
Citation: Balcilar, M.; Gabauer, D.;

Gupta, R.; Pierdzioch, C. Climate

Risks and Forecasting Stock Market

Returns in Advanced Economies

Over a Century. Mathematics 2023, 11,

2077. https://doi.org/10.3390/

math11092077

Academic Editor: Bahram Adrangi

Received: 21 March 2023

Revised: 15 April 2023

Accepted: 24 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Climate Risks and Forecasting Stock Market Returns in
Advanced Economies Over a Century
Mehmet Balcilar 1,2,3 , David Gabauer 4 , Rangan Gupta 5,* and Christian Pierdzioch 6

1 Department of Economics and Business Analytics, University of New Haven, 300 Boston Post Road,
West Haven, CT 06516, USA; mehmet@mbalcilar.net

2 Department of Economics, Eastern Mediterranean University, Via Mersin 10,
Famagusta 99628, North Cyprus, Turkey

3 Department of Economics, OSTIM Technical University, Ankara 06374, Turkey
4 Data Analysis Systems, Software Competence Center Hagenberg, 4232 Hagenberg, Austria
5 Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
6 Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O. Box 700822,

22008 Hamburg, Germany; macroeconomics@hsu-hh.de
* Correspondence: rangan.gupta@up.ac.za

Abstract: In this study, we contribute to the rapidly growing climate-finance literature by shedding
light on the question of whether climate risks have predictive value for stock market returns. We
measure climate risks in terms of both the change in the northern hemisphere temperature anomaly
and its volatility and the change in the global temperature anomaly and its volatility. We study
monthly data for eight advanced countries (Canada, France, Germany, Italy, Japan, Switzerland,
the United Kingdom (UK), and the United States (US)). Our sample period runs from 1916 to 2021.
We control for cross-market spillovers of stock market returns and volatility as well as other risks
including oil-price returns and volatility, geopolitical risks, and the gold-to-silver price ratio as a
measure of investor risk aversion. Given this large array of control variables, we apply the Lasso
estimator to trace out the incremental predictive value of climate risks for subsequent stock market
returns. We find that climate risks do not have systematic predictive value for subsequent stock
market returns. We then extend our analysis in two ways. First, we show that climate risks have
short-term out-of-sample predictive value for the connectedness of stock market returns. Second,
we show that climate risks have predictive power for stock market returns when we study monthly
historical UK data for the sample period from 1772 to 2021.
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1. Introduction
1.1. Climate Change and Finance: Theory and Evidence

Recent empirical evidence indicates that climate risks, as proxied by textual and
narrative analyses of climate-change news (related to natural disasters, global warming,
international summits, and climate policy) or via increased temperature as well as its
volatility, contain valuable information for the in-sample predictability of stock returns
(see for example, [1–8]). This evidence is not surprising insofar as climate change poses
a large aggregate risk to the overall macroeconomy and the global financial system due
to the occurrences of rare disasters ([9,10]). Thus, the abovementioned studies, besides
proving empirical evidence, have extended the general equilibrium models of rare disaster
risks (originally developed by [11–13]) to incorporate climate risks so as to elucidate the
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theoretical channels through which the economy and the stock market are impacted. In
general, the results of these research efforts show that climate risks tend to reduce produc-
tivity and/or increase the stochastic depreciation rate of capital and, thereby, produce an
adverse impact on macroeconomic variables and equity valuations.

1.2. Out-of-Sample Inference Is a Robust Test of Predictability

Given that in-sample tests of predictability might not translate into out-of-sample
gains, we aim to extend the empirical literature on the nexus between climate risks and the
stock market by analyzing the role of (the Northern Hemisphere and Global) temperature
anomaly changes and their volatility for the stock returns of Canada, France, Germany,
Italy, Japan, Switzerland, the United Kingdom (UK), and the United States (US) over the
monthly period from February 1916 to June 2021. From a statistical perspective, such a
forecasting analysis is important because it is deemed to be a more robust test of predictabil-
ity compared to an in-sample analysis in terms of the predictors and econometric model
specifications ([14]). Besides the statistical validation of the role of climate risks for stock
returns based on a full-fledged out-of-sample forecasting experiment, the empirical results
we document in this research also possess value for investors, academics, and policymakers.
For instance, practitioners in finance require real-time forecasts of stock returns for asset al-
location, while academics are particularly interested in stock-returns forecasts because they
hold important lessons for measures of market efficiency and also help to develop more
realistic asset-pricing models ([15,16]). Moreover, it is well-established that stock returns
serve as a leading indicator for macroeconomic variables ([17]), and the accurate forecasting
of returns would entail valuable information to policymakers in terms of designing optimal
policy responses to climate risks.

