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Abstract: Knowledge about ecological conditions and processes in centers of endemism (CoEs) is
still limited with respect to various systematic groups of organisms, ecosystem types, ecological
conditions, and ecosystem services. We review the characterization, identification, and meaning
of CoEs. Endemics play an increasing and prominent role in nature conservation monitoring and
management and in the organization of zoos, aquaria, and botanical gardens. We examine the
importance of different groups of organisms and indicators for the characterization of endemic-
rich regions, e.g., with regard to the richness of endemics per region and degree of endemism, the
importance of heterogeneity in space, continuity in time, isolation, and ex situ management for the
survival of endemic species. Currently, conversion of land cover and land use change are the most
important causes of biodiversity decline and extinction risk of endemic and endangered species.
These are followed by climate change, including severe weather, and then natural processes such as
volcanism, landslides, or tsunamis. For conservation purposes, the management of regional land use,
zoos, aquaria, botanical gardens, and social aspects of the diversity of endemics and CoEs have to be
taken into account as well. We find that the ex situ representation of endemics in general is limited,
and conservation networks in this regard can be improved. We need better answers to questions
about the relationship between ecoregions, CoEs and regional awareness of endemism, which is
linked with human culture including aesthetics, well-being, health, and trade.

Keywords: heterogeneity in space; spatial scale; land cover; continuity in time; isolation;
ex situ conservation

1. Introduction

The start of research on endemism and endemics in a macroecological context can
be dated back to the transfer of terms from medicine to biogeography by De Candolle
in 1820 [1–3]. Interest in the topic increased along with investigations of ecological and
evolutionary questions on one hand and of declining biodiversity, an increasing number of
threatened species and Red Lists worldwide on the other [4–8].

Meanwhile, neo-, paleo- (palaeo-), patro-, schizo-, apo-, hyper-, micro-, narrow, steno-
chorous, local, regional, national, supranational, and more or less widespread endemics,
biodiversity hot spots, ecoregions, and CoEs have been defined and identified with respect
to biome, spatial scale, habitat type, systematic level, and taxonomic group (e.g., [9–13]).
As a first approximation, most of these terms represent biogeographical labels, comparable,
e.g., with neophyte, indigenous, or alien/invasive species [14]. The evolutionary history,
ecological conditions, or biological traits of range-restricted organisms is secondary, and
it may be that taxa with a small range represent other ecological conditions or biological
traits than widespread members of the same taxonomic group [15–18]. Rare species can
be common where they occur [19], and niche specialization does not necessarily explain
this result. However, there are few studies comparing rare and common congeners [20],
and the measures of attributes were so varied that it was not possible to compare such
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studies in order to assess if there is any generalized cause of rarity [21,22]. Rarity is also
scale-dependent [23], a finding that has implications for the processes used to assess the
global and regional endangerment of species.

Niche specialization and degree of distribution have been combined to provide an as-
sessment measure of rarity, recognizing seven possible different dimensions of rarity [24,25].
This approach has not been widely used, but it does provide a unique insight into rarity
and has been used for plants [26–28] and a diverse range of animals (e.g., [29,30]).

The rarity of individual taxa on its own is no indication of levels of endemism, nor
does it allow for the identification of centers of endemism. The link between the rarity and
richness of a region needs to be made but only when richness is controlled for [31]. An
endemic aligns with the idea of rarity [32], but endemism does not necessarily imply rarity
as it is scale-dependent. These authors also consider the primary source of information on
species rarity and endemism to come from taxonomists, but ecologists have perhaps done
more to explore aspects such as traits, niche, and other aspects of rare and endemic taxa.

The whole inhabitable area of the Earth can be divided into ecoregions with high
or low concentrations of endemics [33,34]. There are now countless checklists, floras,
and faunas providing information about endemic species and regions, as well as an ever-
increasing number of publications focusing on patterns and processes, evolutionary and
genetic/phylogenetic analyses, and ecological and conservation goals [35–38]. Regions
with high numbers of endemic taxa often show high spatial heterogeneity in combination
with long temporal continuity, e.g., relatively stable climate conditions [39–43]. This raises
several questions: is it possible to disentangle the importance of spatial heterogeneity vs.
continuity through time [44–46]? How are species compositions and endemism influenced
by spatial separation and isolation through time? What does this mean for our under-
standing of biogeographical patterns of endemism, ecosystem functioning, and nature
conservation practices in both island regions and mainland areas [47–51]?

The knowledge of patterns and processes of endemism and CoEs is still limited with
respect to different taxonomic groups and their evolutionary history including migration
and dispersal under conditions of changing climate, landscape, and land use change. The
meaning of specific conditions for survival at different spatial and temporal scales might
differ from one place and taxonomic group to the other.

