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A B S T R A C T   

Each economic sector contributes differently to carbon emissions; hence the environmental impact of techno-
logical advancement may also differ across sectors; even more so, the same economic sectors might perform 
differently in different economic environments in countries. 

This study investigates the heterogeneous effect of aggregate and green technology on sectoral carbon 
emissions in a sample of 45 countries divided into three income categories (high-income, upper middle income, 
and lower middle income) between 1999 and 2018. The focus is on carbon emissions from five sectors (power, 
manufacturing, transport, petrol, and building). To do so, the two steps DIFF-GMM and the Feasible Generalised 
Least Square (FGLS) econometric methods are used. We proxied technological progress by four commonly used 
indicators (patents applications, R&D expenditure, ICT, and science and technology publications) and an 
aggregated one combining them. 

For the full sample analysis, results show that aggregate technology increases carbon emissions in all sectors 
except the building sector. Renewable energy significantly lowers emissions from all sectors, except the petrol 
sector. Aggregate technology is positively associated with carbon emissions across sectors in upper-middle- 
income and lower-middle-income countries, while negatively for the manufacturing and building sector in 
high-income countries.   

1. Introduction 

In recent years, the impact of technological progress on the envi-
ronment and the climate has received increasing attention in the liter-
ature (Asongu et al., 2017; Cheng et al., 2019; Churchill et al., 2019; 
Milindi and Inglesi-Lotz, 2021). While some studies suggest that tech-
nology reduces overall CO2 emissions by reducing energy intensity, 
others are concerned about the positive effect of technological progress 
on energy consumption and economic growth, which translates to 
higher carbon emissions. The data can also support this intense debate. 
According to a 2015 report by the Global e-Sustainability Initiative 
(GeSI, 2015), mobile communications technology and the internet are 
making a considerable contribution to action on climate change. Ana-
lyses revealed that mobile phones and other telecommunications de-
vices save more than 180 million tons of CO2 emissions per year in the U. 
S. and Europe. This amount of carbon emissions is more than the one 
produced annually by the Netherlands (GeSI, 2015). The positive impact 
of technology on CO2 emissions can be illustrated by the boom in shale 
oil production in the 2000s in the United States, for example. 

Given the methods and results obtained by studies that have exam-
ined the relationship between carbon emissions and technological 
progress, several important points can be underlined. First, as discussed 
above, in general, a clear consensus on the effect of technological 
progress on CO2 emissions has not yet been reached. This is due to 
several reasons, such as the differences in sampling, study periods, or the 
methods used to estimate the results. The definition and quantification 
of technological progress also constitute a major obstacle that does not 
allow having refined results. Measuring and quantifying technology is 
challenging. Most studies used only one indicator of aggregate tech-
nology or green technology to assess its impact on carbon emissions (Du 
et al., 2019; Gu et al., 2019). However, as Milindi and Inglesi-Lotz 
(2021) argued, a single indicator often only reveals a few facets of this 
complex relationship. Second, most of these studies are conducted on 
carbon emissions emitted at the country level. Still, the effects of tech-
nological progress on carbon emissions from different economic sectors 
are not broadly discussed in the literature. We argue that as all sectors do 
not contribute to CO2 emissions at the same level, the impact of aggre-
gate or green technology on carbon emissions might vary significantly 
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across sectors. Some economic sectors may be more sensitive to tech-
nological advancement than others, possibly due to differences observed 
in their production process, financial capacities to induce and spread 
innovations, their vulnerability to the rebound effect, and their 
compliance with strict environmental laws (Milindi and Inglesi-Lotz, 
2021; Alatas, 2021). 

Not all economic sectors contribute to carbon dioxide emissions at 
the same level. Based on the 2014 IPCC report (IPCC, 2014a,b), the 
contribution of various global sectors to total carbon dioxide emissions 
is shown in Fig. 1. According to the IPCC (2014a, b), the electricity that 
comes from burning oil, coal, and natural gas is the largest source of 
greenhouse emissions (25 per cent). Agricultural activities and defor-
estation are the second-largest sources of greenhouse gas emissions (24 
per cent). Twenty-one per cent of total emissions come from the industry 
sector. The transportation sector (road, air, rail, and maritime trans-
portation) and the building sector (energy serves to supply heating and 
air conditioning systems for buildings and food cooking in homes) 
constitute 14 per cent and 6 per cent of total greenhouse gas emissions, 
respectively. 

Thirdly, the impact of technology on sectoral CO2 emissions has not 
yet been comprehensively investigated on different “income level” 
scales. Given that the responses to environmental challenges mainly 
depend on each country’s financial capacity, it is necessary to look at 
this relationship in countries at different levels of development. 

Based on these, this study aims to investigate the multifaceted and 
intricate relationship between technological progress and CO2 emissions 
by sector. The study makes a contribution to the literature that has not 
made a consensus in this relationship appreciating various perspectives 
and the fact that the relationship also changes over time and under 
different socioeconomic conditions. This study offers also the analysis on 
the hypothesis that this relationship differs for various economic sectors. 
Such distinction is to be useful for policymaking as these sectors 
contribution to the total emissions also differ and hence, a suite of 
policies needs to be considered for each. This inquiry extends to con-
siderations of financial capacity, innovation propagation, the rebound 
effect, and regulatory compliance. 

Furthermore, this study aims to investigate the connection between 
technology and sectoral emissions across a range of income levels 
because it is well known that environmental responses are inextricably 
related to a nation’s economic progress. Our research aims to provide a 
comprehensive knowledge of the complex relationships between tech-
nology, income, and sectoral emissions by exploring these factors, 
significantly adding to the ongoing academic conversation on environ-
mental sustainability and technological advancement. Two main 
research goals serve as the framework for this study. First, it looks into 
how much sectoral CO2 emissions are impacted by overall and green 
technologies. It also seeks to determine whether this impact differs 
amongst nations that are divided according to their level of income. 

To answer this question, this paper uses the STIRPAT (Stochastic 

Impacts by Regression on Population, Affluence, and Technology) 
theoretical framework applied to five selected economic sectors: power, 
manufacturing, transport, petrol, and building (accounting more than 
75% of total greenhouse gas emissions, IPCC, 2014a,b). The STIRPAT 
model, an expansion of the IPAT model published by Ehrlich and Hol-
dren in 1971, is the theoretical foundation for this research. It was first 
put forth by Dietz and Rosa in 1997. The IPAT model claims that pop-
ulation, wealth, and technology are the three main determinants of 
environmental effect, though it lacks the ability to test hypotheses 
because it is an accounting identity. In order to allow for elasticity cal-
culations while include an error term, Dietz and Rosa created the 
STIRPAT model. In this regard, the model investigates the relationship 
between carbon emissions and urbanization, GDP per capita, and tech-
nology, taking into account both conventional and environmentally 
friendly technology. 

Econometrically, this study employs two methodologies to estimate 
the results: the two steps DIF-GMM estimator (1991) and the Feasible 
Generalized Least Square methodology (FGLS). The research is carried 
out on a panel of 45 countries divided into three income groups: 15 high- 
income countries, 15 upper-middle-income countries, and 15 lower- 
middle-income countries. The study period runs from 1999 to 2018. 
Countries are allocated to their respective income group according to 
the World Bank classification of income per capita (Lower-middle, 
$1026 to $3995; Upper-middle income, $3996 to $12375; High income, 
$12376 or more). To constitute our dataset, we have followed the 
sampling methodology used by Milindi and Inglesi-Lotz (2021). We have 
selected in each income category, the 15 countries that have produced 
the most carbon emissions during the years 2000–2018 

The contribution of this study to the literature is threefold. 
Firstly, to the best of our knowledge, no other studies have examined 

the relationship between carbon emissions and aggregate and green 
technology in more than one sector. This allowed us to determine which 
sector aggregate technology and green technology significantly impact 
CO2 emissions and the reasons that can explain such impact. It will also 
help policy-makers identify the sector where more efforts must be made 
in terms of technological advancement to curb the CO2 emissions curve. 

Second, using four direct and indirect measures of technological 
development – R&D spending, patents, ICT, Science and technology 
publications (direct measures), manufacturing value added, and edu-
cation level – we create a composite indicator of aggregate technology. 
The composite indicator is created using principal component analysis 
techniques and incorporates the majority of the data from the six vari-
ables. A worldwide picture of the effects of technology on carbon 
emissions in each industry and for each country’s income group is made 
possible by creating an index, which lowers the number of technical 
indicators while retaining as much information as possible. 

Thirdly, this study examines the connection between sectoral carbon 
emissions and technological advancement in three nations with varying 
economic levels. Most studies limit their study to only two categories of 
nations: developed and developing nations. This could also have useful 
outcomes. However, given the wide disparities in per capita income 
levels between nations and the crucial role that income plays in the 
interaction between technology and the environment, it is necessary to 
look at this relationship in regard to various income levels. Suppose we 
take the example of four countries, Benin, Jordan, Argentina, and South 
Korea, with a GDP per capita of $700, $2000, $8000, $25000 in 2016. 
One can expect that the environmental impact of technology will be 
different in these four countries because, among other things, they have 
very different income levels. 

The remainder of this paper is structured as follows: Section 2 briefly 
review the literature; Section 3 presents the theoretical model. Section 4 
describes technology’s influence on carbon emissions in each energy 
sector selected in this study. PCA estimation and methodology and the 
dataset are presented in Section 5. In Section 6, the econometric results 
are presented and analyzed. Section 7 concludes the study. Fig. 1. GHG emissions by economic sectors. 

IPCC (2014a, b) (2010 global emissions per sector) (IPCC, 2014a,b). 
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2. Literature review 

Although many studies have been devoted to analyzing the rela-
tionship between technology and carbon emissions, less attention has 
been paid to examining the impact of technology on sectoral carbon 
emissions. Our literature review will be divided into four subsections. 
The first subsection summarizes recent studies investigating the nexus 
between technology and sectoral carbon emissions. The second, third, 
and fourth subsections present previous studies investigating the rela-
tionship between CO2 emissions and economic growth, CO2 emissions 
and urbanization, and CO2 emissions and financial development. 
Hasanov et al. (2021) introduce a comprehensive theoretical framework 
to quantify the influence of technological progress, renewable energy 
consumption, and international trade on carbon emissions, dis-
tinguishing itself from prior research that often addresses these variables 
individually. Utilizing data from the BRICS countries spanning 1990 to 
2017, the research accounts for panel data properties like integration, 
co-integration, cross-country interdependence, and heterogeneity, 
ensuring robust and grounded policy insights. The findings reveal that 
technological progress and renewable energy consumption contribute to 
carbon emission reduction, while GDP and import size increase pollu-
tion, emphasizing the importance of fostering technological advance-
ments and sustainable energy transitions through regulatory measures 
and legislative frameworks. Gu et al. (2019) examine the complex 
relationship between China’s energy technical development, energy use, 
and carbon emissions while considering a possible rebound impact. The 
results show an inverted U-shaped relationship between the develop-
ment of energy technology and emissions, as well as a related trend for 
energy use. Turning points indicate an initial increase in emissions fol-
lowed by a decrease, with the rebound effect continuing to have a 
favorable influence on emissions. Regional disparities are particularly 
noticeable in the direct and technical impacts of energy technological 
advancement on CO2 emissions, which gives rise to useful policy 
suggestions. 

2.1. Technology and sectoral carbon emissions 

By evaluating how technological advancement affects carbon diox-
ide (CO2) emissions in diverse sectors using national data for Pakistan 
from 1991 to 2017, Khan et al. (2020) quantile regression to identify 
sector-specific effects on emissions, demonstrating the negative effects 
of agriculture and services while highlighting the large contributions of 
the building, manufacturing, and transportation sectors. The study goes 
on to analyze emissions at the lower, middle, and upper percentiles, 
providing information about the distribution of impacts. Scenario 
studies provide useful direction for policymakers and planners looking 
to develop successful plans for emission reduction in the future by 
projecting probable CO2 emission reductions in 2030, 2035, and 2040. 

