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Abstract: Epidemiological studies have provided compelling evidence of associations between
temperature variability (TV) and health outcomes. However, such studies are limited in developing
countries. This study aimed to investigate the relationship between TV and hospital admissions
for cause-specific diseases in South Africa. Hospital admission data for cardiovascular diseases
(CVD) and respiratory diseases (RD) were obtained from seven private hospitals in Cape Town from
1 January 2011 to 31 October 2016. Meteorological data were obtained from the South African Weather
Service (SAWS). A quasi-Poisson regression model was used to investigate the association between
TV and health outcomes after controlling for potential effect modifiers. A positive and statistically
significant association between TV and hospital admissions for both diseases was observed, even after
controlling for the non-linear and delayed effects of daily mean temperature and relative humidity.
TV showed the greatest effect on the entire study group when using short lags, 0–2 days for CVD and
0–1 days for RD hospitalisations. However, the elderly were more sensitive to RD hospitalisation and
the 15–64 year age group was more sensitive to CVD hospitalisations. Men were more susceptible
to hospitalisation than females. The results indicate that more attention should be paid to the
effects of temperature variability and change on human health. Furthermore, different weather and
climate metrics, such as TV, should be considered in understanding the climate component of the
epidemiology of these (and other diseases), especially in light of climate change, where a wider range
and extreme climate events are expected to occur in future.

Keywords: temperature variability; cardiovascular diseases; respiratory diseases; hospital admis-
sions; South Africa

1. Introduction

Non-communicable diseases (NCDs) such as cardiovascular disease (CVD) and respi-
ratory diseases (RD) are among the top causes of mortality and morbidity globally [1,2].
According to the World Health Organization (WHO), nearly 86% of NCD deaths occur
in low- and middle-income countries (LMICs) [3]. Although the occurrence of NCDs in
high-income countries declined in the past decades, there is evidence that the incidence
and prevalence of CVD and RD mortality and morbidity have increased in LMICs [3].
Particularly, between 2016 and 2018, in South Africa, mortality attributable to CVD (I00–
I99) increased from 18.6 percent to 18.9 percent. In contrast, mortality attributable to RD
(J00–J99) decreased from 9.4 percent to 9.1 percent [4,5]. Knowledge of the incidence and
prevalence of NCDs in Africa is poor, and people lack an understanding of the risk factors
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and clinical symptoms associated with CVD or RD health outcomes [4,5]. These risk factors
include weather and meteorological variables such as ambient mean temperature and
temperature variability (TV) [6–9] .

It is known that weather events and climate trends have an impact on human health.
Extreme weather events, which are anticipated to intensify with climate change (including
significant temperature extreme events), pose a grave danger to human health [10–12].
Future climate projections indicate that global temperatures are likely to continue to rise
throughout the 21st century. It is projected that, on average, annual increases of 1–3 °C in
global temperatures may occur by 2050 [13], which will be amplified in southern Africa [10].
By 2100, warming is projected to increase the average temperature by 3–4 °C along the
South African coast and by 6–7 °C inland, surpassing the anticipated global warming aver-
ages [14]. Several epidemiological studies attributed non-optimal temperature extremes,
including heatwaves, extreme cold events, and extreme temperatures, to increased hospital
admissions and mortality from non-communicable and infectious diseases [6,8,15–18]. Few
studies have investigated the relationship between ambient temperature and health out-
comes in Africa [7], and only one published paper, which considered temperature variation
in Africa could be located [18]. Temperature variability (TV) is an important meteorolog-
ical indicator reflecting climate changes, such as rapid intra- and inter-day temperature
changes [8,19,20].

Globally, evidence on the short-term CVD and RD effects of TV is increasing [5,8,19–24].
The majority of these studies reported TV to be associated with increased risks of CVD
and RD health outcomes. However, there are still some inconsistencies in the association
between TV and hospital admissions [22]. For example, one study conducted in Bangladesh
found no association between TV and RD emergency hospital admissions [22], while a
Korean study found that temperature change was associated with increased hospital ad-
missions for total respiratory diseases [25]. Some of the limitations of these studies include
the selection of study participants, a cohort of elderly (older than 65) volunteers [26], and
focus on a group older than 35 years of age [24]; by focusing on one age group, the effects
of TV on the general population might be over- or underestimated. The majority of these
studies focused on the health effects of intra-day (e.g., diurnal temperature) [18,27–29]
and inter-day (e.g., temperature change between neighbouring days and the standard
deviation of daily mean summer temperature) [30,31]. The associations between tempera-
ture variability (TV) and population health may be better explained by a composite index
accounting for the effects of intra-day and inter-day variability since the impact of TV can
last for several days after exposure [8,19,21]. Few studies assessed the detrimental effects
of temperature changes using the composite index of TV on cardiovascular and respiratory
disease hospital admissions [19,22,32]. There are even fewer studies that comparatively
assessed TV’s effects on cardiovascular and respiratory disease hospital admissions [22],
especially in developing countries such as South Africa.

This study applied the time-series epidemiological study design to evaluate the associ-
ation between short-term TV and CVD and RD hospitalisation in the City of Cape Town,
South Africa, between 1 January 2011 and 31 October 2016. Vulnerability by different age
groups (0–14, 15–64, and ≤65 years) and sex was assessed. Delayed effects of temperature
on TV and health outcome were investigated using distributed lag non-linear models
(DLNM) framework [33].

2. Materials and Methods
2.1. Study Location

A list of potential private hospitals that were included in this study was obtained from
the Hospital Association of South Africa (HASA) website (https://hasa.co.za/, accessed
on 30 June 2019). Only seven private hospitals located in the City of Cape Town, South
Africa, were included in this study due to the availability of data (Figure 1).

https://hasa.co.za/
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Figure 1. The location of the private hospitals in the City of Cape Town region that were considered
in the study.

