
Engineering Applications of Artificial Intelligence 133 (2024) 108555

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Research paper

Regularised feed forward neural networks for streamed data classification
problems
Mathys Ellis a,∗, Anna S. Bosman a, Andries P. Engelbrecht b,c

a Department of Computer Science, University of Pretoria, Pretoria, South Africa
b Department of Industrial Engineering and Computer Science Division, Stellenbosch University, Stellenbosch, South Africa
c Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait

A R T I C L E I N F O

Keywords:
Data streams
Classification problems
Feed forward neural networks
Quantum particle swarm optimisation
Regularisation
Concept drift

A B S T R A C T

Streamed data classification problems (SDCPs) require classifiers to not just find the optimal decision
boundaries that describe the relationships within a data stream, but also to adapt to changes in the decision
boundaries in real-time. The requirement is due to concept drift, i.e., incorrect classifications caused by decision
boundaries changing over time. Changes include disappearing, appearing or shifting decision boundaries.
This article proposes an online learning approach for feed forward neural networks (FFNNs) that meets
the requirements of SDCPs. The approach uses regularisation to dynamically optimise the architecture, and
quantum particle swarm optimisation (QPSO) to dynamically adjust the weights. The learning approach is
applied to a FFNN, which uses rectified linear activation functions, to form a novel SDCP classifier. The
classifier is empirically investigated on several SDCPs. Both weight decay (WD) and weight elimination (WE)
are investigated as regularisers. Empirical results show that using QPSO with no regularisation causes the
classifier to completely saturate. However, using QPSO with regularisation makes the classifier efficient at
dynamically adapting both its architecture and weights as decision boundaries change. Furthermore, the results
favour WE over WD as a regulariser for QPSO.
1. Introduction

In the real world, data is commonly sourced from data streams (Ag-
garwal, 2007). Streamed data is sequentially-accessible and real-time by
nature (Hulten et al., 2001; Aggarwal, 2007). The task of classifying
streamed data, in real-time, using a set of known labels, is known as
the streamed data classification problem (SDCP) (Dyer et al., 2014).

Because streamed data is based on real-world sources, the deci-
sion boundaries of SDCPs can experience changes, i.e., the decision
boundaries may either disappear, appear, or shift (Rakitianskaia, 2011;
Rakitianskaia and Engelbrecht, 2009, 2012). If the classifier cannot
adapt to the changes in decision boundaries, then the classifier will not
be able to classify correctly, i.e., the classifier will experience concept
drift (Rakitianskaia and Engelbrecht, 2009; Tsymbal, 2004).

SDCPs and their potential classifiers, including FFNNs have been the
subject of various studies (Hulten et al., 2001; Chu et al., 2004; Jadhav
and Deshpande, 2017; Domingos and Hulten, 2000; Cui et al., 2016;
Pratama et al., 2017; Telec et al., 2014; Sancho-Asensio et al., 2014;
Liang et al., 2006; Aggarwal, 2007; Rakitianskaia and Engelbrecht,
2009; Krawczyk et al., 2017). To prevent concept drift in a FFNN, the
FFNN must be able to dynamically optimise its architecture and to

∗ Corresponding author.
E-mail address: mox.1990@gmail.com (M. Ellis).

dynamically adjust its weights (Rakitianskaia and Engelbrecht, 2009,
2015b; Domingos, 2012; Zhang et al., 2000). The studies mentioned,
however, showed that the subject of dynamic architecture optimisation
for FFNNs with regards to SDCPs has received little attention. Literature
on the superset of SDCPs, i.e. dynamic classification problems, and
3-layer FFNN classifiers have been more abundant.

Abdulkarim and Engelbrecht (2021) used a cooperative quantum
particle swarm optimisation (QPSO) to train 3-layer FFNNs for non-
stationary time series prediction problems. Non-stationary time series
prediction problems are similar to dynamic classification problems but
require the model to forecast rather than to classify (Abdulkarim and
Engelbrecht, 2021; Zainuddin and Pauline, 2007).

Rakitianskaia and Engelbrecht (2009, 2012) and Rakitianskaia
(2011) investigated the use of 3-layer FFNNs, trained by dynamic
particle swarm optimisers (PSOs), as classifiers for dynamic classifica-
tion problems (Rakitianskaia, 2011). Rakitianskaia (2011) concluded
that QPSO is suitable for training FFNNs which experience concept
drift. Rakitianskaia (2011) investigated the use of dynamic architecture
optimisation in dynamic classification problems.
vailable online 16 May 2024
952-1976/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.engappai.2024.108555
Received 20 March 2023; Received in revised form 11 February 2024; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

May 2024

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
mailto:mox.1990@gmail.com
https://doi.org/10.1016/j.engappai.2024.108555
https://doi.org/10.1016/j.engappai.2024.108555
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.108555&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
Aside from Rakitianskaia and Engelbrecht (2009, 2012) and Raki-
tianskaia (2011) there have not been any other significant investiga-
tions into the use of 3-layer FFNNs, trained by dynamic PSOs, for dy-
namic classification problems. Most research on 3-layer FFNNs trained
by PSOs focused on static classification problems, i.e. classification
problems whose data does not undergo change (van Wyk and En-
gelbrecht, 2016; Rakitianskaia and Engelbrecht, 2015a,b; Krogh and
Hertz, 1991; Rakitianskaia and Engelbrecht, 2014a,b; Abdulkarim and
Engelbrecht, 2021).

Rakitianskaia and Engelbrecht (2009, 2012) and Rakitianskaia
(2011) also did not cater for the effects of saturation that are common
for PSO-based training of FFNN (van Wyk and Engelbrecht, 2016;
Rakitianskaia and Engelbrecht, 2015b). Rakitianskaia and Engelbrecht
(2015a,b) and Dennis et al. (2020) investigated several approaches
to overcome the issue of saturation. However, controlling saturation
was found to be a non-trivial task. Rakitianskaia and Engelbrecht
(2014b) and Bosman et al. (2018) suggested that regularisation can
aid 3-layer FFNNs trained by PSOs for static classification problems by
reducing saturation. Gupta and Lam (1998) showed that using weight
decay (WD) regularisation can also improve the performance of FFNNs
for static classification problems with noise. Studies have also shown
that WD regularisation and weight elimination (WE) regularisation
can improve performance with respect to accuracy and complexity for
FFNNs on static classification problems (Bosman et al., 2018; Weigend
et al., 1990; Rakitianskaia and Engelbrecht, 2014b; Krogh and Hertz,
1991).

Despite the existence of regularisation techniques and QPSO, no
work on using them together to train FFNNs for SDCPs has been done.
Lastly, SDCP literature on 3-layer FFNNs use computationally expensive
activation functions (Liang et al., 2006; Telec et al., 2014; Sancho-
Asensio et al., 2014). The real-time nature of streamed data requires
classifiers to be as computationally inexpense as possible (Domingos
and Hulten, 2000; Aggarwal, 2007). The rectified linear unit (ReLU)
activation function is considered a computationally less expensive alter-
native to commonly used FFNN activation functions, e.g. sigmoid (Son-
oda and Murata, 2017; Maas et al., 2013). Despite the ReLU activation
function being computationally inexpensive, the main advantage of the
ReLU activation function is that it does not saturate in the presences of
positive signals (van Wyk and Engelbrecht, 2016). Furthermore, Dennis
et al. (2020) showed that regularisation reduces saturation for FFNNs
with ReLUs neurons that is trained by PSO (Dennis et al., 2020).

The main focus of this article is to address the above gaps in SDCP
literature. This article therefore proposes a novel online learning algo-
rithm that uses regularisation to dynamically optimise the architecture,
and QPSO to dynamically adjust the weights. The learning algorithm
was applied to a 3-layer FFNN, using ReLUs, to create a classifier
for SDCP. Both WD and WE were considered as regularisers. The
classifiers were empirically investigated on 80 SDCPs that were derived
from five problem domains. The gradient-based back propagation (BP)
optimisation algorithm for FFNNs was used as a benchmark for the
classifiers (Werbos, 1974).

The remainder of this article is organised into eleven sections.
Section 2 elaborates on SDCPs. Section 3 reviews current literature
on classifiers for SDCP. Section 4 discusses the QPSO algorithm. Sec-
tion 5 discusses FFNNs. Section 6 proposes several regularised FFNNs
as streamed data classifiers. Section 7 presents the SDCPs used to
benchmark the proposed classifiers. Section 8 presents the performance
measures used to evaluate the proposed classifiers. Section 9 discusses
the process used to evaluate the proposed classifiers. Section 10 anal-
yses and discusses the performance of the proposed classifiers. Lastly,
Sections 11 and 12 presents the conclusions drawn from the research
conducted in this article, as well as the areas that can be investigated
further in the future.
2

2. Streamed data classification problems

Because data streams are based on real world subjects, e.g. users and
processes, and exhibit the traits of big data, an SDCP is considered to be
a non-trivial real world problem (Santos et al., 2017; Aggarwal, 2007;
Hulten et al., 2001). SDCP classifiers therefore also need to address
the following issues: bounded memory, unbounded data set, changes
in decision boundaries, i.e., concept drift, random dynamics, online
learning, high speed data streams, one-pass, limited number of tunable
control parameters, maintain low model complexity, robustness, and
fault tolerance (Aggarwal, 2007; Ellis et al., 2021; Domingos and Hul-
ten, 2000; Hulten et al., 2001; Rakitianskaia and Engelbrecht, 2012).
The reader is referred to the work by Aggarwal (2007) and Ellis et al.
(2021) for more information on these requirements.

The sliding window algorithm can be used to construct SDCPs from
a set of patterns. Ellis et al. (2021) provided a comprehensive expla-
nation on how to use the algorithm to construct SDCPs. An advantage
of using the sliding windows algorithm to generate SDCPs, is that the
algorithm’s parameters can be used to estimate the problem difficulty
of the SDCP, i.e., how difficult it is to accurately learn the SDCP (Ellis
et al., 2021). Ellis et al. (2021) proposed four categories to describe
the difficulty of a SDCP: Easy, Moderate-I, Moderate-II, and Hard. The
categories describe how likely a classifier is to underfit or overfit to the
patterns that are presented to it (Ellis et al., 2021).

Because the decision boundaries of SDCPs can undergo change,
i.e. shift, appear, disappear, SDCPs have dynamic environments
(Leskovec et al., 2014; Jadhav and Deshpande, 2017; Blackwell and
Branke, 2004). Therefore, SDCPs are categorised as dynamic classifica-
tion problems (Ellis et al., 2021; Blackwell and Branke, 2004). Duhain
and Engelbrecht (2012) grouped dynamic environments into four cat-
egories: Quasi-static, Progressive, Abrupt, and Chaotic. Each group
describes how severe the changes in decision boundaries are Duhain
and Engelbrecht (2012). Change severity consists of a spatial compo-
nent, i.e. the magnitude of the changes, and a temporal component,
i.e. the frequency of the changes (Duhain and Engelbrecht, 2012).
The Duhain and Engelbrecht classification scheme can also be used to
provide additional insight into SDCPs (Ellis et al., 2021).

The reader is referred to the work by Ellis et al. (2021) for a
comprehensive study on problem difficulty and problem environments
of SDCP for more information.

3. Existing streamed data classifiers

Research on streamed data classifiers has gained popularity over the
last two decades (Aggarwal, 2007; Sancho-Asensio et al., 2014; Singh
and Chauhan, 2009). The majority of early research mostly focused on
online learning and concept drift (Aggarwal, 2007; Hulten et al., 2001;
Chu et al., 2004; Wang et al., 2003; Rakitianskaia and Engelbrecht,
2009; Tham, 1995; Domingos and Hulten, 2000; Tsymbal, 2004; Liang
et al., 2006). Over time, research has begun to include the other
streamed data classifier requirements discussed in Section 2, for exam-
ple the work presented in Aggarwal (2007), Cui et al. (2016), Telec
et al. (2014), Sancho-Asensio et al. (2014), Krawczyk et al. (2017),
Pramod and Vyas (2012), Ngom et al. (2016), Dyer et al. (2014),
Kulkarni et al. (2016), Losing et al. (2018). This section presents a
minor review of streamed data classifiers to motivate the work done
in this article.

Sections 3.1 and 3.2 respectively review non-artificial neural net-
work (ANN) approaches and ANN approaches to streamed data classi-
fiers. Section 3.3 presents the conclusions drawn from the review.

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

a
t
b
r
t
c
t
p
e

3.1. Non-artificial neural networks approaches

Two types of streamed data classifiers that have been considered in
literature are decision trees and ensembles. Decision trees are approxi-
mators that use a tree data structure to approximate functions (Ertel,
2011; Hulten et al., 2001). On the other hand, an ensemble is a
group of high variance, low bias, i.e. overfitted, classifiers working
together to reduce the high variance in the outcomes of the ensemble
members (Engelbrecht, 2007; Telec et al., 2014; Wang et al., 2003).

Domingos and Hulten (2000) proposed a constant memory and time
per pattern, i.e. one-pass, decision tree, called the very fast decision
tree (VFDT), for data streams that required learning at high speeds.
Unfortunately, the VFDT does not cater for concept drift. Later, Hulten
et al. (2001) modified VFDT to handle concept drift, and called the
new decision tree algorithm concept-adapting very fast decision tree
(CVFDT). The CVFDT was found to be better at handling concept drift
compared to traditional decision tree algorithms (Hulten et al., 2001).

Wang et al. (2003) proposed an ensemble of classifiers that can be
used for SDCPs. The ensemble weights the relevance of each classifier
in the current epoch using an expected accuracy for the current chunk
of patterns in the data stream (Wang et al., 2003). The approach
addresses the concept drift, high speed, robustness and online learning
requirements (Wang et al., 2003).

Babaeian et al. (2019) used an ensemble of logistic regression based
classifiers, which incorporated regularisation, to detect the drowsiness
of drivers. The approach performed better than prior classifiers and
reduced overfitting (Babaeian et al., 2019).

Telec et al. (2014) investigated the use of an ensemble of differ-
ent ANNs for modelling a data stream of real-estate market prices.
Telec et al. (2014) showed ANN ensembles to be more effective than
ensembles of non-ANN classifiers.

Both decision trees and ensembles are outside the scope of this
article. The reader is, however, referred to the survey on decision trees
by Kotsiantis (2013) and the survey on ensembles by Krawczyk et al.
(2017) for more information.

3.2. Artificial neural networks

ANNs are a group of function approximators whose structures are
inspired by neurons and synapses found in the human brain (McCulloch
and Pitts, 1943). Various ANN approaches have been developed to
solve SDCPs (Cui et al., 2016; Pratama et al., 2017; Liang et al., 2006;
Sancho-Asensio et al., 2014; Rakitianskaia, 2011; Rakitianskaia and
Engelbrecht, 2009).

Cui et al. (2016) introduced a new one-pass sequence learning ANN
rchitecture called hierarchical temporal memory (HTM), based on
he recent neuroscience discovery of synaptic integration in the cere-
ral cortex. Sequence learning is a type of classification problem that
equires classification of the outcome from a sequence of past pat-
erns (Cui et al., 2016). To do so, the classifier must maintain temporal
ontext (Cui et al., 2016; Engelbrecht, 2007). Temporal context refers
o the time-based contextual dependencies that can exist between
atterns, i.e. a sequence of events that provides context for the next
vent (Cui et al., 2016). HTM allows for temporal context to be built

up and maintained by the ANN. Cui et al. (2016) showed that HTM
was more effective, robust, and fault tolerant than recurrent neural
networks (RNNs) and other traditional ANNs in streamed data sequence
learning problems. The HTM does not provide mechanisms to control
model complexity, handle random dynamics, and reduce the number of
tunable control parameters. The algorithm was not evaluated on SDCPs
but streamed data sequence learning problems. Thus, the applicability
of HTM to SDCPs is unknown.

Pratama et al. (2017) proposed an online random neural network
(RdNN), called the recurrent type-2 random vector functional link
network (RT2McRVFLN), to address streamed data problems (SDPs).
RdNNs, first proposed by Gelenbe (1989), are ANNs which are based
3

on the biological behaviour of neuron circuits. The mechanics of RdNNs
are outside the scope of this article. The reader is referred to Gelenbe
(1989) for more information. Note that the RT2McRVFLN is a type of
RNN. The RT2McRVFLN was found to be competitive against other
streamed data classifiers in terms of the accuracy-to-simplicity trade-
off, and was able to control model complexity to some extent (Pratama
et al., 2017). The algorithm did not provide any explicit means to
deal with bounded memory, noisy patterns, system faults, reduce the
number of tunable control parameters, and ensure patterns were only
processed once during training. Furthermore, the RT2McRVFLN was
not compared to traditional benchmark algorithms such as stochastic
BP, and the empirical analysis was done on a limited set of three
benchmark problems.

Liang et al. (2006) proposed a fast online sequence learning FFNN
based on extreme learning machine (ELM) concepts, called online
sequential extreme learning machine (OS-ELM) (Liang et al., 2006).
ELMs are FFNNs that allow fast training by inverting the training set
matrix and output matrix in order to find the optimal weights. Because
there is no guarantee that the exact inverse might exist, a pseudo
matrix inversion formula, i.e. the Moore–Penrose generalised inverse,
is used instead of normal matrix inversion (Liang et al., 2006). The
pseudo matrix inversion attempts to find an approximate inverse that
minimises the least square error (Liang et al., 2006). The advantages
of OS-ELM is its ability to handle situations requiring high speed data
processing and little parameter tuning. The algorithm did not provide
any explicit means to deal with concept drift, noisy patters, system
faults, and model complexity.

Sancho-Asensio et al. (2014) proposed a robust, online, concept-
drift handling classifier system for SDCPs called supervised neural
constructivist system (SNCS). SNCS makes use of FFNNs, stochastic BP,
and genetic algorithms (GAs) (Sancho-Asensio et al., 2014). GAs are
population-based optimisers like PSOs. GAs are based on evolutionary
concepts and not swarm movements (Ertel, 2011; Engelbrecht, 2007).
The GA is used to select a FFNN architecture, while BP is used to adjust
the weights. The algorithm did not provide any explicit means to deal
with bounded memory, high-speed data streams, system faults, reduce
the number of tunable control parameters, or ensure patterns were only
processed once during training.