Erdoğan et al. (2020) investigated the impact of the innovation 
process on sectoral CO2 emissions for 14 countries in the G20. The 
period of the study runs from 1991 to 2017. Patent applications are 
employed as a proxy for the innovation process. Results showed that 
innovations do not significantly impact carbon emissions from the en-
ergy and transport sector in the long term. However, innovation de-
creases carbon emissions from the industrial sector but increases carbon 
emissions in the construction sector. This paper is one of the scarce 
studies that have analyzed the effect of innovation on carbon emissions 
in different energy sectors (power sector, manufacturing sector, trans-
port sector, and agriculture sector). Lee and Min (2015) analyze the 
impact of green R&D on carbon emissions and financial performance in 
Japan’s firms. The researchers argued that existing studies have not 
clearly distinguished between R&D and green R&D and their influence 
on carbon emission and a firm’s financial performance. They define 
green R&D as activities that promote operational efficiencies and eco- 
innovation in the production process. The results indicated that invest-
ment in green R&D negatively affects carbon emissions and positively 

affects the firm’s financial performance. 
Given that the construction industry is developing and expanding in 

developing countries, Erdogan (2021) proposed to analyze the effect of 
technological innovation on carbon emissions caused by the building 
sector in the BRICS countries between 1992 and 2018. After applying 
the Dynamic common correlated effects methodology, the findings 
indicated that technology innovation lowers carbon emissions from the 
building sector. Yang et al. (2021) have examined the impact of three 
technological progress channels (technology spillover from foreign 
direct investment, research and development expenditure, and inter-
provincial technology spillover) on carbon emissions from six energy 
sectors in China from 2000 to 2017. The authors argue that the rela-
tionship between technological progress on carbon emissions also de-
pends on sectoral and regional heterogeneity. Therefore, they proposed 
a geographically and temporally weighted (GWR) model to estimate the 
results. After estimation, results revealed that R&D spending slows down 
carbon emissions caused by the industrial, agriculture and wholesale 
sectors. 

However, R&D expenditure increases CO2 emissions from the 
transportation, residential, and construction sectors. Li et al. (2021) 
have observed regional differences in green gas emissions in China’s 
building sector. Therefore, they proposed investigating the drivers of 
carbon emissions in china’s building sector at the provincial level. Re-
sults indicated that energy intensity, income, and energy mix explain 
regional differences in carbon emissions per capita in the building 
sector. Economic growth helps reduce regional disparities for residential 
buildings but does not significantly decrease regional disparities in 
public buildings. The authors conclude that energy intensity is the 
principal driver of emissions inequality in the building sector in China. 
Apergis and Payne (2017) extend the literature on the convergence of 
green gas emissions by investigating the presence of the convergence 
club of carbon emissions per capita, by sources of fossil fuel, and by 
sector of emissions, in 50 U.S. states for the period 1980 to 2013. After 
applying the Phillips and Sul club convergence approach, results 
revealed the presence of multiple convergence clubs in five sectors 
(electric power, commercial, transport, residential, and industrial). 
Carbon emissions convergence clubs have also been found for coal and 
natural gas. Sedat Alatas (2021) analyses green technology’s impact on 
carbon emissions from the transport sector in 15 European countries. 
The period of the study ran from 1977 to 2015. The study considers that 
the increasing trend observed recently in the E.U. transport sector CO2 
emissions needs to be addressed by effective policies and strategies. 
They used the Common Correlated Effect Mean Group and the 
Augmented Mean Group to estimate the results empirically. Findings 
suggested that environmentally friendly technologies do have a signif-
icant impact on transport CO2 emissions. 

Robaina and Neves (2021) identify the main factors that explain 
variations in carbon emissions intensity in the E.U. transport sector from 
2008 to 2018. The Complete Decomposition method has been used in 
this study to identify six different factors. Results identify two main 
drivers of carbon emissions intensity in Europe: change in total energy 
consumption (negative sign) and change in capital per inhabitant 
(positive sign). The authors argue that an adverse change in total energy 
consumption indicates that less and less energy is consumed in the 
transport sector due to more efficient motor vehicles. A positive change 
in per capita per inhabitant means that increasing carbon emissions in 
the E.U. is mainly driven by higher capital (mainly vehicles) per 
inhabitant. The authors proposed strengthening environmental regula-
tions in the transport industries and promoting the development of 
electric vehicles. Isik, Ari, and Sarica (2021) use the Logarithmic Mean 
Divisia Index to identify the principal drivers of carbon emissions from 
the Turkish power sector. Findings indicated that energy efficiency has a 
negative but limited impact on power sector carbon emissions. How-
ever, changes in fossil fuel share have a bigger and more significant 
impact over time. 
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2.2. Economic growth and CO2 emissions 

The relationship between economic growth and carbon emissions 
has been extensively discussed in the literature. There is a consensus that 
economic growth has been related to environmental deterioration for 
decades (Hertin and Berkout, 2005; Bousquet and Favard, 2005; Sorrell, 
Dimitropoulos, and Sommerville, 2009). Greater economic growth leads 
to greater energy consumption to meet the growing energy demand of 
companies, industries, and households. Unfortunately, the energy 
developed and used globally is extracted mainly from fossil fuels. It is 
thus expected that economic growth will lead to higher CO2 emissions. 

However, as postulated by the Environmental Kuznets Curve (EKC) 
theory, many studies showed that economic growth is harmful to the 
environment in the early stages of development. But after reaching a 
certain level of wealth, economic growth would be accompanied by 
improved environmental quality (Borghesi, 1999). The enrichment of 
populations will meet the demand for a healthier environment, leading 
to higher standards and improved environmental quality in many areas 
(Shahbaz and Sinha, 2018). The EKC hypothesis has not yet reached a 
consensus in the literature. Some studies, such as Apergis and Ozturk 
(2015), have validated the EKC for 14 Asian countries. Jardón et al. 
(2017) have found similar results for 20 Latin America and Caribbean 
countries, and Kais and Hammami (2016) found support for the exis-
tence of an inverted U shape relationship between GHG emissions and 
economic growth for 58 countries from various regions between 1990 
and 2012. In contrast, some other studies, such as the one by Holtz-Eakin 
and Selden (1995), Yang et al. (2015), and Narayan et al. (2016), did not 
find evidence of the EKC in their empirical results. 

2.3. Urbanization and CO2 emissions 

There is no clear consensus in the literature on the impact of ur-
banization on carbon emissions. The literature can be divided into three 
groups. The first strand advocates that higher urbanization leads to 
environmental degradation (Liddle, 2014; Wu et al., 2016a,b; Khosh-
nevis and Dariani, 2019)). According to these studies, higher urbani-
zation increases the demand for basic infrastructure, leading to 
deforestation and environmental degradation. Also, it increases the need 
for transportation, thus implying higher fuel consumption and air 
pollution. Urbanization also threatens the natural ecosystem when there 
is no well-functioning waste management and recycling system. The 
second strand of the literature advocates a negative relationship be-
tween urbanization and carbon emissions (Pachauri and Jiang, 2008; 
Barla et al., 2011). Urbanization can benefit the environment because it 
leads to an optimal use of energy resources. The diversity and expansion 
of urban public transport allow for transporting large numbers of people, 
thus reducing the number of vehicles on the roads and traffic congestion. 
The last strand of the literature postulates an inverted U-shape effect of 
urbanization on carbon emissions (Ehrhardt-Martinez et al., 2002; 
Zhang, Xu et al. 2016; Yu and Chen, 2017). These studies consider the 
existence of the Kuznets curve in the urbanization-carbon emissions 
nexus. Initially, urbanization deteriorates the environment. But after 
reaching a certain threshold, the environment starts improving. 

2.4. Financial development and CO2 emissions 

Financial deepening is essential to economic growth and environ-
mental quality (Majeed, Tariq, Tauqir, & Aisha, 2020). The literature 
suggests both positive and negative effects of financial development on 
carbon emissions. On the one hand, financial development can increase 
carbon emissions by providing credit facilities to fossil energy extraction 
and development projects or financing activities that heavily rely on 
traditional energy to function, thus creating environmental pollution 
(Zhang, 2010). On the other hand, financial development can help 
reduce carbon emissions by promoting investments in green technology, 
climate mitigation, and adaptation technologies that are essential in the 

fight against climate change (Saidi and Mbarek, 2017). The financial 
sector can play a key role in directing financial flows towards the 
transition to a more sustainable economy. However, many studies have 
shown that the financial sector is more attracted to financing polluting 
activities that seem more profitable than eco-friendly activities (Zhang, 
2010; Cetin and Ecevit, 2017; Paramati and Huang, 2020). And this is 
facilitated by the weakness of environmental regulations in several 
countries, especially developing countries (Jiang and Ma, 2019). 

This study differs from previous studies by constructing a techno-
logical progress index and evaluating its impact on sectoral carbon 
emissions in five primary sectors: power, manufacturing, transportation, 
petroleum, and the building sector. The paper also sheds some light on 
the role of technological progress induced by the private sector in suc-
cessfully reducing CO2 emissions in the manufacturing and building 
industries. 

3. Theoretical framework 

The theoretical framework of this paper is based on the STIRPAT 
model proposed by Dietz and Rosa (1997). This model originates from 
the IPAT model developed by Ehrlich and Holdren (1971). The IPAT 
model suggests that “environmental impact (I) depend on three factors: 
population (P), affluence, and technology (T)”. The following identity 
represents the IPAT model:  

I = P × A × T (1) 

The IPAT model cannot be used for hypothesis testing since it rep-
resents an accounting identity (Majeed and Tauqir, 2020). Therefore, 
Dietz and Rosa (1997) proposed an augmented version of the IPAT 
model called the “Stochastic Impacts by Regression on Population, 
Affluence, and Technology (STIRPAT). The STIRPAT model allows 
calculating elasticities of different factors while calculating the error 
term (Dietz and Rosa, 1997). The model is written as follows:  

I = βiPθ
itA

α
itT

γ
itμit (2) 

After log linearizing, the STIRPAT Eq. (2) takes the following form:  

lnIit = βi + θlnPit + αlnAit + γlnTit + ui + vit (3) 

In Eq. (3), I represents carbon emissions. P denotes population, 
represented in this study by urbanization (URBit). A denotes affluence, 
represented by GDP per capita (GDPit), and T stands for technology 
represented by aggregate and green technology (TECHit). We augment 
model (5) by adding another important factor that can explain varia-
tions in carbon emissions: financial development (FIN_DEVit). In addi-
tion, a quadratic term (GDP2

it) is added to account for the potential non- 
linearity association between carbon emission and GDP postulated by 
the Environmental Kuznets Curve (EKC) (Borghesi, 1999). Therefore, 
the final version of our theoretical model can be written as follows:  

lnIit = βi + θlnURBit + αlnGDPit + γlnTECHit + ui + ωFIN_DEVit

+ ϑGDP2
it + εit (4)  

4. Overview of technological progress in each energy sector 

This subsection describes technology’s influence on carbon emis-
sions in each energy sector selected in this study. Technology is an in-
strument that can be used to protect or damage the environment. So, we 
describe some channels by which technological development increases 
or decreases carbon emissions. The long-run impact of technology on 
CO2 emissions often depends on balancing the technology’s positive and 
negative effects (Milindi and Inglesi-Lotz, 2021). 

4.1. Power sector 

The way technology positively affects power sector carbon emissions 
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can be split into two stages. The first stage is the generation of elec-
tricity. Most electricity generation technologies have been designed and 
constructed to produce electricity from fossil fuels (Hoffman, 2019). 
This is the case in coal-fired or oil and gas-fired power plants. Burning 
fossil fuels to satisfy the growing electricity demand of economies pro-
duces significant greenhouse gas emissions (IPCC, 2014a,b). The second 
stage is the utilization of electricity. Boosted by an increasing population 
and GDP, energy consumption continues to rise. A high standard of 
living translates into the acquisition of energy-intensive home appli-
ances. Generally, the more prosperous and more developed people in a 
country are, the more emissions their lifestyle produces (Dietz and Rosa, 
1997). So, on the one hand, technology raises CO2 emissions, but on the 
other hand, technology can also serve as a tool to lower CO2 emissions. It 
can negatively impact carbon emissions in the power sector through 
renewable energy development and the promotion of energy efficiency 
(IEA and IRENA, 2017). On one side, green technology’s development 
allows for gradually replacing fossil fuel energies with clean energies 
such as solar, wind, hydraulic power, and nuclear. On the other side, 
energy efficiency brings energy savings by eliminating energy con-
sumption waste (Hashmi and Alam, 2019; Gu et al., 2019). In the power 
sector, this mainly involves improving household appliances and the 
heating system, lowering device consumption in the house, and 
upgrading interior and exterior lighting systems. Therefore, in the power 
sector, technology can increase carbon emissions through the prolifer-
ation of fossil fuel power plants to meet the ever-increasing power sector 
energy demand. Technology can also lower CO2 emissions through the 
expansion of renewable energies and the promotion of energy efficiency. 