2.2. Data Collection

Daily counts of hospital admissions at the seven private hospitals in the City of Cape
Town from 1 January 2011 to 31 October 2016 were data supplied by the respective hospital
authorities. Hospitalisations were classified on the primary diagnosis and according to
the International Classification of Diseases 10th Revision codes: RD (J00–J99) and CVD
(I00–I99). The hospital admission information also included age groups (all ages combined,
0–14 years, 15–64 years, and ≥65 years) and sex.

Daily temperature (degrees Celsius), relative humidity (%), wind speed (km/h), rain-
fall (mm), and barometric pressure (kPa) data for the Cape Town-Worcester weather station
were obtained from the South African Weather Service (SAWS). The ethical approval
reference number is 738/2019.

2.3. Exposure Definition

TV was calculated as a composite of intra-day and inter-day variability using the mini-
mum and maximum temperatures [17]. For example, TV for the preceding 3 days’ exposure
was calculated as follows: TV0−3 = standard deviation of the minimum temperature at
lag 0, the maximum temperature at lag 0, the minimum temperature at lag 1, maximum
temperature lag at 1, the minimum temperature at lag 2, and maximum temperature at lag
2. The general equation to calculate TV is shown below:

TV0−i =

√
∑n

i=1 (Ti − T̄)2

n − 1
(1)

where Ti is either maximum or minimum temperatures during exposure days, n is the
number of observations, and T̄ is the average of the minimum and maximum temperatures
during exposure days expressed as follows:

T̄1 =
n

∑
i=1

Ti
ni

(2)

2.4. Statistical Analysis

The association between TV and hospital admissions was investigated using a gen-
eralised linear regression model and assuming a quasi-Poisson distribution, allowing for
an over-dispensed hospital admission count [34]. The relationship between exposure to
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TV and hospital admissions was first explored by employing a natural cubic spline with
different degrees of freedom and by examining various TV options as exposure variables.
Furthermore, the analysis of variance (ANOVA) test and the value of quasi-Akaike infor-
mation criterion (QAIC) confirmed that the models with a cubic spline better capture the
effects of TV on hospital admissions, which is in line with previous studies [17,29,35].

QAIC goodness of fit for over-dispersed count data was used to select the best model
options. Long-term trends and seasonality were controlled using a natural cubic spline with
7 degrees of freedom per year. Categorical variables were used to control for confounding
effects of the day of the week and public holidays. Relative humidity was controlled for as
a natural cubic spline with 3 degrees of freedom.

The mean temperature was added to the models as a distributed nonlinear lag function
accounting for both nonlinear and delayed effects. Several options for the cross-basis of the
distributed nonlinear lag function were explored, and the cross-basis with the lowest QAIC
was selected. A natural cubic spline with 4 degrees of freedom was used both for the daily
mean temperature and the lags (0 to 21 days). Three internal knots were placed at equally
spaced percentiles (25th, 50th, and 75th) and two internal knots were placed at equally
spaced log-values of lag (at 1.42 and 5.45 days) plus intercept. This is a similar approach to
those in previous studies [8,15]. The regression model used can be expressed as follows:

E(log(Yi)) = α + βTV0−i + λdowi + σpubi + ns(RH, 3) + ns(timei, 7 × 6) + cb.tmean (3)

where Yi is the outcome variable on day i, TV0−i represents temperature variability on day
i with 0 to 7 days of lag, dowi and pubi are categorical variables controlling for day of week
and public holiday variability, ns(timei, 7 × 6) is the natural splines of calendar time, and
cb.tmean is the crossbasis function for daily mean temperature. The associations along with
95% confidence intervals are reported as percent change in CVD or RD hospitalisations per
interquartile range increase in TV.

2.5. Sensitivity Analysis

To test for the robustness of the results, sensitivity analyses were performed firstly by
changing the degrees of freedom in time per year (df = 3–8), the natural spline for tempera-
ture (df = 3–6), and the spline of relative humidity (df = 3–6). Secondly, the maximum lag
for the cross-basis function of temperature was changed from 21 to 28 to examine whether
using 21 lag days was sufficient to control for the temperature effects on health outcomes [8].
Thirdly, relative humidity was explored as different options, including a categorical vari-
able, a cubic spline with varying degrees of freedom. The models were also adjusted for
air pollutants, namely, nitrogen dioxide (NO2), sulphur dioxide (SO2), and particulate
matter with a diameter of 10 microns or less (PM10). Furthermore, stratified analyses by age
groups and sex were also conducted to identify the susceptible population and seasonal
variation of the TV–hospital admission association. All statistical analyses in this study
were conducted using the R Statistical Software (v4.1.2; R Core Team 2022) , where the
“splines” and “DLNM” software packages were used to fit the relationship between TV
and schizophrenic hospitalisations. p values of ≤0.05 (two-sided) were considered for
statistical significance.

3. Results

Table 1 presents the demographic characteristics of the hospitalisations at the seven
private hospitals in the City of Cape Town from 1 January 2011 to 31 October 2016. A total
of 58,818 CVD and 54,317 RD hospitalisations were recorded during the study period. Most
RD hospitalisations were for children aged between 0 and 14 years (49%), whereas the same
age group had the least CVD hospitalisations. The 0–14 year age group was excluded from
the CVD hospitalisation subgroup analysis. The majority (49.9%) of CVD hospitalisations
were among the elderly (≤65 years). The distribution of hospitalisations by sex was similar
for both diseases.
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Table 1. Summary statistics of respiratory and cardiovascular diseases hospital admissions in the
City of Cape Town by age and sex, from 1 January 2011 to 31 October 2016.