Abdulkarim and Engelbrecht (2021) used a cooperative QPSO to
train 3-layer FFNNs for non-stationary time series prediction prob-
lems. Abdulkarim and Engelbrecht (2021) concluded that FFNNs
trained with dynamic PSO are effective for non-stationary time series
problems, and that non-stationary time series problems also cause
concept drift.

Rakitianskaia and Engelbrecht (2009, 2012) and Rakitianskaia
(2011) investigated the use of 3-layer FFNNs, trained by dynamic PSOs,
as classifiers for dynamic classification problems (Rakitianskaia, 2011).
Rakitianskaia (2011) concluded that the dynamic PSOs, including the
QPSO, are suitable for learning FFNNs which experience concept drift
in online situations, and can in some cases outperform stochastic BP.
Rakitianskaia (2011) did not investigate classification problems with
respect to the other SDCP requirements, discussed in Section 2.

Aside from Rakitianskaia and Engelbrecht (2009, 2012), Rakitian-
skaia (2011), and Abdulkarim and Engelbrecht (2021), there has not
been any other significant investigations into the use of 3-layer FFNNs
trained by dynamic PSOs. Most research on 3-layer FFNNs trained
by PSOs focused on static classification problems and classification
problems that require only the handling of concept drift, and not SD-
CPs (van Wyk and Engelbrecht, 2016; Rakitianskaia and Engelbrecht,
2009; Bosman et al., 2018; Sancho-Asensio et al., 2014; Rakitianskaia
and Engelbrecht, 2014a,b).

Gupta and Lam (1998) have shown that WD combined with the BP
algorithm can handle static classification problems with noise. Further-
more, studies have shown that WD and WE can improve the accuracy
and complexity performance of both BP and PSO weights adjustment

algorithms (Bosman et al., 2018; Weigend et al., 1990; Rakitianskaia

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

4

a
E
a
o
c
f
2

c
b
f
2

a
d
s

𝑣

w
t
i
t

s
d
u
t
v
t
a

t
H
p
e
a

P
d
Q

5

p
m
u
o
i

o
2
f
o

S
S

and Engelbrecht, 2014b; Krogh and Hertz, 1991). However, current
studies (Bosman et al., 2018; Weigend et al., 1990; Rakitianskaia
and Engelbrecht, 2014b; Gupta and Lam, 1998; Krogh and Hertz,
1991) considered only static classification problems and not dynamic
classification problems.

3.3. Summary

Table 1 summaries the streamed data classifier requirements fo-
cused on by the classifiers reviewed in this Section 3. From the above
review of current SDCP literature and Table 1, the following conclu-
sions are made:

• Most streamed data classifiers that were investigated considered
limited subsets of the SDCP requirements presented in Section 2.

• There is no significant research into the use of regularised 3-layer
FFNNs to deal with SDCPs.

• The issue of saturation has been addressed for 3-layer FFNNs
trained by static PSOs, but the suggested approaches have not
been tested on streamed data FFNN classifiers trained by dynamic
PSOs.

• There is no significant research into the use of combining regu-
larisation and dynamic PSOs to train 3-layer FFNNs for SDCPs.

. Quantum particle swarm optimisation

PSO is a class of stochastic population-based optimiser (Eberhart
nd Kennedy, 1995). PSO consists of 𝑛𝑝 particles, known as a swarm.
ach particle represents a candidate solution. The solution is stored
s the particle’s 𝑁-dimensional position vector, �⃗�. Over the course
f several optimisation iterations, the particles work together, as a
ollective, to find optimal solutions for the 𝑁-dimensional objective
unction, 𝑓 ∶ R𝑁 → R (Eberhart and Kennedy, 1995; Engelbrecht,
007).

Particle movement is determined by one or more update rules,
ollectively referred to as the particle’s behaviour. Behaviour can vary
etween particles (Blackwell and Branke, 2004). Sub-swarms are thus
ormed by grouping particles based on their behaviours (Engelbrecht,
010; Gies and Rahmat-Samii, 2004).

The standard particle update rules require each particle to have
n 𝑁-dimensional velocity vector, 𝑣. The velocity vector represents the
irection and magnitude of the particle’s movement at iteration 𝑡. The
tandard particle update rules consist of a velocity update rule,

𝑖𝑗 (𝑡 + 1) = 𝜔𝑣𝑖𝑗 (𝑡) + 𝑐1𝑟1𝑗 (𝑡)[𝑦𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡)] + 𝑐2𝑟2𝑗 (𝑡)[�̂�𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡)], (1)

and a position update rule,

𝑥𝑖𝑗 (𝑡 + 1) = 𝑥𝑖𝑗 (𝑡) + 𝑣𝑖𝑗 (𝑡 + 1), (2)

where 𝑣𝑖𝑗 (𝑡) is the 𝑗th element of the velocity vector of particle 𝑖 at
iteration 𝑡; 𝑦𝑖𝑗 (𝑡) is the 𝑗th element of the personal best position of
particle 𝑖 at the iteration 𝑡; �̂�𝑖𝑗 (𝑡) is the value of the 𝑗th element of
the neighbourhood best position of particle 𝑖 at iteration 𝑡; and 𝑥𝑖𝑗 (𝑡)
is the 𝑗th element of particle 𝑖’s position vector at iteration 𝑡; 𝑟1𝑗 (𝑡)
and 𝑟2𝑗 (𝑡) are the 𝑗th elements of 𝑟1 and 𝑟2, respectively (Engelbrecht,
2007). The elements of 𝑟1 and 𝑟2 are sampled uniformly from the
range [0, 1] (Eberhart and Kennedy, 1995). The variables 𝑐1 and 𝑐2
represent the user-specified positive acceleration coefficients of the
particle, and 𝜔 represents the user-specified inertia weight of the
particle. PSO has been successfully implemented for a multitude of op-
timisation tasks, ranging from single-objective to dynamic optimisation
problems (Engelbrecht, 2007; Gies and Rahmat-Samii, 2004; Blackwell
and Bentley, 2002; Mendes et al., 2002; Rakitianskaia and Engelbrecht,
2014b; Zhang et al., 2000; Harrison et al., 2015; Rakitianskaia and
4

Engelbrecht, 2009). o
Optimisation problems with dynamic environments require a PSO
that is able to both detect changes and handle said changes (Blackwell
et al., 2008). Blackwell and Branke (2004) proposed the QPSO to
address dynamic optimisation problems. QPSO adapted the standard
PSO model by introducing quantum particles (Blackwell and Branke,
2004).

Quantum particles act as if they are electrons around the nucleus
of an atom, where the nucleus is the social guide of the respective
particle (Blackwell and Branke, 2004). The quantum mechanics model
of an atom dictates that an electron’s position is somewhere within
the sphere around the nucleus of an atom (Harrison et al., 2015). The
exact position of an electron can only be guessed with some degree
of certainty as it is constantly changing (Blackwell and Branke, 2004).
Hence, quantum particles’ positions are estimated to be somewhere in
a hypersphere around the social guide at a specific point in time.

These concepts are implemented by equally dividing the swarm
of the QPSO into two sub-swarms, each with a different set of be-
haviours (Blackwell and Branke, 2004; Rakitianskaia and Engelbrecht,
2009). The first sub-swarm uses the standard particle update rules,
and the second sub-swarm uses the quantum update rules (Blackwell
and Branke, 2004; Rakitianskaia and Engelbrecht, 2009). The quantum
update rule set consists of the position update rule (Harrison et al.,
2015)

𝑥𝑖𝑗 (𝑡 + 1) ∼ 𝑑(�̂�𝑖𝑗 (𝑡), 𝑟) (3)

here 𝑑 refers to a user-defined sampling distribution and 𝑟 refers to
he radius around ⃗̂𝑦. Quantum particles’ positions are re-sampled every
teration, using the statistical distribution 𝑑, from a hypersphere around
he ⃗̂𝑦 particle, with a radius 𝑟 (Blackwell and Branke, 2004).

The quantum update rule prevents complete convergence of the
warm, thus preventing swarm diversity loss. The combination of stan-
ard and quantum update rules allow the quantum particles to contin-
ously explore the search space, while the standard particles exploit
he quantum particles’ findings (Blackwell and Branke, 2004). A larger
alue for 𝑟 results in a larger sample area around ⃗̂𝑦, thus enabling quan-
um particles to explore a larger portion of the search space (Blackwell
nd Branke, 2004). The inverse of this occurs for smaller values of 𝑟.

A commonly used sampling distribution is the uniform distribu-
ion (Blackwell and Branke, 2004; Harrison et al., 2015). However,
arrison et al. (2015) found that the de facto uniform distribution
erforms neither the best nor worst in dynamic environments. Harrison
t al. (2015) suggested the use of the linear decreasing distribution with
small radius.

Note that this article focuses on QPSO instead of the other dynamic
SO variants, because QPSO is computationally less complex than other
ynamic PSOs. Furthermore, there is a significant body of research on
PSO, including improvements and its successful use to train FFNNs.

. Feed forward neural networks

The 3-layer FFNN is a class of ANN that is suitable for classification
roblems (LeCun et al., 1998). The objective of the 3-layer FFNN is to
odel the function 𝑓 that describes the classification problem (Zain-
ddin and Pauline, 2007). That is, the function which maps a pattern
f independent variables, 𝑧, to the label, �⃗� with an 𝜖 amount of error,
.e., 𝑓 (𝑧) = �⃗� + 𝜖 (Engelbrecht, 2007; Wilamowski, 2003).

Training a FFNN is an optimisation problem that comprises of two
bjectives (Engelbrecht, 2001; Liu et al., 2002; Ertel, 2011; Alpaydın,
010): (i) find the synapse weight values that minimise the error
unction, and (ii) find the architecture that minimises the complexity
f the FFNN, i.e., the number of synapses and neurons.

Section 5.1 discusses the use of BP to adjust the weights of a FFNN.
ection 5.2 discusses the use of PSO to adjust the weights of a FFNN.
ection 5.3 discusses the use of regularisation to select the architecture

f a FFNN.

EngineeringApplicationsofArtificialIntelligence133(2024)108555

5

M
.Ellis

et
al.

Table 1
Comparison of the requirements focused on by the reviewed classifiers.
Requirements Reviewed classifiers

VFDT (Domingos
and Hulten,
2000)

CVDFT (Hulten
et al., 2001)

Ensemble-based
(Wang et al.,
2003; Telec
et al., 2014)

HTM (Cui et al.,
2016)

OS-ELM (Liang
et al., 2006)

RT2MCRvFLN
(Pratama et al.,
2017)

SNCS
(Sancho-Asensio
et al., 2014)

Stocastic BP FFNN
(Rakitianskaia and
Engelbrecht, 2009;
Rakitianskaia, 2011;
Rakitianskaia and
Engelbrecht, 2012)

QPSO FFNN
(Rakitianskaia and
Engelbrecht, 2009;
Rakitianskaia, 2011;
Rakitianskaia and
Engelbrecht, 2012)

Bounded memory X X X X X X
Unbounded data set X X X X X X X X
Concept drift X X X X X X
Random dynamics X X X
Online learning X X X X X X X X X
High speed X X X X X X
One-pass X X X X
Limited number of tunable control parameters X X X X
Maintain low model complexity X X
Robustness X X X
Fault tolerance X

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

2
v
b
S
b
o
D

i
t
l
w

5.1. Training with back propagation

A commonly used algorithm for benchmarking training algorithms
of FFNNs is the BP algorithm (Mendes et al., 2002; Rakitianskaia and
Engelbrecht, 2009; Fahlman, 1989). BP conducts a local-search of the
search space using gradient descent (GD) (Werbos, 1974). The BP
algorithm is considered to be a static training algorithm in literature,
however, Rakitianskaia (2011) showed that the algorithm can train
FFNN in certain dynamic environments. Of the three learning modes,
i.e., stochastic, batch, and mini-batch, the stochastic mode is the most
suited for SDCP (Ellis et al., 2021). Stochastic BP immediately changes
the weights of the FFNN after a pattern has been processed (Ertel, 2011;
Werbos, 1974).

There are two important control parameters that must be considered
for stochastic BP: (i) the momentum term (𝛼), i.e. how much the previ-
ous weight changes influence the weight change, and (ii) the learning
rate (𝜂), i.e. how much of the current weight change is experienced by
a weight (Engelbrecht, 2007; Ertel, 2011; Bosman et al., 2018). These
control parameters help to combat the haphazard changes in the search
trajectory and local optimum trapping that the stochastic BP can suffer
from Rakitianskaia (2011), LeCun et al. (1998), Ertel (2011).

5.2. Training with particle swarm optimisation

Algorithms that use PSO to adjust FFNN weights start off by ini-
tialising 𝑛𝑝 instances of a FFNN (Mendes et al., 2002). Each particle’s
position vector represents the weights and biases of a FFNN (Engel-
brecht, 2007; Mendes et al., 2002). These position vectors are com-
monly referred to as weight vectors. The objective function is the FFNN’s
error function (Rakitianskaia and Engelbrecht, 2009). Mean square
error (MSE) is typically used by PSO-based weight adjustment algo-
rithms (Rakitianskaia and Engelbrecht, 2009; van Wyk and Engel-
brecht, 2016).

Five advantages that PSO-based weight adjustment algorithms have
over BP are (i) their resilience to local optimum trapping (Rakitianskaia
and Engelbrecht, 2009), (ii) their ability to handle concept drift, if
a dynamic PSO is used, e.g. QPSO (Harrison et al., 2015), (iii) they
do not use computationally expensive derivative calculations (Mendes
et al., 2002), (iv) they are computationally simple and easy to imple-
ment (Ismail and Engelbrecht, 2000), and (v) there is empirically and
theoretically derived guidance on control parameter value assignment
to ensure that the PSO reaches an equilibrium state (Cleghorn and
Engelbrecht, 2016).

Rakitianskaia and Engelbrecht (2009) investigated the use of QPSO
and charged particle swarm optimisation (CPSO) to train 3-layer FFNNs
for dynamic classification problems. It was found that QPSO and CPSO
performed similarly to each other, and tended to outperform BP in
terms of accuracy (Rakitianskaia and Engelbrecht, 2009). Rakitianskaia
and Engelbrecht (2009), however, did not consider optimising the
architecture after an environment change.

Zhang et al. (2000) designed a PSO-based training algorithm for 3-
layer FFNNs that incorporates architecture selection. However, Zhang
et al. (2000) did not consider that dynamic architecture selection
results in a dynamic optimisation problem itself, where the search space
dimensionality changes over time. Neither did they consider dynamic
classification problems.

A key issue that is neglected in the above works pertaining to the
use of PSO to train FFNN is saturation (Rakitianskaia and Engelbrecht,
015a; Dennis et al., 2020). A neuron is saturated when its activation
alue is always an asymptotic end of an activation function that is
ounded (Rakitianskaia and Engelbrecht, 2015a; LeCun et al., 1998).
aturation hinders the ability of a FFNN to approximate problems,
ecause it reduces the information capacity of a neuron, i.e., the set
f possible activation values (Rakitianskaia and Engelbrecht, 2015b;
6

ennis et al., 2020). When PSO is used to adjust the weights, saturation a
can degrade performance severely and also lead to overfitting (Raki-
tianskaia and Engelbrecht, 2015b; van Wyk and Engelbrecht, 2016).
If the FFNN begins to saturate, then the error function constantly pro-
duces similar information about the search space. Velocities thus either
stagnate or explode because the memory of the PSO never changes.
Both cases usually prevent the search from converging to an optimal so-
lution (Rakitianskaia and Engelbrecht, 2015b,a, 2014b). Rakitianskaia
and Engelbrecht (2015b) showed that controlling saturation in PSO is
a difficult task because of the mechanics of PSO.

5.3. Regularisation

Overfitting is generally described in literature through the concepts
of bias, i.e. how far the outputs of the ANN are from their targets,
and variance, i.e. how scattered the outputs are for similar unseen
inputs (Alpaydın, 2010; Domingos, 2012; Geman et al., 1992; Babaeian
et al., 2019). An ANN overfits when it has a low bias and high
variance (Alpaydın, 2010; Geman et al., 1992; Babaeian et al., 2019).
While underfitting is essentially the inverse of overfitting, i.e. high bias
and low variance (Alpaydın, 2010; Geman et al., 1992).

The objective of architecture selection is to prevent overfitting and
underfitting by ensuring that the complexity of the FFNN architecture
is appropriate for the approximation problem (Liu et al., 2002). Reg-
ularisation algorithms are a class of architecture selection algorithms
which do not explicitly change the architecture, but rather neutralise
the contribution of unnecessary weights by driving their weight values
to zero (Bosman et al., 2018; Weigend et al., 1990).

Regularisation augments the error function by adding a regularisa-
tion (or penalty) term, 𝐸𝑟, to penalise structural complexity, i.e.,

𝐸′
𝑡 = 𝐸𝑡 + 𝜆𝑟𝐸𝑟 , (4)

where 𝐸′
𝑡 is the regularised error function, 𝐸𝑡 is the original error

function and 𝜆𝑟 is the regularisation coefficient (Weigend et al., 1990).
The regularisation coefficient controls how much the overall error

is influenced by the regularisation term. The regularisation terms con-
sidered in this article need to be minimised, thus the larger 𝜆𝑟 is, the
more complexity is penalised resulting in more weight values to be
driven towards zero at the cost of increasing the model error (Krogh
and Hertz, 1991; Gupta and Lam, 1998). Too large 𝜆𝑟 values may
result in underfitting, because important weights might also be driven
to zero (Rakitianskaia and Engelbrecht, 2014b; Babaeian et al., 2019).
Whereas too small 𝜆𝑟 values may cause overfitting, because 𝐸′

𝑡 will
be more concerned with fitting the training set than reducing model
complexity, and therefore fit noise (Weigend et al., 1990; Babaeian
et al., 2019). Because the exact value for 𝜆𝑟 is problem dependent, 𝜆𝑟
has to be carefully tuned to achieve a balance between model error and
model complexity (Engelbrecht, 2007).