4.2. Manufacturing sector 

Fig. 3 shows that the manufacturing sector is the sector that emits the 
most carbon emissions in upper-middle and lower-middle-income 
countries. This is not surprising because these economies are 
emerging, and their industries need the energy to expand their activities. 
The relationship between technology and manufacturing sector carbon 
emissions is similar to the one described in the power sector. Technology 
has a double effect on manufacturing sector emissions. First, the tech-
nology can increase CO2 emissions in industries if most of the energy 
used in production comes from fossil fuels. Second, technology can 
reduce carbon emissions if industries progressively cut fossil fuel energy 
supply and increase clean energy usage. Industries can also embark on 
energy efficiency by identifying ways to use less energy to light and heat 
factories or run the equipment. Using natural gas instead of coal to run 
machinery, the former emits less CO2 than the latter (IPCC, 2014a,b). 
Industries can also manufacture recycled materials rather than produce 
new products from raw materials (IPCC, 2014a,b). 

4.3. Transport sector 

In 2018, the road sector accounted for 89% of energy consumption in 
transport in IEA countries (IEA, 2018). The air, water, and rail sectors 
accounted for 7%, 2%, and 2%, respectively (IEA, 2018). Petroleum is 
the primary energy source for transportation globally because the means 
used to transport people are vehicles, which are carbon-intensive ma-
chines primarily built to be fueled by petrol. Internal combustion engine 
vehicles are still mainly produced globally compared to less polluting 
vehicles like electric vehicles. Electric cars accounted for only 2.6% of 
global car sales and about 1% of global car stock in 2019 (IEA, 2020). 
Therefore, it is expected that the more vehicles on the road, the more 
carbon dioxide is emitted into the atmosphere. Technology can mitigate 
carbon emissions in the automotive world by developing and adopting 
less polluting cars such as electric or hydrogen vehicles. For the tech-
nology to have an optimal impact in this sector, it will also be essential to 
ensure that electric vehicle batteries are initially not recharged with 
electricity from fossil fuels but rather from renewable energies (Milindi 
and Inglesi-Lotz, 2022). The invention of more efficient combustion 

engines may also negatively affect carbon emissions in the transport 
sector. However, Harris and Brown (2015) noted that this negative ef-
fect is marginal compared to the one brought by electric vehicles. The 
government also has a vital role to play, particularly in public transport, 
by investing in acquiring public buses fueled by compressed natural gas 
rather than gasoline or diesel. Also, ensuring that electric locomotive 
trains are driven by electricity from renewable energy (Alatas, 2021). 

4.4. Petrol sector 

Technology also plays a double role in the petroleum sector. Hy-
draulic fracturing, combined with horizontal drilling techniques, illus-
trates technology’s positive influence on petrol carbon emissions. These 
technics have enabled the U.S. to significantly increase its oil and gas 
production by producing shale oil during the last decade (Strauss Center, 
2018). U.S. oil production doubled from 2008 to 2018, from 302 million 
to 671 million tons (BP, 2021). Technology allows the petroleum in-
dustry to stay afloat by reducing production costs and boosting global 
production (Strauss Center, 2018). Other examples of technology that 
foster the expansion of petrol extraction are Seismic, gravity, and 
geomagnetic surveys to find petrol and gas underground more quickly 
(Havard, 2013). These technologies have considerably evolved over the 
years. Seismic surveys send high-energy sound waves into the ground to 
see how long it takes to reflect the surface (Havard, 2013). This infor-
mation can be used to determine the location of the seeps underground. 
These technologies save time, workforce, and money, as they can suc-
cessfully locate resources before drilling. While seismic survey tech-
nology allows finding the petrol deposit more quickly, this technology 
also helps preserve the environment. Today’s seismic surveys big 
thumpers to make sound waves; in the past, explosives were used to 
make sound waves with devastating impacts on the environment 
(Havard, 2013). 

4.5. Building sector 

Apart from construction operations, carbon emissions in the building 
sector are emitted through the heating, cooling, and lighting system 
(Bowen, 2021). These systems require a lot of energy to function. This 
situation can be improved using smart building technology and the 
internet of things which mitigate the amount of energy consumed 
(Bowen, 2021). The building sector has benefited greatly from digital 
and technical developments over the last few decades (Ahmed and 
Ridzuan, 2013). Several examples can be given to illustrate this. For 
instance, smart devices and sensors, which all share data and can be 
controlled from a central platform, can help determine when to increase 
or decrease power consumption and reduce the building’s carbon foot-
print (U.K. Connect, 2021). An Internet of Things (IoT) platform pro-
vides energy-consumption analytics on use and overuse and the 
indicators of where adjustments are needed to save energy (Jones, 
2020). 

5. PCA estimation, empirical model, econometric methodology, 
and dataset 

5.1. PCA estimation 

We construct an index for aggregate technological progress using 
principal component analysis. In a similar fashion to the paper by Gupta 
and Modise (2012), using factor analysis, we extract one common factor 
from four indicators of technological progress, namely, patent applica-
tions, R&D expenditure, ICT, and science and technology publications. 
As shown in the correlation matrix presented in Table 1, these four 
variables are highly correlated, and extracting a common factor allows 
for solving the multicollinearity issue that may arise when all proxies of 
technology are included in the model (Jolliffe, 2002). Moreover, having 
one indicator of technological progress that encompasses most of the 
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characteristics of several indicators will reduce the data’s dimension-
ality, making the data analysis much easier and faster (Jolliffe, 2002). 
Many studies have shown that a country’s quality and technology 
diffusion greatly rely on the quantity of a skilled labor force (Messinis 
and Ahmed, 2009; Toner, 2011). Achieving high academic standards for 
the largest proportion of school students within a country creates a 
workforce with greater potential to engage productively with innovation 
(Toner, 2011). To this end, the level of educational achievement is 
added to the index construction to reflect the quality of some techno-
logical proxies used in the study. For instance, the quality of patent 
application, and science and technology publication greatly dependent 
on the level of school education in a country (Milindi and Inglesi-Lotz, 
2021) . In addition, we use manufacturing value-added as a share of 
GDP to reflect the level of industrialization. We argue that the more a 
country is industrialized, the more technology is needed, utilized, and 
spread. Therefore, the technological index will be a function of the 
following factors:  

Tech_indexit = f(ICTit,PATit,RDit,Scien_techit,Educit,MV Ait) (5) 

ICTit denotes information and communication technology repre-
sented in this study by internet users per 100 people, PATit represent the 
number of patent applications per 1000 people, RDit stands for Research 
& Development expenditure as a percentage of GDP, Scien_techit repre-
sent science and technology publication per 1000 people, Educit repre-
sent the enrolment ratio in tertiary education, MVAit stands for the 
manufacturing value-added as a percentage of GDP. The PCA procedure 
consists of five steps. First, the dataset is standardized so that each 
variable contributes equally to the analysis. Second, the covariance 
matrix is calculated for the whole dataset. The third step consist of 
calculating eigenvalues and eigenvectors of the covariance matrix. The 
number of eigenvectors is equal to the number of principal components, 
and the number principal component equals the number of variables 
included in the PCA estimation. Fourth, sort eigenvectors and their 
corresponding eigenvalues by ascended order, the highest to the lowest. 
In the fifth and last step, we multiply the original matrix dataset (the 
dataset that contains technological proxies) with the eigenvectors ma-
trix to obtain the transformed matrix which constitute the matrix of 
index. An orthogonal transformation is performed to convert the set of 
variables correlated into a set of values of linearly uncorrelated variables 
(Jolliffe, 2002). 

The following mathematical formula is employed to set the index 
between 0 and 1:  

index = [pc1 − min(pc1)]/[max(pc1) − min(pc1)] (6)  

Where pc1 represents principal component one. 
The PCA estimation procedure puts the maximum possible infor-

mation in the first principal component, followed by the second, the 
third, etc. In this study, we choose the first principal component because 
it contains 76 per cent of information carried in the six indicators of 
technological progress. 

Fig. 2 displays the mean value of the technological index on the 
vertical axes and the mean value of total carbon emissions on the ver-
tical axes from 1999 to 2018. As expected, high-income countries are 
more advanced in technology than upper-middle-income and lower- 
middle-income countries. In our sample, the US, South Korea, 

Australia, Germany, Canada, Japan, and the Netherlands have the 
highest average technological index of 80, 73, 72, 71, 68, 65, and 58, 
respectively.  

5.2. Empirical model 

A dynamic panel data approach is adopted in this study to examine 
how to aggregate and green technology impact sectoral carbon emis-
sions. We employ a dynamic panel approach because many studies have 
established that carbon emissions depend on emissions from the last 
period and that environmental impacts present some dynamic sustain-
ability (Kais and Sami, 2016; (Zhang et al., 2017)). The first-panel model 
will examine the effect of the aggregate technological index, obtained by 
summarizing the information in Eq. (5) on sectoral CO2 emissions. 

The first-panel model is as follows:  

lnSCEit = ln(SCEit− 1)δ + ln(TECH)itβ + X′
itρ + ui + vi,t (7)  

Where the subscripts i and t refer to countries and time. ui is the unob-
servable country-specific characteristics and vi,t is the i.i.d. disturbance 
terms. SCEit refers to sectoral carbon emissions in metric tons. Sectoral 
carbon emissions from the power sector (Powerit− 1), the manufacturing 
sector (Manufit− 1), the transport sector (Transpit− 1), the petrol sector 
(Petrolit− 1), and the building sector (Buildingit− 1). X′

it represents a vector 
of control variables, including GDP per capita (GDPit), GDP per capita 
square (GDP2

it), urbanization rate (URBit) and financial development 
(FIN_DEVit). TECHit is our variable of interest; it represents the aggre-
gate technological index. Following the number of sectors, model (7) 
will be divided into five different sub-models, and this will allow us to 
estimate the long-run elasticities of each sectoral carbon emission with 
regard to the technological index:  

lnPowerit = ln(Powerit− 1)δ + ln(TECH)itβ + X′
itρ + ui + vi,t (7a)  

lnManufit = ln(Manufit− 1)δ + ln(TECH)itβ + X′
itρ + ui + vi,t (7b)  

lntransportit = ln(Transpit− 1)δ + ln(TECH)itβ + X′
itρ + ui + vi,t (7c)  

lnPetrolit = ln(Petrolit− 1)δ + ln(TECH)itβ + X′
itρ + ui + vi,t (7d)  

lnbuildingit = ln(Buildingit− 1)δ + ln(TECH)itβ + X′
itρ + ui + vi,t (7e) 

The second-panel model will investigate the influence of green 
technology represented by renewable energy on sectoral CO2 emissions. 

Table 1 
Correlation table of technological indicators.   

ICTit PATit RDit Scien_techit Educit MV Ait 

ICTit 1      
PATit 0.5916 1     
RDit 0.5236 0.7863 1    
Scien_techit 0.6196 0.8552 0.8872 1   
Educit 0.6757 0.6101 0.6246 0.6751 1  
MV Ait 0.5299 0.5653 0.7242 0.6490 0.7136 1  Fig. 2. Aggregate technological index.  
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lnSCEit = ln(GTECHit− 1)δ + ln(TECH)itβ + X′
itρ + ui + vi,t (8)  

Where ln(GTECH)it denotes green technology represented by renewable 
energy consumption. 

