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A B S T R A C T   

The utility’s utilization of communication technology and renewable energy sources has paved the path for self- 
sustaining microgrids (MGs). However, the intermittency of solar and wind energies raises concerns about 
meeting demand effectively. To ensure optimal performance of distributed MGs, an efficient energy management 
system (EMS) is crucial to tackle this uncertainty. Historically, MGs have primarily achieved operational cost 
reduction through optimal functioning. Integrating demand response (DR) into the EMS could further enhance 
operational efficiency and peak reduction. This research work addresses this challenge by incorporating DR 
programs into grid-connected MGs’ energy management. Stochastic programming is employed to account for the 
unpredictable solar and wind behaviours. Flexible price elasticity is used to calculate price elasticity coefficients, 
portraying customer responses effectively. The implemented research work compares the Dragon Fly Algorithm 
with other heuristic approaches, resulting in a 12.42 % reduction in overall operating costs and the efficacy of the 
proposed algorithm is shown.. Using the Analytic Hierarchy Process (AHP), the User Satisfaction Index is 
assessed, revealing that the CPP demand response initiative tops the satisfaction scale with a score of 0.92881.. 
Moreover, this research offers an exhaustive evaluation of techno-economic markers for each scenario, sys-
tematically ranked using the proposed AHP methodology..   
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1. Introduction 

Recently, electrical energy usage has been increasing rapidly due to 
the intensity of load demand for end-users. Some of the significant 
factors related to the distributed power system are overall operating 

cost, reliability, and quality of electrical power supply have gained more 
importance for obtaining the optimal power system operation. MGs are 
the alternative solution to operate the power system more healthily and 
satisfy the abovementioned factors. MGs have existed in some form or 
another in the power utility services toolkit for the past 30 years. MGs 
have become more efficient today because of the growth of software 
applications, economic reductions in renewable energy technologies, 
and increased consumer demand for sustainability, stability, resilience, 
and cost predictability. It consists of DERs, BES units, and critical and 
non-critical loads, which can be operated in grid-off and autonomous 
modes. Typically, the MG operates in grid-connected mode until any 
disturbances occur in the system. Under fault conditions, the distur-
bances occur in the upstream network; the MG disconnects from the 
primary grid and automatically operates the MG in autonomous mode. 
With the switch-over operations during grid-connected and islanded 
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modes, the reliability of the MG is improved. Henceforth, a proper en-
ergy management system must determine whether each DG source can 
supply the necessary energy to the consumer to maintain grid reliability 
[1]. The typical MG energy management system is shown in Fig. 1. 

In [2], an energy management problem is solved by comprising 
distributed feeder reconfiguration and control of the reactive power 
dispatches to enhance the MG’s technical and economic aspects. To 
control the real and reactive power dispatches among the inter-
connected distributed sources and RES, a novel optimization approach 
HBB-BC is implemented to solve the EMS problem. The techno-economic 
parameters are evaluated, which consist of operating cost, VSI, real& 
reactive power losses, and the MG’s greenhouse emissions. Despite 
many advantages, MG operators run into issues while planning and 
running. However, it does not incorporate multi-objective operational 
planning, which is a crucial aspect of a conscious energy management 
system that holds considerable importance in accounting for the overall 
system emissions. In addition, it fails to account for the power network 
model and the reduction of transmission losses, which could signifi-
cantly impact the efficiency and performance of microgrids. Further, 
some other essential aspects, including large-scale investments in 
renewable energy, ideal DER operation, control, market involvement, 
security, end-user privacy, and the creation of new policies, are a few 
examples that have not been incorporated exclusively. In the literature, 
artificial neural network-based algorithms have been very popular in 
developing methodologies to enhance MG performance and operation 
by incorporating optimization approaches such as PSO to enhance each 
artificial neural network to become a self-adaptable system. For 
example, in Ref. [3], the authors have proposed an energy management 
model which is implemented to operate the MG consisting of renewable 
energy sources, energy storage devices, and a generation set. The 
simulation results show that the implemented model reduces the de-
ficiencies by percentages of fifty-nine and fifty-six for an individual and 
multi-step forecast of power constraint predictors. However, the present 
study fails to account for the model’s performance under uncertain 
weather conditions or fluctuations in load demand profile, thereby 
constraining its practical implementation in a remote or grid-connected 
microgrid system. Moreover, the proposed model’s applicability in a 

large-microgrid system that encompasses multiple and diverse energy 
resources and storage systems has not been taken into consideration. 

Current practices of integrating renewable energy sources and stor-
age systems with conventional generators mainly reduce fuel con-
sumption and emissions have become popular worldwide for isolated 
MGs or unreliable grid systems in remote or underdeveloped regions 
such as Sub-Saharan Africa. But, the remote MGs based on renewables 
have a high peak-to-average ratio, and the conventional generators’ 
capacity is dependable on the load demand conditions. Thus, traditional 
generators frequently run at minimal loading conditions, leading to 
insignificant fuel efficiency. Further, integrating multiple renewable 
energy sources and battery-based storage systems into the MG addi-
tionally decreases the load on the conventional generator and worsens 
the fuel efficacy. The other significant issues which were overlooked 
were the operating cost of MGs and the lifespan of the energy storage 
systems. Hence to overcome these issues, several EMS models for MGs 
having RES based on solar and conventional generator resources inte-
grated with an energy storage device came into the picture, which 
somewhat considered of degradation models, hybrid optimization 
models etc. [4–6]. For example, in Ref. [4], a novel bi-layer EMS is 
implemented for remote MGs to enhance the BES lifespan and simulta-
neously aims to reduce the overall MG operating cost. Although the 
study introduces an innovative EMS algorithm that incorporates fuel 
consumption and battery lifetime in remote microgrids but, it neglects to 
account for the dynamic nature of electricity pricing and its influence on 
operational expenses of the MG. Also, the proposed framework is 
implemented only for an isolated microgrid system, and its efficacy is 
not verified for grid-connected MG systems. Another research related to 
the battery degradation model is proposed in Ref. [5] to find the influ-
ence of energy source ageing models on a grid-connected MG. Four 
models were considered and compared with combined Arrhenius peu-
kert (CAPN) followed by NREL, PLET, and linear, respectively. But all 
four models considered in this study are based on single factor-based 
battery degradation without using real-time battery model data. 

