANN technique is eval-

uated. It has already been mentioned that the
usefulness of this method can be improved by
trial and error. Therefore, trial and error was per-
formed and it was observed that the neural net-
work based on five neurons in the middle layer is
the best case from the perspective of R-square.
Note that out of a total of 30 input data points,
22, 4 and 4 points were assigned for train, valid-
ation and test. Similar to the RSM method, the

deviation of
lCuO=Paraffin
lParaffin

h i
Num

from the
lCuO=Paraffin
lParaffin

h i
Exp

values are illustrated in Figures 7 and 8.
The scales of Figures 5 and 8 are the same so

that they can be compared. For ANN method,
the scatter of points is much less, which indicates
the higher accuracy of this method than the RSM
one. On the other hand, a comparison of Figures
4 and 7 reveals that the ANN method can esti-

mate
lCuO=Paraffin
lParaffin

much more. Because it has a

higher R2 as well as less MSE and MOD values
The average MOD at each temperature for

ANN and RSM approaches is illustrated in
Figure 9. First, at any temperature, the RSM
approach accuracy is much lower than ANN one.
Second, the scatter of points (according to
Figures 5 and 8) is such that no particular trend
for average MOD relative to temperature can
be imagined.

Figures 4 and 7 proved the deviation of numer-
ical results from the laboratory ones, hence MOD
is not equal to zero. In RSM and ANN approaches,
MOD is equal to 10.48% and 3.26%, respectively.
Figures 4 and 7 reported the maximum MOD
value, indicating that at other points, MOD is less
than 10.48% (for RSM) and 3.26% (for ANN). The
MOD distribution is reported in Figure 10 and it
can be seen that for the ANN method, 50% of the
input data have a MOD value below 1%. In other

words, for half the points,
lCuO=Paraffin
lParaffin

h i
Num

differs

from
lCuO=Paraffin
lParaffin

h i
Exp

by less than 1%. This figure was

40% for MOD within 1 to 2%. It is concluded that

for 90% of the input points, the value of
lCuO=Paraffin
lParaffin

is

less than 2% different from the actual value.
If the MOD value is increased to the range of

0–4%, it can be seen that the neural network has
been able to successfully predict all points, while
for the RSM method, 70% of the data points
have a MOD value less than 4%. Finally, the esti-
mation power of ANN and RSM in forecasting

the trend of changes in
lCuO=Paraffin
lParaffin

are illustrated in

Figure 11. It is clear that the ANN approach is
very capable in this field so that its use in esti-

mating
lCuO=Paraffin
lParaffin

is acceptable.

Conclusion

In this study, the application of regression-based
methods on predicting the viscosity of a conven-
tional PCM–based nanofluid was assessed. Since
the rheological behavior of paraffin (base fluid),
as well as CuO/paraffin (nanofluid), were
Newtonian, hence the results were independent
of the shear rate and temperature and mass frac-
tion parameters were known as independent
parameters. Regression-based methods were eval-
uated in both linear and nonlinear modes. The
main results were:

1. Implementation of the linear regression was
performed by RSM technique and it was
observed that the accuracy of the cubic polyno-
mial was higher than the quadratic and lin-
ear one.

2. Statistical criteria showed that R2, MOD and
MSE for the apparent method in the best case,
take the values of 0.923, 10.482% and 0.00384,
respectively.

3. Trial and error revealed that the middle layer
with five neurons provided the best estimation
power with R2¼ 0:994, MOD ¼ 3:266%
and MSE ¼ 0:00034:

4. The accuracy of the neural network was such
that for half of the points, the MOD was below
1%. For 90% of the points, there is a maximum
of 2% difference between the numerical and
laboratory results.
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5. For the RSM technique, only 13.3% of the
points have an error of less than 1%. This fig-
ure was 37% for MOD within 0–2%.