In a world of increasing pressure on biodiversity and declining diversity of native
species in many regions, it is necessary to find serious political, technological, legal, and
other solutions for the survival and well-being of endemic and threatened taxa on the basis
of scientific knowledge, even if not all questions can be answered yet [52]. With this review,
we want to mirror the state of the art and future prospects on the topic and emphasize the
importance of research on CoEs in the context of ex situ nature conservation planning.

Figure 1 shows a schematic depiction of the relationship between the evolutionary
diversification, number of endemics, and extinction risk of endemic and endangered
taxa. It indicates that increasing and decreasing numbers of endemics and endangered
species reflect different processes. Thus, the effects of land use and climate change on the
assemblage and migration of the assemblage cannot simply be compensated by restoration.
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Figure 1. Endemism and centers of endemism between evolution/diversification and extinction risk
due to anthropogenic and natural processes [53–57].

2. What Are Centers of Endemism?

If a region is characterized by high endemism, it is called a center of endemism (CoE).
Examples are the Cape Floristic Region of South Africa or the Klamath–Siskiyou Mountains
of northwest California and southwest Oregon [58–62]. If the original natural vegetation
is additionally damaged, then it can be called a biodiversity hot spot [63]. However,
the characteristics differ according to the region, composition of habitat types, group of
organisms considered, and/or scientific mode of calculation and indication [61,64–67]. The
key issue here is that there is no single or even subset of preferred methods or criteria
for defining CoEs. In addition, the sampling bias and density can skew data and counts,
resulting in misidentified CoEs or inaccurate decisions regarding the boundaries of CoEs.
For example, after four years of field work, a new center of plant endemism in southern
Africa was identified [5], a region already abundant in CoEs. However, after additional
field work in a region adjacent to the new CoE, it was then noted that this recognition may
have been premature [68].

There is a historical legacy linking chorology with the identification of biodiversity
and CoEs. Chorology, e.g., in plants, has been applied at the family, genus, and species
levels (e.g., [69]). The concept of chorology dates back to 1866 when it was used by Haeckel
in relation to the dispersal of organisms away from a center of origin [70]. While chorology
was initially a manual method of plotting distributions on maps and identifying iso-chores,
more recent approaches have utilized computational power to analyze distribution data
and identify CoEs (e.g., [71,72]).

A comparison of the numbers of endemic taxa or other indicators of endemism is,
in principle, possible by comparing units of the same or of different range sizes. When
comparing units of the same size such as quadrats of 100 or 10,000 square kilometers,
the numbers of endemic taxa can be compared directly [73]. However, even grid cells
of degree latitude/longitude have different range sizes in different latitudinal belts, and
numbers of endemic taxa in this case are not directly comparable without mathematical
correction. Meanwhile, many indicators for CoEs such as the number of endemics (E),
endemics–area relationships (EARs), weighted endemism (WE and CWE), range size rarity
(RSR), parsimony analysis of endemicity (PAE), proportion of endemics (S/E), Bykow’s
index of endemicity (BI), and others have been calculated by using different spatial scales
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and models [74–76]. The indication value of each method is limited, and the mode of
calculation must be taken into consideration [77–81].

If, for example, the only native terrestrial mammal of the Hawaiian Islands is an
endemic species (Lasiurus semotus), then the level of endemism is 100%. If it is a non-
endemic species (Lasiurus cinereus), then there would be no species endemism in terrestrial
mammals on the Hawaiian Islands (0%). With respect to its biology, this bat species has
also been classified as endemic subspecies (Lasiurus cinereus subsp. semotus). This example
shows that the level (ratio) of endemism cannot indicate the same as, for example, the
number of endemics [82].

However, many ecoregions are labeled as CoEs because they have an obvious concen-
tration of endemics, i.e., many more than in neighboring regions. This assumes that the
sampling effort is uniform or equitable across the ecoregion. Nevertheless, all too often,
sampling is biased, favoring easy access routes, etc. There is also the “diversity tracking”
effect [83], where collectors of specimen and distribution data tend to visit places of known
diversity so as to maximize their returns.

Due to methodological difficulties, and because of scientific underrepresentation,
many groups of invertebrates such as insects or mollusks seem to rarely occur as endemics
compared with vertebrates or vascular plants, which comprise the taxonomic groups mainly
characterizing biodiversity hot spots and CoEs [84,85]. Thus, a stronger focus on these
underrepresented groups might be appropriate to discover further centers of endemism.

3. Endemism in Different Groups of Organisms

In general, the transition zone between land and sea is the most effective border for
the distribution of many phyla and most animal and plant species. Oceans are much older,
longer inhabited by animals, and larger than, e.g., freshwater ecosystems, but the richness
of marine fish species is comparable with the richness of freshwater fish species. Thus, after
the niche occupation in rivers and lakes, the diversification rate in freshwater fish species
must have been higher than in marine fish species [86].