5.3. Econometric methodology 

This study applies the two steps generalized method of moments 
(GMM) with orthogonal deviations to estimate the results. The GMM 
transforms the data and corrects for endogeneity by eliminating the 
nickel bias inherent to dynamic panel models (Arrelano and Bond, 
1991). This paper also employs the Feasible Generalised Least Square 
(FGLS) to deal with different econometric issues and ensure robust 
results. 

Both the Feasible Generalized Least Squares methodology (FGLS) 
and the Two-Step System Generalized Method of Moments (2S-GMM) 
estimator are commonly used econometric methodologies for various 
reasons. The 2S-GMM estimator performs well in cases in which some 
independent variables are linked with the error term because it can 
handle endogeneity by employing lagged values as instruments. Addi-
tionally, it effectively uses the available instruments, producing accurate 
estimates even when only a few weak ones are used, and it is resistant to 
both heteroscedasticity and autocorrelation. In contrast, the FGLS 
approach is preferred when the traditional OLS assumptions are broken 
since it takes into account heteroscedasticity and autocorrelation 
through the use of optimal weighting matrices, producing parameter 
estimates that are more accurate. Furthermore, FGLS is especially well 
suited to dealing with serial correlation in time series data, offering 
reliable estimates in circumstances where other corrections might be 
less successful. 

When a lagged dependent variable is included among the regressors, 
the Nickell (1981) biased will arise as a possible violation of the classical 
assumptions. We will have an endogeneity problem since SCEit− 1 is 
correlated with the unobserved heterogeneity ui. In this study, we use 
the DIFF-GMM methodology proposed by Arellano and Bond (1991) to 
estimate the results and eliminate the Nickel bias. The GMM method 
corrects the alleged endogeneity bias by using lags, in levels, as in-
struments for the first-differenced model. Differencing the model elim-
inates individual effects and endogeneity due to the correlation between 
individual effects and right-hand side regressors. The starting point of 
the Arellano and Bond estimator (1991) is given by the following first- 
differencing the equation:  

ΔSCEi,t =
∑s

s=1
δsΔSCEi,t− s + (ΔTECH)i,tβ + ΔX′

i,tρ + Δvi,t (9) 

This process allows for eliminating the individual effect ui but the 
differenced lag-dependent variable is still correlated with the error 
terms due to Δyi,t− 1 = yi,t− 1 − yi,t− 2 and the existence of vi,t− 1 in Δvi,t =

vi,t − vi,t− 1 (Baltagi, 2008). To solve this problem, Arellano and Bond 
(1991), suggest the use of lags as an instrument for each forward period 
so that for period T, the set of valid instruments for the lag dependent 
variable becomes (yi,1,yi,2,yi,3,…,yi,T− 2). The suggested advantage of the 
GMM procedure compared to other types of similar methods, such as the 
Anderson and HSiao (1982) estimator, is the use of orthogonality con-
ditions existing between lagged values of yi,t and disturbances vi,t that are 
the imposed moment conditions.  

E
[
SCEi,t− jΔvi,t

]
= 0 and E

[
Xi,t− jΔvi,t

]
= 0 (10)  

for t = s + 2,…, j ≥ s + 1 (11) 

This study uses the two-step DIFF-GMM estimator to account for 
variance–covariance of the differenced error terms. The standard 
covariance matrix is robust to panel-specific autocorrelation and het-
eroscedasticity (Van Eyden et al., 2019). To verify the consistency of the 
GMM estimator, Arellano and Bond propose a serial correlation test. The 

test checks the presence of first-order and second-order serial correlation 
in the disturbances of the first differenced equation. There are two null 
hypotheses; the first is that there is no first-order serial correlation in the 
disturbances. The second null hypothesis is that there is no second-order 
serial correlation in the error terms of the first differenced equation. One 
should reject the null of no 1st order serial correlation and fail to reject 
the null hypothesis of second-order serial correlation.1 Arellano and 
Bond suggest the use of Sargan’s test of overidentifying restrictions. It is 
essential to check if moment conditions, or instruments, are not corre-
lated with the disturbance terms in the first differenced equation. The 
null hypothesis of the Sargan test states that instruments are not corre-
lated with disturbances. The test statistic is χ2

q distributed, with q the 
number of instruments. The Hansen test of overidentifying restrictions 
can also be performed. This test is robust to heteroscedasticity and serial 
correlation. The null hypothesis of Hansen is that over-identification 
restrictions are valid. 

As mentioned above, the FGLS is performed to test the robustness of 
the DIFF-GMM results. This study implements feasible generalized least 
squares (FGLS), which controls for cross-sectional dependence, hetero-
scedasticity, and serial correlation in the dataset (Bai et al., 2021). 

5.4. Data 

This study covers 45 economies consisting of 15 high-income, 15 
upper-middle-income, and 15 lower-middle-income countries. The 
dataset provides a period of 20 years, from 1999 to 2018. In 2018, the 45 
economies selected in this study represented 90 per cent of global GDP 
and 88 per cent of global CO2 emissions (World Bank, 2019). The var-
iables used in this study were collected from different sources. The 
descriptive statistics table for the full sample is presented in Appendix. 
Data on sectoral CO2 emissions comes from the Emissions Database for 
Global Atmospheric Research (EDGAR, 2021). EDGARD estimates sec-
toral carbon emissions according to the classification guidelines pro-
posed by the (IPCC, 2006) for national greenhouse gas inventories. CO2 
emissions (metric tons); GDP per capita (in constant 2010 US$), 
renewable energy consumption (percentage of total energy consump-
tion), financial development (represented by the domestic credit to the 
private sector as a percentage of GDP), and urbanization (percentage of 
the total population) were drawn from the World Bank’s Development 
Indicators (World Bank, 2019). 

Fig. 3. shows the evolution of sectoral carbon emissions across 
income-group countries from 1999 to 2018 and the share of each sec-
toral carbon emission in total carbon emissions. The power industry is 
the first source of emissions in the full sample and the first in high- 
income countries. It can also be observed that emissions from the 
power, manufacturing, and building sectors are decreasing. In contrast, 
in high-income countries, emissions from the transport sector are pretty 
stable after 2009. The manufacturing industry is the first source of 
emissions in upper-middle-income and lower-middle-income countries. 
CO2 emissions from all sectors are rising in these two groups of coun-
tries. However, it is essential to note that emissions from lower-middle- 
income countries have the steepest positive slope. It means the rate at 
which emissions increase is higher in lower-middle-income countries 
than in upper-middle-income countries.  

6. Empirical results and discussion 

We employ the following empirical strategy to check our dataset and 
estimate the results: First, we determine the order of integration of each 

1 Because the consistency of GMM estimator relies on E
(
Δvi,tΔvi,t− 2

)
= 0; with 

Δvi,t =
(
Δvi,t − Δvi,t− 1

)
and Δvi,t− 1 =

(
Δvi,t− 1 − Δvi,t− 2

)
it is clear that 1st order 

serial correlation is expected, but not 2nd order. 
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variable included in our empirical model with different panel unit root 
tests proposed by Im, Pesaran, and Shin (IPS) (2003), Fisher-ADF 
(Augmented Dickey–Fuller) (Choi, 2001), and Fisher-PP (Phil-
lips–Perron). Second, we investigate the cointegration in our model 
using panel cointegration tests proposed by Johansen (1999) and 
Pedroni (1999). Also, we check the presence of cross-sectional depen-
dence using a Pesaran (CD) (2004), Frees (1995), and Friedman (1937) 
CD test. Third, we use a more appropriate estimation technique for 
short-period dynamic panel models with a high number of cross- 
sectional observations, namely the GMM methodology (Judson and 
Owen, 1999). We employ the FGLS methodology for robustness check, 
which allows controlling for heteroscedasticity, serial correlation, and 
cross-sectional dependence in data (Bai, Hoon Choi, & Liao, 2021). 

6.1. Panel unit root, cointegration, and cross-sectional dependence test 

The Im, Pesaran, and Shin (Im et al., 2003) (IPS), the Fisher-ADF 
(Augmented Dickey–Fuller) (Choi, 2001), and the Fisher-PP (Phil-
lips–Perron) tests are performed to investigate the univariate charac-
teristics of each variable. These three tests are employed because they 
assume individual unit root processes for each variable in the empirical 
models, thus better suited for detecting cross-section heterogeneity in 
the dataset (Baltagi, 2008). Besides, unlike other unit root tests (such as 
the Levin–Lin–Chu, and the Breitung’s tests), the IPS and the fisher-type 
tests do not require a strongly balanced panel. We subtract cross- 
sectional means by demeaning the series to assist with cross-sectional 

correlation and dependence. We use the AIC information criteria and 
set the lags at 1. 

Unit root test results are displayed in Table 2. Results show that for at 
least two types of unit root tests, we fail to reject the null hypothesis of 
unit root for all variables except renewable energy consumption and 
building sector carbon emissions. After differencing variables that are 
not stationary to eliminate the non-stationary trend, the results show 
that the null hypothesis of unit root is rejected at a 5 per cent level. Thus, 
it can be concluded that all variables are integrated into order one. 

The cointegration test is performed by using the Westerlund (West-
erlund, 2005), Pedroni (1999, 2004), and Kao (1999) tests. Cointegra-
tion in the models tested means that the results of the regressions are not 
spurious, and there is a long-run relationship among variables. The Kao 
and Pedroni test verified the alternative hypothesis that the variables are 
cointegrated in all panels. The Westerlund test checks the hypothesis 
that the variables are cointegrated in some or all panels. 

Cointegration results are presented in Table 3. In the full sample, 
except for the Dickey–Fuller t-statistic in panel models (7b) and (7c) and 
the variance ratio in model (7a), all other t-statistics are statistically 
significant at least at a 10% level. Other sample cointegration tests 
(high-income, upper-middle, and lower-middle-income samples), which 
can be found in the Appendix, also exhibit similar results. Thus, our 
study concludes that cointegration exists in all sample models. 

This study applies three different tests procedure to test the presence 
of cross-sectional correlation in the dataset, namely the Pesaran (2004), 
Frees (1995), and Friedman (1937) CD test. These tests are more 

Fig. 3. Evolution of sectoral carbon emissions from 1989 to 2018 and share of emissions per sector in total CO2 emissions. 
Data used in this graph comes from EDGAR (2021). 

Table 2 
IPS, Fisher-ADF, and Fisher-PP unit root tests.  

Full sample 

Variables IPS Fisher-ADF Fisher-PP  

With trend Differenced With trend Differenced With trend Differenced 

lnCEit 1.5606 − 4.3002*** 95.2055 83.3279*** 100.77 155.66*** 
lnPWR_INDit 2.1271 − 4.5643*** 73.8950 90.1828*** 124.79*** 128.89*** 
lnMANUF _INDit − 0.1792 − 6.0138*** 115.672* 105.299** 99.6745 161.84*** 
lnTRANSP _INDit 5.1396 − 1.9741*** 70.8309 89.2264*** 71.2893 92.631*** 
lnPETRO _INDit 1.5244 − 5.0025*** 98.9253 75.5956*** 119.41** 153.02*** 
lnBUILD _INDit 1.3362* − 5.0649*** 87.7577* 131.16*** 121.83** 215.91*** 
lnGDPit 3.6098 1.4042** 109.907 55.5775*** 173.651 48.306*** 
lnFIN_DEVit 3.6072 6.4215*** 2.8497** 9.87895*** 8.75931 11.251*** 
lnURBit 6.3822 6.8864*** 19.4804 28.1855*** 58.8921 30.8353** 
lnRENit 4.6751* − 2.7984*** 84.7386 69.1020*** 85.2476** 103.870** 
INDEXit 3.2451 3.6955*** 111.636 76.6753*** 96.2049 33.5493*** 

Notes: P-values are in parenthesis. *(**) [***] indicate rejection of the null hypothesis of a unit root at a 10(5)[1] % level. 
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adapted to detect the presence of cross-sectional dependence in panels 
with many cross-sectional units and few time-series observations (De 
Hoyos and Sarafidis, 2006). Table 4 reports the results of the cross- 
sectional dependence test. The frees test indicates the presence of 
cross-sectional dependence in all empirical equations. However, the 
Pesaran detects cross-sectional dependence only in model (7a). De 
Hoyos and Sarafidis (2006) argue that Pesaran’s test remains valid in 
dynamic panels under various estimation methods, including fixed ef-
fect and random effect (even if the estimated parameters are biased). 
Therefore, it may be the preferred choice since the properties of the 
other cross-sectional dependence tests in dynamic panels are not yet 
known.  