6. The approved neural network forecasted nano-
fluid viscosity with much higher accuracy. Also,
it was able to predict the trend of viscosity
changes well. The ANN method is not only
unacceptably accurate but also inefficient at
predicting the viscosity ratio trend.
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Abuşka M, Şevik S, Kayapunar A. 2019. Experimental ana-
lysis of solar air collector with PCM-honeycomb combin-
ation under the natural convection. Sol Energy Mater Sol
Cells 195:299–308. doi:10.1016/j.solmat.2019.02.040

Afrand M, Farahat S, Hossein Nezhad A, Sheikhzadeh GA,
Sarhaddi F, Wongwises S. 2015. Multi-objective optimiza-
tion of natural convection in a cylindrical annulus mold
under magnetic field using particle swarm algorithm. Int
Commun Heat Mass Transfer. 60:13–20. doi:10.1016/j.
icheatmasstransfer.2014.11.006

Algarni S, Mellouli S, Alqahtani T, Almutairi K, Khan A,
Anqi A. 2020. Experimental investigation of an evacuated
tube solar collector incorporating nano-enhanced PCM
as a thermal booster. Appl Therm Eng. 180:115831. doi:
10.1016/j.applthermaleng.2020.115831

Alizadeh R, Mohebbi Najm Abad J, Ameri A, Mohebbi MR,
Mehdizadeh A, Zhao D, Karimi N. 2021. A machine
learning approach to the prediction of transport and
thermodynamic processes in multiphysics systems - heat
transfer in a hybrid nanofluid flow in porous media. J
Taiwan Inst Chem Eng. 124:290–306. doi:10.1016/j.jtice.
2021.03.043

Alizadeh R, Mohebbi Najm Abad J, Fattahi A, Mohebbi
MR, Doranehgard MH, Li LK, Alhajri E, Karimi N. 2021.
A machine learning approach to predicting the heat con-
vection and thermodynamics of an external flow of
hybrid nanofluid. J Energy Resour Technol. 143(7):
070902. doi:10.1115/1.4049454

Alizadeh R, Dorfaki V, Ameri A, Valizadeh Ardalan M,
Sarafan MJ. 2020. Heat transfer and pressure drop in a
sinus blowing of copper oxide-water non-Newtonian
nanofluid in a sudden expansion process in the presence
of variable magnetic field: a numerical solution. Energy
Sources Part A. 1–24.

Alizadeh R, Mesgarpour M, Ameri A, Mohebbi Najm Abad
J, Wongwises S. 2021. Artificial intelligence prediction of
natural convection of heat in an oscillating cavity filled
by CuO nanofluid. J Taiwan Inst Chem Eng. 124:75–90.
doi:10.1016/j.jtice.2021.04.067

Alizadeh R, Mohebbi Najm Abad J, Fattahi A, Alhajri E,
Karimi N. 2020. Application of machine learning to
investigation of heat and mass transfer over a cylinder
surrounded by porous media—the radial basic function
network. Trans ASME J Energy Resour Technol. 142.

Alsarraf J, Al-Rashed AAAA, Alnaqi AA, Shahsavar
Goldanlou A. 2021. Dominance of cohesion of EG-water
molecules over Van der Waals force between SiO2-ZnO
nanoparticles in the liquid interface. Powder Technol.
379:537–546. doi:10.1016/j.powtec.2020.10.079

Aqib M, Hussain A, Muhammad Ali H, Naseer A, Jamil F.
2020. Experimental case studies of the effect of Al2O3
and MWCNTs nanoparticles on heating and cooling of
PCM. Case Stud Therm Eng. 22:100753. doi:10.1016/j.
csite.2020.100753

Bayat M, Faridzadeh MR, Toghraie D. 2018. Investigation
of finned heat sink performance with nano enhanced
phase change material (NePCM). Thermal Sci Eng
Progress 5:50–59. doi:10.1016/j.tsep.2017.10.021

Chen F, Huang R, Wang C, Yu X, Liu H, Wu Q, Qian K,
Bhagat R. 2020. Air and PCM cooling for battery thermal
management considering battery cycle life. Appl Therm
Eng. 173:115154. doi:10.1016/j.applthermaleng.2020.115154

Christodoulou L, Karimi N, Cammarano A, Paul M,
Navarro-Martinez S. 2020. State prediction of an entropy
wave advecting through a turbulent channel flow. J Fluid
Mech. 882.