While there are many more animal and plant species including endemic species in
non-marine habitats (>75% of the whole species diversity), marine environments contain a
much larger number of phyla including endemic phyla. Explaining this disparity was and
still is part of a long-lasting discussion about origin and evolution, migration history, the
meaning of dispersal, isolation, streams and currents, and continuity/change of ecological
conditions [86–89]. In terms of marine biogeography, substantial leaps have been made
in seeking or testing hypotheses of common causes to explain coincidental boundaries
to distributions. For example, numerous phylogeographic studies on animal and algal
taxa along the southern African coastline have indicated no clear congruent patterns
in disjunctions, and when undertaken, dating analyses have not converged on a single
historical period when such a disjunction came into being ([90] and subsequent papers by
this author). Similar findings have been reported along the Australian coastline [84].

Various indicators such as the ratio of species/genera or genera/families, level or other
indicators of endemism, indices of similarity, e.g., the Sørensen index and the Jaccard index,
or molecular-genetic differences in phylogenetic diversity have been established to calculate
the degree of uniqueness, isolation, or insularity of the species pool or assemblage [73,91].

Figure 2 shows current estimates of global species numbers of selected taxa with
minima and maxima according to the species concept, calculation mode, and expectation
of further discoveries.
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Figure 2. Global species richness of various groups of animals and plants [92–96]. Values are rounded;
blue colors indicate minima, and green indicate maxima.

Taxonomic groups of animals, plants, or other groups differ in dispersal mode and
speed of migration and thus have very different average range sizes. The degree of
endemism in ecoregions and countries often increases, e.g., from lichens, bryophytes, and
birds with relatively small percentage values to vascular plants and other vertebrates
(intermediate level) to amphibians and non-marine gastropods, which regularly show
much higher or the highest rates of endemism (Figures 3 and 4).

Despite a larger number of vascular plant species on Earth, the level of endemism in am-
phibians or non-marine gastropods at regional scales, for example, is often higher [97–100].
Even if range is one of the most curious concepts in biogeography, amphibian or non-marine
gastropod species are on average more restricted than, e.g., birds. We assume that this has
to do with the fact that they are slow and not able to fly (e.g., [101] and Figure 3).

Most members of the two richest plant families, Asteraceae and Orchidaceae, have the
possibility of long-distance dispersal by wind (anemochory). They nevertheless contain
many endemics at regional to continental scales. Endemic orchids are numerous in the
tropics, whereas in many regions at higher latitudes and altitudes, endemic Asteraceae
are regularly on top of the counts in checklists. Most endemics in these and many other
families are pollinated by insects, which favors the occupation of, and evolution in, narrow
niches (e.g., [102–104]).



J. Zool. Bot. Gard. 2023, 4 532

J. Zool. Bot. Gard. 2023, 4, 6 
 

 

 

Figure 3. Levels of endemism in species of non-marine gastropods, amphibians, vascular 

plants, reptiles, mammals, and birds in selected regions/countries (collected or 

calculated from [97,98,105–108]). 

 

Figure 4. Hypothetical order of levels of endemism in different groups of plants and 

animals at intermediate spatial scales (for references, see Figure 3 and explanation in the 

text). 

  

Figure 3. Levels of endemism in species of non-marine gastropods, amphibians, vascular plants, rep-
tiles, mammals, and birds in selected regions/countries (collected or calculated from [97,98,105–108]).

J. Zool. Bot. Gard. 2023, 4, 6 
 

 

 

Figure 3. Levels of endemism in species of non-marine gastropods, amphibians, vascular 

plants, reptiles, mammals, and birds in selected regions/countries (collected or 

calculated from [97,98,105–108]). 

 

Figure 4. Hypothetical order of levels of endemism in different groups of plants and 

animals at intermediate spatial scales (for references, see Figure 3 and explanation in the 

text). 

  

Figure 4. Hypothetical order of levels of endemism in different groups of plants and animals at
intermediate spatial scales (for references, see Figure 3 and explanation in the text).

4. How Are Endemics Distributed and Related to Environmental Heterogeneity in
Space?

Elevation of a region, number of predefined climate zones, and many other indi-
cators have been used to calculate heterogeneity in space. Thus, various indicators of
heterogeneity in space are available for biogeographical analyses (e.g., [109–113]).