6.2. Empirical results 

This section estimates and discusses the impact of aggregate and 
green technology on sectoral carbon dioxide emissions. Aggregate 
technology is represented by a composite technological index developed 
in this study, following Higon, Gholami, and Shirazi’s (2017) approach. 
Green technology is proxied by renewable energy following the 
approach of Nguyen and Kakinaka (2019); Milindi and Inglesi-Lotz, 
(2022). We apply the two steps DIFF-GMM, considered in this study as 
the benchmark model, because this methodology eliminates the Nickel 
bias, and it is more appropriate for the short-period panel dynamic 
model (Judson and Owen, 1999). The section is divided into two sub-
sections. The first subsection examines the relationship between 
aggregate technology and sectoral carbon emissions in the full sample 
and the three subsamples (high-income, upper-middle-income, and 
lower-middle-income countries). We evaluate if the composite 

technological index influences the trend in CO2 emissions in the power 
sector, manufacturing sector, transport sector, petrol sector, and build-
ing sector. In the second subsection, we examine the effect of green 
technology on sectoral C02 emissions. In the last subsection, we perform 
a robustness check of the results found in previous subsections using the 
FGLS methodology. 

6.2.1. Aggregate technology and sectoral carbon emissions 
(a) Power sector 
The results from the two steps GMM estimator reported in Table 5 

show that, in the full sample, aggregate technology increases carbon 
emissions in the power sector. A 1 per cent increase in technology in-
creases CO2 emissions by 0.011 per cent in the GMM model. The results 
are statistically significant at a 10 per cent level. It is not surprising that 
technology increases CO2 emissions in the power sector globally. Fossil 
fuels are the most significant energy source for electricity generation 
(IEA, 2020b). In 2018, electricity generation from fossil fuels accounted 
for 65 per cent of total electricity generation (IEA, 2020b). The 
remaining 35 per cent belongs to nuclear and renewable energy. Even if 
there is a gradual decrease in the share of fossil fuels in electricity 
production in developed economies, many emerging countries continue 
to invest heavily in these energies to produce electricity (IEA, 2020b). 
And this is facilitated by the evolution of technology. Another important 
reason that can explain the positive association between aggregate 
technology and power sector CO2 emissions is the lack of a competitive 
electricity market in the electricity sector. In many countries, notably in 
developing economies, electricity generation is entrusted to a state- 
owned company that has a monopoly on the production and distribu-
tion of electricity. The prevalence of state-owned companies in elec-
tricity production is based on the principle that energy is primarily a 
public good. As such, its management cannot remain in the hands of 
private companies. The main reasons for a monopoly in electricity 
production are the high initial costs of producing electricity on a 
regional or national scale and the need to find a “fair” price for con-
sumers. However, several studies have shown that promoting competi-
tion in the electricity sector can be beneficial for reducing electricity 
costs and prices. It also benefits the environment by promoting energy 
efficiency (Hibbard et al., 2017). 

In the GMM model, technology increases power sector carbon 
emissions in upper-middle and lower-middle-income countries. How-
ever, it does not have a significant effect in high-income countries. The 
nonsignificant impact of technology on carbon emissions in the high- 

Table 3 
Cointegration tests.  

Full sample 

Cointegration test Model 7(a) Model 7(b) Model 7(c) Model 7(d) Model 7 (e)  

Statistic Statistic Statistic Statistic Statistic 

Kao test 

Modified Dickey–Fuller t − 1.7473*** 1.1883* − 1.3903* − 6.5345*** − 1.9914* 
Dickey–Fuller t − 1.9149** 0.5027 − 1.1461 − 5.4770*** − 3.6198*** 
Augmented Dickey–Fuller t − 1.0909* 1.7327** 1.4312* − 5.0021*** 1.8431** 
Unadjusted modified Dickey–Fuller t − 1.9360** − 1.4778* − 4.6603*** − 8.0231*** − 7.1113*** 
Unadjusted Dickey–Fuller t − 2.0236** − 1.5376* − 3.1333*** − 6.0135*** − 6.2538*** 

Westerlund test for cointegration  

Statistic Statistic Statistic Statistic  

Variance ratio − 1.1725 − 1.6589** − 3.4502*** − 2.6398*** − 2.5987*** 

Pedroni test for cointegration  

Statistic Statistic Statistic Statistic  

Modified Phillips–Perron 1.9420** 1.6592** 1.9706** 2.3693* 2.3225* 
Phillips–Perron t − 6.7723*** − 5.1598*** − 4.6190*** − 3.3583*** − 2.6342* 
Augmented Dickey–Fuller t − 4.3395*** − 3.8971*** − 4.2255*** − 3.1507*** − 3.2659*** 

*(**) [***] indicate rejection of the null hypothesis of no cointegration at a 10(5) [1] % level. 

Table 4 
Cross-sectional dependence test.  

Full sample  

Model 
(7a) 

Model 
(7b) 

Model 
(7c) 

Model 
(7d) 

Model 
(7e)  

Statistic Statistic Statistic Statistic Statistic 

Pesaran Z 2.547** 1.472** 1.202 0.765 0.815** 
Frees Q 8.422*** 2.485*** 8.442*** 4.137*** 5.566*** 
Friedman 

χ2 
5.680 18.333 10.020 5.880 7.107  
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income countries’ power sector can be explained by the considerable 
disparity in the evolution of fossil fuel shares in electricity generation 
across countries. Some countries associate technological advancement 
with a greater investment in fossil fuels for electricity generation, while 
others favor renewable energies. During the previous decade, countries 
such as UK and Spain have sensibly reduced their dependence on elec-
tricity from fossil fuels. From 2008 to 2018, the share of fossil fuel 
electricity dropped from 80% to 47% in the UK and 61% to 41% in Spain 
(BP, 2021). Other high-income countries such as Germany and Italy 
have also experienced similar changes in their energy mix. 

On the contrary, some countries have increased their production of 
fossil-fuel electricity. This share rose from 64% to 75% in Japan from 
2008 to 2018. South Korea’s share increased from 64% to 73% during 
the same period. Regarding other high-income countries selected in this 
study (e.g., France, Canada, Belgium, and Saudi Arabia), the share of 
fossil-fuel electricity has remained generally stable during our study 
period (BP, 2021). The intuition behind all these figures is that, in the 
electricity sector, technology development has been at the same time 
used to increase the exploitation of fossil fuel energy for electricity 
generation and to expand the development of renewable energy. So we 
have both a positive and a negative effect of the technology on the CO2 
emissions in this sector. This balancing effect has resulted in an insig-
nificant impact of technology on sectoral carbon emissions from the 
power sector. The two effects seem to have the same magnitude and 

cancel each other out. 
Results also indicate that technology increases carbon emissions 

from the power sector in upper-middle and lower-middle-income 
countries. These countries invested more in fossil fuel-based electricity 
than green electricity during our study period. Take the example of 
electricity from coal. Asia (the continent where two major coal pro-
ducers are located: China and India) has increased its coal-based elec-
tricity from 12 474 Twh of electricity in 1999 to 33 300 Twh in 2014, a 
rise of nearly 268 per cent (BP, 2021). Forty per cent of electricity 
produced in Africa came from gas in 2018; this share was only 20 per 
cent 20 years ago (IEA, 2018). Because the increase in fossil-fuel-based 
electricity seems to outweigh the rise in electricity from renewable en-
ergy, it can be intuitively deduced that technology has played a more 
positive role in increasing the power sector’s carbon emissions in 
developing countries. 

(b) The manufacturing sector 
Results show that technology increases CO2 emissions from the 

manufacturing sector in the full sample and upper-middle-income 
countries but decreases CO2 emissions in high-income countries. The 
industrial sector requires a lot of energy, particularly in developing 
countries that have seen their energy demand explode in recent decades. 
Three main reasons can explain the positive coefficient of technology in 
the full sample. First, the growing energy demand from manufacturing 
industries in developing countries. Second, the reliance on fossil fuel 

Table 5 
DIF-GMM results estimations.  

Two-step DIFF-GMM with orthogonal deviations 

Dependent variable: sectoral carbon emissions  

Full sample High-income sample  

Power (7a) Manuf (7b) Transp (7c) Petrol (7d) Building (7e) Power (7a) Manuf (7b) Transp (7c) Petrol (7d) Building (7e) 

Lag term .2617***  
(14.73) 

.5591***  
(16.91) 

.0319**  
(2.55) 

.3840***  
(12.80) 

− .0601***  
(− 3.22) 

.7806***  
(7.31) 

.5172***  
(3.38) 

.2288**  
(2.78) 

.6492**  
(2.88) 

.6503***  
(7.78) 

GDP 1.893***  
(3.16) 

1.638***  
(4.44) 

1.361**  
(2.59) 

1.113**  
(2.35) 

1.450***  
(3.84) 

− .0791  
(− 0.24) 

− .0444  
(− 0.77) 

.5188**  
(2.42) 

− .2884  
(− 0.83) 

.1242**  
(2.49) 

GDP_SQ − .1012***  
(− 3.20) 

− .0843***  
(− 4.11) 

− .0479  
(− 1.60) 

− .0537  
(− 1.55) 

− .0735***  
(− 2.93)      

Urbanization 1.819***  
(6.59) 

.9209***  
(8.86) 

1.470***  
(4.70) 

.5524***  
(4.67) 

.3089*  
(1.86) 

− 2.057  
(− 0.83) 

− 3.826  
(− 1.07) 

− 1.894*  
(− 1.82) 

− 1.365**  
(− 2.19) 

.1847  
(0.17) 

Fin_Dev − .0186  
(− 0.88) 

.0726**  
(2.66) 

.0408**  
(2.44) 

.1559***  
(7.02) 

.0267*  
(1.84) 

.1658*  
(1.90) 

.1084  
(0.95) 

.2062**  
(2.86) 

.0823**  
(2.72) 

.1389*  
(1.97) 

Index1 .0117***  
(4.26) 

.0036***  
(− 4.32) 

.0025**  
(2.30) 

.0040**  
(2.18) 

− .0004  
(− 0.43) 

.0029  
(0.43) 

¡.0037**  
(2.48) 

.0006  
(1.13) 

.0109*  
(1.95) 

¡.0044**  
(¡2.62) 

AB(1) Pr > z 0.051 0.003 0.082 0.004 0.062 0.019 0.052 0.086 0.043 0.012 
AB(2) Pr > z 0.878 0.762 0.443 0.737 0.398 0.370 0.703 0.434 0.816 0.995 
Sargan Pr > χ2 0.069 0.998 0.000 0.987 0.045 0.500 0.557 0.301 0.001 0.212 
Hansen’s Pr > χ2 0.722 0.823 0.313 0.888 0.820 1.000 1.000 1.000 1.000 1.000 
Turning pointa 11 530 16569 – – 19225       

Upper-middle income sample Lower-middle income sample 

Lag term .0552  
(066) 

.0422  
(0.43) 

.0885*  
(1.71) 

.5982***  
(5.17) 

.1905***  
(3.01) 

.3290***  
(4.52) 

.0749  
(0.77) 

.3797***  
(4.17) 

.2407  
(1.26) 

.3265***  
(3.13) 

GDP .5865**  
(2.42) 

.6901**  
(2.23) 

.2893*  
(2.00) 

− .5479  
(− 1.59) 

.3147**  
(2.15) 

.5927*  
(2.01) 

.8834**  
(2.53) 

.1195  
(0.45) 

.4718*  
(1.76) 

.1672  
(0.96) 

Urbanization 3.288*  
(1.79) 

.9356  
(0.64) 

1.1198**  
(2.17) 

2.805*  
(1.72) 

.1687**  
(2.21) 

1.247**  
(2.37) 

1.881  
(1.51) 

1.067  
(1.05) 

1.735*  
(1.77) 

.9826*  
(1.69) 

Fin_Dev .2974***  
(3.41) 

.0858**  
(2.30) 

.1227*  
(1.89) 

.0555  
(0.33) 

.0840**  
(2.69) 

− .3589  
(− 1.07) 

.1152  
(0.57) 

− .0802  
(− 0.68) 

− .2690  
(− 1.32) 

− .2627**  
(− 2.21) 

Index1 .0183**  
(2.74) 

− .0025  
(− 0.23) 

.0163*  
(1.73) 

− .0052  
(− 0.52) 

.0024  
(0.31) 

.0231**  
(2.69) 

.0142*  
(1.86) 

.0266**  
(2.51) 

.0042  
(0.60) 

.0118*  
(1.73) 

AB(1) Pr > z 0.078 0.091 0.690 0.080 0.081 0.048 0.083 0.040 0.065 0.095 
AB(2) Pr > z 0.668 0.683 0.418 0.347 0.201 0.542 0.349 0.432 0.356 0.879 
Sargan Pr > χ2 0.001 0.226 0.777 0.851 1.000 0.596 0.399 0.767 0.955 0.681 
Hansen’s Pr > χ2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  

a Assume B1 is the coefficient on GDP, and B2 coefficient on GDP_SQ, the turning points are calculated using the following formula: T = exp (-B1/2B2). 
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energy to power these industries. The last main reason is the weak 
impact of measures taken by the industrial sector to lower energy con-
sumption and, thus, reduce carbon emissions (Khoshnevis and Dariani, 
2019). 