Colla L, Fedele L, Mancin S, Danza L, Manca O. 2017.
Nano-PCMs for enhanced energy storage and passive
cooling applications. Appl Therm Eng. 110:584–589. doi:
10.1016/j.applthermaleng.2016.03.161

Dardir M, Panchabikesan K, Haghighat F, El Mankibi M,
Yuan Y. 2019. Opportunities and challenges of PCM-to-
air heat exchangers (PAHXs) for building free cooling
applications—A comprehensive review. J Storage Mater.
22:157–175. doi:10.1016/j.est.2019.02.011

El Khadraoui A, Bouadila S, Kooli S, Farhat A, Guizani A.
2017. Thermal behavior of indirect solar dryer: Nocturnal
usage of solar air collector with PCM. J Cleaner Prod.
148:37–48. doi:10.1016/j.jclepro.2017.01.149

10



Esfe MH, Esfandeh S, Afrand M, Rejvani M, Rostamian SH.
2018. Experimental evaluation, new correlation proposing
and ANN modeling of thermal properties of EG based
hybrid nanofluid containing ZnO-DWCNT nanoparticles
for internal combustion engines applications. Appl
Therm Eng. 133:452–463. doi:10.1016/j.applthermaleng.
2017.11.131

Ghasemi S, Karimipour A. 2018. Experimental investigation
of the effects of temperature and mass fraction on the
dynamic viscosity of CuO-paraffin nanofluid. Appl
Therm Eng. 128:189–197. doi:10.1016/j.applthermaleng.
2017.09.021

Giwa SO, Sharifpur M, Ahmadi MH, Meyer JP. 2020a. A
review of magnetic field influence on natural convection
heat transfer performance of nanofluids in square cav-
ities. J Therm Anal Calorim. 145(5):2581–2623. doi:10.
1007/s10973-020-09832-3

Giwa SO, Sharifpur M, Ahmadi MH, Meyer JP. 2020b.
Magnetohydrodynamic convection behaviours of nano-
fluids in non-square enclosures: A comprehensive review.
Math Methods Appl Sci. doi:10.1002/mma.6424

Gomari SR, Alizadeh R, Alizadeh A, Karimi N. 2019.
Generation of entropy during forced convection of heat
in nanofluid stagnation-point flows over a cylinder
embedded in porous media. Numerical Heat Transfer
Part A: Appl. 75(10):647–673. doi:10.1080/10407782.2019.
1608774

Guthrie DG, Torabi M, Karimi N. 2019. Energetic and
entropic analyses of double-diffusive, forced convection
heat and mass transfer in microreactors assisted with
nanofluid. J Therm Anal Calorim. 137(2):637–658. doi:10.
1007/s10973-018-7959-3

Habib R, Karimi N, Yadollahi B, Doranehgard MH, Li LK.
2020. A pore-scale assessment of the dynamic response of
forced convection in porous media to inlet flow modula-
tions. Int J Heat Mass Transfer 153:119657. doi:10.1016/j.
ijheatmasstransfer.2020.119657

Hatami M, Jing D. 2017. Optimization of wavy direct
absorber solar collector (WDASC) using Al2O3-water
nanofluid and RSM analysis. Appl Therm Eng. 121:
1040–1050. doi:10.1016/j.applthermaleng.2017.04.137

Hemmat Esfe M, Amiri MK, Bahiraei M. 2019. Optimizing
thermophysical properties of nanofluids using response
surface methodology and particle swarm optimization in
a non-dominated sorting genetic algorithm. J Taiwan Inst
Chem Eng. 103:7–19. doi:10.1016/j.jtice.2019.07.009