Different groups of organisms show a latitudinal gradient with low numbers of
species (S) and endemics (E) toward the poles and high numbers to the tropics [114,115].
This means that tropical and subtropical zones are richer in species and endemics than
temperate or boreal–arctic regions, even if exceptions in several taxonomic groups have
been discovered (e.g., [116–125]). Mountain ranges harbor higher numbers of endemic
taxa than lowland areas of comparable size, longitude, and latitude [120–124]. There is
also a well-documented mid-slope peak in diversity up elevational gradients in mountains
termed the mid-domain effect [124–127].
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Large species pools, CoEs, and phylogenetic diversity often represent the same ecore-
gions or overlapping areas [128,129]. Despite the large congruence between E, E/S, S, and
other values characterizing CoEs, exceptions are numerous, and, e.g., maxima in various
taxonomic groups characterize different regions [130] (Table 1).

Table 1. Putative world records of endemism in several taxonomic groups. World records of richness
in vascular plant species per unit area, biomass, and productivity are included for comparison.

Maxima Mode of
Calculation Country/Region Ecosystem

(Dominant)
Climate

(Dominant)

Endemism in
mammals and

birds plus reptiles
[131]

>70

Numbers of
endemics by

terrestrial
ecoregion

Eastern
Madagascar Rainforest Wet tropical and

subtropical

Endemism in birds
[132] 92 E/S as percentage

value Hawaiian Islands diverse
Humid tropical
and subtropical

oceanic
Endemism in

freshwater animals
(vertebrates and

invertebrates) [97]

54 E/S as percentage
value Lake Baikal, Russia Freshwater lake Temperate

continental

Endemism in fish,
freshwater turtles,
and crocodiles plus
amphibians [131]

>150

Numbers of
endemics by
freshwater
ecoregion

High Andes,
western India, East
African Rift Valley

lakes

Wetlands and
freshwater
ecosystems

Tropical and
subtropical

Endemism in
cichlid fishes [97] Up to 99 E/S as percentage

value

Tectonic Lakes
Tanganyika,

Malawi, Victoria,
Africa

Freshwater lake Tropical

Endemism in land
snails [98] c. 100 E/S as percentage

value (rounded) Hawaiian Islands Diverse
Humid tropical
and subtropical

oceanic

Endemism in
vascular plants

[99,100,133]
>80 E/S as percentage

value

New Caledonia,
Hawaiian Islands,

Madagascar, St.
Helena, New

Zealand

Diverse Subtropical and
tropical oceanic

Endemism in
vascular plants

[134,135]
4.7–5.1 and 4–4.4

Relative distance
of residual to

regression (Res. E)

Mas a Tierra, Chile,
and St. Helena Forest Subtropical

oceanic

Endemism in
pteridophytes

[136]
37/31.7

Percentage of
endemism/index

of insularity
Easter Island

Reeds and
grasslands replace

the original
tropical forest

Tropical
oceanic/subtropical

humid

Species richness in
vascular plants

[137]
942 No. of species per

10,000 m2 Ecuador Lowland rainforest Humid tropical

Species richness in
vascular plants

[138]
115 No. of species per

10 m2 Romania Steppe meadow
(currently grazed) Temperate

Biomass [139,140] 1819 or 2844

tC ha-1
(above-ground

biomass) or tC ha-1
(total biomass)

SE Australia Eucalyptus
regnans forest Warm temperate

Productivity
[141,142] 8.93–9.93 kg m-2 year-1 (dry

matter) Amazon

Swamps
dominated by C4
grass Echinochloa

polystachya

Wet tropical
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Several islands and archipelagos distant from the mainland harbor high numbers
of endemics and represent the highest levels of endemism. On the contrary, tropical
and subtropical mainland regions often harbor many more species in total and higher
phylogenetic diversity than comparable islands or archipelagos. This has to do with
dispersal, biological connectivity, spatial separation, and genetic isolation effects through
time [143].

Springs, lakes, rivers, fens, bogs, mountain tops, rocky outcrops, or areas with ser-
pentine soils in terrestrial regions are ecologically more or less isolated habitat islands and
separated comparably with true islands [144,145]. However, isolation is relative. Saltwater
is a barrier for many taxonomic groups but a medium of dispersal, e.g., for marine animals
and coconut (Cocos nucifera). Thus, habitat islands may only be islands under the current
climates. They may well have once been more widespread and connected.

A preliminary list of hyperendemics, which are defined as species with an extremely
small range of a single square kilometer or a maximum of 50 individuals [146], showed
that the focus on these restricted endemics can elucidate the importance of habitat types
and landscape units that are often located outside of already identified CoEs. For example,
many small springs harbor freshwater and wetland gastropods with a rather restricted
range.

5. How Is Endemism Related to Continuity, Change in Time and Isolation?

Species compositions and species richness of landscapes and regions reflect continuity
and change of ecological conditions during the history, the length of time periods, and
evolutionary speed. Specific modes of dispersal, migration routes, and the increase or
decrease in the numbers of species depend on the distribution of water bodies and terrestrial
land, i.e., on barriers and drivers of migration/dispersal. Distances to other water bodies or
land masses are seen as important components to calculate the degree of isolation [147,148].
The similarity of ecological conditions, assemblages, and phylogenetic diversity are used to
characterize the degree of uniqueness and isolation as well.