In [6] energy management problem of an off-grid MG is evaluated by 
implementing a novel hybrid optimization approach i.e., DE and chaos 
theory. The prime objective of this research is to minimise the overall 
operating cost and reduce MG’s greenhouse emissions in both renewable 
and non-renewable energy sources. Both study [5,6] do not consider the 
variations and uncertainties which occur in real-time such as power 
demand fluctuations and RES generation, and how these variations will 
impact the efficacy of the proposed model and its energy management 
strategy. The authors in Ref. [7] aim for the optimal energy management 
and planning of MGs by incorporating DSM programs to control and 
schedule the generation and energy consumption for reducing the 
overall operating cost and emissions. Stochastic programming is 
implemented to handle the uncertainties associated with the proposed 
MG. The MOGA algorithm is proposed to solve the objectives and 
enhance MG’s techno-economic aspects. The previous research study 
describes the optimal operation of the MG. However, the planning and 
operation of the MG indices have not been evaluated simultaneously. In 
Ref. [8], the study presents a promising approach to energy manage-
ment in microgrids under environmental constraints, but it does not 
address the scalability of the proposed algorithm for larger microgrids. 
Additionally, the study assumes that the microgrid operates in an iso-
lated mode without considering its connection to the primary grid. 
Finally, the study does not compare with other state-of-the-art EMS 
models or approaches in the literature. While [9] presents an optimal 
energy management strategy for multi-residential demand response 
utilizing self-produced renewable energy, it only assumes a centralised 
control approach without investigating the potential benefits of 
distributed control strategies. Finally, no account for battery degrada-
tion was considered, which could significantly impact the performance 
of the proposed energy management strategy. The studies outlined 
above only address the MG-EMS problem regarding battery ageing 
enhancement, MG operation and planning from different viewpoints 

Fig. 1. Energy management system.  
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and goals. But, another significant research gap for energy management 
of MGs is the applications of utility-oriented and customer-oriented 
programs which is discussed further. 

In [10], authors perform optimal scheduling of a holistic bidirec-
tional energy DN by incorporating demand-side management programs 
for greater power sharing and improving the performance of the dis-
tribution network. A multi-objective genetic approach is implemented in 
the energy distribution network to handle the optimum scheduling 
problem intelligently and sustainably. However, it does not consider the 
effect of demand elasticity and customer behaviour. Additionally, the 
study assumes that the distribution network is static without considering 
the potential impact of network topology changes. Further, it does not 
consider the impact of communication delays on the performance of the 
proposed strategy. That’s why the DSM and DR programs have gained 
more attention while solving MG energy management, operation, and 
planning problems, as reported in the literature. Fig. 2 demonstrates 
how the peak load demand is shifted by implementing demand response 
programs. 

The study [11] proposes an integrated energy and reserve manage-
ment strategy for microgrids with demand response. Yet, it fails to 
address the impact of renewable energy source uncertainty and does not 
investigate the benefits of distributed control. In Ref. [12], an optimi-
zation based on building internal design was employed to investigate the 
MG scheduling problem. The scope of this study is primarily limited to 
individual apartment buildings, without considering the potential syn-
ergies and interplay that may arise in a broader microgrid context, 
which includes larger communities or multiple buildings. Furthermore, 
it does not explore the potential contribution of demand response pro-
grammes (DRPs) that may play a pivotal role in regulating energy dis-
tribution within microgrids. 

The drawback of the conventional power system in contrast with 
networked MG during the day ahead scheduling process is appropriately 
addressed in Ref. [13]. The day-ahead scheduling of a networked MG is 
investigated, and the conventional power system’s negative aspects are 
also discussed in Ref. [13]. Although the study has significant implica-
tions, it did not consider using more advanced optimization algorithms 
for scheduling. Also, there were no fair comparisons illustrated with 
other metaheuristic techniques to explore and suggest which method 
could considerably be more efficient in terms of computational time and 
response. Additionally, incorporating factors such as power demand 
variations, market price fluctuations, and customer behaviour would 
result in a more comprehensive approach to microgrid operation and 
planning. 

The impact of DRPs on different MGs was studied [14]. The authors 
evaluated several technical parameters, including efficiency, voltage 
profile, and system reliability. To maximize the financial gains for the 
MG operator [15], pairs the incentive-driven DRP with EMS. The nu-
merical findings of the above research work, which used the Whale 
Optimization Algorithm (WOA), revealed an 11 % & 7 % reduction in 
daily energy usage in two cases, respectively. The incorporation of DR 

into the EMS problem will be an add-on to both supply and demand sides 
of the M.G. The DG output powers and battery charging and discharging 
process during the day ahead scheduling operation of the MG is effec-
tively and economically evaluated using WOA. However, in these 
studies usages of static values of consumer load profile has been done to 
determine the price elasticity coefficients which does not provide a 
real-time solution with integration of DR program. 

The authors in Ref. [16] investigate the optimal power solution of the 
DC MG system consisting of RES, DGs and ESS. This research in-
vestigates the coordination among the interconnected DGs for optimal 
power sharing to meet the required load demand. To plan a hybrid en-
ergy system [17], develops a two-stage robust optimization technique 
with a RES penetration of 65 %. In a aggressive vigour and reserve 
promote, lowering day-ahead energy prices is the primary goal of the 
research effort outlined above. The second stage of the research effort is 
focused on reducing worst-case dispatch costs. The system’s demand 
response scheme was credited with a 7.48 % to boost the revenue of the 
system. The CHP dispatch difficulty is one of the highly predominant 
EMS issues in MGs. But, these studies have only considered the load 
demand shape during an individual period only that also without peri-
odic alters and for a limited number of operational scenarios. 