1.3. Long-Span Data Guard Against Sample-Selection Bias

Because we use the longest possible data sample in our empirical analysis, we avoid
the issue of a possible sample-selection bias, while studying the gradual growth in the
importance of climate risks over time as economies became more and more industrialized,
leading to pollution and global warming, and hence, associated climate-related risks. One
must also realize that because we are analyzing such a long time span, it warrants us to
look at the G7 countries and Switzerland, for which data on stock markets are available
over this sample period. Moreover, our decision to analyze the stock markets of these eight
advanced economies is motivated by their importance in the global economy, with these
eight countries representing nearly two-thirds of the global net wealth, and nearly half of
the world output ([18]). Naturally, the impact of climate risks on the financial system of
these economies would translate into a global effect.

1.4. Many Control Variables and a Machine-Learning Approach

In order to provide a robust forecasting exercise, i.e., prevent omitted variables-bias,
driven by data availability, we also control for cross-market spillovers of stock market
returns ([19,20]) and volatility, with the latter capturing financial uncertainty (with the idea
dating as far back as [21–23] as discussed in detail by [24]), as well as other risks including
risks due to fluctuations of the oil price and its volatility ([25,26]), and geopolitical risks
due to adverse geopolitical acts and threats ([27]). In addition, we capture investors’
risk appetite using the gold-to-silver price ratio as a measure of investor risk aversion
(motivated by [28]) based on it sharing similar properties to the gold-to-platinum ratio
suggested by [29]as a metric of investors’ attitude toward risk). Given the large number of
predictors, as our econometric approach, we use a machine-learning technique known as
least absolute shrinkage and selection operator (Lasso), proposed by [30], which, in turn, is
a regression-analysis method that performs both variable selection and regularization (i.e.,
the process of adding information to prevent overfitting) in order to enhance the prediction
accuracy of the resulting forecasting model.
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1.5. Summing Up

In light of the importance of accurate forecasting of stock returns for academics, prac-
titioners in finance, and policymakers, the existing literature on forecasting international
stock returns, based on a wide array of (linear and nonlinear) models and (macroeconomic,
financial, technical, and behavioral) predictors is vast, to say the least. Hence, provid-
ing a detailed review is beyond the scope of this paper, and also not our objective, but
the interested reader is referred to the recent works of [31–38] to get an idea about this
ever-burgeoning area of research. Our contribution to this important and significant area
of research is that our paper is the first to incorporate the role of temperature anomaly
changes and its volatility in forecasting international stock returns of important advanced
economies using over a century of data, based on a large number of relevant predictors
incorporated into a machine-learning approach, which allows us to guard against biases
due to sample-selection and omitted variables, respectively. Understandably, our results
will have implications for various agents in the economy.

1.6. Organization of the Study and Its Main Findings

We organize the remainder of our paper as follows. In Section 2, we describe the
data we use in our empirical analysis. In Section 3, we describe the methods we use in
our empirical research. In Section 4, we report three main empirical results. First, we
find that climate risks do not improve in a systematic way the accuracy of out-of-sample
forecasts of stock market returns. Second, climate risks have short-term out-of-sample
predictive value for the connectedness of stock market returns, an exercise we undertake
by obtaining time-varying estimates of overall spillovers, as this is an important issue from
the perspective of the economic significance of our results involving opportunities of equity
portfolio diversification in the face of climate risks. Third, we find that climate risks have
predictive power for stock market returns when we study historical UK data. In Section 5
we present our conclusions.

2. Data
2.1. Stock Market Data

The stock index data for Canada (S&P TSX 300 Composite Index), France (CAC All-
Tradable Index), Germany (CDAX Composite Index), Italy (Banca Commerciale Italiana
Index), Japan (Nikkei 225 Index), Switzerland (All Share Stock Index), the UK (FTSE All
Share Index), and the US (S&P500 Index), are all derived from Global Financial Data.
(https://globalfinancialdata.com/ accessed on 12 October 2022)—as is the West Texas
Intermediate (WTI) oil-price data. We compute log-returns in percentages for the stock and
oil prices. Figure 1 plots the stock market returns.