Ecological conditions and the amount of endemic plant species, e.g., of the higher
mountain belts of the Macaronesian Islands, differ much more than, e.g., coastal habitats of
the archipelago, and they are more distant [149–151].

Under stable geological, climate, soil, and hydrological conditions, the number of
species increases via evolution and migration/dispersal. Isolation processes also favor the
evolution of endemism. Isolation in a biogeographical context can be defined as a condition
reducing or preventing genetic, social, and other biological aspects such as intraspecific and
interspecific relationships and dispersal. Because of the strong isolation of a first propagule
arriving at a new oceanic island, the survival of this species is highly questionable. This
propagule must find adequate ecological conditions, must build a founder population, may
overcome a genetic bottleneck, and so on. Isolation, on the other hand, reduces dispersal
with the effect that mainland regions normally have higher numbers of non-endemics than
ecologically comparable island regions. In general, both large species pools and isolation,
which often show opposite patterns, favor the evolution of endemics [152–155]. In plants,
there is a link between successful dispersal and polyploidy (e.g., [156,157]). Ploidy data are
scattered (especially for endemics), but it would be an interesting line of inquiry to assess
the levels of ploidy in endemics and widespread congeners and taxa in general.

According to the theories on adaptive dynamics and assembly optimization, optimiza-
tion of resource use is one of the most important drivers for processes controlling ecosystem
functioning, species composition, and diversity [158–163]. If processes and conditions of
dispersal are reduced because an archipelago such as the Hawaiian Islands is located far
distant from mainland areas and other archipelagos, then the evolution of new taxa can
help to optimize the nutrient cycling and resource use. As a result, the total number of taxa
(S) on isolated islands often is relatively small compared with mainland areas of the same
range size and similar ecological conditions, the number of endemics (E) is high, and the
level of endemism (E/S) is extremely high [164–166].
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Because there is no other planet enabling life in our vicinity, all taxa on Earth are at the
same time global endemics (S = E). The isolation is maximal, and the level of endemism is
100%. In general, high percentage values indicate strong isolation. The level of endemism
of an archipelago is normally higher than that of each island belonging to the archipelago.
This indicates stronger isolation for the whole archipelago in comparison with the islands
belonging to the archipelago. However, the level of endemism of an island or archipelago
depends on both the amount and composition of endemics and non-endemics. Furthermore,
the composition of non-endemics normally differs from island to island. Thus, the level of
endemism of an island can theoretically be higher than the level of endemism of the whole
archipelago (Figure 3 in [167]).

Meanwhile, studies on the history of climate change at regional to continental scales, on
refugia and microrefugia during glaciation periods, and climate continuity as a precondition
for the evolution and survival of endemics are numerous. Dynessius and Jansen’s work
and theories are applicable here [168–170]. The relation between the number of endemics,
the proximity to refugia, and climate continuity has often been pronounced and modeled.
Moreover, the relative importance of time stability for evolution and survival is often
hypothesized as higher than heterogeneity in space [171–174].

However, the change of ecological conditions is much more than climate change,
and the discussion about the meaning of other components of temporal change in the
environment is ongoing [175,176].

6. How Important Are Zoos and Botanical Gardens for Endemics and Vice Versa?

Mankind’s relationship with animals kept in domestication for a specific purpose
dates back millennia, and this relationship and purpose has changed over time [177]. Zoos,
aquaria and botanic gardens have been considered as “Arks” where taxa are kept and
distributed between such organizations with the aim of sustainable “insurance” pop-
ulations, which can then be used for augmentation of existing small populations in
the wild, or reintroduction into the wild where species are extinct in nature [178–180].
Thus, the role and function of zoos over the last four or five decades has resulted in a
much more conservation-focused approach [181]. However, the global distribution of
zoos is disproportionately biased toward the global west first-world countries (https:
//en.wikipedia.org/wiki/Zoo#/media/File:World_zoo.png; accessed on 20 April 2023),
generally distant from areas of faunal endemism and species in need of ex situ and in situ
conservation.

Zoos are considered to be “ethically contested institutions” in terms of their existence
as well as their aims, policies, and practices, which are underpinned by regulations and
commitments to shared values of animal welfare and species conservation [182]. The
authors argue that these values may be in tension, resulting in decisions that fulfil some aims
at the expense of others or result in unsatisfactory tradeoffs. Among other conclusions, they
suggest that zoos should hold a higher number of threatened taxa than currently in captivity
and that species that do not require so much physical space, including amphibians, reptiles,
fish, and invertebrates, could be prioritized [182]. From an animal welfare perspective,
these groups also present fewer challenges.