The most recent initiatives have focused on implementing DRPs to-
wards effective planning of MG. In Ref. [18] examined how customer 
oriented DRPs affected MG operating costs. The stochastic approach 
suggested in the previous study associates the intermittent parameters 
related to Solar PV, WT, MP, and load demand are evaluated effectively. 
In Ref. [19], a hybrid stochastic robust approach is implemented for the 
optimal scheduling of MG tested and verified under normal and resil-
iency operations. Because of this, load adjustable and interruptible DR 
programs resiliency of the MG is improved effectively. A hybrid 
robust-stochastic optimization technique to deal with the uncertainties 
related to RES, active, and reactive loads were used. A new energy 
management strategy is adopted to balance supply and load for an iso-
lated rural MG in the presence of dispatchable and non-dispatchable 
energy resources [20]. To maintain the balance between supply and 
load by incorporating a pumped storage unit and an IBDR program. 
Similar research work in Ref. [21] explores the effects of an IBDR pro-
gram on the day-ahead and intraday markets. These studies did not 
address the techno-economic aspects to determine the efficacy of the 
demand response programs for reducing the overall operating cost of the 
grid-connected microgrids. 

Enhancing the resiliency of the MG [22] is expressed in terms of 
users’ convenience to water and energy after environmental calamities. 
A stochastic EMS program is implemented in the proposed MG to 
determine the required energy delivered to the distributed system with 
DR programs. The simulation results are verified and validated on a 
standard IEEE-33bus distribution network. In Ref. [23], stochastic en-
ergy management of an MG in the presence of DGs, RES and tidal, 
respectively. The uncertainty parameters are handled by using the 
Monte Carlo simulation approach. The implemented paradigm is linear 
multi-objective which primarily focuses on reducing the operating cost 
and later aims to reduce greenhouse emissions under the GAMS envi-
ronment. Most of the time, MG customers are composed of several 
policymakers who do not always have the exclusive authority to control 
energy-utilizing machinery. This research suggests a unique small-scale 
market-supported DSM approach in Ref. [24] to influence those poli-
cymakers for dynamic power pricing by providing extra rewards to the 
consumers. Another application of the DSM approach for domestic MG is 
proposed in Ref. [25] and formulated as an NCMI issue. The challenge 
was handled using a multi-agent-based decentralised approach because 
of the high computational cost of centralised approaches. The viability 
of incorporating a utility-induced DSM approach based on variable load 
shaping into an MG EMS was investigated in Ref. [26]. A QPSO method 
was used to resolve the intended research problem. A two-level opti-
mization problem for a smart MG is given in Ref. [27], utilizing an 
IoT-based DSM. The appropriate scheduling of load appliances is the 

Fig. 2. Load demand management curve.  
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focus of the first level of the issue and later focuses on the reliability 
control of frequency and voltage. Although this work provided new 
insight into DSM strategy, its application to larger MGs or networked 
Mgs is questionable. Similarly, these studies did not consider the utili-
zation of their proposed approaches for optimal scheduling of 
grid-connected MGs in consideration of real-time price elasticity co-
efficients based on end users load profile characterization. 

In contrast to the previous research [28], offered studies concen-
trating on offline and online DSM techniques. The work mentioned 
above considers a two-stage real-time DSM approach. The first stage is 
reducing MG operating costs, while the second involves online power 
scheduling to account for real-time variability. The opportunities for 
implementing many DR efforts on total operational costs and rapid 
correlative analysis of significant technical and economic quantities are 
not significantly focused. A few researches works focused on incorpo-
rating demand response programs on traditional microgrids and hybrid 
microgrids, respectively [29,30]. In Ref. [31] utility-oriented DSM 
programs are incorporated to reduce the peak load burdens for the 
optimal scheduling of grid-connected microgrids. The same aforemen-
tioned problem is evaluated by incorporating demand response pro-
grams for the optimal operation of LV microgrid [32]. Similarly, some 
works were focused on minimising the operating cost of the microgrids 
without implementing demand side management programs [33–35]. 

Authors in Ref. [35] aim to address the concerns and considerations 
of market players, such as electricity suppliers and consumers, in order 
to optimize their bidding decisions. Their objective was to develop a 
strategy that considers various factors, such as market prices, demand 
elasticity, and participants’ preferences, to enhance their overall prof-
itability and satisfaction in the electricity market. In Ref. [36] aims to 
design a bidding strategy that can enhance their decision-making pro-
cess and optimize their outcomes. The novelty of this work lies in the 
development of a reconfigured bidding strategy that considers the 
concerns of the players in the electricity market. The authors likely 
consider various concerns that players may have, such as market power, 
risk management, profit maximization, and fairness. Whereas in 
Ref. [37] investigated economic analysis of microgrids based on 
renewable energy uncertainty and demand response in the electricity 
market. In addition to the above-mentioned research work one more 
similar work [38] analysing the performance and economic viability of 
the microgrid system under different scenarios and conditions. The au-
thors likely investigate the optimal operation and control strategies that 
can maximize the utilization of renewable energy resources, minimise 
costs, and ensure grid reliability. Another research work focuses on day 
ahead scheduling for the best scheduling process of RES based micro-
grid. To regulate the demand side energy management price and load 
driven programs were incorporated in which changing the end user load 
profile for the reduction operational cost of the microgrid. The simula-
tion results were carried out on a standard IEEE -24 node distributed test 
system respectively [39]. Regarding energy management one more 
research work is concentrated on transactive energy management of a 
cluster microgrids to manage energy transition among the inter-
connected microgrids [40]. Another transactive energy technology is 
adopted in Ref. [41] to create a free energy trading environment for 
microgrids that soley rely on renewable energy resources for local en-
ergy trading. To achieve this proposed objective the hybrid version of 
stochastic programming and information gap theory is incorporated 
with the implementation of risk averse and risk seekers strategy in a 
deregulated circumstance. The recommended model’s validity is 
demonstrated by applying it to the enhanced version of IEEE 14-bus test 
system. A novel optimizer is incorporated to solve the proposed complex 
engineering problem and for the first time to evaluate the corresponding 
technical indices by using AHP method [33]. 