Regularisation is attractive because it is a simple on-line approach to
architecture optimisation, and there is no need to decide on a threshold
value to determine when a weight/neuron should be removed (Gupta
and Lam, 1998; Weigend et al., 1990). Regularisation, however, does
introduce an additional problem dependent parameter, i.e. 𝜆𝑟. Two
well-known regularisation terms are weight decay (WD) and weight
elimination (WE) (Engelbrecht, 2007; Rakitianskaia and Engelbrecht,
2014b).

WD is defined as

𝐸𝑟 =
1
2

𝑛𝑠
∑

𝑗=1
𝑤2

𝑗 , (5)

where 𝑛𝑠 is the number of synapses in FFNN and 𝑤𝑗 is the 𝑗th weight
n the FFNN. In essence, WD counts the number of synapses based on
heir weight value (Rakitianskaia and Engelbrecht, 2014b). FFNNs with
arger weight values will be penalised more than FFNNs with smaller
eight values (Rakitianskaia and Engelbrecht, 2014b).

Because WD penalises the total number of weights that can be

ssigned to the synapses, the training algorithm is forced to allocate

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

w
a
e
𝜃

m
i
e

u
a
[

a
t
(
t
n

t
f
m
p

e
S
v
a
d
t
u

o
v
t
o

f
g
w

weights to only the necessary synapses. Therefore, the training algo-
rithm will drive the weights of irrelevant synapses to zero (Gupta and
Lam, 1998).

A drawback of WD is that it does not associate any notion of
relevance to the values of weights. WD, therefore, penalises a weight
value with the same aggressiveness regardless if the value is relevant
or not (Bosman et al., 2018; Krogh and Hertz, 1991).

WE was proposed by Weigend et al. (1990) to overcome the issue of
equally aggressive penalisation of relevant and irrelevant weight values
seen in WE, and is defined as

𝐸𝑟 =
𝑛𝑠
∑

𝑗=1

𝑤2
𝑗

𝑤2
0

1 +
𝑤2
𝑗

𝑤2
0

, (6)

where 𝑤0 is a non-zero threshold which controls the level at which
weight values become irrelevant. The larger 𝑤0 is, the less large weights
are penalised, because they are considered more relevant, i.e. needed
to model the problem better, and vice versa (Weigend et al., 1990).

Bosman et al. (2018) found that WE both smooths the gradients of
the minima and introduces additional minima into the search space.
The weight value threshold parameter, 𝑤0, controls the sharpness of
the introduced minima, i.e. the magnitude of their gradients. The
value of 𝑤0, however, is problem dependent (Bosman et al., 2018;
Rakitianskaia and Engelbrecht, 2012). The main drawback of WE is
thus that it introduces another control parameter that needs to be
tuned (Engelbrecht, 2007).

6. Regularised feed forward neural networks as streamed data
classifiers

Regularised 3-layer FFNNs have not been investigated thoroughly as
streamed data classifiers, despite their ability to manage the complexity
of the data. To address this gap in the research, this article proposes
four regularised 3-layer FFNN classifiers for SDCPs. The term regularised
classifier is used in this article to describe any classifier that uses
regularisation.

The remainder of the section is organised as follows. Section 6.1
describes the FFNN architecture used for the purpose of this study. Sec-
tion 6.2 describes two BP-based regularisation learning algorithms. Sec-
tion 6.3 describes two QPSO-based regularisation learning algorithms.
Section 6.4 presents the four streamed data classifiers.

6.1. Architecture

The 3-layer FFNN architecture proposed in this article uses summa-
tion units to calculate the net input sum (𝑛𝑒𝑡) (Engelbrecht, 2007; Ertel,
2011). Furthermore, the proposed architecture uses the popular ReLU
function to calculate activation values of the neurons (Mendes et al.,
2002; Rakitianskaia and Engelbrecht, 2009; van Wyk and Engelbrecht,
2016; Ertel, 2011; LeCun et al., 2015). Because the ReLU function has
a low computational complexity and stronger gradients, the function is
often preferred over bounded activation functions, such as sigmoid (Le-
Cun et al., 2015; van Wyk and Engelbrecht, 2016; Maas et al., 2013).
The ReLU function calculates the activation value as

𝑓𝑅𝑒𝐿(𝑛𝑒𝑡) = 𝑚𝑎𝑥{𝜆(𝑛𝑒𝑡 − 𝜃), 0} (7)

here the steepness of the curve is controlled by 𝜆, and 𝜃 controls the
mount the curve is shifted by van Wyk and Engelbrecht (2016), LeCun
t al. (1998). Note that for the purpose of this article 𝜆 was set to 1 and
was learnt via the bias neurons.

Initialisation of the weights of a FFNN around zero, in a uniform
anner, helps to prevent the FFNN from favouring some of the regions

n the search space over others (LeCun et al., 1998). The weight of
7

ach synapse, including the synapses of bias neurons, were initialised
niformly within the range (Engelbrecht, 2007; Fernández-Redondo
nd Hernández-Espinosa, 2001; LeCun et al., 1998)

−1
√

𝑓𝑎𝑛𝑖𝑛
, 1
√

𝑓𝑎𝑛𝑖𝑛

]

(8)

where 𝑓𝑎𝑛𝑖𝑛 is the number of synapses that provide input into the
neuron, which is associated with the synapse being initialised (Wessels
and Barnard, 1992; LeCun et al., 1998).

The number of input neurons (𝑛𝑖) are fixed to the input dimension-
lity of the SDCP, i.e. 𝐼 . The hidden layer selected in a way that ensures
he architecture is over-parametrised, i.e. the number of hidden neurons
𝑛ℎ) is more than the number needed for the particular problem. Note
hat this article investigates problems where the number of hidden
eurons required has been empirically determined.

The input layer and the hidden layer of the architecture also con-
ains a single bias neuron each. The input signal of the bias neurons is
ixed at −1. The reader is referred to Appendix C in the supplementary
aterial of this article for more information on the structure of the
roposed architecture.

The architecture assumes the use of binary encoded targets, e.g. each
lement in a target vector is either 0 or 1 (Potdar et al., 2017). If the
DCP only has two classes, then binary encoding to encode the target
ectors, otherwise, one-hot encoding is used (Potdar et al., 2017; Harris
nd Harris, 2016). The number of output neurons (𝑛𝑘) is therefore
ependent on the how many discrete classes an SDCP has. If there are
wo classes, then the FFNN uses one output neuron, otherwise the FFNN
ses one output neuron per class (Harris and Harris, 2016).

Because of the ReLU activation function, the values provided by the
utput neurons are bounded below by 0. Binary classification target
ectors, however, need the values of output neurons to be bounded to
he range [0, 1]. The architecture uses thresholds to constrain the value
f an output neuron, 𝑜𝑘, to the range [0, 1] as follows (Engelbrecht,

2007; Ertel, 2011; Rakitianskaia, 2011):

𝑜𝑘 =

{

1, if 𝑜𝑘 ≥ 1.0,
𝑜𝑘, otherwise.

(9)

6.2. Back propagation learning algorithms

The proposed architecture requires the weights of the hidden-to-
input layer and output-to-hidden layer to change. Because this article
makes use of stochastic learning the training error is calculated per
pattern using the sum square error (SSE) function, as follows

𝑆𝑆𝐸𝑝 =
𝑛𝑘
∑

𝑘=0
(𝑡𝑝,𝑘 − 𝑜𝑝,𝑘)2 (10)

where 𝑝 is a pattern, 𝑜𝑝,𝑘 is the value of the 𝑘th output after pattern
𝑝 has been evaluated, and 𝑡𝑝,𝑘 is the 𝑘th target of pattern 𝑝 (Ertel,
2011; Alpaydın, 2010). The contribution to the training error of each
neuron, i.e., the error signal, is calculated using the relevant derivative
calculations. The error signals are augmented with the learning rate and
momentum to calculate the change in weight required for each neuron.

Note that because of the piecewise nature of 𝑓𝑅𝑒𝐿, the activation
unction is not differentiable at 0 (Maas et al., 2013; van Wyk and En-
elbrecht, 2016; Sonoda and Murata, 2017). In practice, when training
ith BP, 𝑓 ′

𝑅𝑒𝐿 is considered to be 1 if 𝑛𝑒𝑡𝑜𝑘 > 0, otherwise 𝑓 ′
𝑅𝑒𝐿 is 0 (van

Wyk and Engelbrecht, 2016; Maas et al., 2013; LeCun et al., 2015).
To incorporate WD or WE regularisation into the BP learning al-

gorithm is a relatively straightforward process (Bosman et al., 2018;
Weigend et al., 1990). The regularisation error function, Eq. (4), with
𝐸𝑟 as the chosen penalty term, i.e., Eq. (5) or Eq. (6), must be used
as the new training error function instead of 𝑆𝑆𝐸𝑝. To do so, the
partial derivative of the product between the regularisation coefficient
(𝜆𝑟) and the penalty term, was calculated and incorporated into the
weight adjustment calculations. The reader is referred to Appendix D
in the supplementary material of this article for more information on

the backpropagation learning algorithms.

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

w
2
m
s
K
r
a

m
t
t
w
E

6

l
f

c
s
o

B

7

c
f
R

6.3. Quantum particle swarm optimisation learning algorithms

The QPSO weights adjustment algorithm in this article utilises the
MSE, calculated as,

𝑀𝑆𝐸 =

∑

|𝐷|

𝑝=1
∑𝑛𝑘

𝑘=1(𝑡𝑝,𝑘 − 𝑜𝑝,𝑘)2

|𝐷| × 𝑛𝑘
(11)

here 𝐷 = {(𝑧𝑝, �⃗�𝑝)|𝑝 = 1,… , |𝐷|} (Rakitianskaia and Engelbrecht,
012; Twomey and Smith, 1995). The algorithm uses the Von Neu-
ann topology to select the neighbourhood best particle (Rakitian-

kaia, 2011; Rakitianskaia and Engelbrecht, 2012; Engelbrecht, 2007;
ennedy and Mendes, 2002; van Wyk and Engelbrecht, 2016). The
eader is referred to Appendix E in the supplementary material of this
rticle for more information on the QPSO learning algorithm.

Application of WD and WE regularisation to QPSO weights adjust-
ent algorithm requires even fewer modifications than needed with

he BP learning algorithms. Regularisation is achieved by changing the
raining error function from MSE to the regularisation error, Eq. (4),
ith 𝐸𝑡 as MSE and 𝐸𝑟 as the chosen penalty term, i.e., Eq. (5) or
q. (6).

.4. Novel streamed data classifiers

By combining the proposed architecture and four regularisation
earning algorithms, the following four streamed data classifiers are
ormed:

• BP-WD, which uses the WD BP-based learning algorithm to train
the FFNN. BP-WD has three tunable control parameters, i.e. 𝛼, 𝜂
and 𝜆𝑟.

• BP-WE, which uses the WE BP-based learning algorithm to train
the FFNN. BP-WE has four tunable control parameters, i.e. 𝛼, 𝜂,
𝜆𝑟 and 𝑤0.

• QPSO-WD, which uses the WD QPSO-based learning algorithm to
train the FFNN. QPSO-WD has seven tunable control parameters,
i.e. 𝜔, 𝑐1, 𝑐2, 𝑛𝑝, distribution 𝑑, 𝑟 and 𝜆𝑟.

• QPSO-WE, which uses the WE QPSO-based learning algorithm to
train the FFNN. QPSO-WE has eight tunable control parameters,
i.e. 𝜔, 𝑐1, 𝑐2, 𝑛𝑝, distribution 𝑑, 𝑟, 𝜆𝑟 and 𝑤0.

Because of the online learning requirement for SDCPs, no stopping
onditions are used to terminate the learning algorithms of the four
treamed data classifiers. However, each training set is only trained for
ne epoch to enforce the one-pass requirement.

Note that the term proposed classifiers is used to refer to BP-WD,
P-WE, QPSO-WD and QPSO-WE for the remainder of this article.

. Benchmark streamed data classification problems

This article uses a suite of 80 SDCPs to empirically evaluate the
lassifiers proposed in Section 6. The suite is broken up equally into
ive problem domains, namely (Street and Kim, 2001; Harries, 1999;
akitianskaia and Engelbrecht, 2009, 2012; Ellis et al., 2021):

• Moving hyperplane. An artificial domain that splits a 10 dimen-
sional input space into two classes using a hyperplane that moves
over time.

• Dynamic sphere. An artificial domain that splits a three di-
mensional input space into two classes using a hypersphere that
changes over time.

• Sliding thresholds. An artificial domain that splits a two di-
mensional input space into three classes using two parallel lines
that change over time. This problem domain also simulates the
presence of irrelevant inputs.

• SEA concepts. An artificial domain that splits a three dimensional
input space into two classes using a constraint that changes over
time. This problem domain simulates the data sets that contain
noisy patterns at a level of 10%.
8

Table 2
Benchmark problems labels.

𝒘𝒇

1 2 5 10

1 A1 A2 A3 A4

𝒘𝒔 2 B1 B2 B3 B4

5 C1 C2 C3 C4

10 D1 D2 D3 D4

Table 3
3-Layer FFNN architectures found by Rakitianskaia’s (Rakitianskaia, 2011).

Parameter Problem domain

Hyperplane Sphere Thresholds SEA Electricity

𝑛𝑖 10 3 2 3 6
𝑛ℎ 6 4 3 4 6
𝑛𝑘 1 1 3 1 1

• Electricity pricing. A real world domain that splits a six dimen-
sional input space, based on the electricity pricing data from the
state of New South Wales, Australia, into two classes.

These benchmark problems were used because the characteristics of
the suite have been extensively analysed (Ellis et al., 2021; Rakitian-
skaia, 2011; Rakitianskaia and Engelbrecht, 2012). Ellis et al. (2021)
labelled each benchmark problem in a problem domain according to
Table 2. A4, D1, D4 and A1 represent the four extreme benchmark
problems in each problem domain (Ellis et al., 2021). Furthermore, El-
lis et al. (2021) identified A1 problems as streamed benchmark problems,
because the sliding window algorithm did not alter the occurrence of
the patterns in the data set of the problem domain.

Rakitianskaia (2011) determined optimised 3-layer FFNNs archi-
tectures for each of the five problem domains. The optimal 𝑛ℎ found
in Rakitianskaia (2011) is, thus, a good basis for determining the over-
parametrised architectures that were used in this article. This article
used over-parametrised architectures that were obtained by multiplying
the optimised 𝑛ℎ value with a factor of two. Table 3 lists the optimal
architecture configurations determined by Rakitianskaia (2011).

8. Performance measures

The classifiers proposed in Section 6 were empirically compared to
a set of baseline classifiers. Section 8.1 presents the baseline classifiers
used in this article. Furthermore, the performance measures used in
this article needed to make provision for the design requirements of
SDCP. Section 8.2 discusses the methodology used to measure the per-
formance of a streamed data classifier. Because streamed data classifiers
have a variety of aspects to consider, a broad range of performance
categories needs to be analysed. Sections 8.4 to 8.10 discusses the var-
ious measures used in this article to measure the saturation, accuracy,
structural complexity, computational complexity, control parameter
impact, weight distribution, and swarm diversity of the classifiers.

8.1. Baseline classifiers

The following two non-regularised versions were used to compare
the four proposed classifiers against:

• BP-N, which uses BP learning algorithm to train the proposed
architecture (presented in Section 6.1). BP-N has two control
parameters that need to be tuned, namely 𝛼, 𝜂.

• QPSO-N, which uses Algorithm 2 to train the proposed archi-
tecture (presented in Section 6.1). QPSO-N has six control pa-
rameters that need to be tuned, namely 𝜔, 𝑐1, 𝑐2, 𝑛𝑝, 𝑑, 𝑟. In
the comparisons of QPSO-N with QPSO-WD and QPSO-WE, the
control parameters 𝜔, 𝑐1, 𝑐2, 𝑛𝑝 and 𝑑 were fixed in QPSO-N to
the same values used for QPSO-WD and QPSO-WE.

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

p
r
u
m
(

8

r

𝜑

w
t
𝑏

z
t
b
a
o

h
p
v
a
i
p
u
D

t
s
a
m
v
t

b
g
o

𝜑

w
Note that for the remainder of this article, the term BP classi-
fiers refers to the BP-N, BP-WD and BP-WE classifiers. Likewise, the
term QPSO classifiers refers to the QPSO-N, QPSO-WD and QPSO-WE
classifiers.

8.2. Measuring performance of streamed data classifiers

Performance measures of a streamed data classifier need to consider
the following two issues (Ellis et al., 2021; Morrison, 2003):

1. Multiple environments. That is, performance may be different
for each environment instance. Thus, the metric needs to be
applied per epoch and averaged. The collective mean of an
error, �̄�𝑝𝑟𝑜𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑚𝑒𝑡𝑟𝑖𝑐 , is commonly used in literature to address
this issue (Morrison, 2003; Rakitianskaia and Engelbrecht, 2012;
Ellis et al., 2021).

2. Only one pattern is available per epoch. That is, the one-pass re-
quirement, bounded memory requirement, and sequential avail-
ability of SDCPs force the training and generalisation errors to
be calculated using the same pattern during an epoch. General-
isation errors must therefore be calculated before the FFNN is
trained with the pattern, and training errors must be calculated
afterwards.

Because certain performance measures in literature require a set of
atterns, this article created a special set that consisted of the 30 most
ecent patterns. The set is called the ‘‘memory set’’, and is exclusively
sed for the purpose of analysis. The memory set is based on the
echanics of the predictive sequential error suggested by Gama et al.

2009).

.3. Saturation performance measures

Rakitianskaia and Engelbrecht (2015a) proposed the following met-
ic to measure saturation in the hidden neurons,

𝑏𝑤 =
∑𝐵

𝑏=1 |�̄�
′
𝑏|𝑓𝑏

∑𝐵
𝑏=1 𝑓𝑏

(12)

here 𝑓𝑏 is the frequency, i.e. number of hits, for bin 𝑏, 𝐵 represents
he number of activation value bins created using the binning width
𝑤, and �̄�′𝑏 is the average activation value, scaled to the range [−1, 1].