Various studies indicate that mammals are favored by the public [183], and references
therein] but there is a growing greater representation of fish species diversity. The analysis
of certain biological and geographical parameters shows that mammal and bird species
in zoos are larger than their close relatives not held in zoos and that these captive taxa
represent species with larger spatial ranges that are less likely to be endemic and are less
likely to be threatened with extinction [184].

Approximately 95% or more animals are invertebrates, and if zoos were to represent
this diversity proportionally, only 5% of their collections should comprise mammals, birds,
reptiles, fish, and amphibians [176]. However, systematic groups such as insects or ter-
restrial snails only play a subordinate role, even if there are exceptions such as botanical
gardens with butterflies as a very attractive group of insects [185]. The representation effort

https://en.wikipedia.org/wiki/Zoo#/media/File:World_zoo.png
https://en.wikipedia.org/wiki/Zoo#/media/File:World_zoo.png
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and success also differs within the main groups [186]. For example, almost all species
of Cactaceae are shown in botanical gardens, while this is not the case within the two
largest plant families Orchidaceae and Asteraceae [187]. The situation in vascular plants
is comparable with the vertebrate species. The representation is biased. Some groups
are almost fully represented, but whales, for example, cannot be adequately housed in
aquaria [188,189].

Rare, endemic, and endangered species are now also being kept and propagated
through conservation breeding programs in zoos and botanical gardens [190]. In this way,
an increasingly important contribution to nature conservation can be made. At the same
time, the attractiveness of the gardens increases. So it should be a win–win situation [191].
However, the options are limited. Endemic vertebrate species, vascular plant species,
and other systematic groups are unlikely to be maintained in zoos and botanical gardens
beyond individual conservation programs [192].

Interestingly, the role that zoos, aquaria, and botanic gardens play in endemic species
conservation, versus simply anthropomorphically appealing species, is a little difficult to
assess, and review studies are few in comparison with individual taxon-specific studies.
We present below a brief overview of the role and success of endemic species conservation
according to major taxonomic grouping by zoos, aquaria, and gardens.

Amphibians are the most threatened group of vertebrates, with over a third of extant
species classified as “threatened” [193]. A global analysis of zoo and aquarium collections
showed that only 2.78% of the collections comprised amphibian taxa, and this is both
a challenge and an opportunity for zoos and aquaria to increase their capacity for the
conservation of rare and threatened taxa [176]. Many zoos utilize amphibians for displays
and education, without a conservation goal or strategy [194]. Amphibians are ideal for
zoo-based research due to their small size, high fecundity, and ease of husbandry, and facil-
ities for their breeding and maintenance are relatively cheap. In addition, amphibians are
considered to be an excellent opportunity for conservation research partnerships [195]. As-
sessments of amphibian conservation breeding programs showed that species in breeding
programs were likely to be under greater threat but had similar range-restricted distribu-
tions as those taxa not being bred for conservation purposes. Furthermore, amphibians
in zoos seem to be as threatened as their close relatives not in living collections [196]. In
addition, those species in zoos are generally larger bodied, more widely distributed, and
more likely to be habitat generalists. These findings indicate that the ex situ conservation
networks of zoos and other institutions are not prioritizing endemics as range-restricted
habitat specialists with greater extinction risk. As an example, Madagascar has 370 native
amphibian species, and amphibian endemism is extremely high, but a survey [197] found
that a mere 36 of these species are kept in zoos globally. Of these 36 species, 10 are con-
sidered as “threatened”, and the remaining species are not benefitting from any ex situ
conservation actions. On a positive note, almost a third of those species in captivity have
successfully reproduced [191].

Reptiles are quite well represented in zoos and aquaria [179]. However, we were
not able to find general reviews of reptiles in zoological collections. As with amphibians
and fish, there has, however, been a detailed analysis of the highly endemic Malagasy
reptile fauna [193]. This fauna is rich, with 437 reptile species, of which 420 are endemic
to Madagascar. Of these, only 87 are kept in zoos around the world, and the majority of
these are species not considered to be threatened. However, what is perhaps encouraging
for endemic Malagasy reptiles is the finding that almost 40% of their geographic range,
on average, is within a protected area of some kind [198]. Reptiles, as with many other
taxa, are also targeted by legal and illegal traders, and the consequences of this include
escapes and subsequent invasions. Species traded are not generally endemic taxa and tend
to be larger and more colorful or patterned species (e.g., [199]). Reptiles in zoos are also
larger-bodied species, and endangered species, which may not be visually attractive to
humans, do not feature extensively in zoo collections, a fact that cannot be explained by
the difficulty of obtaining rare species [178].
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The preference for larger and more colorful birds is also evident in zoo collections.
Eight percent of the world’s threatened bird species are kept in captivity [185], and zoos
tend to favor birds that are not endemic or threatened [180]. Additionally, there is an
indication that the average diversity of bird species in zoos declined between 1960 and
2018 [200]. As with other taxa, Madagascar is a hot spot of bird diversity, and 142 out of the
195 bird species on Madagascar are endemic, 28 of which are threatened [190]. A survey of
131 institutions indicated that only 15 of these endemic species were kept in their living
collections, meaning that 89% of Malagasy birds are not represented in ex situ collections. It
thus appears that zoos do not have a strong track record of ex situ conservation of endemic
birds, but given the global plethora of conservation organizations with a strong focus on
birds, perhaps this role is not considered a key strategy for zoos.