Variable Cardiovascular Diseases Respiratory Diseases

Age (Years)
Total 54,818 58,317

0–14 (%) 498 (0.908) 28,518 (48.9)
15–64 (%) 27,225 (49.7) 19,418 (33.3)

≥ 65 27,095 (49.9) 10,381 (17.8)
Gender
females 22,914 (41.8) 29,741 (51)
males 31,904 (58.2) 28,576 (49)

Figure 2 illustrates the time series of TV at different exposure days (0–1 days to
0–7 days) and a time series of daily mean temperature. The TV distribution at different
exposure days is similar to that in Table 2. The annual-average daily mean temperature
was 17.1 °C, with a range of 7.52 °C to 27.8 °C. The annual-average TV for the preceding
2 days’ exposure (TV0−1) was 5.70, with a range of 1.52 °C to 13.0 °C

Figure 2. Time series of temperature and temperature variability over different exposure days.
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Table 2. Distribution of weather conditions and temperature variability at different exposure days in
the City of Cape Town, 1 January 2011–31 October 2016.

Variable Mean Min P25 Median P75 Max

Tmean
(°C) 17.1 7.52 13.8 16.8 20.2 27.8

RH (%) 70.9 35.7 64.4 71.1 77.8 99.1
Temperature
variability
TV0−1 (°C) 5.70 1.52 4.32 5.41 6.86 13.0
TV0−2 (°C) 5.55 2.08 4.43 5.35 6.52 11.1
TV0−3 (°C) 5.51 2.14 4.57 5.40 6.33 10.4
TV0−4 (°C) 5.50 2.43 4.66 5.39 6.23 9.76
TV0−5 (°C) 5.50 2.57 4.73 5.38 6.14 9.36
TV0−6 (°C) 5.50 2.73 4.81 5.40 6.09 9.06
TV0−7 (°C) 5.50 2.84 4.86 5.40 6.09 9.03

Table 3 shows the percent change in CVD and RD hospitalisations associated with
an interquartile range increase in TV for the entire study group. In general, positive and
statistically significant associations between TV and hospitalisations for both diseases
were observed. The effect of TV on hospitalisations was immediate for both diseases. Per
Inter quartile increase (IQR), the highest increase in CVD hospitalisations, 6.04% (95% CI:
3.15–9.01%), was observed at 0–3 days of exposure; after that, the risk started to decrease
until 0–7 days of exposure. The effect of TV on RD hospitalisations reached a peak after
2 days.

Table 3. Percent change (mean and 95% CI) of CVD and RD hospitalisations associated with an
interquartile range (IQR) increase in temperature variability (◦C) on different exposure days for all
ages combined; models were not adjusted for any covariates.

Percentage Increase in Hospitalisations (%)

Exposure Days Cardiovascular Diseases Respiratory Diseases

0–1 3.90 (0.96, 6.93) 4.17 (1.38, 7.03)
0–2 5.97 (2.99, 9.04) 4.68 (1.88, 7.56)
0–3 6.04 (3.15, 9.01) 4.55 (1.85, 7.33)
0–4 4.83 (1.97, 7.77) 4.45 (1.75, 7.21)
0–5 3.96 (1.18, 6.83) 3.94 (1.31, 6.64)
0–6 2.96 (0.26, 5.73) 3.41 (0.86, 6.04)
0–7 2.48 (−0.28, 5.32) 3.19 (0.57, 5.87)

After adjusting for the day of the week, time, and seasonal trends and the effect of
public holidays (Table 4), the effect of TV on both CVD and RD hospitalisations remained
statistically significant. However, the magnitude of the risks decreased. For the entire
study group, the highest increase in CVD hospitalisations (2.84% , 95% CI: 1.44–4.27%) was
observed at 0–2 exposure days and, at 0–1 days for RD hospitalisations (2.79% , 95% CI:
1.44–4.17%) thereafter, started to decrease gradually.

Table 4 shows the associations between TV and hospitalisations for different age
groups. The effect estimates varied by exposure days for the different age groups; for
example, when 0–1 day of exposure was considered, the highest risk for hospitalisation was
observed in the elderly for both diseases. When 0–5 days of exposure were investigated,
the highest increase in CVD hospitalisations, 3.01% (95% CI: 1.17–4.89%), was observed for
the 15–64 year age group, whereas the highest effect estimates, 4.74% (95% CI: 2.02–7.50%),
were observed for the 65 years or older age group.
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Table 4. Percent change (mean and 95% CI) of CVD and RD hospitalisations associated with an interquartile range (IQR) increase in temperature variability (◦ C) on
different exposure days, adjusting for time trends and seasonal variation, day of the week, and public holidays.

Percent Increase in Cardiovascular Disease Hospitalisations (%)

Exposure Days

Group 0–1 0–2 0–3 0–4 0–5 0–6 0–7

All 1.91 (0.50, 3.35) 2.60 (1.15, 4.06) 2.68 (1.27, 4.11) 2.56 (1.15, 3.99) 2.84 (1.44, 4.27) 2.63 (1.23, 4.04) 2.61 (1.15, 4.08)
15–64 1.72 (−0.14, 3.61) 2.75 (0.85, 4.69) 2.97 (1.11, 4.85) 2.84 (0.98, 4.73) 3.01 (1.17, 4.89) 2.46 (0.63, 4.32) 2.37 (0.47, 4.32)
≥65 2.17 (0.34, 4.04) 2.59 (0.73, 4.48) 2.56 (0.74, 4.40) 2.48 (0.66, 4.34) 2.86 (1.04, 4.70) 3.00 (1.19, 4.84) 3.07 (1.18, 4.99)

Females 1.21 (−0.77, 3.23) 1.74 (−0.28, 3.80) 2.16 (0.18, 4.17) 2.20 (0.21, 4.22) 2.05 (0.08, 4.06) 2.31 (0.35, 4.31) 2.76 (0.70, 4.86)
Males 2.43 (0.68, 4.20) 3.22 (1.44, 5.03) 3.05 (1.32, 4.81) 2.82 (1.08, 4.58) 3.42 (1.68, 5.18) 2.85 (1.14, 4.60) 2.50 (0.71, 4.32)

Percent Increase in Respiratory Disease Hospitalisations (%)