Hemmat Esfe M, Motallebi SM. 2019. Four objective opti-
mization of aluminum nanoparticles/oil, focusing on
thermo-physical properties optimization. Powder
Technol. 356:832–846. doi:10.1016/j.powtec.2019.08.041

Hemmat Esfe M, Rostamian H, Esfandeh S, Afrand M.
2018. Modeling and prediction of rheological behavior of
Al2O3-MWCNT/5W50 hybrid nano-lubricant by artifi-
cial neural network using experimental data. Phys. A 510:
625–634. doi:10.1016/j.physa.2018.06.041

Hemmat Esfe M, 2020. and SM. Sadati Tilebon Statistical
and artificial based optimization on thermo-physical

properties of an oil based hybrid nanofluid using NSGA-
II and RSM. Phys. A 537: 122126.

Ho CJ, Lin K-H, Rashidi S, Toghraie D, Yan W-M. 2021.
Experimental study on thermophysical properties of
water-based nanoemulsion of n-eicosane PCM. J Mol
Liq. 321:114760. doi:10.1016/j.molliq.2020.114760

Hunt G, Karimi N, Yadollahi B, Torabi M. 2019. The effects
of exothermic catalytic reactions upon combined trans-
port of heat and mass in porous microreactors. Int J
Heat Mass Transfer 134:1227–1249. doi:10.1016/j.ijheat-
masstransfer.2019.02.015

Hussain SI, Dinesh R, Roseline AA, Dhivya S, Kalaiselvam
S. 2017. Enhanced thermal performance and study the
influence of sub cooling on activated carbon dispersed
eutectic PCM for cold storage applications. Energy Build.
143:17–24. doi:10.1016/j.enbuild.2017.03.011

Iranmanesh S, Mehrali M, Sadeghinezhad E, Ang BC, Ong
HC, Esmaeilzadeh A. 2016. Evaluation of viscosity and
thermal conductivity of graphene nanoplatelets nano-
fluids through a combined experimental–statistical
approach using respond surface methodology method.
Int Commun Heat Mass Transfer 79:74–80. doi:10.1016/j.
icheatmasstransfer.2016.10.004

Jahangir MH, Ghazvini M, Pourfayaz F, Ahmadi MH,
Sharifpur M, Meyer JP. 2018. Numerical investigation
into mutual effects of soil thermal and isothermal proper-
ties on heat and moisture transfer in unsaturated soil
applied as thermal storage system. Numerical Heat
Transfer Part A: Appl. 73(7):466–481. doi:10.1080/
10407782.2018.1449518

Jahangiri M, Ghaderi R, Haghani A, Nematollahi O. 2016.
Finding the best locations for establishment of solar-wind
power stations in Middle-East using GIS: A review.
Renewable Sustainable Energy Rev. 66:38–52. doi:10.
1016/j.rser.2016.07.069

Jahangiri M, Haghani A, Mostafaeipour A, Khosravi A,
Raeisi HA. 2019. Assessment of solar-wind power plants
in Afghanistan: A review. Renewable Sustainable Energy
Rev. 99:169–190. doi:10.1016/j.rser.2018.10.003

Jahangiri M, Shamsabadi AA, Mostafaeipour A, Rezaei M,
Yousefi Y, Pomares LM. 2020. Using fuzzy MCDM tech-
nique to find the best location in Qatar for exploiting
wind and solar energy to generate hydrogen and electri-
city. Int J Hydrogen Energy 45(27):13862–13875. doi:10.
1016/j.ijhydene.2020.03.101

Kalbasi R. 2021. Introducing a novel heat sink comprising
PCM and air - Adapted to electronic device thermal
management. Int J Heat Mass Transfer 169:120914. doi:
10.1016/j.ijheatmasstransfer.2021.120914

Kalbasi R, Afrand M, Alsarraf J, Tran M-D. 2019. Studies
on optimum fins number in PCM-based heat sinks.
Energy 171:1088–1099. doi:10.1016/j.energy.2019.01.070