In the realm of microgrid energy management, the principle of 
flexible price elasticity takes center stage. Microgrids are defined as 
localized energy systems, distinguishable by their small scale. They 
possess the capability to operate both independently and in tandem with 

the primary grid framework. Typically, microgrids house an assortment 
of distributed energy resources (DERs), which span from solar panels 
and wind turbines to energy storage mechanisms and traditional gen-
erators. Skillful management of these diverse resources is pivotal to 
optimize energy efficiency, guarantee reliability, and ensure economic 
viability within a microgrid. Flexible price elasticity revolves around the 
responsiveness of energy consumption or production in the face of en-
ergy price variations. Within microgrid settings, it’s evident that a mix of 
consumers and prosumers – those involved in both energy consumption 
and generation – display varied extents of price elasticity. Grasping 
these elasticity nuances is instrumental in formulating demand response 
strategies. Such strategies empower consumers to adapt their energy 
utilization in accordance with price cues. For example, highly price- 
elastic consumers might adjust their energy habits, favouring times 
when prices are comparatively lower. This adjustment in behaviour 
plays a crucial role in curtailing peak demand and the related financial 
burdens. 

For instance [42–47] research works related to incorporation of 
demand response programs on microgrid energy management for 
reducing the overall operating costs in which satisfies all equality, 
inequality, and network constraints respectively. In Ref. [48] authors 
tackle an energy management problem for a hybrid system without 
incorporating demand response programs by implementing robust 
optimization approach called information gap decision theory. The 
concept under consideration is implemented using the dataset from the 
municipality of Espoo, located in Finland. The numerical results 
demonstrate the suggested architecture’s effectiveness in generating 
resilient economic planning for the hybrid system under consideration. 
The hybrid solution method has superior computational efficiency to 
non-hybrid solvers, attaining the optimal solution at a reduced time-
frame. Additionally, the algorithm exhibits a minimal standard devia-
tion of around 0.94 % in the outcome. In Ref. [49] authors focuses on 
multiobjective flexible power management in a Software-Defined 
Networking (SDN) framework, incorporating Renewable Energy Sour-
ces (RESs) and Electric Vehicle Power Loads (EVPLs). The formulation of 
this model is rooted on the hybrid ε-constraint and fuzzy 
decision-making methodologies, which together create a multiobjective 
approach. The suggested method including electric vehicle (EV) energy 
management has demonstrated notable enhancements in energy costs, 
energy losses, and voltage profiles in comparison to the network flow 
distribution. Specifically, there has been an approximate improvement 
of 11 % in energy costs, 28 % in energy losses, and 10 % in voltage 
profiles. In the given circumstances, the system’s adaptability is 
enhanced by up to 30. It is worth noting that the aforementioned out-
comes and functionalities may be effectively attained in practical net-
works through the implementation of the suggested approach to this 
particular power system. 

The above-mentioned research works [35–49] primarily focused on 
renewable based microgrid models with grid connected and islanded 
modes respectively. The integration of demand side management pro-
grams was incorporated to characterize the end user load profiles with 
only static coefficient values for the optimal operation of the typical low 
voltage levels microgrid system. But, due to lack of real time charac-
terization of end user load profiles the obtained simulated results in 
these studies are pre-deterministic in nature and not close to real time 
values. Similarly, majority of the works which have been discussed 
thoroughly above were mainly focused on the scheduling, electricity 
markets, operation, and planning domains respectively. Only, a limited 
number of the research works were focused on the integration of de-
mand side management programs on the IEEE standard distributed test 
systems with static coefficients for characterization of consumer load 
profiles. Thus, there is a lot scope to evaluate the real time flexible price 
elasticity coefficients for true characterization of the end user load 
profile to enhance the grid reliability. 

Hence, in this research paper we have incorporated first-time 
customer-oriented demand response systems that examine the 
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technical and financial improvements and benefit the grid operator by 
employing DR programs. Further, in the literature, no effort has been 
made to use customer-induced DSM approaches, such as price-based 
DRPs, in MG EMS under the presence of IEEE-34 node network config-
uration circumstances. Also, most studies’ characterisation of pricing 
elasticities lacks actual modelling of consumer response to price varia-
tions in the market and to determine customer satisfaction, the technical 
aspects have not been extensively covered so far. Therefore, the FPE 
approach [33] is employed in this research, and the real-time load [31] 
is used instead of normal loads. AHP method is implemented to evaluate 
the techno-economic indicators for each DR program based on the ob-
tained weights [34]. To summarize, we have primarily focused on the 
above-mentioned research gaps with novelty measures:  

1. To handle the suggested EMS issue of grid-connected MGs in the 
context of a price-driven demand response program. The prospects 
for different techno-economic indicators to benefit the MG network 
operator are investigated.  

2. The FPE method is used to analyse price flexibility quantities of 
customer oriented DRPs. In addition, a real-time 24-h day ahead load 
is utilized to ensure network reliability.  

3. The recommended EMS problem is resolved using the Dragon Fly 
Algorithm, a special kind of nature-inspired metaheuristic optimi-
zation technique. And also, investigate the solutions’ quality and the 
powerful optimizer’s computing efficiency in addressing the problem 
with both discrete and continuous variables. Finally, the decision- 
making analysis is done by implementing the AHP process con-
cerning each technical indices of the MG test system. 

The remaining sections are structured as follows: Section 2 presents 
the problem formulation of the proposed microgrid energy management 
problem and its mathematical representation. Section 3 discusses the 
mathematical representation of the DG units and the handling of un-
certainty parameters. In Section 4, we employ the stochastic framework 
based on the Dragon Fly optimizer. Section 5 focuses on integrating the 
AHP method to evaluate the Users’ satisfaction index and other techno- 
economic indices. Finally, in Section 6, we present the simulation re-
sults, analyse them in detail, and discuss the research findings. 

2. Problem formulation 

This section outlines how the improved IEEE-34 node distributed 
feeder network optimization problem was formulated to minimise 
operational costs while considering various economic factors. MATLAB 
software is used to solve the EMS issue. The Dragon Fly Algorithm is 
implemented and compared with heuristic, meta-heuristic, and 

quantum-inspired optimization approaches for the first time in a MAT-
LAB environment. In addition, a stochastic optimization method is 
created to forecast the degree of uncertainty in the price of energy using 
historical data and a probabilistic density function. 