Freshwater fish species compose approximately 25% of all vertebrate diversity, and
freshwater fish compose about 50% of all fish diversity [201]. The majority of freshwater
fish species lack any formal IUCN Red List status. However, holdings of fish in zoos
and aquaria increased between 1960 and 2018 [197]. Aquaria and zoos only hold about
7% of all threatened fishes, and this highlights the important role that hobbyists play in
the conservation and breeding of endemic and threatened taxa [202]. Hobbyists make
up 99% of the global ornamental fish trade and may play a vital role in fish conservation.
This role has been facilitated by the formation of the CARES (Conservation, Awareness,
Recognition, Encouragement, and Support) preservation program in 2004. CARES has
published a priority list which contains nearly six hundred species (24 of which are extinct
in the wild) from twenty families. Notably, species from Tanzania and Mexico, which
are major centers of fish diversity and endemism, had the greatest representation in this
list. However, the legal (and illegal) trade in endemic freshwater fishes for the hobbyist
market can also be highly detrimental to conservation efforts [203]. Another freshwater
fish hot spot for endemism is Madagascar, which has 173 fish species, 79 of which are
endemic. These face extinction due to deforestation, overfishing, and the introduction of
exotic species. However, only 21 of these species including 19 endemics are kept in zoos,
with some success of ex situ breeding [204].

Being small and generally inconspicuous, invertebrates tend not to feature highly on
the agendas of zoos and aquaria [205]. In 1991, one successful international invertebrate
captive breeding program was reported [206], but by 1994, a growing public interest in, and
value of, invertebrate collections in zoos was being recognized [207], and zoos embarked
on invertebrate conservation (e.g., [208,209]). Butterflies are considered to be flagship taxa,
and there has been a rapid increase in “butterfly houses” at zoos and in tropical houses of
botanical gardens, but there are a number of risks to butterfly biodiversity linked to this
“industry” [210].

As with zoos, humans have cultivated plants in gardens since ancient civilizations,
notably for the cultivation of medicinal plants, exotic fruits, and spices [211] The focus
on “physic gardens” in the 1500s in Europe set the scene for the subsequent growth of
gardens as a consequence of the era of exploration and European colonization. These
gardens facilitated the rise of taxonomy, and the economic value of selected species such as
coffee, rubber, tea, cotton, opium, sugarcane, etc. is linked to societal evils such as slavery
and warfare (e.g., [212,213]). There are over 3000 botanic gardens worldwide, but as with
the global distribution of zoos, two-thirds of these are located far away from the world’s
36 biodiversity hot spots (Figure 2 in [211]). Despite this, botanic gardens and arboreta
grow at least one-third of all known vascular plant species. Of these, over 16,000 are tree
species, of which 1700 are globally threatened [214]. More recently, the role of botanic
gardens in researching and conserving plants in the face of climate change studies and
food security have become increasing priorities [215–217]. However, the space required in
gardens to grow trees means that only a limited number of species and individuals can be
accommodated. There is thus a specific role for arboreta in the conservation of tree species.
In South Africa, for example, there are currently 121 arboreta. Historically, there were at
least 172, but many have been lost. The origins of some of these are linked to the rise of the
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forestry industry and the need for research on suitable tree species. These arboreta house
2309 species from around the world, of which 128 species are threatened [218]. In recent
times, activities and strategies of botanic gardens worldwide are guided by the Botanic
Gardens Conservation International [BGCI] Manual on Planning, Developing and Managing
Botanic Gardens. The BGCI was founded in 1987. It was this organization that drove the
rise of plant conservation activities at botanic gardens [219–222]. However, gardens cannot
readily grow sufficient number of individuals so as to ensure the maintenance of genetic
diversity, and the potential for genetic erosion exists [223,224]. Even the role of seed banks
in maintaining genetically diverse collections is limited. However, seed banks are able to
store many more species than living collections in gardens. There are over 350 botanic
gardens involved in seed banking in 74 countries [225]. According to this survey, 56,987
taxa have been banked as seed, 9000 of which are threatened. In the context of the space
requirements for trees, tree seed banking is an obvious solution, and seeds of 6881 tree
species (half of which are endemics) from 166 countries are stored in seed banks [226].
However, these authors make a call for even more effort to collect and store seeds of
threatened species.