2.2. Climate Data

As far as mean land and ocean temperature anomalies (given a base period of 1951–
1980) of the Northern Hemisphere (as all the eight equity markets are situated in this
hemisphere) and the corresponding Global values are concerned, we obtain these data
from GISS Surface Temperature Analysis (GISTEMP v4), as maintained by the Goddard
Institute for Space Studies of National Aeronautics and Space Administration. (https:
//data.giss.nasa.gov/gistemp/ accessed on 12 October 2022). We work with the first-
difference of the temperature anomalies to capture its change over time. We use the
standard Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model
to obtain the volatility of the changes in the temperature anomalies. Figure 1 plots the
changes in the temperature anomalies and their volatilities. Similarly, we use a standard
GARCH model to obtain the volatilities of the log-returns of stock and oil prices. The
gold-to-silver price ratio is based on gold and silver prices data derived from Macrotrends.
(https://www.macrotrends.net/ accessed on 12 October 2022). The usage of log-returns
and the (non-logged) ratio ensure that our variables do not have issues of unit roots.

https://globalfinancialdata.com/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://www.macrotrends.net/
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Figure 1. Stock market returns.

2.3. Data on Control Variables

We obtain the geopolitical risks (GPR) data from the work of [39] (https://www.
matteoiacoviello.com//gpr.htm accessed on 12 October 2022), who construct measures
of adverse geopolitical events based on an automated text-search analysis of newspaper
articles covering geopolitical tensions in the electronic archives of 10 newspapers (Chicago
Tribune, the Daily Telegraph, Financial Times, The Globe and Mail, The Guardian, the
Los Angeles Times, The New York Times, USA Today, The Wall Street Journal, and The
Washington Post). Ref. [39] calculate the index by counting the number of articles related
to adverse geopolitical events in each newspaper for each month (as a share of the total
number of news articles). They organize their search in eight categories: War Threats
(Category 1), Peace Threats (Category 2), Military Buildups (Category 3), Nuclear Threats
(Category 4), Terror Threats (Category 5), Beginning of War (Category 6), Escalation of War
(Category 7), and Terror Acts (Category 8). Based on the search groups above, Ref. [39]
also construct two subindexes: The Geopolitical Threats (GPRT) index includes words
belonging to categories 1 to 5 above, and the Geopolitical Acts (GPRA) index includes
words belonging to categories 6 to 8. We use these two sub-indexes rather than the overall
index. The two sub-indexes are stationary, and, hence, we do not transform them further.
It should be noted that, while data on the predictors are obtained from publicly-available
sources, the stock market data is derived from Global Financial Data, which is the only
source for reliable historical data, which, in turn, is required for our analysis spanning over
a century in light of the slow evolution of climate-related risks, as economic activities in
these advanced economies have grown over time.

https://www.matteoiacoviello.com//gpr.htm
https://www.matteoiacoviello.com//gpr.htm
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2.4. Sample Period and Summary Statistics

Based on the availability of data at the time of writing this paper, our data period
covers February 1916 to October 2020, with the start date governed by the availability of
the stock price-index of Switzerland (i.e., January 1916. We lose one observation due to the
computation of log-returns). We report the summary statistics of the data at the end of the
paper (Appendix A; see Tables A1−A4).

3. Methods
3.1. Forecasting Model

Our general forecasting model for stock market returns (and their connectedness),
rt+h, at forecast horizon, h, is given by the following equation:

rt+h = c + θXt + γCt + ηt+h, (1)

where c is the intercept, θ is an appropriately dimensioned vector of coefficients that
captures how the control variables summarized in the vector, Xt, affect subsequent stock
market returns, and ηt+h is a disturbance term. We use the stock market returns and
their volatilities of the respective other countries in our sample, oil price returns and
their volatility, the geopolitical risk variables, and the gold-to-silver price ratio as control
variables. The vector, γ, in turn, captures the link between stock market returns and
the climate predictors, Ct. As for the forecast horizon, we set h = 1, 3, 6, 12, months
ahead, where we forecast average returns over the relevant forecast horizon when h > 1.
Moreover, we ensure that the data matrix has the same dimension for all forecast horizons.
Our benchmark model is nested in our general forecasting model and is obtained upon
setting γ = 0.

3.2. Baseline Estimation Method

Given our large array of control variables, we use for the estimation of Equation (1)
the least absolute shrinkage and selection operator (Lasso) estimator. The Lasso estimator
selects the coefficients of the forecasting model so as to minimize the following expression
(for an extensive discussion of the Lasso, see, e.g., the textbook by [40]):

N

∑
t=1

(rt+h − c− θXt − γCt)
2 + λ(∑

j
|θj|+ ∑

j
|γj|) (2)

where the index, j, denotes the elements of the coefficient vectors, N denotes the total
number of observations used for estimation of the forecasting model, and λ denotes a
shrinkage parameter. Equation (2) shows that the Lasso estimator uses the L1 norm of the
coefficient vectors as a penalty function to shrink the dimension of the forecasting model.
Depending on the magnitude of the shrinkage parameter, the Lasso estimator can set to
zero some of the coefficients. We use 10-fold cross-validation to determine the value of the
shrinkage parameter, which minimizes the mean cross-validated error.