The saturation level measured by 𝜑𝑏𝑤 is in the range [0, 1]. If 𝜑𝑏𝑤 is
ero, then there is no saturation. On the other hand, if the value is one,
hen the neurons are completely saturated (Rakitianskaia and Engel-
recht, 2015a). A value less than 0.5 indicates a normal distribution of
ctivation values, while a value of 0.5 indicates a uniform distribution
f activation values (Rakitianskaia and Engelbrecht, 2015a).

Because Eq. (12) requires bounded activation functions, the metric
ad to be altered for it to work with ReLU activation functions. An up-
er bounds parameter was introduced in order to bound the activation
alues. The value of the upper bound parameter estimates the level of
ctivation that would cause ReLU hidden neurons to saturate the FFNN
n a detrimental way. No research on what bounds would be appro-
riate for ReLU activation functions has been done, therefore, several
pper bounds were investigated (Rakitianskaia and Engelbrecht, 2015a;
ennis et al., 2020).

Rakitianskaia and Engelbrecht (2015b) argued that saturation in
he output neurons was necessary for classification, but premature
aturation in the hidden layers was unwanted. Thus, the smaller the
ctivation values in the hidden neurons, the lower the chance of pre-
ature saturation (Rakitianskaia and Engelbrecht, 2015b). Reasonable

alues for the upper bound are, therefore, values greater or equal to
he upper bounds of the active ranges of the output neurons.

Three upper bounds, i.e. 1, 5 and 10, were chosen near to the upper
ound of the active ranges of the output neurons, i.e. 1. To obtain a sin-
le saturation metric this article combined the three parametrisations
f Eq. (12), as follows:
9

0.1 = min{𝜑0.1,1, 𝜑0.1,5, 𝜑0.1,10} (13)
here 𝜑0.1,1, 𝜑0.1,5 and 𝜑0.1,10 is calculated at the start of an epoch. The
binning width (𝑏𝑤) was set to 0.1 in all three cases to ensure that all
three measures had 10 or more bins, as recommended by Rakitianskaia
and Engelbrecht (2015a). The minimum of 𝜑0.1,1, 𝜑0.1,5 and 𝜑0.1,10 was
used, because 𝜑0.1,1, 𝜑0.1,5 and 𝜑0.1,10, will not necessarily saturate at
the same time. Eq. (12) is generally applied to a set of patterns, thus
for the purpose of this article two saturation measures were utilised:
𝜑𝑔 , which is 𝜑0.1 applied to the generalisation set, and 𝜑𝑚, which is
𝜑0.1 applied to the memory set.

8.4. Accuracy performance measures

MSE, given by Eq. (11), and percentage correct classifications (PCC)
were used evaluate accuracy performance (Twomey and Smith, 1995;
Rakitianskaia, 2011):

𝑃𝐶𝐶 =

∑

|𝐷|

𝑝=1 𝑦𝑝
|𝐷|

× 100 (14)

where 𝑦𝑝 is defined as

𝑦𝑝 =

{

1, if �⃗�𝑝 = 𝑜𝑝
0, otherwise

(15)

Note that MSE measures the error magnitude, whereas PCC measures
the correct pattern classification (Twomey and Smith, 1995).

The accuracy of the classifiers was measured using the following
five metrics:

1. 𝑀𝑆𝐸 at the start of an epoch, 𝑀𝑆𝐸𝑔 .
2. 𝑀𝑆𝐸 based on the memory set, 𝑀𝑆𝐸𝑚. 𝑀𝑆𝐸𝑚 was measured to

determine how well the classifiers remembered concepts learnt
from the last 30 patterns in terms of MSE.

3. 𝑀𝑆𝐸 at the end of an epoch, 𝑀𝑆𝐸𝑡.
4. 𝑃𝐶𝐶 at the start of an epoch, 𝑃𝐶𝐶𝑔 .
5. 𝑃𝐶𝐶 based on the memory set, 𝑃𝐶𝐶𝑚. 𝑃𝐶𝐶𝑚 was measured to

determine how well the classifiers remembered concepts learnt
from the last 30 patterns in terms of PCC.

Note that PCC based on the training set was not measured, because PCC
was not used to train the classifiers.

8.5. Structural complexity performance measures

Structural complexity refers to the number of neurons and synapses
in a FFNN (Guan and Li, 2001; Liu et al., 2002; Bosman et al., 2018;
Rakitianskaia and Engelbrecht, 2014b; Engelbrecht, 2001). Because of
regularisation, the proposed classifiers change the structural complexity
by reducing weight values towards zero. Thus, the optimal structural
complexity and effective structural complexities need to be compared.

The optimal structural complexity was considered to be the struc-
tural complexity of the optimal architectures presented in Table 3. The
effective structural complexity of a 3-layer FFNN can be calculated if
a smaller architecture that has similar accuracy can be found (Engel-
brecht, 2001). Pruning algorithms are well-suited for this purpose. The
effective structural complexity was calculated by adapting the variance
nullity pruning algorithm by Engelbrecht (2001).

Variance nullity testing is a statistical hypothesis testing technique,
which tests whether the effect that a change in the weight of a synapse
has on the outcomes of a ANN, i.e. the sensitivity of a synapse, varies
statistically significantly across a set of patterns (Engelbrecht, 2001). If
the variance of the sensitivity is not significant, i.e., the test statistic is
less than the critical value, then the synapse is considered to be irrel-
evant and can be pruned (Engelbrecht, 2001). Note that the memory
set was used for these performance measures. The reader is referred to
the work by Engelbrecht (2001) for more information on the variance
nullity pruning algorithm and its implementation.

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

e
𝜎
d
𝜎
e
t
a

c
b

8

t

𝛺

w
a

𝑛

w
o

F
m
t

l

𝛺

w
t
1

𝜌

w

𝜑

w
d
T
d
o
o

t

t
t
l
t

This article used the variance nullity testing in the following way:
The effective number of synapses (𝑛𝑠𝑒) was calculated by counting
the number of weights that do not have a test statistic below the
critical value. The effective number of neurons (𝑛𝑛𝑒) was determined
by pruning the FFNN using the following two steps:

1. First, the irrelevant synapses were removed in such a way that
the outputs of the FFNN will always produce values. In other
words, each output must at a minimum be connected to either
an input neuron or a bias neuron, directly or indirectly.

2. Second, all neurons that are not outputs, and do not have any
incoming and outgoing synapses left after the first step, must be
removed.

The number of remaining neurons is 𝑛𝑛𝑒 . The pruning algorithm, how-
ver, needs to be configured in terms of 𝛼𝑣, the confidence level, and
2
0 , the maximum amount of variance that an irrelevant synapse can
isplay. Based on the recommendations made by Engelbrecht (2001),
2
0 was set to 0.0001 and 𝛼𝑝 was set to 0.01. Furthermore, to be
ffective, the pruning algorithm requires a set of patterns. In this article,
he pruning algorithm made use of the memory set and was executed
t the end of every epoch to determine 𝑛𝑠𝑒 and 𝑛𝑛𝑒 .

Using the above method for determining the effective structural
omplexity, the structural complexity of the classifiers was measured
y the following two oversize ratios:

1. The hidden neuron oversize ratio, calculated as

𝑛ℎ𝑜𝑟 =
𝑛ℎ𝑒
𝑛ℎ𝑜

(16)

where 𝑛ℎ𝑒 is the number of hidden layer neurons obtained by
the adapted variance nullity pruning algorithm, and 𝑛ℎ𝑜 is the
number of hidden layer neurons, including bias neurons, in the
optimal architecture for the particular problem domain. Because
of the oversize factor of 2, 𝑛ℎ𝑜𝑟 ∈ [0, 2]. If 𝑛ℎ𝑜𝑟 = 1, then the
optimal and effective architecture contained the same number
of hidden neurons.

2. The hidden neuron oversize ratio, calculated as

𝑛𝑠𝑜𝑟 =
𝑛𝑠𝑒
𝑛𝑠𝑜

(17)

where 𝑛𝑠𝑒 is the number of synapses in the architecture obtained
by the adapted variance nullity pruning algorithm, and 𝑛𝑠𝑜 is the
number of synapses in the optimal architecture for the particular
problem domain. Because the oversize factor of 2 also doubled
the number of synapses, 𝑛𝑠𝑜𝑟 ∈ [0, 2]. If 𝑛𝑠𝑜𝑟 = 1, then the
optimal and effective architecture contained the same number
of synapses.

.6. Computational complexity performance measures

The lower bound of the computational complexity of the classifiers
o process one pattern was estimated as follows:

𝐹𝐹𝑁𝑁 = 2𝑛𝑎 + 𝑛𝑠 (18)

here the number of synapses represented by 𝑛𝑠, and the number of
ctivated neurons, 𝑛𝑎, is given by

𝑎 = 𝑛𝑛 − (𝑛𝑖 + 𝑛𝑏)

here 𝑛𝑏, 𝑛𝑖, and 𝑛𝑛 represents the number of bias neurons, the number
f input neurons, and the number of neurons, respectively.

The lower bound of the effective computational complexity of the
FNNs, 𝛺𝐹𝐹𝑁𝑁𝑒

, was calculated by applying Eq. (18) to the effective
odels produced by the adapted variance nullity pruning algorithm at

he end of every epoch.
10

a

The effective reduction in computational complexity due to the
earning algorithm was derived from 𝛺𝐹𝐹𝑁𝑁 and 𝛺𝐹𝐹𝑁𝑁𝑒

as follows:

𝑟 = 100 ×
𝛺𝐹𝐹𝑁𝑁 −𝛺𝐹𝐹𝑁𝑁𝑒

𝛺𝐹𝐹𝑁𝑁
(19)

where 𝛺𝑟 represents the percentage by which the learning algorithm
reduced the computational complexity of the classifier to process one
pattern. The remainder of this article refers to 𝛺𝑟 as the complexity
reduction measure.

8.7. Overfitting performance measures

Overfitting can be detected by the trigger,

𝑀𝑆𝐸𝑔 > ̄𝑀𝑆𝐸𝑔 + 𝜎𝑀𝑆𝐸𝑔
(20)

where ̄𝑀𝑆𝐸𝑔 is the moving average of 𝑀𝑆𝐸𝑔 and 𝜎𝑀𝑆𝐸𝑔
is the

standard deviation of the 𝑀𝑆𝐸𝑔 used to calculate ̄𝑀𝑆𝐸𝑔 (Engelbrecht,
2007).

The moving average period for ̄𝑀𝑆𝐸𝑔 is specified in epochs. The
larger the moving average period is, the less sensitive the detection
method becomes to fluctuations in 𝑀𝑆𝐸𝑔 , because the moving average
is including more generalisation errors. Large moving average periods
can result in false negatives when detecting overfitting. On the other
hand, the smaller the moving average period is, the more sensitive the
method becomes. Too small moving average periods can lead to false
positives when detecting overfitting. The moving average period thus
controls the overfitting detection sensitivity (Engelbrecht, 2007).

Two disadvantages of Eq. (20) are that the equation does not
consider the training error, 𝑀𝑆𝐸𝑡, and that the equation introduces an
additional control parameter that is problem dependent (Engelbrecht,
2007).

Röbel (1994) suggested an alternative overfitting detection trigger
which is defined as

𝜌(𝑡) > 𝜑𝜌(𝑡) (21)

here 𝜌(𝑡) is called the generalisation factor at epoch 𝑡, and 𝜑𝜌(𝑡) is
he threshold at epoch 𝑡. The two terms are defined as follows (Röbel,
994):

(𝑡) =
𝑀𝑆𝐸𝑔(𝑡)
𝑀𝑆𝐸𝑡(𝑡)

(22)

ith

𝜌(𝑡) = 𝑚𝑖𝑛{𝜑𝜌(𝑡 − 1), �̄� + 𝜎𝜌, 1.0} (23)

here the moving average of 𝜌 is given by �̄�, and 𝜎𝜌 is the standard
eviation of the moving average (Röbel, 1994; Engelbrecht, 2007).
he overfitting detection approach therefore results in overfitting being
etected when the generalisation error is larger than the training error,
r when the two errors are moving significantly away from each
ther (Röbel, 1994; Engelbrecht, 2007).

The above measures were used in this article to create two overfit-
ing metrics as follow:

1. The boolean result of the overfitting constraint equation (21),
𝑂𝜌, at the end of every epoch. This measure returned 1 if a
classifier was overfitting for an epoch, otherwise 0 was returned.

2. The boolean result of the overfitting constraint equation (20),
𝑂𝑀𝑆𝐸𝑔

, at the start of every epoch. This measure returned 1 if a
classifier was overfitting for an epoch, otherwise 0 was returned.

Both 𝑂𝜌 and 𝑂𝑀𝑆𝐸𝑔
make use of moving averages. To ensure that

he moving average is smooth enough for the data stream in question,
he moving average period should be chosen in accordance to the
ength of the data stream. A moving average period of 3% the length of
he data stream was used. This allowed the measures to be comparable

cross different SDCPs, regardless of the length of the data streams.

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

|

w
o

c
t
n

8

i
a
e

t
q
t
2
t
(
c
t
l
t
2
E

8

t
s
S
a
c
2
m
s

d
a

s

t
B
T
W
p

p
𝑐
f
a
a
s
e
l
t
E
b

t
o
v
a
o
l
i

8.8. Control parameter impact on performance measures

The more tunable control parameters there are, the more parameter
configurations need to be evaluated during parameter tuning. Another
factor is the size of the value set used for each control parameter.
The larger a value set, the more parameter configurations there are
that need to be tested. The number of control parameter configurations
tested for a classifier (|𝐷𝑐 |) was calculated as follows:

𝐷𝑐 | =
𝑛𝑐
∏

𝑖=1
(|𝑖|) (24)

here 𝑛𝑐 is the number of tunable control parameters, and 𝑖 is the set
f potential values for the 𝑖th control parameter.

The impact of the control parameters on saturation, accuracy, and
omplexity performance of the classifiers was analysed by comparing
he differences in the performance measures to the differences in the
umber of control parameter configurations of the classifiers.

.9. Weight distribution performance measures

The regularisation algorithms maintain model complexity by alter-
ng the weight values (Bosman et al., 2018; Weigend et al., 1990). This
rticle therefore recorded the weights frequency distribution during
ach epoch.

The weights frequency distribution, 𝛯𝑤, was constructed by binning
he weights using a binning width at the end of every epoch. The fre-
uency of each bin was calculated by counting the number of weights
hat fall into the range of that bin (Rakitianskaia and Engelbrecht,
015a, 2014b). The binning width was set to 0.1 for the weights in
he range [−1, 1], and 1 for the weights in the ranges of [−5,−1) and
1, 5]. Any weights larger or smaller than the covered ranges were
ounted under their nearest bin. These bin widths were used because
he values of weights in a FFNN with regularisation tended to be
ess than one, and a saturated FFNN tended to have weight values
hat were significantly larger than one (Rakitianskaia and Engelbrecht,
014b; Krogh and Hertz, 1991; Bosman et al., 2018; Rakitianskaia and
ngelbrecht, 2015b,a).

.10. Swarm diversity performance measures

Swarm diversity describes how different the particles’ positions in
he swarm are, i.e. the spread of the particles in the 𝑁-dimensional
earch space (Engelbrecht, 2007; Olorunda and Engelbrecht, 2008).
warm diversity indicates the exploration–exploitation states of a PSO,
nd provides a means to analysis how a PSO algorithm adapts to
hanges over time (Olorunda and Engelbrecht, 2008; Rakitianskaia,
011; Blackwell et al., 2008). In the context of PSOs, exploration
anifests in diverse swarms and exploitation manifests in non-diverse

warms (Olorunda and Engelbrecht, 2008; Rakitianskaia, 2011).
Swarm diversity, , can be measured as the average Euclidean

istance between particles and the swarm’s centre, as follows (Olorunda
nd Engelbrecht, 2008):

=

∑𝑛𝑝
𝑖=1

√

∑𝑁
𝑛=1 (𝑥𝑖𝑗 − �̄�𝑗)2

𝑛𝑝
(25)

where 𝑛𝑝 is the number of particles in the swarm; 𝑥𝑖𝑗 is the 𝑗th element
of the position vector of particle 𝑖 in the swarm; and �̄�𝑗 is the 𝑗th
element of the average position vector calculated over all the particle
positions in the swarm.

9. Benchmark process

Because the empirical study in this article compares different clas-
sifiers, the control parameters of the classifiers needed to be optimised,
and the classifiers themselves needed to be benchmarked. Section 9.1
describes the method used to optimise the control parameters of the
classifiers. Section 9.2 describes how the performance of the classifiers
was evaluated.
11
Table 4
Control parameter values that were tested.
Parameter Value sets

BP parameters

𝛼 [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
𝜂 [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

QPSO parameters

𝑛𝑝 30
𝑈 Linear decreasing
𝑟 [0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3.5, 5.0]
𝑟1 and 𝑟2 range [0, 1]
𝑐1 and 𝑐2 1.496180
𝜔 0.729844

WD parameters

𝜆𝑟 [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5]

WE parameters

𝜆𝑟 [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5]
𝑤0 [0.005, 0.0075, 0.01, 0.025, 0.05, 0.1, 0.5, 1.0]

9.1. Control parameter tuning methodology

Each of the classifiers used in the investigation had control param-
eters that required to be tuned. Various studies (Bosman et al., 2018;
Rakitianskaia and Engelbrecht, 2014b; Harrison et al., 2015; Eberhart
and Shi, 2000; LeCun et al., 1998) have indicated good ranges for
the control parameters. These ranges were used to construct the value
sets for the purpose of control parameter tuning. Furthermore, it was
assumed that the control parameters were dependent on each other and
the problem domain. To address these dependencies the tuning process
tested all of the control parameter configurations for each classifier on
each of the streamed benchmark problems.

Because the classifiers made use of stochastic learning algorithms,
the collective mean of 𝑀𝑆𝐸𝑔 , �̄�𝑀𝑆𝐸𝑔

, for each combination was sam-
pled 30 times to ensure a valid statistical sample (Helbig and Engel-
brecht, 2013). The optimal parameter configuration for a particular
classifier in particular problem domain was therefore the parame-
ter configuration that resulted in the lowest average �̄�𝑀𝑆𝐸𝑔

for the
treamed benchmark problem of the problem domain.