7. Conclusions and Outlook: What Are The Perspectives for Endemics and Centers of
Endemism?

The main goal of nature conservation programs according to the aspiration of the
Convention on Biological Diversity (CBD) is survival and evolution of biological diversity
in its entirety, i.e., well-being of all species on Earth. Since endemism is a precondition of
extinction, the focus on the survival of endemics and CoEs is essential.

Endemism and endangered species are closely coupled, and different kinds of threats
cause different impacts and risks of extinction [227]. According to the IUCN Red List, land
use, land use change, and intensification of use has a much stronger impact on ecolog-
ical conditions for most critically endangered species than, e.g., climate change. Cities,
urban habitats, and arable land with prevailing unfavorable conditions for the survival of
threatened endemics are continuously growing, while natural and semi-natural habitats
harboring large numbers of endemics are declining in quantity and quality. Anthropogenic
influences, change and intensification of land use activities, conversion of whole ecosys-
tems, the application of agrochemicals, the growth of arable land and urban environments,
and the use of biological resources have the strongest impact and cause the greatest risk
for the existence of populations and survival of threatened endemics [228–231]. Climate
change, including severe weather, is less important but has a stronger impact than, e.g.,
natural processes such as tsunamis, volcanism, or landslides [232–236].

Vascular plants and vertebrates are by far the most important groups conserved in
zoos, aquaria, and botanical gardens. Nevertheless, most species on Earth are invertebrates,
and most of them are not scientifically described. Little is known about their ecological
requirements and specific environmental problems. With the exception of certain groups
of vascular plants, vertebrates, and a few other groups of organisms, most taxa and their
ecology have not yet been adequately studied. This knowledge deficit should be seriously
considered when ecosystems, landscapes, and regions are economically used and ecological
conditions are impacted by anthropogenic activities [231,237,238].

If continuity of environmental conditions is the best predictor for survival of endemics,
many of them threatened with extinction, then avoidance of intensification of use and
change of conditions at landscape scales would simply stabilize the conditions of their
existence. Avoidance of land use and land cover change at landscape scales can be seen as
the most important precondition for ecosystem functioning and survival of biodiversity,
even if this is not guaranteed. This is even more important since humankind obviously is
not able to limit climate change in the coming years and decades. Even with avoidance
of land use changes, climate change is impacting rare species and increasing the risk of
extinctions.
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Thus, the limitation of direct anthropogenic influences at landscape scales, wherever
possible, should have highest priority for maintaining ecosystem functioning, survival
of endemics, and provision of adequate ecological conditions. Because CoEs harbor high
numbers of endemics, monitoring of these areas can seriously contribute to effective nature
conservation management with a focus on biodiversity conservation.

The importance of zoos, aquaria, and botanical gardens with respect to nature conser-
vation is increasing. However, the distribution of the world’s zoos and botanic gardens
in general represents great distances from the world’s CoEs. Botanic gardens are more
effective at the conservation of endemics, but zoos face far greater challenges in this regard,
having to balance the demands of the public, wishing to see iconic, larger species on one
hand with dedicated conservation projects on threatened taxa. In addition, zoos have space
limitations and animal welfare including behavior considerations that limit their ability to
house large numbers of endemic species. The representation of different groups of taxa is
biased; e.g., amphibians compared with invertebrates have a more globally coordinated
conservation approach than others. Holdings of endemic invertebrates in zoos and other
facilities need to be increased. Seed banking of plants is clearly space-efficient, but ensuring
sufficient genetic diversity is essential. There is an obvious role for seed banks and botanic
gardens in addressing food security challenges, especially in terms of crop wild relatives
and indigenous food plants used by peoples around the world.

Ecosystem functions of species-rich and species-poor ecoregions and CoEs are directly
linked with social aspects including human aesthetics, well-being, health, ecology, and
economy. Nevertheless, this is an open field with many questions that science has to
answer in the future. As a first step, it might be helpful to intensify the communication
between ecologists, social scientists, and conservation practitioners in botanical gardens
and zoos [239–243]. A systematic analysis and information network of the quantitative
and qualitative participation of ex situ conservation in zoos, aquaria, and botanical gar-
dens might be a topic for further research on relationships including regional endemism
and CoEs. Meaningful long-term partnerships in endemic species conservation between
institutions in countries in the global north and the biodiverse rich and often developing
world need to be strongly encouraged, and the “parachute science” approach needs to be
discouraged [244,245] if there is to be a meaningful increase in the ex situ conservation of
endemic and rare taxa from these regions of endemism.
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