The Lasso estimator has the advantage that it retains the basic linear structure of the
type of prediction models often studied in economics and empirical finance. In theoretical
terms, the Lasso model formulated in Equation (2) can be interpreted as a multi-factor
asset-pricing model. The stock market returns of the respective other countries in our
sample can be interpreted as proxies of the world “market portfolio”, while the volatilities
of stock market returns represent conventional “GARCH-in-mean” effects. The geopolitical
risk variables and the gold-to-silver price ratio are proxies for global risks. Accounting
for such global risks is important because we are interested in tracing out the incremental
predictive value of climate risks, that is, the potential predictive value that other popular
proxies of global risks cannot capture.
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3.3. Competing Estimation Methods

As a robustness check, we shall briefly discuss in Section 4 the results for two relatives
of the Lasso estimator, namely the Ridge-regression estimator, which uses the L2 norm to
shrink the forecasting model, and an elastic net, which, in our case, is an equally-weighted
combination of the Lasso estimator and the Ridge-regression estimator. In addition, we
shall present at the end of the paper (Appendix A) the results for random forests, another
widely studied “off-the-shelf” machine-learning technique (which accounts for (i) potential
nonlinear links between the dependent variable and its predictors, and, (ii) potential
interaction effects between the predictors). The results that we summarize in Figure A1 are
not fundamentally different from those we obtain based on the Lasso estimator and, hence,
we shall focus on the latter in this research.

3.4. Forecast Evaluation Methods

We compare the forecasts we obtain from our benchmark model and from the fore-
casting model extended to include the climate predictors by means of the out-of-sample
R2 statistic defined as R2 = 1−∑ f e2

R/ ∑ f e2
B, where f e = forecast error, B = benchmark

model (without climate predictors), and R = rival model (potentially including climate
predictors). A positive R2 statistic indicates that the climate predictors have incremental
out-of-sample predictive value for stock market returns relative to the benchmark model.

Another popular research strategy is to assess forecast accuracy in terms of absolute
forecast errors, which are less prone to large influential forecast errors than squared forecast
errors. In terms of absolute forecast errors, the out-of-sample R2 statistic can be defined
as R2 = 1−∑ | f eR|/ ∑ | f eB|. The results we report in Figure A2 at the end of the paper
(Appendix A) show that the results for the out-of-sample R2 statistic based on absolute
forecast errors do not lead to fundamentally different conclusions than the results for the
out-of-sample R2 statistic based on squared forecast errors.

Another popular metric to analyze relative forecast accuracy is the root-mean-squared-
forecasting error (RMSFE) statistic. As one would have expected, the results for the RMSFE
statistic (rival vs. benchmark model) mirror those for the out-of-sample R2 statistic but, as
suggested by an anonymous reviewer, we report for the sake of completeness the results
for the RMSFE statistic in Figure A3 at the end of the paper (Appendix A).

3.5. Implementation

We use the R language and environment for statistical computing ([41]) to estimate
our forecasting model, and we use the R add-on package “glmnet” [42]) to implement the
Lasso estimator.

4. Empirical Results
4.1. Full-Sample Results

Before turning to our out-of-sample forecasting results, we plot in Figure 2 on the
vertical axis the estimated full-sample coefficients of the climate predictors (in this case,
the northern hemisphere temperature anomaly and its volatility) as estimated by the
Lasso estimator. The full-sample Lasso estimates are based on a model that features
as potential predictors the control variables (that is, lagged returns, the lagged returns
of all other countries, all stock market volatilities, oil returns, oil-returns volatility, and
geopolitical threats, geopolitical acts, and the gold-to-silver price ratio) along with the two
climate predictors. The estimated coefficients of the control variables are not plotted for
better interpretability of the figure. The horizontal axis of the figure shows the shrinkage
parameter. The shrinkage parameter is given in logs. The dashed vertical line indicates
the optimal shrinkage parameter that minimizes the mean cross-validated error (10-fold
cross-validation). As one moves from left to right, the shrinkage parameter increases, and
the estimated coefficients eventually become zero.
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Figure 2. Full sample Lasso coefficients. Full sample lasso coefficients as a function of the shrinkage
parameter. Black line = coefficient of temperature changes. Blue line = coefficient of temperature
volatility. The temperature variables are based on changes in the northern hemisphere temperature
anomaly and its volatility. Dashed vertical line = shrinkage parameter that minimizes the mean
cross-validated error (10-fold cross-validation). The temperature variables are based on changes
in the northern hemisphere temperature anomaly and its volatility. The parameter h denotes the
forecast horizon.
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The full-sample results show that the estimated coefficients of the climate predictors,
with only a few exceptions, are negative (or zero). Hence subsequent stock market returns
tend to be negatively associated with the climate predictors. Furthermore, the estimated
coefficient of temperature volatility is often larger (in absolute value) than the coefficient
estimated for temperature changes. We further observe that the estimated coefficients
associated with the optimal cross-validated shrinkage parameter are zero when the forecast
horizon is one month, with the estimated coefficient of temperature volatility in case of
the UK being the only exception. For a forecast horizon of three months, the coefficient
estimated for temperature volatility is negative at the optimal shrinkage parameter when
we study France, Switzerland, and the UK (but it should be noted that the exact value of
the cross-validated shrinkage parameter is subject to a certain degree of random variation).
The case for a negative temperature-volatility coefficient is strong for a forecast horizon of
six months, where we estimate a negative coefficient at the optimal shrinkage parameter for
Canada, France, Italy, Japan, Switzerland, and UK. For a forecast horizon of 12 months, we
observe that the selection of the optimal shrinkage parameter leads to a negative coefficient
of temperature volatility for France, Italy, Japan, Switzerland, and the UK.