Regarding high-income countries, technology turns out to have a 
negative impact on carbon emissions. High-income countries are pro-
gressively diversifying their energy supplies by increasing the share of 
renewable energies in the energy mix. The industrial sector seems to 
take advantage of this energy mix by favoring the supply of renewable 
energy instead of fossil fuel. Also, industrial equipment and machinery 
are constantly improved to make them more efficient. Promoting energy 
efficiency leads to identifying procedures and techniques that reduce 
energy consumption.2 Therefore, it seems that in high-income countries, 
the negative effect of technology on carbon emissions has outweighed its 
positive impact, resulting in a negative relationship between technology 
and CO2 emissions. 

(c) The transport sector 
Technology is positively related to carbon emissions in the transport 

sector in the full sample and upper-middle and lower-middle-income 
countries. The relationship between aggregate technology and trans-
port sector carbon emissions is negative but statistically insignificant in 
high-income countries. We consider the main reason for this positive 
relationship is the insufficient stock of global low-carbon vehicles 
(electric vehicles, hydrogen vehicles, etc.). The stock of electric vehicles 
worldwide is far too low to affect carbon emissions significantly. In 
2018, electric cars accounted for only 1 per cent of global car stock (IEA, 
2020). Another reason is that energy consumption in the transport sector 
continues to increase despite technological innovations implemented to 
save energy and reduce combustion engines’ carbon footprint. A typical 
illustration of this is the continued popularity of Sport Utility Vehicles 
(SUVs), offsetting some of the benefits of increased electric vehicles in 
the last decade (IEA, 2021a). The IEA (2021a) notes that despite the 
increased availability of electric SUV models and improved fuel effi-
ciency in new SUV models, an average SUV still consumes around 20% 
more energy than medium-sized vehicles. This implies more carbon 
emissions as the sale of SUVs is on the rise worldwide.3 

(d) Petrol sector 
There is a positive and significant relationship between technology 

and petrol sector carbon emissions in the full and upper-middle-income 
samples. This relationship is also positive in high-income and lower- 
middle-income countries but not statistically significant. The petro-
leum industry is the sector that supplies other sectors with fossil fuel 
energy; unsurprisingly, technologies used in this sector are mostly 
directed towards the discovery of new oil and gas fields,4 hence 
expanding petrol and gas production.5 Green technologies used in this 
sector can only have a limited impact on CO2 emissions. A promising 
technology that can allow extracting petrol or gas while not sending 
carbon emissions into the atmosphere is carbon capture and storage 
technology (Beuttler and Wurzbacher, 2019). There is still the challenge 
of developing this costly technology on a large scale to impact the petrol 
sector’s carbon emissions significantly. Stopping routine flaring in the 
petrol sector is another important measure that should be implemented 
in the petroleum and gas extraction industries. Masnadi et al. (2018) 

note that burning unwanted gas associated with oil production – called 
flaring – remains the most carbon-intensive part of producing oil. Ac-
cording to Masnadi et al. (2018), eliminating routine flaring and cutting 
methane leaks and venting could cut as much as 700 megatons of 
emissions from the oil sector’s annual carbon footprint - a reduction of 
roughly 43 per cent. 

(e) Building sector 
Aggregate technology significantly reduces carbon emissions in the 

building sector only in high-income countries. The relationship between 
aggregate technology and carbon emissions is statistically insignificant 
in all other samples. Some of the main reasons that decrease energy 
consumption and, thus, carbon emissions in high-income countries’ 
building sector are as follows. Firstly, the growth rate of urbanization is 
relatively lower than other income groups, allowing the construction 
sector to also focus on building smart cities and renovating and refur-
bishing existing buildings with more efficient systems that can signifi-
cantly reduce energy consumption. Secondly, energy-consuming 
building systems such as heating, cooling, and lighting systems in pri-
vate homes, office buildings, and public buildings (schools, hospitals, 
campuses, etc.) are becoming more efficient with technological 
advancement. Thirdly, energy efficiency investment in buildings has 
constantly increased in high-income countries over the past decade. 
From 2015 to 2020, efficiency investment in Europe and the US building 
increases from USD 100 billion to USD 130 billion (IEA, 2021a). 

(f) Consistency of estimates and other key drivers 
Regarding the consistency of the GMM estimator and the validity of 

instruments, the Arellano and Bond serial correlation test confirms the 
consistency of the GMM estimator as the test confirms the presence of 
first-order serial correlation but could not reject the null hypothesis of 
the second-order serial in all models. Two tests of over-identification 
restriction are reported: the Sargan and Hansen test (robust to hetero-
skedasticity and autocorrelation). Both tests confirm the validity of in-
struments, as they fail to reject the null hypothesis of no over- 
identification restriction in most models. 

Concerning other key drivers of sectoral carbon emissions, generally, 
GDP per capita elevates sectoral carbon emissions in all samples. Ur-
banization is positively related to sectoral carbon emissions in upper- 
middle and lower-middle-income countries. These results are consis-
tent with Wu et al. (2016), who have demonstrated that a higher ur-
banization rate leads to higher carbon emissions in developing 
countries. In high-income countries, urbanization reduces sectoral CO2 
emissions. As Wang et al. (2021) noted, high-income countries pro-
gressively diversify and expand urban public transport, reducing the 
number of vehicles on the roads. The construction of smart cities also 
brings optimal use of energy sources. Efficiency and economy of scale in 
public infrastructure and well-functioning waste management also 
create a better environment (Moreno and Lee-Gosselin, 2011). 

Financial development leads to higher carbon emissions in all sam-
ples except the lower-middle-income sample. In lower-middle-income 
countries, financial development seems negatively related to sectoral 
carbon emissions. However, this negative relationship is only statisti-
cally significant in the building sectors. 

In terms of the presence of an inverted U-shape relationship between 
sectoral CO2 emissions and GDP per capita in the full sample, the co-
efficients on GDP per capita and GDP per capita squared have the ex-
pected signs in the power, manufacturing, and building sector. Thus, 
supporting the presence of an Environmental Kuznets Curve in these 
three sectors. As mentioned above in the transport and petrol sector 
results subsections, we argue that the lack of EKC evidence in these two 
sectors is probably related to their nature. The petrol sector is primarily 
a carbon-intensive sector, and the transport sector dramatically relies on 
the consumer’s individual choice of the type of vehicle to purchase. 
Despite income increase, solutions for carbon reduction have a limited 
impact on the petrol sector’s CO2 emissions. Although GDP per capita is 
increasing worldwide, electric vehicles are still expensive to attract 
middle-class consumers. Therefore, we think EKC will probably be 

2 Identifying the ways that manufactures can use less energy to light and heat 
factories or to run equipment. Industries can also switch to fuels that result in 
less CO2 emissions but the same amount of energy, when combusted (e.g. using 
natural gas instead of coal to run machinery).  

3 The share of SUVs in total passenger car sales was around 40% in US, 20% 
in Europe, 30% in China, 25% in South Africa, and 30% globally (IEA, 2021a).  

4 The proved oil reserved in the world increased from 1277 billion of barrel in 
1999 to 1736 in 2018.  

5 Oil production increased from 3448 million of tons in 1999 to 4500 tons in 
2018. An increase of 30 per cent. Gas production went from 2310 billion cubic 
meters in 1999 to 3857 billion of cubic meters in 2018. 
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detected in the future thanks to technological advancements bringing 
game-changing solutions such as large-scale carbon capture storage in 
the petrol sector and cost-cutting technologies for electric vehicles. 

6.2.2. Green technology and sectoral carbon emissions 
Table 5 reports the GMM estimation results for model (4). Results 

reveal that renewable energy is associated with a decline in CO2 emis-
sions in all sectors except the petrol sector for the full sample. Subsample 
results estimation also reveals similar findings. Thereby endorsing the 
findings of Saidi and Omri (2020), Akram et al. (2020), and Dogan et al. 
(2021). The effect of renewable energy on sectoral carbon emissions is 
negative but becomes nonsignificant in many sectors in upper-middle 
and lower-middle-income countries. Generally, all samples show a 
nonsignificant relationship between renewable energy consumption and 
petrol sector CO2 emissions. This result is not surprising because the 
petrol sector is naturally carbon-intensive; fossil fuels come from this 
sector. Also, as noted by the IEA (2020), carbon emissions from the 
petrol sector have been dramatically increasing over the past decades 
despite renewable energy development. While some regions have 
experienced a significant decline in oil extraction investments (e.g., 
Europe), other regions have increased their investments in gas extrac-
tion over the past decades (e.g., shale gas in the USA, gas extraction in 

Russia) (Azam et al., 2021). Gas is considered less polluting than other 
fossil fuels (Zárante and Sodré, 2009). So this suggests that the devel-
opment of renewable energies has, for the moment, little influence on 
carbon emissions from the oil sector, which continues to develop, 
particularly with natural gas exploitation (see Table 6).  

6.2.3. Robustness check and extension 
(a) FGLS methodology 
The FGLS results are reported in Table A.1 in Appendix. According to 

the diagnostic test results, problems of cross-sectional dependence are 
found in the dataset. The FGLS methodology allows controlling for cross- 
sectional dependence. In addition, it also deals with heteroscedasticity 
and serial correlation (Bai, Hoon Choi, & Liao, 2021). The results re-
ported by FGLS are generally similar to those obtained with GMM. 
Generally, aggregate technological progress positively influences carbon 
emissions in all energy sectors, and green technology is associated with a 
decrease in carbon emissions (see Table A.2). FGLS also confirms that 
the technological index is negatively associated with CO2 emissions in 
high-income countries’ manufacturing and building sectors. 

However, unlike the GMM, FGLS results suggest that Aggregate 
technology increases carbon emissions in the power sector in high- 

Table 6 
Estimation results for green technology.  