2.1. Objective function 

The primary goal of the objective function in (1) is to reduce the 
overall operating expenses over a period of 24 h T. The MG consists 
regarding operating costs of dispatchable, non-dispatchable, energy 
storage unit and utility power exchange costs, respectively. The decision 
variables of the optimization problem are evaluated and stored in the 
vector A respectively, represented in (2). The startup/shutdown of the 
respective DG units associated with discrete variables decides and en-
ables the status of each unit is represented in (3). The terms itemized in 
(4) are power output, market prices, and startup/shutdown costs of BES 
units, respectively. 
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2.2. Operational constraints 

A power system’s principal function is to maintain a proper balance 
between supply and demand during time intervals. As a result, the 
required power balance produced by the RES, BES, DG sources and 
utility power exchange is envisioned as an equality limitation, exem-
plified in (5). The minimum and maximum power constraints of DGs, 
BES, and the utility can be derived (6). In the occurrence of a violation, 
the quantities of the controller parameters are limited within the power 
limit constraints to achieve a viable solution. The battery storage re-
strictions of BES units are stated in terms of the extreme allowable 
recharge and discharge rates is stated (7). The parameters related to BES 
indicate the acceptable quantity of charging and discharging and its 
related efficiency. The energy storage limitations for any hour t are 
stated in (8). 

Fig. 3. Enhanced version of IEEE-34 node network.  
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∑t

x=1
Ṗt

DSGi +
∑t

y=1
Ṗt

BSj + Ṗt
ue =

∑t

l=1
Ṗt

demand (5)  

⎧
⎪⎪⎨

⎪⎪⎩

Ṗt
DSGi ,mnm ≤ Ṗt

DSGi ≤ Ṗt
DSGi ,mxm

Ṗt
BSj ,mnm ≤ Ṗt

BSj ≤ Ṗt
BSj ,mxm

Ṗt
ue,mnm ≤ Ṗt

ue ≤ Ṗt
ue,mxm

(6)  

ĖBS,t = ĖBS,t− 1 + ηcṖcΔt −
1

ηdc
ṖdΔt (7)  

{
ĖBS,mnm ≤ ĖBS,t ≤ ĖBS,mxm

Pc,t ≤ Pch,mxm;Pdch,t ≤ Pd,mxm
(8)  

2.3. Flexible price elasticity (FPE) 

The traditional power generating model governs the energy consis-
tency from the demand and supply by maintaining that consumer 
requirement is insignificant and unresponsive to variations in electricity 
pricing. DRPs, on the other hand, promote consumers to shift from in-
elastic to elastic demand. The term "price elasticity," defined as the 
proportion of a variation in power demand to a shift in market price, is 
the foundation for these DRPs. The flexible pricing elasticity is used in 
this work to generate the E (i,j) matrix for the TOU, CPP, and RTP 
programs. Depending on their responsiveness to fluctuations in the 
market price, end users are split into two different load categories ac-
cording to the basic idea of price elasticity. The essential and non- 
essential loads, which are responsive to specific and multiperiods, 
correspondingly, are taken into account while adjusting the coefficients 
of the self- and cross-elasticity matrices. The overall price elasticity 
matrix for a 24-h period, which shows how demand changes in relation 
to price changes, is taken from Ref. [31]. 

3. System configuration 

Fig. 3 depicts a modified IEEE-34 node distributed network based a 
grid-connected MG. Dispatchable, non-dispatchable and storage units 
are linked to the external grid through PCC. A central controller typi-
cally controls the energy flow inside the MG (MGCC). MGCC’s primary 
goal is to transmit best possible dispatch signals to LC for stabilizing 
supply and demand. The energy stream is controlled by the MC 
controller installed corresponding DER unit, and load management is 
provided by the load supervisor installed at every controllable load [31]. 
The following section is provided with the required information of 
modelling DERs as follows. 

3.1. PV solar 

Deploying solar PV cells is an alternative solution for green energy 
with zero emissions. Apart from the advantage, PV power output is 
limited due to intermittent characteristic exhibits that cannot be pre-
dicted accurately. The solar output power is generated concerning solar 
irradiance and module temperature of the cell. The complete PV power 
output with each parameter description is considered from Ref. [31], 
and it is mathematically represented in (9) and (10), respectively. 

P pv =P STC
Irad

1000
(1+ σ(Tc − 25)) (9)  

Tc =Ta +
Irad

800
.(Tn − 20) (10)  

3.2. Wind turbine 

Wind energy has been extremely employed to generate clean energy 
with zero emissions, and it can be contemplated as the first developed 

renewable energy. Due to several mechanical and generator constraints, 
and the power output is generated within the range of wind speeds from 
cut-in to cut-out. The information regarding wind power generation is 
considered from Ref. [32] and mathematically represented in (11). 

Pwind =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 0 ≤ V ≤ V ci or V ≥ V co

V
2
− V

2
ci

v2
r − v2

ci
× PrV ci ≤ V ≤ V r

PrV r ≤ V ≤ V co

(11)  

3.3. Bid prices of distributed generators 

FC is one type of green energy generator which includes anode and 
cathode chemical reactions. MT is integrated with MG to improve reli-
ability, power quality, and reduce the peak load demands. These two DG 
units are considered non-linear functions represented in (12) and (13). 
The overall operating costs of these DG sources, including investment 
expenses, downgrading charges and manufacture expenses, are taken 
from Ref. [31] and it is tabulated in Table 1 respectively. The corre-
sponding mathematical representation is mentioned in (14). 