4.2. Forecasting Results for Stock Market Returns

We summarize our main out-of-sample results for stock market returns in Figure 3.
In order to derive our out-of-sample forecasting results, we split the sample period into a
training period and an out-of-sample period. We then estimate the forecasting models on
the data for the training period and use the estimated coefficients to make forecasts for the
out-of-sample period. Because the choice of the training period is to some extent arbitrary,
we vary the length of the training period from 50% to 75% of the sample period. Finally,
we compute the out-of-sample R2 statistic to compare the out-of-sample forecasting perfor-
mance of a benchmark model and an extended model. The benchmark model includes all
the control variables. The extended model includes, in addition, the climate predictors. We
use changes in the northern hemisphere temperature anomaly and its volatility.

While cross-validating the shrinkage parameter introduces a certain degree of random
variability into the results, the results reported in Figure 3 make it clear that the evidence of
in-sample predictability does not carry over to our out-of-sample forecasting exercise. The
out-of-sample R2 statistic either hovers around zero (for example, for h = 1) or exhibits
large and unsystematic fluctuations (for example, in the case of Germany), implying that it
is sensitive to the choice of the out-of-sample period. Importantly, there are no signs for
any country/forecast-horizon configuration that the out-of-sample R2 statistic consistently
assumes positive values. Hence, we find that the climate predictors do not systematically
contain incremental predictive value for subsequent stock market returns not already
contained by the predictors used by the benchmark model.

In order to assess the robustness of our results, we consider several extensions, the
results of which are not reported to save journal space (the results are available from the
authors upon request). First, we study the predictive value for stock market returns of
changes in global temperature anomaly and its volatility as an alternative metric of climate-
related anomalies (see Figure 4). Second, we use the absolute rather than the squared
forecast errors to compute the out-of-sample R2 statistic. The absolute forecast error has the
advantage that it is less sensitive to very large forecast errors (which can occur, for example,
in times of a stock market crash) than the squared forecast errors. Third, we apply two
alternative shrinkage estimators: the Ridge-regression estimator and an elastic net. The
latter is (in our parameterization) an equally weighted combination of the Lasso estimator
and the Ridge-regression estimator. The results of all three robustness checks corroborate
our finding that the climate predictors do not help in a systematic way to improve the
accuracy of out-of-sample forecasts of stock market returns.
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Figure 3. Out-of-sample R2 Statistic for stock market returns. The horizontal axis shows the length of
the training window (in percent of the total sample). The vertical axis shows the out-of-sample R2

statistic. Black line = the rival model includes temperature changes as a potential predictor. Blue
line = the rival model includes temperature volatility as a potential predictor. The temperature
variables are based on changes in the northern hemisphere temperature anomaly and its volatility.
The parameter h denotes the forecast horizon.
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Figure 4. Changes in temperature anomalies and volatility. DGT = change in global temperature
anomaly. DNHT = change in northern hemisphere temperature anomaly. DGT (GARCH) = volatility
of change in the global temperature anomaly. DNHT (GARCH) = volatility of change in the northern
hemisphere temperature anomaly.