Group 0–1 0–2 0–3 0–4 0–5 0–6 0–7

All 2.79 (1.44, 4.17) 2.53 (1.15, 3.92) 1.61 (0.28, 2.96) 1.83 (0.50, 3.19) 1.78 (0.45, 3.12) 1.58 (0.27, 2.91) 1.66 (0.29, 3.04)
0–14 2.98 (1.12, 4.87) 2.26 (0.38, 4.18) 1.34 (−0.48, 3.20) 1.39 (−0.43, 3.25) 1.47 (−0.33, 3.32) 1.52 (−0.28, 3.35) 1.83 (−0.04, 3.73)

15–64 1.85 (−0.31, 4.04) 1.48 (−0.69, 3.71) 0.50 (−1.60, 2.64) 0.46 (−1.64, 2.62) 0.61 (−1.48, 2.76) 0.53 (−1.55, 2.65) 0.43 (−1.74, 2.64)
≥ 65 3.74 (1.05, 6.50) 5.06 (2.31, 7.89) 4.41 (1.73, 7.15) 5.65 (2.93, 8.45) 4.74 (2.05, 7.50) 3.59 (0.95, 6.30) 3.24 (0.50, 6.06)

Females 2.65 (0.91, 4.43) 2.27 (0.50, 4.07) 1.23 (−0.48, 2.96) 1.40 (−0.31, 3.15) 1.50 (−0.21, 3.24) 1.31 (−0.38, 3.03) 1.25 (−0.51, 3.05)
Males 2.90 (1.14, 4.69) 2.73 (0.95, 4.55) 2.00 (0.26, 3.76) 2.24 (0.50, 4.00) 1.99 (0.27, 3.74) 1.82 (0.12, 3.56) 2.05 (0.27, 3.86)
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Susceptibility differed by gender (Table 4). In general, males were more vulnerable
to CVD hospitalisation due to exposure to TV than females. The highest increase in CVD
hospitalisation (3.42%, 95% CI: 1.68–5.18%) for males was observed at 0–5 days of exposure,
whereas the risk of CVD hospitalisation (2.76%, 95% CI: 0.70%, 4.86%) for females reached
a maximum after 7 days of exposure. For RD hospitalisation, the highest increases in
hospitalisations for both females (2.65%, 95% CI: 0.91–4.43%) and males (2.90%, 95% CI:
1.14–4.69%) appeared at 0–1 days of exposure. However, the males were more at risk
compared to females. The risk for RD hospitalisation for both females and males remained
stable but started to decrease after 0–2 days of exposure.

Further controlling the models for the effects of daily mean temperature, the highest
effect estimates for the entire study group appeared at different exposure days. The highest
effect estimates appeared at 0–2 days for CVD hospitalisation (Figure 3A) and at 0–1 day
for RD hospitalisation (Figure 4A). After reaching the maximum, the effect estimates of TV
on hospitalisations for both diseases tended to be stable and then decreased. The subgroup
analysis showed that the 15–64 age group was more vulnerable to CVD hospitalisations
and the 65 or older age group was more vulnerable to RD hospitalisations. Similar patterns
Figure 4A,B were observed after controlling for all other covariates, including relative hu-
midity.

Figure 3. Percent change (95% confidence interval) in cardiovascular disease hospitalisation as-
sociated with an interquartile increase in temperature variability (°C) on different exposure days:
(A) After controlling for the day of the week, time, and seasonal trends and daily mean temperature.
(B) After controlling for the day of the week, time, and seasonal trends and daily mean temperature and
relative humidity.
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For the two genders (Table A1), per IQR increase, the greatest effect of TV on CVD
hospital admissions occurred in TV at 0–2 days of exposure for males (3.15%, 95% CI:
1.07–5.27%) and at 0–7 days of exposure for females (2.62%, 95% CI: 0.24–5.04%). The effect
of TV on the number of hospital admissions for RD reached a peak at 0–1 days of exposure
for both males (2.47%, 95% CI: 0.45–4.53%) and females (3.05%, 95% CI: 1.02–5.13%). Af-
ter reaching the maximum, the effect estimates tended to remain stable and then decreased.

Figure 4. Percent change (95% confidence interval) in respiratory disease hospitalisation associated
with an interquartile increase in temperature variability (°C) on different exposure days: (A) After
controlling for day of the week, time, and seasonal trends and daily mean temperature. (B) After
controlling for the day of the week, time, and seasonal trends and daily mean temperature and
relative humidity.

The analysis was repeated for the main results using different model options for all
health outcomes and subgroups but only reported the results for the entire study group
in Tables A2–A4. For both health outcomes, the sensitivity analysis showed that the
associations were robust to changes in degrees of freedom for time, spline of temperature,
and natural cubic spline of relative humidity. The results remained unchanged when the
maximum number of lags for the crossbasis of daily mean temperature changed. Using
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daily minimum temperature instead of daily mean temperature did not change the results.
However, when maximum temperature was used, the results attenuated. Furthermore,
adding relative humidity as a linear term or as a categorical variable to the model did not
change the results.

The main results were repeated using different model options for all health outcomes
and subgroups but only reported the results for the entire study group in Tables A2–A4.
For both health outcomes, the sensitivity analysis showed that the associations were
robust to changes in degrees of freedom for time, spline of temperature, and natural
cubic spline of relative humidity. The results remained unchanged when the maximum
number of lags for the daily mean temperature cross basis changed. Using daily minimum
temperature instead of daily mean temperature did not change the results. However, when
maximum temperature was used, the effects attenuated. Furthermore, adding relative
humidity as a linear term or as a categorical variable to the model did not change the results.
However, previous studies ascertained the robustness and independence of temperature-
related health studies with or without the influence of air pollution [9,36]. In the current
study, the effect estimates did not change after controlling for the effects of PM10 and SO2.
However, the magnitude of the effect estimates decreased after controlling for NO2.