The control parameter values sets used by the control parameter
uning process are listed in Table 4. The BP value sets were used by the
P classifiers. The QPSO value sets were used by the QPSO classifiers.
he WD value sets were used by the WD-specific parameters in BP-
D and QPSO-WD. The WE value sets were used by the WE-specific

arameters in BP-WE and QPSO-WE.
The architecture control parameters 𝑛𝑖, 𝑛ℎ, and 𝑛𝑜 were set per

roblem domain as discussed in Section 7. The control parameters 𝑤,
1, 𝑐2, 𝑑, and 𝑛𝑝 were fixed because the values in Table 4 have been
ound to be optimal or de facto in ANN and PSO literature (Eberhart
nd Shi, 2000; Engelbrecht, 2007; Harrison et al., 2015; Rakitianskaia
nd Engelbrecht, 2014a; van Wyk and Engelbrecht, 2016). The value
ets of the remaining control parameters were selected in a way to
nsure that the ranges of the control parameter values, suggested by
iterature, were uniformly covered. Values for 𝛼 and 𝜂 were restricted
o the range of [0, 1] as suggested by BP literature (Engelbrecht, 2007;
rtel, 2011; LeCun et al., 1998). The ranges for 𝛼 and 𝜂 were covered
y using increments of 0.1.

QPSO literature suggests the use of the linearly-decreasing distribu-
ion with small 𝑟 values should be used when sampling the positions
f quantum particles (Harrison et al., 2015). This prevents potentially
ery random position vectors from causing the swarm to search haphaz-
rdly (Harrison et al., 2015). The proposed range, thus, focused mostly
n small values. Harrison et al. (2015) investigated optimisation prob-
ems and not classification problems, some large values were included
n the value set of 𝑟.

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

t

u
t

Table 5
Benchmark parameters for classifiers.

Parameter Problem

Hyperplane Sphere Thresholds SEA Electricity

BP-N

𝛼 0.1 0.2 0.1 0.1 0.1
𝜂 0.1 0.1 0.1 0.1 0.3

BP-WD

𝛼 0.1 0.2 0.1 0.1 0.1
𝜂 0.1 0.1 0.1 0.1 0.3
𝜆𝑟 0.0001 0.0001 0.0001 0.0001 0.0001

BP-WE

𝛼 0.1 0.2 0.1 0.1 0.1
𝜂 0.1 0.1 0.1 0.1 0.1
𝜆𝑟 0.01 0.0001 0.0005 0.0001 0.01
𝑤0 0.005 0.05 0.5 0.05 0.05

QPSO-N

𝑟 5.0 5.0 0.1 5.0 5.0

QPSO-WD

𝑟 0.1 0.1 0.1 0.1 0.25
𝜆𝑟 0.5 0.01 0.01 0.001 0.01

QPSO-WE

𝑟 0.1 0.1 0.25 0.1 0.25
𝜆𝑟 0.05 0.01 0.01 0.01 0.1
𝑤0 0.5 0.5 0.5 0.1 1.0

To allow comparison between the classifiers using WD and WE,
he same regularisation coefficient (𝜆𝑟) value set was used for BP-

WD, QPSO-WD, BP-WE and QPSO-WE. Bosman et al. (2018) recom-
mended that, when using weights elimination, 𝜆𝑟 should use the range
[0.001, 0.1]. Hence, the value set chosen for 𝜆𝑟 focused more around
the range [0.001, 0.1], but allowed for values outside the range also
to be considered, because WD might require such values for SDCPs.
Furthermore, Bosman et al. (2018) recommended that 𝑤0 should be set
to 0.01. Hence, the value set chosen for 𝑤0 focused on values around
0.01.

The optimal parameter configurations found for each classifier in
each problem domain are presented in Table 5.

9.2. Benchmarking methodology

Next, the six classifiers were benchmarked using the optimal param-
eter configurations in Table 5. The benchmarking simulations measured
the performance of the six classifiers on the 80 benchmark problems,
using the performance measures discussed in Section 8.

Each performance measure was sampled 30 times per classifier-
benchmark pair, i.e. the combination of a classifier and a benchmark
problem. Performance measures were calculated for each epoch in each
run, for each classifier-benchmark pair.

10. Analysis of regularised feed forward neural networks as strea-
med data classifiers

The results obtained from the benchmarking process in Section 9.2
were analysed using the methods presented in Section 10.1. The results
are discussed in Section 10.2. Lastly, Section 10.3 summaries the find-
ings made in Section 10.1 by evaluating the primary objective of the
study.

10.1. Result analysis methodology

The benchmarking results were analysed using descriptive statistics,
Mann–Whitney-U-based ranking, and performance trends. Each of these
analysis techniques are discussed in Sections 10.1.1, 10.1.2, and 10.1.3,
12

respectively.
10.1.1. Descriptive statistics
The performance measures of each benchmark run was summarised

using the collective mean approach. In the case of the weights fre-
quency distribution (𝛯𝑤), each frequency bin was summarised using
the collective mean approach to get the collective mean of the weights
frequency distribution, �̄�𝛯𝑤

, for each run. Afterwards, the collective
means for each performance measure were aggregated over the 30
runs for each classifier-benchmark pair using the descriptive statistical
measures mean and standard deviation. The article notates the mean
(�̄�) and standard deviation (𝜎) using the notation �̄� ± 𝜎.

The benchmark results were further aggregated on four additional
levels:

• Classifier-domain level per performance measure. This aggregation
level grouped results of the classifiers for a particular performance
measure by the benchmark problem domains, i.e. the hyperplane,
sphere, thresholds, SEA, and electricity domains.

• Classifier-difficulty level per performance measure. This aggre-
gation level grouped results of the classifiers for a particular
performance measure by the benchmark problem difficulties.

• Classifier-environment level per performance measure. This ag-
gregation level grouped results of the classifiers for a particular
performance measure by the problem environments, i.e. abrupt,
progressive, and chaotic. Quasi-static was left out as there were
no quasi-static benchmark problems in the benchmark problem
suite that was used.

• Classifier-measure level per classifier. This aggregation level
grouped results of the classifiers by performance measure over
all the benchmark problems.

10.1.2. Mann–Whitney-U-based ranking
A series of Mann-Whitney U (MWU) pair-wise comparisons were

done to see if the performance of one classifier was significantly dif-
ferent from another classifier on the same benchmark problem. If the
two classifiers were found to be significantly different from each other,
then the classifier whose performance measure had a more favourable
median was considered the winner. Otherwise, the classifiers were con-
sidered tied. A two-tailed MWU test was used, because the hypothesis
test was based on weather or not the performance of the classifiers
differed statistically. The MWU tests were performed using a confidence
interval of 95%.

The total number of wins, ties and losses for each classifier were
tallied per performance measure. The classifier with the least number
of losses for the performance measure was the winner and was assigned
the highest rank, i.e. 1. If there was a tie between the number of
losses, then the classifier with more wins was considered better. This
ranking approach was adopted from Helbig and Engelbrecht (2013).
The notation winning percentage∕drawing percentage∕losing percentage is
sed in this article to represent the MWU-based ranking results, where
he percentages were each calculated as follows:
number of wins/ties/losses

wins + ties + losses × 100

In the case where a rank was needed, the notation was extended as
follows: rank (winning percentage∕drawing percentage∕losing percentage).
If a classifier, for example, had the result 2(40∕50∕10), then the clas-
sifier was ranked second best out of the six classifiers. Furthermore,
the classifier won 40%, tied 50%, and lost 10% of the time in all the
pair-wise comparisons between the classifier and the other classifiers
in the pool. The MWU ranks should be compared to the ranks in the
same row of a results table.

10.1.3. Performance trends
Trend analysis was carried out on the various performance mea-

sures. The 30 run values of a performance measure per epoch were
averaged. It is possible that an epoch average could have infinitely large

values, because of its performance measure, e.g. swarm diversity. In

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.

a
m

t
a
s
m
t
p

t
m

1

r
r
f
a
c
r
t
c
i
c
a

r
F
m
t
a

u
t
s

r
g
a
w

Table 6
MWU-based ranking of the classifiers with regards to the performance measures (Wins/Ties/Losses percentages).

Measure Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

𝜑𝑔 2(65.25∕16.25∕18.50) 3(50.50∕15.50∕34.00) 1(70.00∕𝟏𝟐.𝟎𝟎∕18.00) 6(0.00∕0.00∕100.00) 4(52.25∕6.75∕41.00) 5(31.50∕10.50∕58.00)
𝜑𝑚 2(64.75∕16.75∕18.50) 3(50.25∕16.25∕33.50) 1(70.25∕𝟏𝟐.𝟐𝟓∕17.50) 6(0.00∕0.00∕100.00) 4(53.50∕6.00∕40.50) 5(31.25∕8.75∕60.00)

Saturation rank 2(65.00∕16.50∕18.50) 3(50.38∕15.88∕33.75) 1(70.13∕𝟏𝟐.𝟏𝟑∕17.75) 6(0.00∕0.00∕100.00) 4(52.88∕6.38∕40.75) 5(31.37∕9.63∕59.00)

𝑀𝑆𝐸𝑔 1(75.25∕𝟏𝟗.𝟓𝟎∕5.25) 3(59.00∕17.75∕23.25) 2(64.25∕19.50∕16.25) 6(0.00∕1.00∕99.00) 5(29.75∕3.25∕67.00) 4(37.75∕7.00∕55.25)
𝑀𝑆𝐸𝑚 1(78.50∕𝟏𝟖.𝟎𝟎∕3.50) 3(63.50∕17.50∕19.00) 2(64.50∕18.00∕17.50) 6(0.50∕1.00∕98.50) 5(21.25∕3.50∕75.25) 4(41.50∕2.50∕56.00)
𝑃𝐶𝐶𝑔 1(67.00∕𝟏𝟑.𝟕𝟓∕19.25) 2(46.50∕13.50∕40.00) 3(39.25∕14.00∕46.75) 4(46.00∕5.75∕48.25) 6(31.00∕2.00∕67.00) 5(43.75∕4.00∕52.25)
𝑃𝐶𝐶𝑚 1(72.00∕𝟏𝟎.𝟐𝟓∕17.75) 2(50.25∕9.25∕40.50) 4(44.00∕9.50∕46.50) 3(50.75∕6.25∕43.00) 6(24.00∕1.50∕74.50) 5(39.00∕3.25∕57.75)

Accuracy rank 1(73.19∕𝟏𝟓.𝟑𝟖∕11.44) 2(54.81∕14.50∕30.69) 3(53.00∕15.25∕31.75) 6(24.31∕3.50∕72.19) 5(26.50∕2.56∕70.94) 4(40.50∕4.19∕55.31)

𝑛𝑠𝑜𝑟 6(7.50∕15.50∕77.00) 5(15.25∕16.00∕68.75) 4(43.25∕6.25∕50.50) 1(94.25∕𝟑.𝟐𝟓∕2.50) 3(49.50∕10.75∕39.75) 2(58.75∕11.25∕30.00)
𝑛ℎ𝑜𝑟 5(6.75∕20.50∕72.75) 6(6.00∕20.00∕74.00) 4(27.00∕15.75∕57.25) 1(99.50∕𝟎.𝟓𝟎∕0.00) 3(58.00∕9.75∕32.25) 2(64.50∕10.00∕25.50)
𝛺𝑟 6(8.00∕14.75∕77.25) 5(14.50∕15.25∕70.25) 4(43.00∕6.25∕50.75) 1(94.50∕𝟒.𝟎𝟎∕1.50) 3(50.25∕9.00∕40.75) 2(60.00∕10.25∕29.75)

Complexity rank 6(7.42∕16.92∕75.67) 5(11.92∕17.08∕71.00) 4(37.75∕9.42∕52.83) 1(96.08∕𝟐.𝟓𝟖∕1.33) 3(52.58∕9.83∕37.58) 2(61.08∕10.50∕28.42)

Accuracy-complexity rank 4(40.30∕16.15∕43.55) 5(33.36∕15.79∕50.84) 3(45.38∕12.33∕42.29) 1(60.20∕𝟑.𝟎𝟒∕36.76) 6(39.54∕6.20∕54.26) 2(50.79∕7.34∕41.86)

Overall rank 2(48.53∕16.26∕35.20) 3(39.03∕15.82∕45.15) 1(53.63∕𝟏𝟐.𝟐𝟔∕34.11) 6(40.13∕2.03∕57.84) 5(43.99∕6.26∕49.76) 4(44.32∕8.10∕47.58)
a
s
t
o

r
r
b
f
t

o
t
h
o
h
c
1
t
i

the case where epoch averages had a potentially broad range of values,
e.g. [10−300, 10300], a logarithmic scale was used.

Next, all trend lines were smoothed using a moving average with
period of 3% of the number of patterns in the SDCP. This allowed a
etric’s performance trends to be compared across different SDCPs.

The sample standard deviation of the moving average was also de-
ermined for and 𝑀𝑆𝐸𝑔 . Two bands were formed along each moving
verage trend. The positive band represents the moving average plus the
tandard deviation. The negative band represents the moving average
inus the standard deviation. These bands represented the volatility of

he performance trend. A larger channel meant more volatility in the
erformance trend, and vice versa.

Lastly, the Pearson correlation coefficient was used to quantify
he level of linear correlation between the performance trends of the
easures, where needed.

0.2. Discussion

Table 6 presents the overall rankings for the classifiers based on the
esults of the MWU pairwise comparisons of the saturation levels, accu-
acy performance, and complexity performance. The rank of a classifier
or each of the three performance categories, i.e. saturation, accuracy
nd complexity, was determined using the average wins-ties-loses per-
entages of the classifier in each category. The accuracy-complexity
ank of the classifier was determined by averaging the average wins-
ies-loses percentages for the accuracy and complexity performance
ategories. The overall rank of the classifier was determined by averag-
ng the average wins-ties-loses percentages for the three performance
ategories. Note that Appendix A in the supplementary material of this
rticle presents the detailed results on which Table 6 is based.

Figs. 1 and 2 illustrate the rank categories, i.e. the saturation, accu-
acy, complexity, accuracy-complexity, and overall results of Table 6.
ig. 1 plots the inverted rank, i.e., a higher rank means better perfor-
ance, for the five rank categories against the classifiers. Fig. 2 plots

he MWU-comparison winning percentages for the five rank categories
gainst the classifiers.

Note that, due to the sheer volume of performance trend graphs
sed by this analysis, the graphs have been omitted from this sec-
ion. However, selected graphs are presented in Appendix B in the
upplementary material of this article for the benefit of the reader.

Remarks on accuracy. BP-N was the best overall at generalising and
emembering patterns in SDCPs. Furthermore, BP-N was capable of
ood levels of accuracy in various dynamic environments. This went
gainst the expectations of the study, because BP is considered a static
eights adjustment algorithm .
13
As expected, the MSE measures showed QPSO-N to have the worst
ccuracy on all the problem domains. On the contrary, the PCC mea-
ures showed that QPSO-N performed very well, at times surpassing
he PCC results of the regularised QPSO classifiers. These contrasting
bservations were most likely the result of complete saturation.

The idea of complete saturation is supported by the fact that PCC
esults were near to 12.5% in the thresholds domain, whereas the PCC
esults for the other four problem domains were near to 50%. This is
ecause the thresholds domain is the only problem domain among the
ive problem domains that had three target classes, while the rest had
wo target classes. Consider the following example:

If a two target class classifier is completely saturated, then the
utputs will always be one or the other class. Thus, a saturated two
arget class classifier has a 50% chance of being correct. Saturation,
owever, can only occur after some period of training. The probability
f the classifier classifying a pattern correctly should, therefore, be
igher than 50%. The same idea can be applied to a three target class
lassifier, however, the classifier should be able to classify more than
2.5% of the patterns correctly. The 12.5% is derived by multiplying
he 50% probabilities of the three mutually exclusive outputs together,
.e. 50% × 50% × 50%.

The above example also explains why the MSE values showed poor
performance for QPSO-N, because these values were at the extreme
values of zero and one most of the time.

Regularisation degraded the accuracy performance of the BP
weights adjustment algorithm. However, regularisation, especially WE,
improved the MSE performance of the QPSO weights adjustment algo-
rithm for SDCPs.

The low 𝑀𝑆𝐸𝑡 values of all the classifiers, except QPSO-N, showed
that the classifiers were able to learn the decision boundaries from
patterns in SDCPs accurately. However, the training and generalisation
accuracies of these classifiers showed signs of overfitting.

The regularised QPSO classifiers were not good at remembering,
whereas the BP classifiers were only able to forget some of what they
had learnt. This was evident in the memory accuracy trends, i.e. 𝑀𝑆𝐸𝑚
and 𝑃𝐶𝐶𝑚, that were usually worse than the generalisation accuracy
trends, i.e. 𝑀𝑆𝐸𝑔 and 𝑃𝐶𝐶𝑔 . Furthermore, the 𝑀𝑆𝐸𝑚 trends of the
regularised QPSO classifiers were most of the time significantly worse
than their 𝑀𝑆𝐸𝑔 and 𝑀𝑆𝐸𝑡 trends. Note that the 𝑀𝑆𝐸𝑡 trends came
close to zero in most problems, and in some cases stayed close to zero
for the duration of the problem. Both BP and QPSO weight adjustment
algorithms were unable to adjust the rates at which they learnt and
unlearned information as needed. A possible solution would be to
dynamically adjust 𝜂 for the BP classifiers and 𝜆𝑟 for all the classifiers.

The MSE and PCC performance measures provided conflicting con-

clusions. This was in-line with the findings by Twomey and Smith

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
Fig. 1. Classifier versus overall inverted MWU-Rank.
Fig. 2. Classifier versus overall MWU-Comparison winning percentages.
(1995) for static classification problems. Both measures should, there-
fore, be considered in studies that look at streamed data stream classi-
fiers.