The relatively weaker performance of climate risk variables in forecasting stock returns
seems to be in line with the findings of [10]. These authors surveyed 861 finance academics,
professionals, and public sector regulators and policy economists about climate finance
topics, and found that respondents overwhelmingly believe that asset prices underestimate
climate risks rather than overestimate them.
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4.3. Forecasting Results for Stock Market Connectedness

Our finding that the climate predictors do not systematically improve the out-of-
sample accuracy of forecasts of stock market returns does not imply that climate anomalies
do not affect stock markets per se. In order to demonstrate what we mean by this argument
we next consider whether the climate predictors affect the time-varying connectedness of
stock markets, by also accounting for the same across different frequencies, i.e., investment
horizons. The underlying idea is that if the co-movement of the returns of these markets
can be forecast out of sample by our proxies of climate risks, then such a finding has a
direct bearing on the international portfolio-diversification decisions of portfolio managers.

We summarize the results of stock market connectedness in Figure 5. We report results
for four different measures of connectedness of undecomposed and frequency domain-
based decomposed stock returns as outlined in the recent works of [43–47], which can
be considered as innovative extensions of the seminal contributions of [48–51], related to
spillovers and connectedness in time- and frequency-domains. The technically-minded
reader is referred to these two studies for the details associated with the econometric
frameworks used to derive these measures of connectedness.The results demonstrate that
temperature changes have a noticeable effect on the forecast accuracy of stock market
connectedness at a forecast horizon of one month, with the results being generally indepen-
dent of the short- or long-frequency movements of returns. Hence, diversification across
the international stock markets being studied in the wake of heightened climate risks is
possible in the longer-run insofar as the predictability of the connectedness of stock market
returns is basically unpredictable based on the information content of temperature changes
(and/or its volatility) for forecast horizons beyond one month.

As for the connectedness of stock markets, it is interesting to note that the so-called
correlation asymmetry phenomena reported in a number of studies (see [52] for a detailed
review) refers to the asymmetric pattern in which stock returns tend to be more correlated
(connected) during bear market regimes (as well as during periods of extreme price fluctu-
ations). Given that we find in Figure 2 evidence of the negative effect of the climate-risk
predictors on stock returns, we test the hypothesis that stock returns are relatively more
connected during relatively higher values of changes in the Northern Hemisphere tempera-
ture anomalies and due to its volatility. For this purpose, we use a smooth transition vector
autoregressive (STVAR) model, developed by [53–56] (as an extension of the original works
of [48–50] based on a linear VAR model), which produces regime-specific connectedness,
with the climate-risk predictors (considered separately) being the transition variables. Due
to the exogeneity of the two climate risk variables, restrictions are imposed such that lags
of stock market returns do not influence temperature anomalies or its volatility. In support
of the correlation asymmetry hypothesis, results show that the value of the spillover (con-
nectedness) index is 67.66 during the upper-regime versus 60.31 in the lower regime when
changes in temperature anomalies are the switch variable, while the corresponding values
are 69.06 and 64.67, respectively, when the volatility of changes in temperature anomalies of
the Northern Hemisphere is considered as the transition-variable. These results, complete
details of which (along with the qualitatively similar ones obtained for changes in global
temperature anomalies (67.42 and 59.37) and its volatility (74.01 and 64.67)) are available
upon request from the authors, suggest that portfolio allocation across international stock
markets would be relatively more difficult during episodes of heightened climate risks.
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Figure 5. Out-of-sample R2 statistic for stock market connectedness. The horizontal axis shows
the length of the training window (in percent of the total sample). The vertical axis shows the
out-of-sample R2 statistic. Black line = the rival model includes temperature changes as a potential
predictor. Blue line = the rival model includes temperature volatility as a potential predictor. The
temperature variables are based on changes in the northern hemisphere temperature anomaly and its
volatility. The temperature variables are based on changes in the northern hemisphere temperature
anomaly and its volatility. The parameter h denotes the forecast horizon.

4.4. Lessons from Historical Data

Finally, while in our analyses we use a GARCH-based metric of conditional volatility
of changes in temperature anomalies along the lines of [1–3,57] used the realized volatility
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(RV) of temperature changes to capture climate risks. Realized volatility (RV), in turn, is a
model-free estimate of volatility. Given this, we analyze the role of temperature changes
and its RV in forecasting the stock returns of the UK over the monthly period of 1772:01
to 2021:09. The choice of the UK is purely driven by publicly available historical data on
daily temperatures, (The dataset used is the Met Office Hadley Centre Central England
Temperature Data, which is available for download from: https://www.metoffice.gov.uk/
hadobs/hadcet/data/download.html accessed on 12 October 2022, with stock prices again
being derived from Global Financial Data), where we compute RV as the sum of squared
daily changes in temperature over a month (see [58] for the RV of stock returns).