4. Discussion

This is the first local epidemiological study in Southern Africa to evaluate evidence
documenting the cardio-respiratory health effects of TV. In general, positive and statistically
significant impacts of TV exposure were observed. The 15–64 age group was more vulnera-
ble to CVD hospitalisation and the elderly (65 years or older), were more vulnerable to RD
hospitalisation due to TV exposure. Men appeared to be more susceptible to hospitalisation
than females.

Few studies evaluated TV’s effects on CVD and RD health outcomes [19,22,23,32,37].
These studies found a more significant effect of TV on RD health outcomes than CVD health
outcomes. Contrary to these studies, in this study, the effect of TV was higher on CVD
hospitalisations on most exposure days, except at shorter exposure days (0–1 and 0–2 days),
where the effect of TV on RD hospitalisations was higher for all subgroups. The results
might be different due to different health outcomes and geographic locations. In this study,
the effects of TV on hospital admissions, instead of mortality, were explored.

For the elderly, the most significant effect of TV on CVD hospitalisations occurred at
short TV exposure (0–1 days). For the entire study group and males, the most significant
effect of TV on CVD hospitalisations occurred at 0–2 days of exposure. For the 15–64 age
group, the most significant effect of TV on CVD hospitalisations occurred at 0–3 days of
exposure. For females, the most significant effect of TV on CVD hospitalisations occurred
at 0–7 days of exposure. This indicates that TV had acute effects on the entire study group,
males, and the elderly for the incidence of CVD hospitalisations. In contrast, the effect of TV
on the incidence of CVD hospitalisations for the 15–64 age group and females was delayed.
Tian et al. (2019) [19] also observed the acute effects of TV on CVD hospitalisations for the
entire study group. In contrast, Luo et al. (2017) [38] and Zhang et al. (2017) [29] reported
the strongest effects of TV on CVD mortality at longer exposures.

TV had acute effects on the incidence of RD hospitalisations for the entire study group,
all genders, and the 0–14 year and 15–64 year old age groups occurring at 0–1 days of
exposure, except for the elderly, where the greatest effect of TV on RD hospitalisations
occurred at 0–4 days of exposure. This is in line with the results from a previous study on
the effects of TV on the common cold (ICD code: J00) using the diurnal temperature range as
an indicator for TV. They observed the highest effects at lag 0 for the entire study group and
the ≤15 and 15–65 year age groups. While for the older than 65 year age group, the highest
effects were detected at lag 5 [28]. A recent study conducted in Bangladesh also observed
delayed effects of TV on RD hospitalisations in the elderly group, with the highest effects
observed at 0–7 days of exposure [22]. These results further highlight the importance of
considering different exposure days and lags when assessing the health burden of TV. Thus,
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the composite index of TV accounting for continuous intra- and inter-day temperatures
may be a better indicator than intra-day temperatures alone [23].

For CVD hospitalisations, the highest estimate of the effects of TV between the two age
groups fluctuated for different exposure days. The 15–64 age groups were more sensitive
to TV effects on most exposure (0–2 days and 0–6 days) compared to the elderly. The use
of air conditioning may be one of the potential reasons why young adults are generally
more sensitive to temperature changes since young people in urban areas such as in the
City of Cape Town tend to spend more time indoors or in office spaces. Air conditioners
(AC) help to regulate indoor temperatures; some researchers argue that the use of AC make
people physically and mentally dependent and acclimatised to stable temperatures, which
makes them susceptible to temperature variability [23,39]. These results are consistent with
the results observed by Tian et al. (2019) [19], where young people in the 18–64 age group
(0.81%, 95% CI: 0.59–1.03%) were more at risk of CVD hospitalisations due to TV exposure
as compared with the 65–74 age group (0.19%, 95% CI: 0.03–0.34%) and the older than
75 age group (0.55%, 95% CI: 0.34–0.75%).

Numerous studies have reported that the effects of temperature change vary by age
group, with the elderly being more sensitive [22,23,28,32]. Similar to previous studies,
the current study also found that the elderly were more susceptible to RD hospitalisations
after exposure to TV than all other age groups. Older people may be prone to the grave
effects of TV due to declining thermoregulatory function and poor acclimatisation skills [19].
Previous studies also demonstrated that temperature variation is associated with heart
rate, blood cholesterol levels, blood pressure, peripheral vasoconstriction, platelet viscosity,
plasma fibrinogen concentrations, and the immune system’s ability to resist infectious
agents [28,40]. These physiological changes may trigger cardiovascular and respiratory
diseases [19].

Several studies stated that gender matters when exploring weather-related effects
on health [6,27,38]. Similar to previous studies that assessed the effects of temperature
change [31], diurnal temperature range, and temperature change between neighbouring
days [20], we also observed that, between the two genders, men were generally more
sensitive to the effects of TV on CVD hospitalisations than females, except at 0–7 days of
exposure, where females appeared to be more sensitive than males. A Brazil study [32]
also observed that females were affected by prolonged exposure to TV. Furthermore, men
were more sensitive to the effects of TV on RD hospitalisations on all exposure days. Men
may appear to be more vulnerable to TV effects due to spending longer time outdoors for
activities, thereby incurring a greater risk of exposure to TV. In contrast, Chinese [38] and
Brazilian [32] studies observed stronger effects of TV on females. Such a discrepancy may
be due to methodological and socioeconomic differences.

Not controlling for the effects of daily mean temperature in TV and health out-
come associations could overestimate the health risks associated with TV, as shown in
Figures 3 and 4, and Table A1. Previous studies showed that daily mean temperature could
confound the association when assessing the effects of temperature variability on health
outcomes [8]. Similarly, in this study, TV was associated with increased risks of hospital
admission even after controlling for the main effects of daily mean temperature and relative
humidity. This ascertains that TV is a health risk factor in the City of Cape Town and is
independent of daily mean temperatures. Similar to the studies by Cheng et al. (2017) [41]
and Guo et al. (2016) [8], controlling for the effects of daily mean temperature decreased
the magnitude of the effect estimates and became non-significant in some instances.