The regularised QPSO classifiers showed potential at handling noisy
problems, while the BP classifiers did not. This was evident from
the SEA domain, where the regularised QPSO classifiers significantly
outperformed the BP classifiers according to the PCC measures, with
QPSO-WD and QPSO-WE achieving very similar results. Note that the
14
regularised QPSO classifiers did not fair so well on the real-world
electricity problem.

Furthermore, high dimensional SDCPs had a detrimental effect on
the accuracy of the regularised QPSO classifiers. This was not the case
for the BP classifiers.

The problem difficulty classification scheme proposed by Ellis et al.
(2021) was shown to be valid for SDCPs at a high-level. However,
QPSO-N did not follow the classification scheme. This was due to the

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
Fig. 3. 𝑃𝐶𝐶𝑔 versus problem difficulty scatter plot.
complete saturation of QPSO-N. Fig. 3 illustrates the above by plotting
the mean of the 𝑃𝐶𝐶𝑔 in Table A.9e against the problem difficulties for
each classifier.

SDCPs that have low temporal severity, e.g. abrupt, allowed classi-
fiers to achieve the best levels of accuracy. Thus, longer environment
instances allowed for better accuracy to be achieved, because there is
more time to learn.

Remarks on saturation. Of the three saturation components for 𝜑𝑣
and 𝜑𝑔 , the components using an upper bound of one, i.e. 𝜑0.1,1𝑣
and 𝜑0.1,1𝑔 , correlated the most with their corresponding saturation
measures for the problem domains. The average Pearson correlation
coefficients for 𝜑𝑣 and 𝜑0.1,1𝑣 was 0.9302 ± 0.2506. The average
Pearson correlation coefficients for 𝜑𝑔 and 𝜑0.1,1𝑔 was 0.9118 ± 0.2652.
The other two components, however, correlated significantly less with
a maximum average Pearson correlation coefficient of 0.7317 ± 0.3506.
This meant that the activation values of the classifiers were mostly in
the range [0, 1] most often regardless of classifier or problem domain.
Using only the 𝜑0.1,1 component as a measure of saturation in the hid-
den neurons should, therefore, be sufficient for streamed data classifiers
using ReLU activation functions.

The saturation measures, i.e. 𝜑𝑣 and 𝜑𝑔 , very closely reflected the
same outcomes for most of the problem domains. The SEA problem
domain, however, exhibited some minor, but negligible variations be-
tween 𝜑𝑣 and 𝜑𝑔 . The average Pearson correlation coefficient for the
two measures was 0.995 ± 0.0112. The very high correlation between
the two measures indicates that only one of the two measures need
to be measured. Because 𝜑𝑔 does not violate the one-pass requirement
of SDCPs, and is computationally less complex than 𝜑𝑣, it should be
preferred over 𝜑𝑣.

The complete saturation of QPSO-N was confirmed by the results of
the saturation measures. This supported the explanation as to why the
QPSO-N showed abnormal accuracy performance.

The BP classifiers saturated significantly less than the QPSO classi-
fiers the majority of the time. Thus the BP weights adjustment algo-
rithm was less prone to saturation than the QPSO weights adjustment
algorithm. However, the same was not true for the QPSO weights
adjustment algorithm. This was evident from the fact that QPSO-N
saturated almost completely all the time.

Regularisation helped to reduce saturation in both the regularised
BP classifiers and the regularised QPSO classifiers. Regularisation, how-
ever, was more successful in reducing saturation for the regularised
QPSO classifiers than for the regularised BP classifiers.
15
The behaviour of the regularisation approaches differed over dif-
ferent weights adjustment algorithms. BP-WE had the lowest levels of
saturation for the BP classifiers. QPSO-WD had the lowest levels of
saturation for the QPSO classifiers. However, WD caused the BP weights
adjustment algorithm to become less effective at handling saturation.

The regularised QPSO classifiers had significantly more consistent
saturation levels than the BP classifiers across the problem domains,
difficulties, and environments. Hence, the regularised QPSO classifiers
were better at controlling saturation in the hidden neurons than the BP
classifiers.

Noise caused the BP classifiers to saturate more. The presence of
noise or irrelevant information increased the rate of the saturation per-
formance trends for the BP classifiers, especially if there was prolonged
exposure to patterns with these characteristics. On the other hand,
noise caused the QPSO classifiers to saturate less.

The performance trends of the BP classifiers also showed that prob-
lem dimensionality effects saturation. That is, an increase in dimen-
sionality leads to saturation trends rising faster to higher levels, and
becoming more volatile. Lower dimensionality SDCPs were better for
the regularised QPSO classifiers than for the BP classifiers, and allowed
the regularised QPSO classifiers to perform closer to the BP classifiers
without the threat of rising saturation.

Furthermore, the problem difficulty results show that the more
patterns there were in the SDCP, the more saturated the classifiers be-
came. This relationship, however, was much more prevalent for the BP
classifiers than for the QPSO classifiers. On the other hand, the problem
environment results showed that as temporal severity decreased and
spatial severity increased, the more saturated the classifiers became.
The BP classifiers were more susceptible to this phenomenon than the
QPSO classifiers.

Remarks on weights. Fig. 4 presents the aggregated weights frequency
distributions (𝛯𝑤) for the classifiers. The scale of the 𝑦-axis for the
graphs differ as follows. The BP classifiers all have the same 𝑦-axis
scale, and the QPSO classifiers all have the same 𝑦-axis scale. Note that
small artefacts occurred when the bin intervals changed from 0.1 to
1. However, this is to be expected because the new bin interval is ten
times greater than the previous bin interval. BP-N had a broad normal
distribution with a negative mean. BP-WD did not alter this distribution
drastically, but BP-WE did. BP-WE shifted most of the distribution to
the negative side. The regularised BP classifiers in general had narrow

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
Fig. 4. Weight frequency distribution graphs for the classifiers.
weight distributions, that were skewed to the negative side. Further-
more, BP-WE saturated completely on the electricity A4 problem. The
average weight magnitudes for the electricity domain, however, was
very small.

The above observations show a large number of zero and negative
weights for the BP classifiers. Too many zero and/or negative weights
will result in net input signals that are zero or less. Thus, neurons
with net input signals of zero or less will have activation values with
zero gradients due to the ReLU activation function. The BP weight
adjustment algorithm will lose control over the weights, i.e. not be able
to adjust the weights that result in such net input signals, because the
algorithm is gradient-based. Once control is lost the BP algorithm will
not be able to adjust the weight again. This phenomenon is known as
dying ReLU and is typically found in deep neural network (DNN) that
are trained with gradient-based training algorithms (Lu et al., 2020).
Because SDCPs are dynamic and unbounded in the real-world, weights
need to be constantly adjusted. The BP classifiers would eventually
‘‘die’’ and fail to learn the SDCPs. It can be argued that regularisation
adds additional training information, i.e. model complexity, which
will still provide a gradient in the case of weights being negative.
However, the optimisation will only be focused on optimising model
complexity and not accuracy. Furthermore, regularisation only drove
weights faster to zero. Thus adding regularisation to the BP weights
adjustment algorithm did not help. A possible solution for the problem
of losing control over the weights could be to reinitialise the weights
when the majority of weights are less than or equal to zero, or when
accuracy starts to worsen. Another possible solution suggested by Lu
et al. (2020) for dying ReLU neural networks is to initialise the weights
using an asymmetric initialisation process, instead of the traditional
symmetric initialisation processes.

Saturation in the BP classifiers was, therefore, caused by a loss
of control over the weights, because of the combined effect of zero
gradients and dynamic environments. The ReLU FFNN classifiers must,
therefore, not use the BP weights adjustment algorithm when dealing
with SDCPs.

QPSO-N, on the other hand, had all its weights distributed to the
edges of negative and positive portions of the distributions. This is a
definitive confirmation of complete saturation. The regularised QPSO
16
classifiers both changed the weight distribution of QPSO-N to a narrow
normal distribution around zero. The weight distribution of QPSO-WE
was narrower than the weight distribution of QPSO-WD, but the weight
value range of QPSO-WE was greater.

The above observations showed that the QPSO weights adjustment
algorithm was immune to the zero gradients of the ReLU activation
functions. QPSO-N, however, still suffered from saturation due to an
uncontrolled explosion of weights. The difference between the QPSO-
N and the regularised QPSO classifiers was that the regularised QPSO
classifiers had more information about the search space to control the
weights, namely complexity performance. Hence, the lack of search
space information, i.e. boundaries, was the cause of saturation for the
QPSO classifiers.

Remarks on overfitting. The raw MSE performance trends (refer to
Appendix B in the supplementary material of this article) revealed
extremely volatile trends that would either bounce between zero and
very high levels, or remain at zero for several epochs. This was a side
effect of the classifiers learning each pattern for only one epoch, i.e. the
one-pass requirement.

The overfitting measure 𝑂𝜌 produced meaningless values, because
of the division by zero that occurred due to the presence of zeros in
the raw 𝑀𝑆𝐸𝑡 trend. The overfitting measure 𝑂𝜌, therefore, cannot
work with SDCPs. An alternative overfitting measure that considers
𝑀𝑆𝐸𝑡 and 𝑀𝑆𝐸𝑔 needs to be developed. A possible starting point
can be looking at the difference between 𝑀𝑆𝐸𝑡 and 𝑀𝑆𝐸𝑔 . Another
starting point could be to add a very small negligible value to 𝑀𝑆𝐸𝑡,
e.g. 1 × 10−16.

The zero 𝑀𝑆𝐸𝑡 values did not present problems for the overfitting
measure, 𝑂𝑀𝑆𝐸𝑔

. The 𝑂𝑀𝑆𝐸𝑔
results, however, left much to be desired.

The biggest concern is that 𝑂𝑀𝑆𝐸𝑔
suffered from many false positives.

The main reason for the false positives was the high volatility of the
𝑀𝑆𝐸𝑔 values. This can be seen in the large standard deviation bands
in the moving average trend graphs.

Another issue with 𝑂𝑀𝑆𝐸𝑔
was that it only relied on the moving av-

erage of 𝑀𝑆𝐸𝑔 and did not consider 𝑀𝑆𝐸𝑡. This lead to false positives
in the cases where the trend volatility was high but the directions in
which 𝑀𝑆𝐸 and 𝑀𝑆𝐸 moved were the same, i.e. correlated.
𝑔 𝑡

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
The average Pearson correlation coefficient for 𝑀𝑆𝐸𝑔 and 𝑀𝑆𝐸𝑡
was 0.6137 ± 0.3711. Thus when 𝑀𝑆𝐸𝑔 increased or decreased so too
did 𝑀𝑆𝐸𝑡 most of the time. Hence, the classifiers were generally not
overfitting, but 𝑂𝑀𝑆𝐸𝑔

indicated that the classifiers were overfitting.
A possible solution to this problem is to compare the direction of the
trends of both 𝑀𝑆𝐸𝑔 and 𝑀𝑆𝐸𝑡.

𝑂𝑀𝑆𝐸𝑔
trends for the completely saturated QPSO-N, which experi-

enced overfitting early on, revealed a further issue with 𝑂𝑀𝑆𝐸𝑔
. That is,

𝑂𝑀𝑆𝐸𝑔
did not consider if overfitting happened in prior environments,

which lead to false negatives. A possible solution could be to integrate
the saturation measure into the overfitting measure. Another possible
solution is to convert the measure into a flip-flop operator, i.e. stays in
a state until a certain event occurs.

The findings above indicate that an alternative overfitting measure
that mitigates problems of division by zero, only considering 𝑀𝑆𝐸𝑔 ,
and dynamic environments is required in order to detect overfitting in
SDCPs successfully.

Remarks on complexity. The synapse oversize ratio (𝑛𝑠𝑜𝑟) and the
complexity reduction measure (𝛺𝑟) produced the same rankings for
the problem domains, problem difficulties, and problem environments.
Therefore, either measure can be used to estimate the lower bound
computational complexity of a FFNN. Furthermore, the values for
𝑛𝑠𝑜𝑟 for BP-N exceeded 1. Architecture selection should therefore be
employed by FFNN streamed data classifiers.

The mean values for 𝑛𝑠𝑜𝑟 were significantly lower than the mean val-
ues of hidden neuron oversize ratio (𝑛ℎ𝑜𝑟) for all the problem domains,
problem difficulties, and problem environments. Thus, as expected,
synapses have a higher chance of being irrelevant than hidden neurons.
Architecture selection algorithms for SDCP should, therefore, function
at a synapse level rather than at a neuron level.

The above observations also provided evidence that the pruning
algorithm proposed by Engelbrecht (2001) was able to determine the
effective model for the FFNN classifiers.

The BP classifiers had the worst complexity performance results,
therefore, the BP weights adjustment algorithm was not naturally pro-
ficient at maintaining complexity. On the other hand, QPSO-N had
the best complexity performance, however, QPSO-N was completely
saturated. Complete saturation thus improves complexity performance,
because complete saturation degrades information capacity thereby
rendering various hidden neurons irrelevant.

WE helped both weight adjustment algorithms, i.e. BP and QPSO,
to achieve better complexity performance than WD. However, not all
regularisation approaches aided the complexity performance of the BP
weights adjustment algorithm, for example WD.

QPSO-WD and QPSO-WE were outperformed by QPSO-N with re-
gards to complexity performance. However, both classifiers maintained
reasonable saturation levels. Thus, regularisation helped to boost the
complexity performance of the QPSO weights adjustment algorithm
without allowing unwanted saturation in the hidden neurons.

WD and WE regularisation significantly improved the performance
trends of the QPSO weights adjustment algorithm through the sta-
bilisation of the complexity reduction trend. The performance trends
suggested that only saturation in the hidden neurons that was nec-
essary for accuracy performance was preserved by regularised QPSO
classifiers. QPSO-WE was the best at distinguishing between necessary
and unnecessary saturation for most problems. QPSO-WD, however,
reduced all saturation regardless. This is mainly due to the difference in
the aggressiveness of the weight penalisation for the two regularisation
terms.

Generally, complexity and saturation levels correlated to the extent
that the more saturated the hidden neurons of the classifiers were,
the less complexity they required. For instance, the regularised QPSO
classifiers had an average Pearson correlation coefficient between 𝜑𝑔
and 𝛺𝑟 of 0.6616 ± 0.3112.

Noise affected complexity performance. That is, the more a classifier
17

captured noise, the less the classifier could reduce model complexity.
This could be seen in the complexity results of the BP classifiers for the
SEA problems begin worse than for other problems. The complexity
performance of the regularised QPSO classifiers did not degrade when
faced with noise in the SEA problems, because regularisation unlearned
the noise as per their accuracy performance.

An increase in the problem difficulty resulted in a decrease in
the complexity performance of the classifiers, and vice versa. Thus,
the problem difficulty classification scheme proposed by Ellis et al.
(2021) could potentially be useful in determining a SDCP classifier’s
complexity performance at a high-level.

Furthermore, the more times a unique input–target pair was re-
peated, the more fitted the classifiers became, and accordingly, the
more complexity was reduced. The degree of fitting of the classi-
fiers was also significantly influenced by temporal severity, but not
significantly by spatial severity.

Abrupt environments resulted in the best complexity performance,
and progressive environments the worst.

The dimensionality of a problem had inconsistent effects on com-
plexity performance between the BP classifiers and the QPSO classifiers.
That is, higher dimensional problems, i.e. the hyperplane and electricity
domains, lead to better complexity performance for the BP classi-
fiers. On the other hand, higher dimensional problems, lead to worse
complexity performance for the QPSO classifiers.

Lastly, the complexity results and correlation coefficients showed
that there was no consistent relationship between accuracy and com-
plexity performance.

Remarks on control parameters. Table 7 presents the impact of the
control parameters for each classifier on the control parameter tuning
process. The table includes the number of control parameters of each
classifier (𝑛𝑐), and the number control parameter configurations tested
(|𝐷𝑐 |). To determine the impact made by these control parameter
numbers, the table also includes the five MWU-based rank categories
that were presented in Table 6.

Fig. 5 illustrates 𝑛𝑐 in terms of the red bars, and |𝐷𝑐 | in terms of
the black line. Note that the 𝑦-axis values on the left side of the graph
are for the red bars and the values on the right side are for the black
line. Figs. 5, 1 and 2 was used to determine the impact that the control
parameters had on the performance of the classifiers.

The results show that QPSO-N was the classifier with the lowest
number of parameter configurations, but QPSO-N was also the classifier
with the worst saturation and accuracy ranks. On the other hand, BP-
WE was the classifier with the most parameter configurations, with 579
times more parameter configurations than QPSO-N. The large differ-
ence, however, lead to the highest saturation rank and overall rank, but
also significantly worse accuracy and complexity scores. These results
suggest that the classifiers with many or very few control parameters
did not provide enough gain in either the performance, or the time
taken to tune the control parameters to justify the loss in the other.

QPSO-WD had the second least number of parameter configurations
to test, with eight times more configurations than QPSO-N. QPSO-
WD placed fourth overall and displayed average performance in the
other rank categories. On the other hand, BP-WD had the second
most number of parameter configurations to test, with 72 times more
configurations than QPSO-N, but also had no remarkable performance
statistics in any of the performance categories. This provided further
support that the classifiers with too many or too few control parameters
did not provide a good performance versus tuning time trade-off.

BP-N and QPSO-WE had the middle most number of parameter
configurations, but also the most impressive performance. QPSO-WD
had 64 times more parameter configurations than QPSO-N, and BP-
N had only 9 times more parameter configurations than QPSO-N.
Considering the overall ranks of BP-N and QPSO-WE, the BP-N had
the best trade-off between performance and time taken to tune the
control parameters, and the QPSO-WE had the second best trade-off.

The results also indicate that BP-N was the most suitable classifier out

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
Table 7
Comparison between the control parameters and the overall performance of the classifiers.

Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

𝑛𝑐 2 3 4 1 2 3
|𝐷𝑐 | 81 648 5184 9 72 576
Saturation rank 2(65.00|16.50|18.50) 4(50.38|15.88|33.75) 1(70.13|𝟏𝟐.𝟏𝟑|17.75) 6(0.00|0.00|100.00) 3(52.88|6.38|40.75) 5(31.37|9.63|59.00)
Accuracy rank 1(73.19|𝟏𝟓.𝟑𝟖|11.44) 2(54.81|14.50|30.69) 3(53.00|15.25|31.75) 6(24.31|3.50|72.19) 5(26.50|2.56|70.94) 4(40.50|4.19|55.31)
Complexity rank 6(7.42|16.92|75.67) 5(11.92|17.08|71.00) 4(37.75|9.42|52.83) 1(96.08|𝟐.𝟓𝟖|1.33) 3(52.58|9.83|37.58) 2(61.08|10.50|28.42)
Accuracy-complexity rank 4(40.30|16.15|43.55) 6(33.36|15.79|50.84) 3(45.38|12.33|42.29) 1(60.20|𝟑.𝟎𝟒|36.76) 5(39.54|6.20|54.26) 2(50.79|7.34|41.86)
Overall rank 2(48.53|16.26|35.20) 6(39.03|15.82|45.15) 1(53.63|𝟏𝟐.𝟐𝟔|34.11) 5(40.13|2.03|57.84) 4(43.99|6.26|49.76) 3(44.32|8.10|47.58)
Fig. 5. Control parameter statistics for classifiers.
of the BP classifiers tested for SDCPs, and QPSO-WE was the most
suitable classifier out of the QPSO classifiers tested for SDCPs.

Lastly, the following observations were made about the optimal
values found for the control parameters:

The value ranges of 𝛼 and 𝜂 for the BP classifiers could both be
reduced to [0, 0.4]. The finding that the BP classifiers kept their learning
rate very low, showed that the BP classifiers required a very low
learning rate and momentum for SDCPs in order to cope with the
dynamic environments.

The values of the radius (𝑟) control parameter for the regularised
QPSO classifiers never exceed 0.25, and were mostly 0.1. The recom-
mendation by Harrison et al. (2015) to keep the radius of QPSO small
was, therefore, supported by the empirical analysis.

The ranges and values of regularisation coefficient (𝜆𝑟) control
parameter was found to be problem domain and weights adjustment
algorithm dependent. Furthermore, values for the weights relevancy
threshold (𝑤0) control parameter should be selected from a wide range,
i.e. (0, 1], when optimising the parameter for streamed data classifiers.

Remarks on swarm diversity. The swarm diversity trends for the A1
problems (refer to Appendix B in the supplementary material of this
article) of the hyperplane, sphere, thresholds and electricity domains
represent the typical shape of the swarm diversity trend experienced by
the regularised QPSO classifiers in these domains. Decreasing spatial
severity of the A1 problems lead to more volatile trends, while de-
creasing the temporal severity of the A1 problems resulted in smoother
trends.
18
Swarm diversity for QPSO-N was extreme in all of the problem
domains. Swarm diversity for QPSO-WE was extreme for the noisy
SEA problems. The MWU ranking indicated that swarm diversity of
QPSO-WE was significantly less than the swarm diversity of the other
classifiers 100% of the time for the SEA problems. This supports the
findings that only a negligible number of runs for the SEA prob-
lems lead to the extreme swarm diversity. These observations showed
that complete or high levels of saturation increased the weight mag-
nitudes which in turn lead to high swarm diversity for the QPSO
classifiers. Thus, complete saturation prevented the QPSO classifiers
from exploiting a good solution.

Remarks on benchmark suite. All the classifiers had significantly
worse performance trends for the electricity problems than for the
other problems. This suggests that a real-world domain could be more
challenging for the classifiers than expected. The benchmark suite
should acquire more real-world problem domains to further investigate
this. Additionally, the benchmark suite should also acquire artificial
problems with extremely high temporal severity, because this appeared
to be an fundamental characteristic of real-world problems.

Benchmark SDCP that are quasi-static in relation to the other bench-
mark SDCPs must also be added, because none of the benchmark
problems represented quasi-static environments.

Benchmark problems with significantly more patterns should be
constructed from the problem domains, because the data streams did
not allow the streamed classifiers to train long enough to confirm the
effect of the performance trends that progressed slowly.

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
10.3. Evaluation of primary objective

The primary objective of this analysis was to determine if using
regularisation with QPSO to train FFNN that deal with SDCPs was effec-
tive. To evaluate the primary objective, the following nine hypotheses
were considered.

Hypothesis 1, the proposed classifiers would outperform their coun-
terparts, which were not regularised, on all of the SDCPs. The overall
statistical ranks validated the hypothesis. BP-WE was considered the
best BP classifier, and QPSO-WE was considered the best QPSO classi-
fier. BP-WE, however, was 20% less accurate than BP-N, and ranked
only marginally better than BP-N overall. BP-N had both the best
overall accuracy rank and required significantly less parameter con-
figuration to be tested, than BP-WE. Furthermore, BP-WD performed
significantly worse than BP-N overall. Under consideration of all these
aspects,hypothesis 1 was only valid for the QPSO classifiers.

Hypothesis 2, the QPSO-WD would outperform BP-WD on most of
the SDCPs. The overall statistical ranks invalidated this hypothesis.
QPSO-WD, however, did have a significantly better complexity perfor-
mance rank than BP-WD. The saturation rank of the two classifiers also
did not differ significantly. Furthermore, QPSO-WD had significantly
less parameter configurations to test than BP-WD. Another problematic
aspect with BP-WD was that the classifier suffered from a loss of control
over its weights. Under consideration of all these aspects, hypothesis 2
was found to be partially validated.

Hypothesis 3, the QPSO-WE would outperform BP-WE on most
of the SDCPs. The overall statistical ranks invalidated this hypoth-
esis. QPSO-WE, however, did have a significantly better complexity
performance rank. QPSO-WE also had significantly less parameter con-
figurations to test than BP-WE. Like BP-WD, BP-WE also suffered from
the problematic loss of control over its weights. Hypothesis 3 was
therefore partially validated.

Hypothesis 4, the BP-WE and QPSO-WE would outperform their
WD counterparts on all of the SDCPs. The overall statical ranks vali-
dated this hypothesis. Furthermore, the empirical analysis showed that
the uniform weight penalisation approach by WD caused the under
performance.

Hypothesis 5, the proposed classifiers would have lower effective
model complexity than their non-regularised counterparts on all of the
SDCPs. The complexity ranks validated this hypothesis for the BP clas-
sifiers, but not for the QPSO classifiers. QPSO-N suffered from complete
saturation. The complete saturation rendered the QPSO-N unusable and
resulted in the abnormally high complexity performance. The complex-
ity performance of QPSO-N is, therefore, considered as meaningless.
Thus, hypothesis 5 is also validated for the QPSO classifiers.

Hypothesis 6, the proposed classifiers would have lower levels of
saturation than their non-regularised counterparts on all the SDCPs.
The saturation ranks validated this hypothesis for the QPSO classifiers,
but only partially validated the hypothesis for the BP classifiers. That
is, only BP-WE had significantly lower saturation levels than BP-N.
Furthermore, there were rising saturation trends amongst all of the BP
classifiers due to the loss of control over their weights. This loss of
control was accelerated through the use of regularisation. Thus, the
empirical analysis invalidated hypothesis 6 for all the proposed BP
classifiers.

Hypothesis 7, the performance of the proposed classifiers would not
scale well with an increase in noise. The empirical analysis validated
this hypothesis for the BP classifiers. The regularised QPSO classifiers,
however, performed very well in the noisy SEA SDCPs. QPSO-WE
showed the most potential for noisy SDCPs.

Hypothesis 8, the BP-WD and BP-WE would not be able to handle
the dynamic environments of the SDCPs as effectively as QPSO-WD and
QPSO-WE would. Between the regularised BP and regularised QPSO
classifiers, accuracy performance tended to favour the regularised BP
classifiers, regardless of the dynamic environment of the SDCPs. The
19

accuracy performance trends of the regularised BP classifiers, however,
showed signs of overfitting to previous environment instance, whereas
the regularised QPSO classifiers did not. Furthermore, the regularised
QPSO classifiers maintained stability in both saturation and complexity
performance regardless of the environment of an SDCP. The empirical
analysis, therefore, only had enough evidence to partially validate
hypothesis 8. SDCPs with significantly more patterns need to be tested.

Hypothesis 9, the QPSO-WD and QPSO-WE would be able to main-
tain their swarm diversity when dealing with the SDCPs. The empirical
analysis validated this hypothesis. Note that QPSO-WE did show some
loss of swarm diversity control in a negligible amount of runs belonging
to the SEA B1 problem.

All in all, three of the nine hypothesis were empirically validated,
namely hypotheses 4, 5, 9. The remaining six hypotheses were partially
validated, namely 1, 2, 3, 6, 7, 8. Furthermore, if only the QPSO reg-
ularised classifiers are considered then only three of the 9 hypotheses
were partially validated, namely 2, 3, and 8, while the remaining 6
hypotheses were validated.

11. Conclusion

The article set out to investigate the application of regularised
FFNNs, trained by QPSO, as classifiers for SDCPs. This article, therefore,
proposed an online learning algorithm based on QPSO and regularisa-
tion to train FFNNs for SDCPs. WD and WE were used as regularisers.
Because regularisation literature with regards to SDCPs is limited, a
BP variant of the learning algorithm was also proposed. The learning
algorithms were each applied to a 3-layer FFNNs architecture, which
used ReLU activation functions and summation units. The four resulting
classifiers were named QPSO-WD, QPSO-WE, BP-WD, and BP-WE.

The investigation empirically evaluated the proposed classifiers by
pitting them against each other, and their non-regularised counterparts,
namely QPSO-N and BP-N, on 80 benchmark problems. The benchmark
problems were from an SDCP benchmark suite whose characteristics
have been documented by Ellis et al. (2021).

The results of the benchmarking process were analysed using a
statistically-sound approach employing descriptive statistics, MWU-
based ranking, and performance trend analysis. The empirical analysis
revealed the following:

The BP-N classifier learned SDCPs quickly and accurately. BP-N
was the most accurate classifier of all the classifiers. BP-N, however,
had a tendency to experience increasing saturation as the data stream
progressed. The same increasing saturation trend occurred in BP-WD
and BP-WE, with BP-WE completely saturating in some cases.

Saturation in the BP classifiers was caused by a loss of control
over the weights, i.e. the learning algorithm was unable to adjust the
weights. This loss of control was a result of the combined effect that the
dynamic environments and the zero gradients of the ReLU activation
function had on the BP algorithm. Furthermore, regularisation only
accelerated the loss of control.

QPSO-WE provided well-rounded performance, and overall showed
the most potential as a streamed data classifier. The main issue with
the QPSO-WE was its accuracy performance. On the other hand, the
aggressive weight penalisation of WD resulted in very stable complexity
and saturation performance, but degraded accuracy performance signif-
icantly. The only time QPSO-WD was found worth considering was in
noisy SDCPs.

QPSO-N completely saturated all the time. Unlike the BP classifiers,
saturation in the QPSO classifiers was caused by a lack of search space
information, i.e. boundaries imposed by additional constraints on the
classifier.

With regards to complexity performance, the regularised QPSO
classifiers managed to get effective architectures close to the size of
the optimal architectures found by Rakitianskaia (2011). In some cases
even better. The regularised BP classifiers failed to get architectures

close to the optimal architectures.

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
Architecture selection should, therefore, be employed by fully con-
nected FFNN streamed data classifiers, preferably with dynamic
weights adjustment algorithms. Furthermore, architecture selection
algorithms for SDCPs should function at a synapse-level instead of a
neuron-level.

Lastly, the performance trends for accuracy measures experienced
high levels of volatility. This volatility was found to be one of the main
causes for the unforeseen behaviours of the classifiers. The one-pass
requirement was identified as the main culprit, because it does not
allow the classifier to see the entire environment instance per epoch.

The above findings showed that regularised FFNN classifiers, using
a dynamic weight adjustment algorithm, such QPSO, has potential.
However, several improvements need to be made to make the QPSO
classifiers suitable for SDCPs.

12. Future work

The following future work is derived from the findings made during
the course of this article:

The empirical analysis revealed that (i) the current set of benchmark
SDCPs needs to be expanded on, e.g., add SDCPs with longer data
streams; (ii) the tendency for regularised QPSO classifiers to get both
low MSE and PCC errors needs to be addressed, e.g., constrain the range
of the output neurons to [0.1, 0.9]; (iii) methods to reduce the volatility
of the accuracy performance trends for SDCP classifiers need to be
investigated, e.g., use fading factors to calculate the training error as
suggested by Gama et al. (2009); (iv) a low computational complexity
noise-filtering mechanism for SDCP classifiers is needed to curb the
negative effects of noise; (v) additional forms of controlling saturation
in the QPSO classifiers need to be investigated, e.g., velocity clamp-
ing and search space boundaries; and (vi) alternatives to the various
components making up the proposed classifiers should be researched,
e.g., the usage of other dynamic PSOs weight adjustment algorithms,
using product units instead of summation units, using sigmoid and
other bounded activation functions, and using other regularisers.

The pruning algorithm by Engelbrecht (2001) proved effective in
determining the effective model complexity. Future research into adapt-
ing it to replace regularisation should be done. If done successfully,
this would allow effective computational complexity to be realised
during learning. A starting point would be to see if basing the effective
reduction in complexity, 𝛺𝑟, on the generalisation set, instead of the
memory set, returns similar results to what was observed during the
empirical analysis.

Finding alternative overfitting measures for the streamed data clas-
sifiers is another topic for future research, because the current measures
proved inadequate. If alternatives are not found, then applying algo-
rithms to SDCP that are dependent on detecting overfitting would not
be possible.

Babaeian and Mohammad (2021) expanded on the work of
Babaeian et al. (2019) by investigating clustering methods to address
instances where training labels are not available or missing. These
scenarios are can occur with real world data streams. Adapting the
approaches proposed in this article to address streamed data clustering
problems is thus another area of future research.

Lastly, the streamed benchmark problem approach to tuning control
parameters proved effective, but not ideal. A self-adaptive version of
the proposed classifiers should, therefore, be investigated in the future.
A possible starting point is looking at the self-adaptive QPSO proposed
by Pamparà and Engelbrecht (2018).

CRediT authorship contribution statement

Mathys Ellis: Conceptualization, Data curation, Investigation,
Methodology, Software, Visualization, Writing – original draft. Anna
S. Bosman: Supervision, Writing – review & editing. Andries P.
Engelbrecht: Conceptualization, Methodology, Supervision, Writing
– review & editing.
20
Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Mathys Ellis and Anna S. Bosman reports financial support
was provided by the National Research Foundation of South Africa.

Data availability

Data will be made available on request.

Acknowledgements

The financial assistance of the National Research Foundation (NRF)
of South Africa towards this research is hereby acknowledged. The
research has been supported by the NRF Thuthuka grant number
TTK210316590115. Opinions expressed and conclusions arrived at, are
those of the authors and are not necessarily to be attributed to the NRF.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.engappai.2024.108555.

References

Abdulkarim, S.A., Engelbrecht, A.P., 2021. Time series forecasting with feedforward
neural networks trained using particle swarm optimizers for dynamic environments.
Neural Comput. Appl. 33 (7), 2667–2683.

Aggarwal, C.C., 2007. Data Streams: Models and Algorithms, first ed. Springer.
Alpaydın, E., 2010. Introduction to Machine Learning, second ed. The MIT Press.
Babaeian, M., Francis, K.A., Dajani, K., Mohammad, M., 2019. Real-time driver

drowsiness detection using wavelet transform and ensemble logistic regression. Int.
J. Intell. Transp. Syst. Res. 17, 212–222.

Babaeian, M., Mohammad, M., 2021. Applying HRV based online clustering method
to identify driver drowsiness. In: Proceedings of the Proceedings of the Annual
Computing and Communication Workshop and Conference. IEEE, pp. 0012–0021.

Blackwell, T.M., Bentley, P.J., 2002. Dynamic search with charged swarms. In:
Proceedings of the Annual Conference on Genetic and Evolutionary Computation.
Morgan Kaufmann Publishers Incorporated, pp. 19–26.

Blackwell, T., Branke, J., 2004. Multi-swarm optimization in dynamic environments.
In: Applications of Evolutionary Computing. EvoWorkshops. In: Lecture Notes in
Computer Science, vol. 3005, Springer, pp. 489–500.

Blackwell, T., Branke, J., Li, X., 2008. Particle swarms for dynamic optimization
problems. Swarm Intell. 193–217.

Bosman, A., Engelbrecht, A., Helbig, M., 2018. Fitness landscape analysis of
weight-elimination neural networks. Neural Process. Lett. 48 (1), 353–373.

Chu, F., Wang, Y., Zaniolo, C., 2004. An adaptive learning approach for noisy data
streams. In: Proceedings of the International Conference on Data Mining. IEEE, pp.
351–354.

Cleghorn, C.W., Engelbrecht, A., 2016. Particle swarm optimizer: The impact of
unstable particles on performance. In: Proceedings of the Symposium Series on
Computational Intelligence. IEEE, pp. 1–7.

Cui, Y., Surpur, C., Ahmad, S., Hawkins, J., 2016. A comparative study of HTM and
other neural network models for online sequence learning with streaming data. In:
Proceedings of the International Joint Conference on Neural Networks. IEEE, pp.
1530–1538.

Dennis, C., Engelbrecht, A.P., Ombuki-Berman, B.M., 2020. An analysis of activation
function saturation in particle swarm optimization trained neural networks. Neural
Process. Lett. 52, 1123–1153.

Domingos, P., 2012. A few useful things to know about machine learning. Commun.
ACM 55 (10), 78–87.

Domingos, P., Hulten, G., 2000. Mining high-speed data streams. In: Proceedings of the
SIGKDD International Conference on Knowledge Discovery and Data Mining, Vol.
6. ACM, pp. 71–80.

Duhain, J.G.O.L., Engelbrecht, A.P., 2012. Towards a more complete classification
system for dynamically changing environments. In: Proceedings of the Congress
on Evolutionary Computation. IEEE, pp. 1–8.

Dyer, K.B., Capo, R., Polikar, R., 2014. COMPOSE: A semisupervised learning frame-
work for initially labeled nonstationary streaming data. IEEE Trans. Neural Netw.
Learn. Syst. 25 (1), 12–26.

Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In:
Proceedings of the International Symposium on Micro Machine and Human Science.
IEEE, pp. 39–43.

https://doi.org/10.1016/j.engappai.2024.108555
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb1
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb1
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb1
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb1
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb1
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb2
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb3
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb4
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb4
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb4
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb4
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb4
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb5
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb5
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb5
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb5
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb5
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb6
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb6
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb6
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb6
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb6
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb7
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb7
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb7
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb7
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb7
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb8
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb8
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb8
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb9
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb9
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb9
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb10
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb10
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb10
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb10
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb10
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb11
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb11
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb11
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb11
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb11
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb12
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb12
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb12
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb12
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb12
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb12
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb12
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb13
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb13
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb13
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb13
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb13
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb14
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb14
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb14
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb15
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb15
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb15
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb15
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb15
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb16
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb16
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb16
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb16
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb16
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb17
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb17
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb17
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb17
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb17
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb18
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb18
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb18
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb18
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb18

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
Eberhart, R.C., Shi, Y., 2000. Comparing inertia weights and constriction factors in
particle swarm optimization. In: Proceedings of the Congress on Evolutionary
Computation, Vol. 1. IEEE, pp. 84–88.

Ellis, M., Bosman, A.S., Engelbrecht, A.P., 2021. Characterisation of environment type
and difficulty for streamed data classification problems. Inform. Sci. 569, 615–649.

Engelbrecht, A., 2001. A new pruning heuristic based on variance analysis of sensitivity
information. IEEE Trans. Neural Netw. 12 (6), 1386–1399.

Engelbrecht, A.P., 2007. Computational Intelligence: An Introduction, second ed. John
Wiley and Sons Ltd.

Engelbrecht, A.P., 2010. Heterogeneous particle swarm optimization. In: Proceedings
of the International Conference on Swarm Intelligence. Springer, pp. 191–202.

Ertel, W., 2011. Introduction to Artificial Intelligence, First ed. Springer.
Fahlman, S.E., 1989. Faster-learning variations on back-propagation: An empirical

study. In: Touretzky, D., Hinton, G., Sejnowski, T. (Eds.), Proceedings of the 1988
Connectionist Models Summer School. Morgan Kaufmann Publishers Incorporated,
pp. 38–51.

Fernández-Redondo, M., Hernández-Espinosa, C., 2001. Weight initialization meth-
ods for multilayer feedforward. In: Proceedings of the European Symposium on
Artificial Neural Networks. D-Facto public, pp. 119–124.

Gama, J., Sebastião, R., Rodrigues, P.P., 2009. Issues in evaluation of stream learning
algorithms. In: Proceedings of the SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM.

Gelenbe, E., 1989. Random neural networks with negative and positive signals and
product form solution. Neural Comput. 1 (4), 502–510.

Geman, S., Bienenstock, E., Doursat, R., 1992. Neural networks and the bias/variance
dilemma. Neural Comput. 4 (1), 1–58.

Gies, D., Rahmat-Samii, Y., 2004. Vector evaluated particle swarm optimization
(VEPSO): optimization of a radiometer array antenna. In: Proceedings of the
Antennas and Propagation Society Symposium, Vol. 3. IEEE, pp. 2297–2300.

Guan, S.U., Li, S., 2001. Incremental learning with respect to new incoming input
attributes. Neural Process. Lett. 14 (3), 241–260.

Gupta, A., Lam, S.M., 1998. Weight decay backpropagation for noisy data. Neural Netw.
11 (6), 1127–1138.

Harries, M., 1999. Splice-2 Comparative Evaluation: Electricity Pricing. Tech. Rep.
UNSW-CSE-TR-9905, Artificial Intelligence Group, School of Computer Science and
Engineering, University of New South Wales, Sydney 2052, Australia.

Harris, S.L., Harris, D.M., 2016. Digital Design and Computer Architecture, ARM ed.
Morgan Kaufmann.

Harrison, K., Ombuki-Berman, B.M., Engelbrecht, A.P., 2015. The effect of probability
distributions on the performance of quantum particle swarm optimization for
solving dynamic optimization problems. In: Proceedings of the Symposium Series
on Computational Intelligence. IEEE, pp. 242–250.

Helbig, M., Engelbrecht, A.P., 2013. Analysing the performance of dynamic multi-
objective optimisation algorithms. In: Proceedings of the Congress on Evolutionary
Computation. IEEE, pp. 1531–1539.

Hulten, G., Spencer, L., Domingos, P., 2001. Mining time-changing data streams.
In: Proceedings of the Seventh SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, pp. 97–106.

Ismail, A., Engelbrecht, A.P., 2000. Global optimization algorithms for training product
unit neural networks. In: Proceedings of the International Joint Conference on
Neural Networks. IEEE, pp. 132–137.

Jadhav, A., Deshpande, L., 2017. An efficient approach to detect concept drifts in data
streams. In: Proceedings of the 7th International Advance Computing Conference.
IEEE, pp. 28–32.

Kennedy, J., Mendes, R., 2002. Population structure and particle swarm performance.
In: Proceedings of the Congress on Evolutionary Computation, Vol. 2. IEEE, pp.
1671–1676.

Kotsiantis, S.B., 2013. Decision trees: a recent overview. Artif. Intell. Rev. 39 (4),
261–283.

Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Wozniak, M., 2017. Ensemble
learning for data stream analysis: A survey. Inf. Fusion 37, 132–156.

Krogh, A., Hertz, J.A., 1991. A simple weight decay can improve generalization. In:
Proceedings of the 4th International Conference on Neural Information Processing
Systems. NIPS ’91, Morgan Kaufmann Publishers Incorporated, pp. 950–957.

Kulkarni, R.V., Patil, S.H., Subhashini, R., 2016. An overview of learning in data streams
with label scarcity. In: Proceedings of the International Conference on Inventive
Computation Technologies, Vol. 2. pp. 1–6.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.
LeCun, Y., L., Orr, G.B., Müller, K.R., 1998. Efficient BackProp. In: Neural Networks:

Tricks of the Trade. In: Lecture Notes in Computer Science, vol. 7700, Springer,
pp. 9–50.

Leskovec, J., Rajaraman, A., Ullman, J.D., 2014. Mining of Massive Datasets, second
ed. Cambridge University Press.

Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N., 2006. A fast and accurate
online sequential learning algorithm for feedforward networks. IEEE Trans. Neural
Netw. 17 (6), 1411–1423.

Liu, D., Chang, T.S., Zhang, Y., 2002. A constructive algorithm for feedforward neural
networks with incremental training. IEEE Trans. Circuits Syst. I 49 (12), 1876–1879.

Losing, V., Hammer, B., Wersing, H., 2018. Incremental on-line learning: A review and
comparison of state of the art algorithms. Neurocomputing 275, 1261–1274.
21
Lu, L., Shin, Y., Su, Y., Karniadakis, G.E., 2020. Dying ReLU and initialization: Theory
and numerical examples. Commun. Comput. Phys. 28 (5), 1671–1706.

Maas, A.L., Hannun, A.Y., Ng, A.Y., 2013. Rectifier nonlinearities improve neural
network acoustic models. In: Proceedings of the ICML Workshop on Deep Learning
for Audio, Speech, and Language Processing.

McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5 (4), 115–133.

Mendes, R., Cortez, P., Rocha, M., Neves, J., 2002. Particle swarms for feedforward
neural network training. In: Proceedings of the International Joint Conference on
Neural Networks. IEEE, pp. 1895–1899.

Morrison, R.W., 2003. Performance measurement in dynamic environments. In:
Branke, J. (Ed.), Proceedings of GECCO Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems.

Ngom, B., Boly, A., Chiky, R., 2016. ‘‘Forgetting functions’’ in the context of data
streams for the benefit of decision-making. In: Proceedings of the International
Workshop on Computational Intelligence for Multimedia Understanding. pp. 1–5.

Olorunda, O., Engelbrecht, A.P., 2008. Measuring exploration/exploitation in particle
swarm using swarm diversity. In: Proceedings of the Congress on Evolutionary
Computation. IEEE, pp. 1128–1134.

Pamparà, G., Engelbrecht, A.P., 2018. Self-adaptive quantum particle swarm opti-
mization for dynamic environments. In: Swarm Intelligence. Springer International
Publishing, pp. 163–175.

Potdar, K., Pardawala, T.S., Pai, C.D., 2017. A comparative study of categorical variable
encoding techniques for neural network classifiers. Int. J. Comput. Appl. 175, 7–9.

Pramod, S., Vyas, O.P., 2012. Data stream mining: A review on windowing approach.
Glob. J. Comput. Sci. Technol. Softw. Data Eng. 12 (11).

Pratama, M., Angelov, P.P., Lu, J., Lughofer, E., Seera, M., Lim, C.P., 2017. A
randomized neural network for data streams. In: Proceedings of the International
Joint Conference on Neural Networks. IEEE, pp. 3423–3430.

Rakitianskaia, A., 2011. Using Particle Swarm Optimisation to Train Feedforward
Neural Networks in Dynamic Environments (Master’s thesis). University of Pretoria.

Rakitianskaia, A., Engelbrecht, A.P., 2009. Training neural networks with PSO in dy-
namic environments. In: Proceedings of the Congress on Evolutionary Computation.
IEEE, pp. 667–673.

Rakitianskaia, A.S., Engelbrecht, A.P., 2012. Training feedforward neural networks with
dynamic particle swarm optimisation. Swarm Intell. 6 (3), 233–270.

Rakitianskaia, A.S., Engelbrecht, A.P., 2014a. Training high-dimensional neural net-
works with cooperative particle swarm optimiser. In: Proceedings of the Congress
on Evolutionary Computation. IEEE, pp. 4011–4018.

Rakitianskaia, A., Engelbrecht, A., 2014b. Weight regularisation in particle swarm
optimisation neural network training. In: Proceedings of the Symposium on Swarm
Intelligence. IEEE, pp. 1–8.

Rakitianskaia, A., Engelbrecht, A., 2015a. Measuring saturation in neural networks.
In: Proceedings of the Symposium Series on Computational Intelligence. IEEE, pp.
1423–1430.

Rakitianskaia, A., Engelbrecht, A., 2015b. Saturation in PSO neural network training:
Good or evil? In: Proceedings of the Congress on Evolutionary Computation. IEEE,
pp. 125–132.

Röbel, A., 1994. The Dynamic Pattern Selection Algorithm: Effective Training and
Controlled Generalization of Backpropagation Neural Networks. Tech. Rep., Institut
fur Angewandte Informatik, Technische Universitat, Berlin.

Sancho-Asensio, A., Orriols-Puig, A., Golobardes, E., 2014. Robust on-line neural
learning classifier system for data stream classification tasks. Soft Comput. 18 (8),
1441–1461.

Santos, A.F.C., Teles, Í.P., Siqueira, O.M.P., de Oliveira, A.A., 2017. Big data: A sys-
tematic review. In: Information Technology - New Generations: 14th International
Conference on Information Technology. Springer, pp. 501–506.

Singh, Y., Chauhan, A.S., 2009. Neural networks in data mining. J. Theor. Appl. Inf.
Technol. 5 (6), 37–42.

Sonoda, S., Murata, N., 2017. Neural network with unbounded activation functions is
universal approximator. Appl. Comput. Harmon. Anal. 43 (2), 233–268.

Street, W.N., Kim, Y., 2001. A streaming ensemble algorithm (SEA) for large-scale
classification. In: Proceedings of the Proceedings of the SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, pp. 377–382.

Telec, Z., Trawiński, B., Lasota, T., Trawiński, G., 2014. Evaluation of neural net-
work ensemble approach to predict from a data stream. In: Proceedings of the
International Conference on Computational Collective Intelligence. Springer, pp.
472–482.

Tham, C.K., 1995. On-line learning using hierarchical mixtures of experts. In: Proceed-
ings of the Fourth International Conference on Artificial Neural Networks. IET, pp.
347–351.

Tsymbal, A., 2004. The Problem of Concept Drift: Definitions and Related Work. Tech.
Rep., Trinity College, Dublin.

Twomey, J.M., Smith, A.E., 1995. Performance measures, consistency, and power for
artificial neural network models. Math. Comput. Modelling 21 (1–2), 243–258.

Wang, H., Fan, W., Yu, P.S., Han, J., 2003. Mining concept-drifting data streams using
ensemble classifiers. In: Proceedings of the SIGKDD International Conference on
Knowledge Discovery and Data Mining, Vol. 9. ACM, pp. 226–235.

http://refhub.elsevier.com/S0952-1976(24)00713-9/sb19
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb19
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb19
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb19
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb19
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb20
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb20
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb20
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb21
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb21
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb21
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb22
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb22
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb22
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb23
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb23
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb23
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb24
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb25
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb25
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb25
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb25
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb25
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb25
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb25
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb26
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb26
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb26
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb26
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb26
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb27
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb27
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb27
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb27
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb27
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb28
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb28
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb28
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb29
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb29
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb29
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb30
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb30
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb30
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb30
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb30
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb31
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb31
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb31
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb32
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb32
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb32
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb33
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb33
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb33
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb33
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb33
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb34
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb34
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb34
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb35
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb35
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb35
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb35
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb35
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb35
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb35
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb36
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb36
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb36
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb36
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb36
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb37
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb37
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb37
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb37
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb37
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb38
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb38
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb38
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb38
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb38
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb39
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb39
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb39
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb39
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb39
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb40
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb40
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb40
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb40
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb40
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb41
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb41
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb41
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb42
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb42
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb42
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb43
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb43
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb43
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb43
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb43
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb44
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb44
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb44
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb44
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb44
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb45
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb46
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb46
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb46
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb46
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb46
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb47
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb47
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb47
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb48
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb48
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb48
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb48
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb48
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb49
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb49
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb49
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb50
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb50
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb50
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb51
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb51
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb51
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb52
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb52
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb52
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb52
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb52
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb53
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb53
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb53
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb54
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb54
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb54
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb54
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb54
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb55
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb55
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb55
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb55
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb55
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb56
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb56
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb56
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb56
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb56
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb57
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb57
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb57
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb57
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb57
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb58
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb58
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb58
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb58
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb58
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb59
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb59
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb59
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb60
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb60
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb60
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb61
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb61
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb61
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb61
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb61
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb62
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb62
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb62
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb63
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb63
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb63
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb63
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb63
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb64
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb64
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb64
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb65
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb65
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb65
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb65
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb65
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb66
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb66
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb66
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb66
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb66
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb67
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb67
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb67
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb67
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb67
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb68
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb68
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb68
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb68
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb68
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb69
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb69
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb69
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb69
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb69
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb70
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb70
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb70
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb70
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb70
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb71
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb71
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb71
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb71
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb71
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb72
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb72
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb72
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb73
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb73
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb73
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb74
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb74
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb74
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb74
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb74
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb75
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb75
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb75
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb75
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb75
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb75
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb75
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb76
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb76
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb76
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb76
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb76
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb77
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb77
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb77
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb78
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb78
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb78
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb79
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb79
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb79
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb79
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb79

Engineering Applications of Artificial Intelligence 133 (2024) 108555M. Ellis et al.
Weigend, A.S., Rumelhart, D.E., Huberman, B.A., 1990. Generalization by weight-
elimination with application to forecasting. In: Proceedings of the Conference on
Advances in Neural Information Processing Systems, Vol. 3. Morgan Kaufmann
Publishers Incorporated, pp. 875–882.

Werbos, P.J., 1974. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioural Sciences (Ph.D. thesis). Harvard University, Boston.

Wessels, L.F.A., Barnard, E., 1992. Avoiding false local minima by proper initialization
of connections. IEEE Trans. Neural Netw. 3 (6), 899–905.
22
Wilamowski, B.M., 2003. Neural network architectures and learning. In: Proceedings
of the International Conference on Information Technology. IEEE, pp. TU1–TU12.

van Wyk, A.B., Engelbrecht, A.P., 2016. Analysis of activation functions for particle
swarm optimised feedforward neural networks. In: Proceedings of the Congress on
Evolutionary Computation. IEEE, pp. 423–430.

Zainuddin, Z., Pauline, O., 2007. Function approximation using artificial neural
networks. Int. J. Syst. Appl. Eng. Dev. 1 (4), 173–178.

Zhang, C., Shao, H., Li, Y., 2000. Particle swarm optimisation for evolving artificial
neural network. In: Proceedings of the International Conference on Systems, Man,
and Cybernetics, Vol. 4. IEEE, pp. 2487–2490.

http://refhub.elsevier.com/S0952-1976(24)00713-9/sb80
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb80
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb80
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb80
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb80
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb80
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb80
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb81
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb81
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb81
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb82
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb82
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb82
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb83
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb83
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb83
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb84
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb84
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb84
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb84
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb84
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb85
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb85
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb85
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb86
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb86
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb86
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb86
http://refhub.elsevier.com/S0952-1976(24)00713-9/sb86

	Regularised feed forward neural networks for streamed data classification problems
	Introduction
	Streamed data classification problems
	Existing streamed data classifiers
	Non-artificial neural networks approaches
	Artificial neural networks
	Summary

	Quantum particle swarm optimisation
	Feed forward neural networks
	Training with back propagation
	Training with particle swarm optimisation
	Regularisation

	Regularised Feed Forward Neural Networks as Streamed Data Classifiers
	Architecture
	Back propagation learning algorithms
	Quantum particle swarm optimisation learning algorithms
	Novel streamed data classifiers

	Benchmark streamed data classification problems
	Performance measures
	Baseline classifiers
	Measuring performance of streamed data classifiers
	Saturation performance measures
	Accuracy performance measures
	Structural complexity performance measures
	Computational complexity performance measures
	Overfitting performance measures
	Control parameter impact on performance measures
	Weight distribution performance measures
	Swarm diversity performance measures

	Benchmark process
	Control parameter tuning methodology
	Benchmarking methodology

	Analysis of Regularised Feed Forward Neural Networks as Strea-med Data Classifiers
	Result analysis methodology
	Descriptive statistics
	Mann–Whitney-U-based ranking
	Performance trends

	Discussion
	Evaluation of primary objective

	Conclusion
	Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References