As can be seen from Table 1, temperature changes can produce forecasting gains for the
stock returns of the UK not only at short, but, in the case of RV, also at a longer forecasting
horizon. (We report the results for the [59] test. The results are based on a recursive
estimation window, which, in our view, is an adequate approach to model a sample that
spans more than two centuries of data. In addition, we estimate the forecasting models
by the ordinary-least-squared technique, given that the number of predictor variables is
small). This finding, although only for the UK, is quite encouraging in the sense that, unlike
our observation that temperature changes and their GARCH-based measures of volatility
have rather limited predictive value for stock returns when we study the data for the G8
countries (Section 4.2), the RV of temperature changes can prove to be beneficial in this
regard when we study the long-range historical UK data.

Table 1. Results for historical UK data.

Benchmark vs. Rival Model h = 1 h = 3 h = 6 h = 12

AR vs. AR plus temperature changes 0.0237 0.0003 0.0380 0.2465
AR vs. AR plus realized volatility 0.1076 0.8562 0.0842 0.0062
AR vs. AR plus temperature changes and realized volatility 0.0344 0.0009 0.0011 0.0030

Results (p-values; robust heteroskedasticity and autocorrelation consistent standard errors) of the Clark–West
tests for an equal mean-squared prediction error are based on robust standard errors. The alternative hypothesis
is that the extended model has a smaller MSPE than the benchmark model. The parameter h denotes the forecast
horizon. The sample period is January 1772 to September 2021. The forecasts are computed using the ordinary-
least-squared technique and a recursive-estimation window, where the first 120 observations are used to initialize
the estimations.

5. Concluding Remarks
5.1. Findings and Implications

We have studied the implications of climate predictors for the predictability of stock
market returns and the stock market connectedness of eight advanced countries (Canada,
France, Germany, Italy, Japan, Switzerland, the UK, and the US) using data for an extended
historical sample period ranging from 1916 to 2021. Our main empirical results show
that, after controlling for a large array of other risk factors (that is, cross-market linkages
of returns and volatilities, oil returns and volatility, measures of geopolitical risk, and
a metric of investor risk appetite), the climate predictors that we have studied in our
empirical research do not systematically improve the forecast accuracy of stock market
returns. Empirical evidence for long-range historical UK data, however, show that climate
predictors do have predictive value for subsequent stock market returns once we turn to a
sample of data that spans more than two centuries. In addition, the climate predictors affect
time-varying stock market connectedness mainly at a short (one-month) forecast horizon.
Hence, international investors should keep in mind the role of climate risks in driving stock
returns (and their connectedness), over and above other fundamental risks. Importantly,
our results suggest that information on climate risks has the potential to be useful for
designing optimal portfolio weights when investors with an intermediate forecast horizon
seek to invest in the stock markets of advanced economies.

https://www.metoffice.gov.uk/hadobs/hadcet/data/download.html
https://www.metoffice.gov.uk/hadobs/hadcet/data/download.html
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5.2. Future Research

There are at least four interesting avenues for future research. First, it would be
interesting to use other machine-learning techniques than the Lasso and random forests
and their relatives to study the predictive value of climate predictors. For example, the
application of the techniques recently developed by [60–64], to name just a few recent
studies in this rapidly expanding area of research, may yield interesting additional insights
into how stock market returns and stock market connectedness are linked to climate
predictors. Second, it is interesting to extend the type of analysis we have undertaken
in this research to the stock markets of emerging market economies and to economies
that are particularly vulnerable to changing climate and weather conditions such as, for
example, major exporters of agricultural commodities. Third, using proprietary daily data
on temperatures, one can compute the country-specific volatility of temperature changes,
which, in turn, can be used to forecast stock returns, based on an alternative metric of
variability of temperature capturing climate risks. Finally, another interesting avenue
for future research is to switch from the kind of out-of-sample analysis that we have
undertaken in this research to the type of out-of-bag analysis often used in the machine-
learning literature. For a recent application of an out-of-bag analysis in empirical finance,
see [65].

Another avenue for future research is to extend our analysis by combining the ad-
vanced economies we have studied in this research (and perhaps also emerging market
economies) into a panel-data structure and then to use, for example, a panel Lasso approach
to re-examine the predictive role of climate predictors for stock market returns. While we
implement in our empirical analysis the Lasso estimator on a country-by-country basis and,
thereby, account for cross-country heterogeneity, a panel Lasso approach may strengthen
the statistical power of the type of forecasting experiment that we have undertaken in this
research and, thereby, has the potential to shed further light on the predictive value of
climate predictors for stock market returns. Preliminary fixed-effects panel regression tends
to corroborate our time series results, whereby climate risks do not necessarily carry sys-
tematic predictive content for stock returns, with complete details of these results available
upon request from the authors.