This study has some strengths. Firstly, this is the first study in Southern Africa to
evaluate the effects of TV on hospital admissions. Secondly, the study investigated the
effects of TV on cause-specific hospital admissions rather than all-cause/non-accidental
health effects, as in several other studies. Thirdly, we conducted subgroup analysis by age
groups (0–14, 15–64 and ≤65-year-old) and gender (females and males) to evaluate sensitiv-
ity by different subpopulations. Fourthly, the nonlinear and delayed effects of daily mean
temperature were assessed using flexible distributed lag nonlinear models (DLNM). Fifthly,



Int. J. Environ. Res. Public Health 2023, 20, 1159 12 of 18

the interactive effects of temperature variability and air pollution were investigated. Lastly,
a range of sensitivity analyses was performed to evaluate the robustness of our results.

This study also has some limitations. Firstly, like other time series studies, individual
exposure data were not used to assess the effects of TV. Exposure data from several fixed
stations were used instead. This is known to create measurement errors in an exposure.
These measurement errors are likely to be random, typically resulting in an underestimation
of exposure-related risks [8,42]. Secondly, we only collected data on the number of RD and
CVD hospitalisations from seven of the many private hospitals in the City of Cape Town,
which may not be enough to extrapolate the results to represent the entire population
in South Africa fully [9]. Finally, there are many factors that contribute to early onset
of respiratory and cardiovascular diseases such as social economic status, diet, smoking
habits, alcohol, and weight, these factors could not be accounted for in this study since the
study was conducted at the population level. More studies are warranted to expand on the
interactive effects of TV and air pollutants on health outcomes.

5. Conclusions

In conclusion, this study, which to, our knowledge is the first study in South Africa,
demonstrated that daily temperature variation is associated with increased risks of CVD
and RD hospital admissions in the City of Cape Town. The results add to current studies
that aims to understand health implications of climate change and to provide scientific
guidelines to assist local government in CVD and RD control and prevention in the country.
These findings may have implications for assessing health risks associated with meteoro-
logical conditions and for developing group-specific adaptation strategies to reduce the
grave effects of climate change.
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Appendix A

Table A1. Percent change (mean and 95% CI) of CVD and RD hospitalisations associated with an interquartile range (IQR) increase in temperature variability (◦C)
on different exposure days, adjusting for time trends and seasonal variation, day of the week, public holidays, and daily mean temperature.

Percent Increase in Cardiovascular Disease Hospitalisations (%)

Exposure Days

Group 0–1 0–2 0–3 0–4 0–5 0–6 0–7

All 2.15 (0.57, 3.75) 2.71 (1.07, 4.39) 2.53 (0.92, 4.16) 2.22 (0.61, 3.85) 2.49 (0.90, 4.11) 2.22 (0.63, 3.82) 2.16 (0.51, 3.83)
15–64 1.86 (−0.21, 3.99) 2.96 (0.78, 5.19) 3.10 (0.97, 5.29) 2.87 (0.74, 5.04) 3.05 (0.93, 5.21) 2.37 (0.28, 4.50) 2.34 (0.17, 4.56)
≤65 2.52 (0.47, 4.62) 2.65 (0.51, 4.82) 2.16 (0.08, 4.28) 1.81 (−0.26, 3.93) 2.15 (0.09, 4.26) 2.29 (0.24, 4.39) 2.22 (0.09, 4.40)

Females 1.68 (−0.55, 3.95) 2.07 (−0.25, 4.45) 2.31 (0.04, 4.64) 2.15 (−0.12, 4.47) 1.77 (−0.48, 4.06) 2.02 (−0.21, 4.31) 2.54 (0.20, 4.92)
Males 2.49 (0.53, 4.49) 3.17 (1.12, 5.25) 2.67 (0.68, 4.70) 2.25 (0.26, 4.28) 3.01 (1.03, 5.03) 2.36 (0.39, 4.36) 1.88 (−0.15, 3.95)

Percent increase in respiratory disease hospitalisations (%)

Group 0–1 0–2 0–3 0–4 0–5 0–6 0–7

All 3.17 (1.66, 4.70) 2.78 (1.21, 4.37) 1.47 (−0.05, 3.02) 1.65 (0.12, 3.20) 1.50 (−0.01, 3.03) 1.21 (−0.28, 2.72) 1.26 (−0.29, 2.83)
0–14 3.59 (1.51, 5.70) 2.63 (0.47, 4.83) 1.26 (−0.83, 3.39) 1.16 (−0.92, 3.28) 1.10 (−0.96, 3.19) 1.08 (−0.96, 3.15) 1.39 (−0.73, 3.55)

15–64 2.79 (0.37, 5.27) 2.33 (−0.17, 4.90) 0.83 (−1.59, 3.31) 0.58 (−1.84, 3.06) 0.63 (−1.78, 3.08) 0.38 (−2.00, 2.81) 0.18 (−2.29, 2.70)
≤ 65 2.43 (−0.53, 5.48) 3.98 (0.87, 7.19) 3.33 (0.29, 6.47) 5.18 (2.07, 8.38) 4.34 (1.28, 7.48) 3.10 (0.11, 6.18) 2.79 (−0.31, 5.99)

Females 2.75 (0.81, 4.73) 2.23 (0.21, 4.29) 0.81 (−1.15, 2.80) 1.00 (−0.96, 3.00) 1.17 (−0.77, 3.16) 0.95 (−0.97, 2.91) 0.87 (−1.12, 2.90)
Males 3.55 (1.58, 5.55) 3.28 (1.24, 5.37) 2.13 (0.14, 4.16) 2.26 (0.27, 4.29) 1.74 (−0.22, 3.74) 1.42 (−0.51, 3.40) 1.63 (−0.38, 3.68)
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Table A2. Results of sensitivity analyses by changing the degrees of freedom for time per year on the association between TV, and cardiovascular and respiratory
disease hospital admissions on all exposure days for all ages. The results were scaled per IQR increase in TV.