Karimi A, Afrand M. 2018. Numerical study on thermal
performance of an air-cooled heat exchanger: Effects of
hybrid nanofluid, pipe arrangement and cross section.
Energy Convers Manage. 164:615–628. doi:10.1016/j.
enconman.2018.03.038

11



Li Y, Kalbasi R, Karimipour A, Sharifpur M, Meyer J. 2020.
Using of artificial neural networks (ANNs) to predict the
rheological behavior of magnesium oxide-water nanofluid
in a different volume fraction of nanoparticles, tempera-
tures, and shear rates. Math Methods Appl Sci. doi:10.
1002/mma.6418

Lin SC, Al-Kayiem HH. 2016. Evaluation of copper
nanoparticles–Paraffin wax compositions for solar ther-
mal energy storage. Sol Energy 132:267–278. doi:10.1016/
j.solener.2016.03.004

Liu X, Mohammed HI, Zarenezhad Ashkezari A, Shahsavar
A, Hussein AK, Rostami S. 2020. An experimental inves-
tigation on the rheological behavior of nanofluids made
by suspending multi-walled carbon nanotubes in liquid
paraffin. J Mol Liq. 300:112269. doi:10.1016/j.molliq.2019.
112269

Longo GA, Zilio C, Ceseracciu E, Reggiani M. 2012.
Application of artificial neural network (ANN) for the
prediction of thermal conductivity of oxide–water nano-
fluids. Nano Energy 1(2):290–296. doi:10.1016/j.nanoen.
2011.11.007

Mahdavi M, Garbadeen I, Sharifpur M, Ahmadi MH,
Meyer JP. 2019. Study of particle migration and depos-
ition in mixed convective pipe flow of nanofluids at dif-
ferent inclination angles. J Therm Anal Calorim. 135(2):
1563–1575. doi:10.1007/s10973-018-7720-y

Mahdavi M, Sharifpur M, Ahmadi MH, Meyer JP. 2019.
Aggregation study of Brownian nanoparticles in convect-
ive phenomena. J Therm Anal Calorim. 135(1):111–121.
doi:10.1007/s10973-018-7283-y

Menni Y, Ghazvini M, Ameur H, Kim M, Ahmadi MH,
Sharifpur M. 2020. Combination of baffling technique
and high-thermal conductivity fluids to enhance the over-
all performances of solar channels. Eng Computers 1–22.
doi:10.1007/s00366-020-01165-x

Mesgarpour M, Mohebbi Najm Abad J, Alizadeh R,
Wongwises S, Doranehgard MH, Ghaderi S, Karimi N.
2021. Prediction of the spread of Corona-virus carrying
droplets in a bus-A computational based artificial intelli-
gence approach. J Hazard Mater. 413:125358. doi:10.
1016/j.jhazmat.2021.125358

Miansari M, Nazari M, Toghraie D, Akbari OA. 2020.
Investigating the thermal energy storage inside a double-
wall tank utilizing phase-change materials (PCMs). J
Therm Anal Calorim. 139(3):2283–2294. doi:10.1007/
s10973-019-08573-2

Milani Shirvan K, Mamourian M, Mirzakhanlari S, Ellahi R.
2016. Two phase simulation and sensitivity analysis of
effective parameters on combined heat transfer and pres-
sure drop in a solar heat exchanger filled with nanofluid
by RSM. J Mol Liq. 220:888–901. doi:10.1016/j.molliq.
2016.05.031

Milani Shirvan K, Mamourian M, Mirzakhanlari S, Ellahi R.
2017. Numerical investigation of heat exchanger effective-
ness in a double pipe heat exchanger filled with nano-
fluid: A sensitivity analysis by response surface

methodology. Powder Technol. 313:99–111. doi:10.1016/j.
powtec.2017.02.065

Mostafaeipour A, Jahangiri M, Haghani A, Dehshiri SJH,
Dehshiri SSH, Issakhov A, Sedaghat A, Saghaei H,
Akinlabi ET, Sichilalu SM, et al. 2020. Statistical evalu-
ation of using the new generation of wind turbines in
South Africa. Energy Rep. 6:2816–2827. doi:10.1016/j.
egyr.2020.09.035