Two-step DIFF-GMM with orthogonal deviations 

Dependent variable: sectoral carbon emissions  

Full sample High-income sample  

Power (7a) Manuf (7b) Transp (7c) Petrol (7d) Building 
(7e) 

Power (7a) Manuf (7b) Transp (7c) Petrol (7d) Building 
(7e) 

Lag term .3522***  
(35.96) 

.2526***  
(14.62) 

.3864***  
(19.78) 

.3746***  
(13.41) 

.4144***  
(23.58) 

.3103**  
(2.59) 

.1693*  
(1.78) 

.1476*  
(1.82) 

.3996**  
(2.90) 

.3906***  
(4.42) 

GDP 1.963***  
(2.00) 

1.594***  
(10.37) 

1.4893***  
(3.12) 

1.0495  
(0.11) 

1.267***  
(4.94) 

.5650  
(0.51) 

.6004**  
(2.60) 

.5276***  
(7.79) 

.2501**  
(2.33) 

0.133**  
(2.24) 

GDP_SQ − .1033***  
(− 2.78) 

− .0828***  
(− 10.21) 

− .0086  
(− 0.96)) 

.0222  
(0.90) 

− .0645***  
(− 5.07)      

Urbanization 1.988***  
(15.49) 

1.187***  
(10.18) 

1.085***  
(9.96) 

1.016***  
(16.84) 

1.043***  
(14.47) 

1.4760  
(0.22) 

− 1.7457*  
(− 1.78) 

− 1.3881  
(− 0.60) 

− 1.9206*  
(− 1.66) 

− .7718*  
(− 1.89) 

Fin_Dev .0460**  
(2.44) 

.0287**  
(2.16) 

.1077**  
(13.13) 

.1923***  
(12.22) 

.0140*  
(1.82) 

.1023*  
(1.66) 

.1350  
(0.83) 

.1647**  
(8.87) 

.1151**  
(2.06) 

.1728***  
(3.05) 

Renewable − .1494***  
(− 7.22) 

− .1807***  
(− 9.94) 

− .0868  
(1.04) 

− .0038  
(− 0.37) 

− .1608***  
(− 12.88) 

− .1793***  
(− 2.96) 

− .2469***  
(− 4.56) 

− .0850*  
(− 1.97) 

− .0357  
(− 0.55) 

− .1133**  
(− 4.50) 

AB(1) Pr > z 0.145 0.004 0.055 0.011 0.005 0.178 0.100 0.692 0.027 0.013 
AB(2) Pr > z 0.827 0.601 0.607 0.817 0.562 0.931 0.688 0.445 0.627 0.986 
Sargan Pr > χ2 0.772 0.279 1.000 1.000 0.958 1.000 0.996 1.000 1.000 1.000 
Hansen’s Pr >

χ2 
0.481 0.380 0.413 0.502 0.673 1.000 1.000 1.000 1.000 1.000 

Turning point 13 379 15 148 – – 18 429       

Upper-middle income sample Lower-middle income sample 

Lag term .5517***  
(6.12) 

.4022***  
(3.62) 

.4447***  
(3.37) 

.3736***  
(5.30) 

.2767**  
(2.13) 

.3462***  
(3.74) 

.0568  
(0.29) 

.4613***  
(4.53) 

.1230  
(0.41) 

.3715***  
(4.17) 

GDP .2248*  
(1.98) 

.4388**  
(2.14) 

.6041***  
(3.85) 

.1740  
(0.48) 

.5927**  
(2.76) 

.3905***  
(3.32) 

1.030***  
(3.13) 

.0526  
(0.17) 

.7448*  
(1.81) 

.4097***  
(2.99) 

Urbanization 2.324**  
(2.74) 

.1841  
(0.38) 

.4776  
(0.67) 

2.352***  
(4.91) 

.4143**  
(2.67) 

.6221  
(0.68) 

1.475*  
(2.03) 

1.930**  
(2.15) 

2.125**  
(2.13) 

1.910***  
(3.77) 

Fin_Dev .1564*  
(1.94) 

.1499*  
(1.95) 

− .1176  
(− 1.67) 

− .1192  
(− 0.57) 

.0831*  
(1.80) 

.2576**  
(2.76) 

.3761**  
(2.21) 

.0649  
(0.45) 

.2960*  
(1.69) 

− .0257  
(− 1.06) 

Renewable − .0372**  
(− 2.25) 

− .1353*  
(− 1.77) 

− .0695*  
(− 1.73) 

.0265  
(0.22) 

− .2222**  
(− 2.58) 

.4824  
(0.86) 

− 1.137*  
(− 2.87) 

− .2921**  
(− 1.83) 

− .4512***  
(− 3.79) 

− .2178*  
(− 1.91) 

AB(1) Pr > z 0.025 0.067 0.041 0.072 0.131 0.412 0.416 0.060 0.061 0.097 
AB(2) Pr > z 0.184 0.351 0.696 0.311 0.241 0.371 0.335 0.706 0.562 0.769 
Sargan Pr > χ2 0.564 0.221 0.322 0.623 0.911 0.645 0.565 0.742 0.957 0.990 
Hansen’s Pr >

χ2 
0.632 0.453 0.356 0.781 0.812 0.423 0.902 0.501 0.568 0.845  
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income countries. The turning point estimate in the FGLS model (4) is 
higher in the building sector compared to the power and manufacturing 
sectors. It is not surprising that the power and manufacturing sectors’ 
carbon emissions would be reduced before the building sector emissions 
as income increases. The power and manufacturing sectors have more 
tools in terms of finance and energy policies to develop energy-efficient 
technologies (Erdogan, 2021). The turning point stands at 14363$, 
15870$, and 20768$ for the power, manufacturing, and building sec-
tors. Data descriptive statistics in the Appendix show that upper-middle 
and lower-middle-income countries’ average GDP per capita is 6680$ 
and 2470$, respectively. Also, the income distribution is skewed to-
wards zero. Thus, the majority of the population in our sample has not 
yet passed the turning points estimated in this study, making higher 
global carbon emissions the likely outcome of economic growth. How-
ever, there is hope that the level of these turning points will be reduced 
thanks to technological progress. 

(b) Extensions 
In this subsection, we analyze further the results obtained in the 

high-income country’s sample. Findings indicate that the technological 
index developed in this study decreases carbon emissions in the 
manufacturing and building sectors. These two sectors account for more 
than a third of total carbon emissions, and most companies that operate 
in these two sectors belong to the private sector. From the result ob-
tained in Table 7, it can intuitively be deduced that enterprises take 
climate change challenges into account in their expansion strategies. 
They use the skills acquired through investing in technological progress 
to decarbonize the production process of goods and services. Model (8) 
is established to check this hypothesis. Model (8) aims to provide 
empirical evidence of the effects of business R&D expenditure on the 
manufacturing and the building sector CO2 emissions in high-income 
countries. R&D expenditure is an essential upstream technology push 
instrument that helps develop, design, and enhance companies’ prod-
ucts, technologies, and processes.  

lnManit = ln(Manit− 1)δ + ln(RD_Man)itβ + X′
itρ + ui + vi,t (8a)  

lnBuildit = ln(Buildit− 1)δ + ln(RD_Build)itβ + X′
itρ + ui + vi,t (8b) 

Model (8a) investigates the effect of manufacturing R&D expenditure 
on manufacturing carbon emissions, and model (8b) examines the in-
fluence of construction R&D expenditure on building sector carbon 
emissions. Data on these two distinct types of R&D expenditure comes 
from the OECD (2020). Period (a) refers to the full period (1999–2018), 

and period (b) refers to twelve years (2007–2018).  
Table 7 shows that a 1 percent increase in manufacturing R&D 

spending decreases manufacturing carbon emissions by 0.10 percent. 
When taking 2004–2018, this reduction increases from 0.10 to 0.22 
percent. Similarly, a 1 percent increase in construction sector R&D re-
duces building sector CO2 emissions by 0.01 percent from 1999–2018 
and 0.02 from 2004–2018. 

This result demonstrates how the private sector is critical in climate 
mitigation and the transition to a low-carbon world. These findings 
suggest that companies are progressively integrating climate change and 
market opportunities that may arise from it among their priorities. In the 
manufacturing sector, it is done by progressive decarbonization of the 
production and supply chain processes. Also, by replacing the supply of 
fossil fuels with renewable energies, encouraging energy efficiency, and 
implementing a circular economy to optimize the use of materials and 
energy. Companies are seizing colossal investment opportunities in 
constructing green buildings and smart cities. Green buildings impact 
climate change and people’s lives by reducing energy bills through 
innovative technics and technologies, such as solar panels and insu-
lation. As an illustration, the Environmental Protection Agency (EPA) 
estimates that homeowners in the US can save an average of 18% on 
heating and cooling costs by making proper home insulation (EPA, 
2021). 

7. Conclusion 

Global warming poses a serious threat to our ecosystem and our 
future. In this regard, reducing the use of fossil fuels by limiting energy 
consumption or improving energy efficiency is considered a critical path 
to combat climate change and environmental degradation. Among the 
main factors for reducing carbon emissions, technological progress’s 
environmental impact has recently received considerable attention. A 
growing number of existing studies in the broader literature have 
examined the relationship between technology and CO2 emissions. 
However, these studies have generally neglected differences in carbon 
emissions per energy sector. We argue that because each sector’s 
contribution to total carbon emissions varies, the environmental impact 
of technological advancement may also differ across sectors. This study 
investigates the heterogeneous impact of aggregate technology and 
green technology on sectoral carbon emissions in 45 countries divided 
into three income categories (High-income, upper-middle, and Lower 
middle-income) between 1999 and 2018. The study uses the theoretical 
framework of the STIRPAT (Stochastic Impacts by Regression on Pop-
ulation, Affluence, and Technology) with sectoral carbon emissions as 
the dependent variable and technology, GDP per capita, urbanization, 
and financial development as explanatory variables. Five energy sectors 
are selected (The power sector, manufacturing sector, transport sector, 
petrol sector, and building sector). These five sectors generally account 
for more than 75% of carbon emissions across countries (IEA, 2020). 

We employ principal component analysis to construct an aggregate 
technology index from four usual technological progress indicators 
(Patents, R&D expenditure, ICT, and science and technology publica-
tions). Renewable energy consumption is employed as an indicator of 
green technology development. We have adopted dynamic panel models 
and implemented two econometrics methodologies to empirically esti-
mate the results: DIFF-GMM and the Feasible Generalized Least Square 
(FGLS) methodology. The full sample results indicate that, on the one 
hand, aggregate technology increases carbon emissions in the power 
sector, manufacturing sector, transport sector, and petrol sector. How-
ever, aggregate technology fails to affect the building sector’s CO2 
emissions significantly. 

On the other hand, renewable energy significantly lowers emissions 
in all five energy sectors. Findings also suggest that urbanization and 
financial development generally lead to higher carbon emissions in all 
sectors in the full sample. Results from subsamples indicate that, 
generally, aggregate technology is positively associated with carbon 

Table 7 
Manufacture and building sector R&D results.  

Two-step DIFF-GMM with orthogonal deviations 

Dependent variable: sectoral carbon emissions 

High-income sample  

Period (a) Period (b)  

Manuf (8a) Building (8b) Manuf (8a) Building (8b) 

Lag term .4202***  
(8.64) 

.6165***  
(12.63) 

.4838***  
(18.7) 

.5207***  
(10.32) 

GDP .2507  
(1.22) 

.0931**  
(2054) 

.5051***  
(3.14) 

.1136**  
(2.39) 

Urbanization − .3635  
(− 1.20) 

− .5082**  
(− 2.13) 

− .2334**  
(− 2.22) 

− 2.757**  
(− 2.13) 

Fin_Dev .2614  
(1.55) 

.1538  
(0.66) 

.4303**  
(2.30) 

.0358  
(0.45) 

R&D Man − .1093**  
(− 2.08)  

− .2271***  
(− 12.65)  

R&D BUILD  − .0159***  
(− 3.02)  

− .0201**  
(− 2.45) 

*(**) [***] indicate the level of significance at a 10(5) [1] % level. 
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emissions in all sectors in upper-middle-income and lower-middle- 
income countries. However, aggregate technology is negatively related 
to carbon emissions in high-income countries’ manufacturing and 
building sectors. We further demonstrate that technological progress 
induced by the private sector significantly reduces CO2 emissions in 
these two sectors. 

The results highlight the crucial role that private sector activities 
play in reducing climate change and accelerating the shift to a low- 
carbon global economy. From both short- and long-term perspectives, 
the reported decreases in carbon emissions linked to increased R&D 
spending in the manufacturing and construction sectors serve as an 
example of how firms are increasingly incorporating climate-conscious 
strategies into their fundamental priorities. This calls for a gradual 
decarbonization of production and supply chain operations in the in-
dustrial sector, a switch to renewable energy sources, and the promotion 
of energy efficiency and circular economy principles. 