FMT = aP2
MCT + bPMCT + c (12)  

FFC = aP2
FUC + bPFUC + c (13)  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B DG = Cf
P DSG

ηDSG
+ A c

A c = D c

P DSG,n

P c

(14)  

3.4. Uncertainty assessment with scenario based strategy 

In most of the actual engineering optimization problems, some of the 
technical parameters cannot be directly measurable and are uncertain. 
The MG scheduling issue considers several unpredictable variables, 
including solar radiation, wind velocity, market rate, and demand. The 
scenario-based approach is among the most popular methods for esti-
mating these unknown components. The PDF for each parameter is 
examined using the historical data that is currently available. The 
resulting PDF is then divided into numerous subdivisions based on the 
likelihood values. As a result, the limited number of possibilities will 
affect each stochastic variable. Most research investigations use the 
Weibull PDF and the Beta PDF to simulate the uncertainty quantity of 
solar irradiance [32]. The standard PDF simulates the market pricing 
and load demand uncertainty [5]. Each stochastic variable will thus rely 
on a limited number of possible outcomes [4]. In most research studies, 
wind variations are simulated using the Weibull PDF, while solar power 
is evaluated using the Beta PDF. The standard PDF calculates the degree 
of market pricing and load demand uncertainty [5]. The comprehensive 
scenario generation and reduction features can be derived from 
Ref. [32]. Figs. 4 and 5 indicate the generated solar irradiance and wind 
speed scenarios, respectively. 

Table 1 
DG unit bid costs and utility prices (hourly) [31].  

DG Type Pmin
DG (kW) Pmax

DG (kW) Son
DGi, Soff

DGi ($)

MT 6 30 0.14 
FC 3 30 0.12 
PV 0 25 – 
WT 0 15 – 
Battery − 30 30 – 
Utility − 30 30 –  
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Fig. 4. Solar PV power (kW/m2).  

Fig. 5. Wind velocity (m/s).  

Fig. 6. Dragon fly algorithm.  
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4. Dragon Fly Algorithm 

A meta-heuristic method known as a swarm-based algorithm is based 
on the behaviour of many animal groupings that compete for life in the 
wild, including dragonflies, ants, ducks, and other creatures. Practically 
all areas of research, engineering, and business, including data mining 
and strategic planning, use computational intelligence techniques called 
swarm intelligence to tackle non-linear model issues. This approach was 
developed in 1989 for developing cellular robotic systems by Gerardo 
Berni and Jing Wang. Swarm intelligence is used for optimization in 
various ways, such as the real-ant adoption Ant-Colony Optimization 
(ACO), fish colony-based AFSO, flashing behaviour (FFA), and more. 
Inspired by dragonflies’ static and dynamic swarming, Seyedali Mirjalili 
created the Dragonfly Algorithm (DA) in 2015. The Dragonfly algorithm 
is a similar kind of swarm optimization algorithm. It has dual swarming 
behaviours: static swarming, in which many dragonflies fly in a single 
direction across a considerable distance after forming a packed config-
uration locally, and dynamic swarming. These static and dynamic 
swarming shows the Dragonfly Algorithm’s exploration and exploitation 
behaviour. Five kinds of dragonfly swarm movements have been iden-
tified: separation, alignment, cohesion, attraction to a food source, and 
diversion from hostile sources [33]. Real-world nonlinear engineering 
problems are currently being addressed with the Dragonfly Algorithm. 
The conceptual representation of the dragonfly algorithm is shown in 
Fig. 6. The DA follows five mathematical stages, which are as follows: 

Separation: The separation phase aims to prevent collisions while 
they exist in proximity. xi is the present position of a specific element 
and xj as other components other than xi, the proximity between them is 
given as: 

Ѕi = −
∑N

j=1
(xi − xj

)

(15) 

Alignment: Alignment is the propensity of a search agent to modify 
its velocity about other search agents in the same neighbourhood. Vj is 
the velocity of its neighbourhood and Ai is the proper alignment of a 
standard exploration agent, and it can be expressed as follows: 

Ai =
1
N

∑N

j=1
Vj (16) 

Cohesion: Cohesion is a dragonfly characteristic of flying toward the 
centre of search agents. Cohesion is mathematically represented in (17) 

Ci =
1
N

∑N

j=1
xj − xi (17) 

Attraction: When a dragonfly is searching for food, the attraction of 
a food source is a reaction from a search agent. xi is the dragonfly po-
sition, and f is the site of the food. 

Fi = f − xi (18) 

Distraction: This response happens when search agents uncover a 
potentially harmful object in their immediate vicinity. Given xi as the 
dragonfly’s position and e is the enemy’s location. The following 
equation determines under distraction phase followed as: 

Ei = e + xi (19) 

The position and velocity of the dragonfly should be updated if it has 
at least a single neighbour. A formula, such as the PSO method, can be 
employed to alter the velocity. To update the position, we have used the 
following equation. 

xt+1 = xt + dxt+1 (20) 

t represents the present iteration xt+1 indicates the following updated 
position xt represents the current position and dxt+1 represents as step 
vector and it is formulated as 

dxt+1 = s.Si + a.Ai + c.Ci + f .Fi + e.Ei + l. dxt (21) 

dxt indicates the recent step vectors; s, a, c, f, e represents the cor-
responding weights of separation, alignment, cohesion, food factor and 
enemy factors respectively. 

If the dragonfly does not have a neighbour in some circumstances, it 
must perform certain random orientation. As a consequence, Levy’s 
flight, which is effectively a random walk approach, must be used to 
update the position. The formula is as follows: 

xt+1 = xt + levy.xt (22) 

The proposed framework’s detailed methodology is presented in 
Fig. 7. Initially, the uncertain parameters, namely irradiation emits from 
the solar rays, and wind speed, are quantified through scenario gener-
ation and reduction processes. The resulting scenarios are then utilized 
in an optimization solver to determine the optimal scheduling configu-
ration for the day ahead, while adhering to equality and inequality 
constraints. To evaluate the techno-economic performance indices, DR 