Motamedi M, Mashhadi M, Rastgoo A. 2013. Vibration
behavior and mechanical properties of carbon nanotube
junction. J Comp Theo Nano. 10(4):1033–1037. doi:10.
1166/jctn.2013.2803

Motamedi M, Eskandari M, Yeganeh M. 2012. Effect of
straight and wavy carbon nanotube on the reinforcement
modulus in nonlinear elastic matrix nanocomposites.
Mater Des. 34:603–608. doi:10.1016/j.matdes.2011.05.013

Motamedi M, Naghdi AH, 2020. and SK. Jalali Effect of
temperature on properties of aluminum/single-walled car-
bon nanotube nanocomposite by molecular dynamics
simulation. Proc Inst Mech Eng Part C: J Mech Eng Sci.
234:635–642.

Motamedi M, Naghdi A, Sohail A, Li Z. 2018. Effect of elas-
tic foundation on vibrational behavior of graphene based
on first-order shear deformation theory. Adv Mech Eng.
10(12):168781401881462. doi:10.1177/1687814018814624

Nariman A, Kalbasi R, Rostami S. 2021. Sensitivity of AHU
power consumption to PCM implementation in the wall-
considering the solar radiation. J Therm Anal Calorim.
143(3):2789–2800. doi:10.1007/s10973-020-10068-4

Nguyen Q, Bahrami D, Kalbasi R, Bach Q-V. 2020.
Nanofluid flow through microchannel with a triangular
corrugated wall: Heat transfer enhancement against
entropy generation intensification. Math Methods Appl
Sci. doi:10.1002/mma.6705

Pahlavan S, Jahangiri M, Shamsabadi AA, Khechekhouche
A. 2018. Feasibility study of solar water heaters in
Algeria, a review. J Solar Energy Res. 3:135–146.

Palacio M, Rinc�on A, Carmona M. 2020. Experimental
comparative analysis of a flat plate solar collector with
and without PCM. Sol Energy 206:708–721. doi:10.1016/j.
solener.2020.06.047

Ramakrishnan S, Wang X, Sanjayan J, Wilson J. 2017. Heat
transfer performance enhancement of paraffin/expanded
perlite phase change composites with graphene nano-pla-
telets. Energy Proc. 105:4866–4871. doi:10.1016/j.egypro.
2017.03.964

Rathore PKS, Shukla SK. 2019. Potential of macroencapsu-
lated PCM for thermal energy storage in buildings: A
comprehensive review. Constr Build Mater. 225:723–744.
doi:10.1016/j.conbuildmat.2019.07.221

Rostami S, Afrand M, Shahsavar A, Sheikholeslami M,
Kalbasi R, Aghakhani S, Safdari Shadloo M, Oztop HF.
2020. A review of melting and freezing processes of
PCM/Nano-PCM and their application in energy storage.
Energy 211:118698. doi:10.1016/j.energy.2020.118698

Rostami S, Kalbasi R, Jahanshahi R, Qi C, Abbasian-
Naghneh S, Karimipour A. 2020. Effect of silica nano-

12



materials on the viscosity of ethylene glycol: An experi-
mental study by considering sonication duration effect. J
Mater Res Technol. 9(5):11905–11917. doi:10.1016/j.jmrt.
2020.07.105

Rostami S, Kalbasi R, Sina N, Goldanlou AS. 2021.
Forecasting the thermal conductivity of a nanofluid using
artificial neural networks. J Therm Anal Calorim. 145(4):
2095–2104. doi:10.1007/s10973-020-10183-2