Regarding the control variables, it is concluded that income and 
financial development lead to more air pollution and environmental 
degradation in all samples. However, urbanization is positively related 
to CO2 emissions in lower-middle-income countries but negatively 
associated with carbon emissions in high-income countries. These 
findings are similar to several studies that have found that urbanization 
can negatively influence the ecosystem (deforestation, air pollution, 
waste management, etc.) (Liddle, 2014; Wu et al., 2016; Khoshnevis and 
Dariani, 2019). Urbanization can also positively affect the environment 
by promoting public transport and reducing traffic congestion (Pachauri 
and Jiang, 2008; Barla et al., 2011). 

This study also investigated the presence of EKC in sectoral carbon 
emissions in the full sample. We wanted to check if CO2 emissions 
decline after reaching a certain income level. We found evidence of EKC 
in the power, manufacturing, and building sector. However, we could 
not find evidence of EKC in the transport and petrol sector. 

The research’s findings highlight how there are differences across 
industries and socioeconomic levels in how technology innovation af-
fects emissions. Although the impact of aggregation technology on 
emissions in the power, manufacturing, transportation, and petroleum 
sectors may be cause for concern, its unfavorable impact on the con-
struction sector points to the necessity for sector-specific initiatives. On 
the other hand, the large decrease in emissions brought on by the use of 
renewable energy sources emphasizes the significance of shifting to 
cleaner energy sources. 

Using quantile regression to identify the impact of technical 
advancement on emissions within particular sectors, Erdogan et al. 
(2020) examine sectorial disparities within Pakistan. It demonstrates 
that whereas transportation, manufacturing, and construction all have a 
major impact on carbon emissions, agriculture and services have a 
negative impact on emissions. Contrarily, our study uses econometric 
techniques and a variety of technical progress indicators to examine the 
varied effects of technology development across 45 nations divided into 
income categories. It demonstrates that while overall technology raises 
emissions in the majority of sectors, renewable energy significantly 
lowers emissions, with varying effects depending on income level. 
Fundamentally, both studies stress the importance of technology, but 
their differences in breadth, concentration, and conclusions underline 
the necessity for sophisticated sector- and income-level-specific emis-
sions reduction measures. 

Some important policy implications can be drawn from these 
empirical findings. 

First, the study’s findings indicate that, in most industries, techno-
logical advancement benefits carbon emissions. It is a sign that current 
efforts to decarbonize technology are insufficient. Quicker and increased 
efforts need to be implemented to achieve the Paris Agreement’s goals. 
Many energy-saving techniques and carbon-neutral technologies are 
either not yet widely used or are still in the early stages of development. 
In addition, these technologies are usually more expensive than tradi-
tional technologies (Hashmi and Alam, 2019). It will require a 

significant investment in research and development, including pilot 
projects and large-scale demonstration installations, for these technol-
ogies to be competitive and useable on a large scale.  

(1) Concerning the power sector, the authorities should liberalize the 
electricity sector in addition to massive investments in renewable 
energies. This should be done especially in low-income countries, 
which often fail to meet the energy needs of their economies. 
Liberalizing the electricity sector will bring competition, 
encouraging the acquisition and adoption of innovative tech-
nologies and thus increasing energy efficiency in the power 
sector. 

(2) Regarding the transport sector, the major solution is the devel-
opment and deployment of electric vehicles. Even though the 
electric car market is rapidly expanding in high-income countries, 
it is still underdeveloped in the rest of the world. In general, one 
of the significant challenges in the transportation sector is the 
cost of buying an electric vehicle. The price of an electric vehicle 
is still much higher than a combustion engine one. These chal-
lenges can only be met through a collaborative effort between 
governments and industries. The government could adopt a set of 
incentive policies. Measures such as reducing taxes for the pro-
duction of electric cars and — primarily purchase subsidies and/ 
or vehicle purchase and registration tax rebates for consumers. 
Another major challenge for all countries is to invest in a sus-
tainable network of charging stations and ensure that this 
network is powered by renewable energy.  

(3) Carbon capture storage technologies (CCS) constitute a promising 
solution to reduce CO2 emissions in the petrol sector. However, 
CCS projects require a lot of capital and a highly skilled work-
force. Oil and gas companies, as well as other large emitters, will 
not invest in these projects if they significantly impact the prof-
itability of their operations. It is also worth noting that many CCS 
technologies are either new or not commercially viable. Public 
R&D funding for emerging CCS technologies can help strengthen 
CCS development across countries and contribute to developing 
important future technologies. Governments should seek to strike 
the right balance between early-stage public investment in CCS 
projects and better regulation, with the ultimate goal of encour-
aging increasingly market-oriented CCS investment. 

Secondly, the fact that technology reduces carbon emissions in the 
manufacturing and building sector in high-income countries indicates a 
gradual decarbonization of industrial processes and a trend towards 
building more energy-efficient homes. The private sector, which owns 
most companies in these two sectors, plays a critical role in the energy 
transition. Given this fact, policymakers can encourage manufacturers in 
high-income countries to continue to engage in the energy transition. 
This requires intensifying incentive measures to enable companies to use 
green energy, produce eco-friendly goods, and disseminate the acquired 
“green knowledge” to other industries through cooperation and spill-
over effects. 

Thirdly, implementing effective emissions trading systems such as 
the European Union Emissions Trading System (EU ETS) across coun-
tries will also help to boost the competitiveness of carbon-neutral 
technologies compared to traditional technologies. A system where 
CO2-intensive generation will gradually become more expensive due to 
the rising cost of emissions. This system will strongly encourage in-
centives for energy-intensive industries to shift to low-carbon technol-
ogies to remain competitive. 

Fourth, our research found that rising carbon emissions are typically 
associated with financial development. This exemplifies how the current 
financial system typically allocates savings to the most profitable en-
terprises without considering environmental issues when investing. As a 
result, it is critical to encourage and promote green finance, which aids 
the energy transition by funding environmentally friendly businesses 
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and enabling the growth of an environmentally friendly economy. 
From a methodological standpoint, this study has a number of 

shortcomings. First off, the choice of proxy indicators for technological 
growth, such as patents, R&D investment, ICT, and publications in the 
field of science and technology, may not accurately reflect the intricate 
and varied character of technical development. Other factors that could 
have an impact on carbon emissions but were not taken into consider-
ation by the models exist. We have tried to accommodate such issues by 
estimating the PCA index and considering the variety of these proxies. 
Additionally, the study ignores potential feedback loops and dynamic 
interactions with other environmental and economic issues in favor of 
concentrating solely on the effect of technological advancement and 
green technology on carbon emissions. It is crucial to recognize that this 
study does not fully represent the complex web of interconnected factors 
that the environmental impact of technology is embedded within. 

Future studies should delve into the specific type of technology and its 
impact for each of the sectors, taking into consideration their particular 
production techniques and type of energy used. 
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Table A.1 
Descriptive statistic: full sample.  

Variables Observations Mean Stand dev Min Max 

GDP per capita 899 15 502.76 17 088.77 508.3852 56 842.3 
Financial credit (% GDP) 854 69.27214 48.66821 5.388089 221.2885 
Urbanization 900 64.95143 19.54564 19.55 98.001 
lnPWR_INDit 900 156 920.4 374 663.2 113.85 2560374 
lnMANUF _INDit 900 108990 350 501.9 377.79 3039591 
lnTRANSP _INDit 900 111 087.4 255 247.4 1037.4 1772939 
lnPETRO _INDit 900 28 388.13 54 846.98 87.44 388 857.6 
lnBUILD _INDit 900 62 675.45 115230 36.26 680 413.8  

Table A.2 
FGLS estimation (Aggregate technology).  

FGLS 

Dependent variable: sectoral carbon emissions  

Full sample High-income sample  

Power (7a) Manuf 
(7b) 

Transp 
(7c) 

Petrol (7d) Building 
(7e) 

Power (7a) Manuf (7b) Transp (7c) Petrol (7d) Building 
(7e) 

Lag term .9597***  
(7.40) 

.9728***  
(7.38) 

.9701***  
(6.82) 

.9745***  
(9.28) 

.9747***  
(3.63) 

.8972***  
(3.66) 

.9196***  
(8.18) 

.9462***  
(7.88) 

.9364***  
(5.79) 

.8883***  
(7.44) 

GDP 1.388**  
(2.21) 

1.505***  
(2.47) 

1.282***  
(3.40) 

.4977  
(1.51) 

1.014**  
(2.15) 

.3124**  
(2.15) 

.2201  
(1.03) 

.2271  
(1.21) 

.2268**  
(2.17) 

.2630**  
(2.31) 

GDP_SQ − .0725**  
(− 2.13) 

− .0778*  
(− 1.86) 

− .0153  
(− 0.54) 

− .0257  
(− 0.50) 

− .0510**  
(− 2.23)      

Urbanization 1.227***  
(2.87) 

1.0965*  
(1.83) 

1.366*  
(1.89) 

.5294**  
(2.07) 

.3515  
(1.25) 

− 1.9895***  
(− 4.61) 

− 1.401***  
(− 4.24) 

− 1.284***  
(− 2.77) 

− 1.297**  
(− 2.30) 

− .7078***  
(− 3.41) 

Fin_Dev .0189*  
(1.81) 

.0697*  
(1.84) 

.0487  
(1.29) 

− .1137  
(− 1.02) 

.0209  
(0.10) 

.0957***  
(2.70) 

.0138  
(0.65) 

.2338*  
(1.86) 

.0847**  
(2.43) 

.1780**  
(2.09) 

Index .0115*  
(1.70) 

.0030**  
(1.96) 

.0021***  
(3.27) 

.0309  
(1.52) 

.0033  
(1.09) 

.0025*  
(1.77) 

¡.0020***  
(¡3.64) 

.0008**  
(2.13) 

.0116**  
(2.12) 

¡.0024**  
(¡2.16) 

Constant − .5872  
(− 1.01) 

.3915  
(1.00) 

.9701***  
(6.82) 

− 1.560***  
(− 3.43) 

.4074  
(1.09) 

4.909***  
(4.90) 

2.218***  
(4.34) 

1.367***  
(3.55) 

1.364***  
(2.78) 

3.179***  
(3.64) 

Turning point 14 363 15 870 – – 20 768       

Upper-middle income sample Lower-middle income sample 

Lag term .9521***  
(4.48) 

.9636***  
(3.00) 

.9626***  
(5.16) 

.9704***  
(5.54) 

.9770***  
(7.90) 

.9650***  
(7.31) 

.9631***  
(6.08) 

.9540***  
(6.67) 

.9663***  
(7.95) 

.9502***  
(8.19) 

GDP .5537**  
(2.13) 

.6238*  
(1.76) 

.2175**  
(2.43) 

.1149**  
(2.24) 

.4213  
(0.30) 

− .0265  
(− 0.45) 

.8344*  
(1.73) 

.2625***  
(3.98) 

.4829**  
(2.26) 

.1227  
(0.36) 

Urbanization − 1.1741  
(− 1.30) 

1.012  
(0.13) 

1.044**  
(2.68) 

2.117**  
(2.18) 

.2042**  
(2.36) 

1.107  
(0.75) 

1.358**  
(2.18) 

1.451**  
(3.98) 

1.317**  
(1.98) 

.9868**  
(2.40) 

Fin_Dev .2843**  
(2.14) 

.0803  
(0.02) 

.1172*  
(1.68) 

.0346**  
(2.91) 

.0878**  
(2.21) 

− .0153  
(− 0.46) 

.0217  
(0.66) 

.0322*  
(1.66) 

.0589*  
(1.79) 

.0086  
(0.28) 

Index .0159*  
(1.82) 

.0034*  
(1.81) 

.0026*  
(1.69) 

.0003  
(0.23) 

.0035**  
(2.17) 

.0080*  
(1.69) 

− .0012  
(− 0.22) 

.0241***  
(3.77) 

.0066*  
(1.61) 

.0036**  
(2.74) 

Constant 1.099  
(1.46) 

.0634  
(0.11) 

.2283  
(0.54) 

− .1136  
(− 0.25) 

.2066  
(0.56) 

.9629***  
(2.60) 

.6519*  
(1.65) 

.1038  
(0.36) 

.2168  
(0.83) 

.9529***  
(2.82)  
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Data availability 

Data will be made available on request. 

Appendix 

See Tables A.1 and A.2. 
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