Fig. 7. Proposed methodology.  
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programs are integrated using the AHP method, assigning appropriate 
weights. Subsequently, AHP is employed to establish weights for each 
criterion, and the optimal alternative is derived by considering the 
chosen DRP, and the corresponding user satisfaction index has been 
evaluated. Many existing research studies overlook the inclusion of real- 
time price elasticity coefficients when characterizing the end user load 
demand profile. In this proposed research work, we address this gap by 
incorporating real-time price elasticity coefficients to accurately char-
acterize the end user load profile. Additionally, we evaluate user satis-
faction indexes while considering reliability and consistency factors. The 
challenges associated with microgrid energy management frequently 
include intricate and nonlinear optimization issues. The efficiency and 
effectiveness of the Dragonfly Algorithm in exploring the solution space 
can contribute significantly to the identification of global or near-global 
optimum solutions. This capability is of utmost importance in the 
context of microgrids, as it enables the maximization of both economic 
and operational efficiency. The operations of microgrids are susceptible 
to a range of variables, including the volatility of renewable energy 
output and the variability of power pricing. The management of 
microgrid energy frequently encompasses a range of objectives that may 
be in conflict with one another, including the minimization of costs, the 
reduction of emissions, and the development of dependability. The 
Dragonfly Algorithm is having the capability to effectively address 
multi-objective optimization issues by generating a collection of Pareto- 
optimal solutions [50]. This allows decision-makers to make informed 
choices by selecting the most appropriate trade-off among the many 
objectives. Microgrids exhibit a range of dimensions and intricacy, 
encompassing modest home installations as well as more extensive in-
dustrial and commercial configurations. In the context of microgrid 
energy management, the expeditiousness of the algorithm in generating 
solutions might confer a significant benefit, particularly in scenarios 
necessitating real-time decision-making. The Dragonfly Algorithm’s 
ability to explore the solution space efficiently might result in decreased 
computing expenses, a crucial factor for real-time or resource-limited 
applications in microgrids [50]. 

5. Integration of AHP method on the evaluation of users 
satisfaction 

User satisfaction in the context of load demand and renewable en-
ergy power supply can be defined as the degree to which the user’s 
energy needs are met by a reliable and sustainable supply of energy. It 
can be measured by comparing the actual supply of energy to the user’s 
demand for energy and assessing the level of reliability and consistency 
of the supply. Various DRPs are implemented based on the user load 
profile characteristics in which the user demand profile is modified ac-
cording to the corresponding program while satisfying the customer 
satisfaction index. In addition, the weight of each satisfaction indicator 
differs among the different types of implementing demand response 
programs. To determine the weight of each satisfaction indicator of the 
end-user load profile w. r.t to the corresponding DR program, the Ana-
lytic Hierarchy Process (AHP) method is utilized. The AHP method was 
selected because it has been widely used for decision making across 
various fields, including economics, social sciences, and management. 
This method employs a systematic approach to solving complex prob-
lems, incorporating mathematical and psychological principles. Due to 
its precision, simplicity, and broad applicability, the AHP has become 
popular multiple criteria decision-making (MCDM) techniques used by 
researchers globally. So far already above-mentioned research works is 
not considering reliability factor and consistency factors while evalu-
ating the user satisfaction index. But in this research the incorporation of 
reliability and consistency factors for achieving accurate real time 
results. 

Fig. 8. 3 d-represention FPE of RTP.  

Fig. 9. FPE model of TOU.  

Fig. 10. FPE model of CPP.  
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USI=

⎧
⎪⎨

⎪⎩

PAvg

EavP
PAvg ≤ EaveP

1 PAvg > EaveP

(23)  

6. Numerical analysis and discussion 

In this section, the intended EMS problem is evaluated effectively, and 
the statistical study findings are successfully presented. The efficacy of 
DFA is evaluated with state-of-art heuristics meta-heuristics and quantum- 

inspired optimization approaches like PSO, QPSO, TLBO, QTLBO, FFA, 
GWO. The three-dimensional plot of the FPE parameters of price driven 
DRPs is derived and represented in Figs. 8–10, respectively. The tuning or 
control parameters of the implemented optimization techniques for solv-
ing the proposed problem are tabulated in Table 2 respectively. 

The evaluated results for deploying PB-DRPs and the related pro-
gram price elasticities with 3 d representation are depicted in Figs. 9–11, 
respectively. The FPE coefficients assessed for each PB-DRP are used to 
modify baseload demand. Renewable energy is harvested to the most 
significant degree possible, and excess electricity is traded in from the 
utility, particularly through peak periods. The charging and discharging 
cycles of the battery have been enhanced by implementing PB-DRPs, 
particularly in CPP, as compared to RTP and TOU programs during 
Peak hours. The battery performance is also enhanced with the imple-
mentation of price-driven DR programs, and the best performance is 
achieved during the CPP DR program, respectively. Because of this, the 
DR programs have gained more significance on energy management 
problems in both connected and autonomous modes, respectively. 

More customers are willing to participate in DR programs by 
adjusting their respective loads and shifting with respect to time such 
that the system performance and stability have been enhanced for the 
optimal operation of MG. The overall optimal operating cost of micro-
grids with and without DR program implementation is tabulated in 
Table 3 and Table 4, respectively. The corresponding technical aspects 
of implementing DR programs are represented in Table 5. Initially, no 
demand response program participation is implemented, and the oper-
ating cost is evaluated on the hourly average load. Later the DRP 

Table 2 
Algorithm tuning parameters.  

Algorithm Control parameters 

DFA Separation weight, Alignment weight, Cohesion weight, Food attraction 
weight is 2 

QPSO Contraction and expansion coefficient α = 0.75 
TLBO No Algorithm Specific Parameters 
QTLBO No Algorithm Specific Parameters 
PSO Cognitive constant = 2, Social constant = 2, Maximum inertia = 0.7, 

Minimum inertia = 0.5 
FFA Randomization Parameter = 0.2, Attractiveness Parameter = 0.2, 

Absorption Coefficient = 1 
GWO Distance Control Parameter (a): 0<a<2  

Fig. 11. MG optimal dispatch scheduling for RTP.  

Table 3 
Optimal scheduling costs ($/kWh).  

Optimization 
approach 

BC 
($/kWh) 

WC 
($/kWh) 

MC 
($/kWh) 

SD CT (s) 

DFA 164.25 164.25 164.25 0 27.270 
FFA 167.16 169.36 168.26 0.0242 48.323 
GWO 169.92 172.36 171.14 0.029768 51.778 
QPSO 170.17 173.62 171.895 0.059513 60.746 
QTLBO 173.16 176.33 175.64 0.009522 68.017 
TLBO 175.23 177.54 176.385 0.026681 73.926 
PSO 176.97 179.98 178.5 0.043808 78.769  

Table 4 
Techno-Eonomic indices of Implementing Price driven DR Programs ($/kWh).   