Rostami S, Kalbasi R, Talebkeikhah M, Goldanlou AS. 2021.
Improving the thermal conductivity of ethylene glycol by
addition of hybrid nano-materials containing multi-
walled carbon nanotubes and titanium dioxide: applicable
for cooling and heating. J Therm Anal Calorim. 143(2):
1701–1712. doi:10.1007/s10973-020-09921-3

Sadeghi G, Nazari S, Ameri M, Shama F. 2020. Energy and
exergy evaluation of the evacuated tube solar collector
using Cu2O/water nanofluid utilizing ANN methods.
Sustainable Energy Technol Assess. 37:100578. doi:10.
1016/j.seta.2019.100578

Saeed A, Karimi N, Hunt G, Torabi M. 2019. On the influ-
ences of surface heat release and thermal radiation upon
transport in catalytic porous microreactors—a novel por-
ous-solid interface model. Chem Eng Process
Intensification. 143:107602. doi:10.1016/j.cep.2019.107602

Tian X-X, Kalbasi R, Jahanshahi R, Qi C, Huang H-L,
Rostami S. 2020. Competition between intermolecular
forces of adhesion and cohesion in the presence of gra-
phene nanoparticles: Investigation of graphene nano-
sheets/ethylene glycol surface tension. J Mol Liq. 311:
113329. doi:10.1016/j.molliq.2020.113329

Tian X-X, Kalbasi R, Qi C, Karimipour A, Huang H-L.
2020. Efficacy of hybrid nano-powder presence on the
thermal conductivity of the engine oil: An experimental
study. Powder Technol. 369:261–269. doi:10.1016/j.pow-
tec.2020.05.004

Toghraie D, Sina N, Jolfaei NA, Hajian M, Afrand M. 2019.
Designing an artificial neural network (ANN) to predict

the viscosity of silver/ethylene glycol nanofluid at differ-
ent temperatures and volume fraction of nanoparticles.
Phys A. 534:122142. doi:10.1016/j.physa.2019.122142

Valizadeh Ardalan M, Alizadeh R, Fattahi A, Adelian Rasi
N, Doranehgard MH, Karimi N. 2020. Analysis of
unsteady mixed convection of Cu–water nanofluid in an
oscillatory, lid-driven enclosure using lattice Boltzmann
method. J Therm Anal Calorim. 1–17.

Yan S-R, Kalbasi R, Karimipour A, Afrand M. 2021.
Improving the thermal conductivity of paraffin by incor-
porating MWCNTs nanoparticles. J Therm Anal Calorim.
145(5):2809–2816. doi:10.1007/s10973-020-09819-0

Yan S-R, Kalbasi R, Nguyen Q, Karimipour A. 2020a.
Rheological behavior of hybrid MWCNTs-TiO2/EG
nanofluid: A comprehensive modeling and experimental
study. J Mol Liq. 308:113058. doi:10.1016/j.molliq.2020.
113058

Yan S-R, Kalbasi R, Nguyen Q, Karimipour A. 2020b.
Sensitivity of adhesive and cohesive intermolecular forces
to the incorporation of MWCNTs into liquid paraffin:
Experimental study and modeling of surface tension. J
Mol Liq. 310:113235. doi:10.1016/j.molliq.2020.113235

Yang L, Huang J-n, Zhou F. 2020. Thermophysical proper-
ties and applications of nano-enhanced PCMs: An update
review. Energy Convers Manage. 214:112876. doi:10.1016/
j.enconman.2020.112876

Yang YK, Kim MY, Chung MH, Park JC. 2019. PCM cool
roof systems for mitigating urban heat island - An
experimental and numerical analysis. Energy Build. 205:
109537. doi:10.1016/j.enbuild.2019.109537

Zhang H, Wu X, Wu Q, Xu S. 2019. Experimental investi-
gation of thermal performance of large-sized battery
module using hybrid PCM and bottom liquid cooling
configuration. Appl Therm Eng. 159:113968. doi:10.1016/
j.applthermaleng.2019.113968

13