Percent Increase in Cardiovascular Disease Hospitalisations (%)

Exposure Days

Degrees of Freedom 0–1 0–2 0–3 0–4 0–5 0–6 0–7

3 2.32 (0.68, 3.98) 2.92 (1.27, 4.60) 2.74 (1.15, 4.36) 2.45 (0.88, 4.05) 2.63 (1.07, 4.21) 2.35 (0.81, 3.91) 2.31(0.73, 3.92)
4 2.19 (0.56, 3.85) 2.75 (1.10, 4.42) 2.57 (0.98, 4.18) 2.29 (0.71, 3.89) 2.48 (0.93, 4.06) 2.22 (0.68, 3.78) 2.22 (0.63, 3.83)
5 2.16 (0.51, 3.83) 2.79 (1.12, 4.49) 2.66 (1.04, 4.30) 2.39 (0.78, 4.02) 2.66 (1.06, 4.28) 2.44 (0.85, 4.04) 2.45 (0.81, 4.11)
6 2.23 (0.59, 3.90) 2.80 (1.13, 4.49) 2.64 (1.03, 4.28) 2.35 (0.74, 3.98) 2.61 (1.01, 4.24) 2.35 (0.76, 3.96) 2.31 (0.66, 3.99)
7 2.21 (0.57, 3.88) 2.74 (1.06, 4.44) 2.55 (0.92, 4.20) 2.24 (0.61, 3.89) 2.51 (0.90, 4.16) 2.24 (0.64, 3.87) 2.19 (0.52, 3.89)
8 2.23 (0.59, 3.90) 2.80 (1.13, 4.49) 2.64 (1.03, 4.28) 2.35 (0.74, 3.98) 2.61 (1.01, 4.24) 2.35 (0.76, 3.96) 2.31 (0.66, 3.99)

Percent increase in respiratory disease hospitalisations (%)

Degrees of freedom 0–1 0–2 0–3 0–4 0–5 0–6 0–7

3 3.73 (2.14, 5.35) 3.48 (1.87, 5.11) 2.31 (0.77, 3.87) 2.56 (1.03, 4.11) 2.37 (0.86, 3.90) 2.10 (0.62, 3.60) 2.21 (0.68, 3.76)
4 3.45 (1.87, 5.05) 3.14 (1.55, 4.76) 1.93 (0.40, 3.48) 2.13 (0.61, 3.67) 1.92 (0.42, 3.43) 1.65 (0.19, 3.14) 1.75 (0.23, 3.29)
5 3.03 (1.46, 4.62) 2.71 (1.12, 4.32) 1.51 (−0.02, 3.06) 1.72 (0.20, 3.27) 1.53 (0.02, 3.06) 1.26 (−0.22, 2.77) 1.31 (−0.23, 2.87)
6 2.74 (1.18, 4.32) 2.45 (0.87, 4.05) 1.22 (−0.30, 2.76) 1.44 (−0.07, 2.98) 1.29 (−0.21, 2.82) 1.03 (−0.46, 2.53) 1.08 (−0.47, 2.64)
7 2.77 (1.21, 4.36) 2.43 (0.84, 4.05) 1.14 (−0.40, 2.70) 1.33 (−0.21, 2.90) 1.17 (−0.36, 2.72) 0.87 (−0.64, 2.40) 0.89 (−0.68, 2.49)
8 2.74 (1.18, 4.32) 2.45 (0.87, 4.05) 1.22 (−0.30, 2.76) 1.44 (−0.07, 2.98) 1.29 (−0.21, 2.82) 1.03 (−0.46, 2.53) 1.08 (-0.47, 2.64)
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Table A3. Results of sensitivity analyses by changing the model options for the crossbasis function of the daily mean temperature on the association between TV,
and cardiovascular and respiratory disease hospital admissions on all exposure days for all ages. The results were scaled per IQR increase in TV.

Percent Increase in Cardiovascular Disease Hospitalisations (%)

Exposure Days

Variable 0–1 0–2 0–3 0–4 0–5 0–6 0–7

Degrees of Freedom for Natural Spline of Temperature
4 2.21 (0.57, 3.88) 2.74 (1.06, 4.44) 2.55 (0.92, 4.20) 2.24 (0.61, 3.89) 2.51 (0.90, 4.16) 2.24 (0.64, 3.87) 2.19 (0.52, 3.89)
5 2.21 (0.57, 3.88) 2.74 (1.06, 4.44) 2.55 (0.92, 4.20) 2.24 (0.61, 3.89) 2.51 (0.90, 4.16) 2.24 (0.64, 3.87) 2.19 (0.52, 3.89)
6 2.21 (0.57, 3.88) 2.74 (1.06, 4.44) 2.55 (0.92, 4.20) 2.24 (0.61, 3.89) 2.51 (0.90, 4.16) 2.24 (0.64, 3.87) 2.19 (0.52, 3.89)

Maximum lag (28) 2.08 (0.44, 3.74) 2.62 (0.95, 4.31) 2.42 (0.80, 4.06) 2.10 (0.50, 3.72) 2.33 (0.75, 3.93) 2.04 (0.48, 3.63) 1.98(0.35, 3.64)
Tmin 2.64 (0.92, 4.39) 3.05 (1.41, 4.73) 2.94 (1.35, 4.55) 2.67 (1.08, 4.29) 2.89 (1.31, 4.49) 2.54 (0.98, 4.12) 2.45 (0.83, 4.10)
Tmax 0.92 (−1.30, 3.20) 1.59 (−0.62, 3.86) 1.30 (−0.76, 3.40) 0.91 (−1.13, 2.99) 1.49 (−0.57, 3.60) 1.14 (−0.93, 3.24) 1.03 (−1.09, 3.19)