5.3. Limitations

It is important to point out that the risks associated with climate change can be
typically categorized into physical risks and transition risks. Physical risks comprise risks
arising due to, for example, rising temperatures, higher sea levels, and destructive storms.
Transition risks arise due to a gradual switch over to a low-carbon economy and, thereby,
reflect risks arising because of changes in the stance of climate policy, the rise of disruptive
green technologies, and climate-related fluctuations in consumer preferences. Given this, a
limitation of our work is that we have basically considered the physical risk components of
climate change, and have completely ignored the issue of transition risks, which, in turn,
can be considered as a cost of using a long-span of data. However, it must also be realized
that the transition risks are likely to have become important as well in recent years, with
emphasis on green technologies. However, physical risks, as captured by the first- and
second-moment of temperature changes, have historically always played an important role
due to their potential to cause catastrophic climate-related events.
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Appendix A

Table A1. Summary statistics of stock market returns.

Country Obs Max Min Mean Median Std. Dev.
Canada 1265 20.5891 −33.4603 0.4080 0.6870 4.5180
France 1265 24.2548 −28.1855 0.6252 0.6739 5.4564
Germany 1265 68.8721 −145.9963 0.3085 0.4458 8.2284
Italy 1265 46.8105 −30.7573 0.5354 0.1368 7.0210
Japan 1265 50.8718 −30.7862 0.5303 0.5693 6.1009
Switzerland 1265 28.7773 −28.2157 0.3100 0.4851 4.3171
UK 1265 42.3197 −30.9241 0.3963 0.7278 4.5539
USA 1265 40.7459 −30.7528 0.4710 0.9369 4.3956

Table A2. Summary statistics of stock market volatility.

Country Obs Max Min Mean Median Std. Dev.
Canada 1265 147.0692 1.4390 20.6139 15.5299 17.4215
France 1265 88.9389 2.9790 29.6710 26.5692 11.4474
Germany 1265 3025.4947 19.9740 64.9312 45.1320 121.7298
Italy 1265 360.9569 6.0676 47.8981 35.2206 43.8551
Japan 1265 616.9305 7.2515 39.0609 25.2464 51.5448
Switzerland 1265 87.4715 2.1723 19.0636 15.5162 11.1824
UK 1265 385.7659 2.0532 22.8102 16.3587 30.0510
USA 1265 332.7490 4.6791 19.3910 12.5129 24.8187

Table A3. Summary statistics of climate risks.

Climate Variable Obs Max Min Mean Median Std. Dev.
DGT 1265 0.4700 −0.4800 0.0008 0.0000 0.1216
DNHT 1265 0.9600 −0.8900 0.0010 0.0000 0.2076
DGT (GARCH) 1265 0.0488 0.0097 0.0146 0.0132 0.0048
DNHT (GARCH) 1265 0.4303 0.0200 0.0456 0.0352 0.0333

Table A4. Summary statistics of other control variables.

Control Variable Obs Max Min Mean Median Std. Dev.
Oil returns 1265 54.5621 −56.8125 0.2729 0.0000 6.9743
Oil volatility 1265 2992.3046 1.0831 73.9404 25.8844 184.8574
Gold-to-silver price ratio 1265 114.7485 15.1311 52.1754 47.3461 21.3582
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Figure A1. Out-of-sample R2 statistic for stock market returns (Random Forests). The horizontal axis
shows the length of the training window (in percent of the total sample). The vertical axis shows the
out-of-sample R2 statistic. Black line = the rival model includes temperature changes as a potential
predictor. Blue line = the rival model includes temperature volatility as a potential predictor. The
temperature variables are based on changes in the northern hemisphere temperature anomaly and its
volatility. The parameter h denotes the forecast horizon.
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Figure A2. Out-of-sample R2 statistic for stock market returns (absolute forecast errors). The
horizontal line shows the length of the training window (in percent of the total sample). The vertical
line shows the out-of-sample R2 statistic (based on absolute forecast errors). Black line = the rival
model includes temperature changes as a potential predictor. Blue line = the rival model includes
temperature volatility as a potential predictor. The temperature variables are based on changes
in the northern hemisphere temperature anomaly and its volatility. The parameter h denotes the
forecast horizon.
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Figure A3. Out-of-sample RMSFE statistic for stock market returns. RMSFE = root-mean-squared-
forecasting error. The horizontal line shows the length of the training window (in percent of the total
sample). The vertical line shows the out-of-sample RMSFE statistic (rival vs. benchmark model).
Black line = the rival model includes temperature changes as a potential predictor. Blue line = the
rival model includes temperature volatility as a potential predictor. The temperature variables are
based on changes in the northern hemisphere temperature anomaly and its volatility. The parameter
h denotes the forecast horizon.
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