Percent increase in respiratory disease hospitalisations (%)

Variable 0–1 0–2 0–3 0–4 0–5 0–6 0–7

Degrees of freedom for natural spline of temperature
4 2.77 (1.21, 4.36) 2.43 (0.84, 4.05) 1.14 (−0.40, 2.70) 1.33 (−0.21, 2.90) 1.17 (−0.36, 2.72) 0.87 (−0.64, 2.40) 0.89 (−0.68, 2.49)
5 2.77 (1.21, 4.36) 2.43 (0.84, 4.05) 1.14 (−0.40, 2.70) 1.33 (−0.21, 2.90) 1.17 (−0.36, 2.72) 0.87 (−0.64, 2.40) 0.89 (−0.68, 2.49)
6 2.77 (1.21, 4.36) 2.43 (0.84, 4.05) 1.14 (−0.40, 2.70) 1.33 (−0.21, 2.90) 1.17 (−0.36, 2.72) 0.87 (−0.64, 2.40) 0.89 (−0.68, 2.49)

Maximum lag (21) 2.62 (1.06, 4.21) 2.26 (0.67, 3.87) 0.95 (−0.57, 2.50) 1.12 (−0.39, 2.66) 0.98 (−0.51, 2.49) 0.68 (−0.79, 2.17) 0.70 (−0.83, 2.26)
Tmin 2.43 (0.77, 4.11) 2.12 (0.54, 3.73) 1.07 (−0.44, 2.60) 1.41 (−0.11, 2.95) 1.28 (−0.21, 2.80) 0.94 (−0.54, 2.43) 0.89 (−0.64, 2.45)
Tmax 2.57 (0.42, 4.76) 1.50 (−0.61, 3.66) −0.77 (−2.71, 1.21) −0.28 (−2.22, 1.69) −0.32 (−2.27, 1.67) −0.62 (−2.56, 1.35) −0.47 (−2.46, 1.57)
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Table A4. Results of sensitivity analyses by changing the model options for relative humidity on the association between TV, and cardiovascular and respiratory
disease hospital admissions on all exposure days for all ages. The results were scaled per IQR increase in TV.

Percent Increase in Cardiovascular Disease Hospitalisations (%)

Exposure days

Variable 0–1 0–2 0–3 0–4 0–5 0–6 0–7

Degrees of Freedom for Natural Spline of Relative Humidity
3 2.21 (0.57, 3.88) 2.74 (1.06, 4.44) 2.55 (0.92, 4.20) 2.24 (0.61, 3.89) .51 (0.90, 4.16) 2.24 (0.64, 3.87) 2.19 (0.52, 3.89)
4 2.20 (0.56, 3.87) 2.72 (1.05, 4.43) 2.52 (0.89, 4.18) 2.21 (0.58, 3.86) 2.49 (0.87, 4.14) 2.22 (0.61, 3.85) 2.17 (0.50, 3.87)
5 2.20 (0.56, 3.87) 2.72 (1.04, 4.42) 2.53 (0.90, 4.18) 2.21 (0.58, 3.87) 2.49 (0.87, 4.14) 2.22 (0.61, 3.85) 2.17 (0.49, 3.87)
6 2.25 (0.60, 3.91) 2.81 (1.13, 4.52) 2.58 (0.94, 4.23) 2.23 (0.60, 3.88) 2.53 (0.91, 4.18) 2.27 (0.66, 3.91) 2.23 (0.55, 3.93)

RH 2.31 (0.69, 3.95) 2.81 (1.14, 4.50) 2.60 (0.98, 4.25) 2.29 (0.67, 3.94) 2.58 (0.97, 4.22) 2.31 (0.71, 3.93) 2.26 (0.59, 3.95)
RH_cat 2.24 (0.60, 3.90) 2.74 (1.07, 4.44) 2.54 (0.92, 4.20) 2.23 (0.60, 3.88) 2.52 (0.90, 4.16) 2.24 (0.63, 3.87) 2.18 (0.51, 3.88)

Percent increase in respiratory disease hospitalisations (%)

Variable 0–1 0–2 0–3 0–4 0–5 0–6 0–7

Degrees of Freedom for Natural Spline of Relative Humidity
3 2.77 (1.21, 4.36) 2.43 (0.84, 4.05) 1.14 (−0.40, 2.70) 1.33 (−0.21, 2.90) 1.17 (−0.36, 2.72) 0.87 (−0.64, 2.40) 0.89 (−0.68, 2.49)
4 2.77 (1.21, 4.36) 2.43 (0.84, 4.05) 1.15 (−0.39, 2.71) 1.34 (−0.20, 2.91) 1.18 (−0.35, 2.73) 0.88 (−0.64, 2.41) 0.90 (−0.67, 2.49)
5 2.76 (1.20, 4.35) 2.42 (0.83, 4.04) 1.14 (−0.40, 2.70) 1.33 (−0.22, 2.90) 1.16 (−0.36, 2.71) 0.86 (−0.65, 2.40) 0.88 (−0.69, 2.48)
6 2.75 (1.18, 4.34) 2.40 (0.81, 4.02) 1.12 (−0.42, 2.69) 1.32 (−0.22, 2.89) 1.15 (−0.37, 2.70) 0.85 (−0.66, 2.38) 0.87 (−0.70, 2.46)

RH 2.93 (1.38, 4.49) 2.57(0.98, 4.17) 1.26 (−0.27, 2.82) 1.44 (−0.10, 3.00) 1.28 (−0.24, 2.82) 0.97 (−0.53, 2.50) 1.00 (−0.57, 2.59)
RH_cat 2.83 (1.27, 4.41) 2.49 (0.90, 4.10) 1.19 (−0.35, 2.75) 1.36 (−0.18, 2.93) 1.20 (−0.32, 2.75) .89 (−0.62, 2.42) 0.91 (−0.66, 2.50)
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