Peak Peak reduction (%) Load factor Peak to valley distance Energy consumption (Kwh) % Reduction in energy consumption 

Base case 90 – 0.7779 0 1695 0 
RTP 81.29 9.67 0.833 8.79 1680.76 0.84 
TOU 79.30 11.88 0.8485 10.7 1655.46 2.33 
CPP 71.96 20.04 0.8651 18.04 1611.72 4.91  

Table 5 
Optimal costs for day-ahead scheduling of MG.  

Case Base RTP TOU CPP 

Cost ($/day) 164.25 157.54 152.08 143.85  
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participation is employed on the base load profile to investigate the 
accurate time characterization of customer load responses. Figs. 11–13 
represents the day ahead scheduling of DG units of a grid connected with 
the incorporation of DR programs respectively. With this the best 
scheduling is obtained in case of CPP program out of three cases 
including base case. The power import from the utility is less and ex-
tracts the most quantity of energy from the RESs to meet the consumer 
loads without any interruptions when compared to RTP and TOU DR 
programs. 

The Analytical hierarchical process approach is utilized to estimate 
the weight of each techno economic indices with respect to the DR 
programs for obtaining customer satisfaction. The AHP method is widely 
applied in complex engineering problems such as mathematics, social, 
and management sciences respectively [34]. In Table 6 the pairwise 
comparison matrix is tabulated with the final weights of each technical 
indices concerning each DR Program. 

The final weight is achieved to CPP DR program among the technical 

indices from the obtained results. Based on the obtained final weights, 
the consistency index is 0.0518, and the consistency ratio is 0.0426, 
which is always less than 1; it represents the final weights that are 
assessed with respect to each technical indices are significant and ac-
curate concerning to the technical indices that are related to MG. The 
initial real-time base load profile is considered and modified with the 
implementation of DRPs for obtaining the optimal operation of MG is 
evaluated in this research work. The user satisfaction index of the end 
users based on the implementation of the different DR programs like 
RTP, TOU, CPP respectively. The overall User satisfaction index of the 
end user in this proposed energy management problem is evaluated and 
in comparison, with and without application of DR programs is tabu-
lated in Table & respectively. The overall consistency index of the pro-
posed demand response programs with and without implementation of 
DR programs are 0.753305, 0.771029, 0.829589 and 0.910243 
respectively. 

The simulation findings reveal that DFA surpasses all other meta-
heuristic and quantum-inspired algorithms regarding optimum costs, 
computing time, and convergence, as depicted in Fig. 14 and Table 3, 
respectively. It is worth mentioning that the critical peak pricing DR 
Program has the lowest operating costs when compared to other DR 
programs like TOU and CPP. The state of health of battery is represented 
in Fig. 15 and illustrates how the health condition of a battery is 
enhanced with and without the implementation of DR programs. 

Fig. 12. MG optimal dispatch for TOU.  

Fig. 13. MG optimal dispatch for CPP.  

Table 6 
Pair wise Comparison matrix with final weights.   

COST LF PR EC Final weights 

RTP 0.913101 1.095169 0.885226 0.950867 0.960731 
TOU 0.945884 1.057212 0.90744 0.973578 0.970579 
CPP 0.986654 1.000625 0.98665 0.996254 0.999864 
Base load 0.875799 1.141814 0.799556 0.950867 0.941002  
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7. Conclusion 

This research proposes and solves a unique stochastic optimum 
scheduling issue of a distributed MG under grid-connected mode. DG 
energy sources like dispatchable, non-dispatchable energy sources and 
BES are integrated with the enhanced version of the IEEE-34 node test 
system. A scenario-based strategy is used to resolve the uncertainties 
associated with solar irradiation and wind speed by developing seven 
unique scenarios. The effect of price driven DRPs on total operational 
expenses, energy consumption, and peak controlling is studied. The DFA 
is used to address the difficulties in the stated problem. The price ori-
ented DRPs are employed to the base load profile, and the simulation 
results were evaluated and verified in MATLAB atmosphere. The nu-
merical findings are contrasted with recently reported heuristic, meta-
heuristic, and quantum-inspired approaches. Significantly, the 
suggested approach is outstanding in terms of convergence rate, 
improving the quality of the solution, and computing time is represented 
in Fig. 14. The Dragon Fly Algorithm optimizes power export to the 
utility, determines the optimum power dispatch configuration for DG 
units, and compares results with and without demand response program 
participation is tabulated in Table 5 respectively. The implemented 
research work compares the Dragon Fly Algorithm with other heuristic 
approaches, resulting in a 12.42 % reduction in overall operating costs 
and the efficacy of the proposed algorithm is shown in Fig. 14. Further, 
the techno-economic possibilities of adopting different demand response 
programs are briefly reviewed with respect to Table 6. The AHP method 
is utilized is to find out each technical index for each DR program are 

evaluated effectively with the decision-making analysis. The imple-
mentation of AHP enables the evaluation of the User Satisfaction Index, 
which shows that the CPP demand response program achieves the 
highest level of user satisfaction is 0.92881 respectively. The user 
satisfaction index describes how distributed energy sources are effec-
tively provided adequate amount of energy to meet the load demand 
without compromising the customer dissatisfaction respectively. Tabu-
lated results in Table 7 represent the best weight and rank assigned to 
the CPP program with the help of decision-making analysis whose de-
mand is fully satisfied in all technical aspects. On a practical note, the 
"Demand Response Auction Mechanism" deployed in various nations 
offers a tangible illustration of a demand response blueprint which is 
highlighted in this study. During peak consumption or grid fluctuations, 
grid overseers might solicit temporary consumption cutbacks from 
participating entities, such as industries or businesses, offering monetary 
rewards. Participating consumers, in gratitude for their cooperation, are 
either compensated or benefit from reduced energy tariffs. This fosters a 
robust power network and empowers individuals to have greater au-
tonomy over their energy expenses. Prospective expansions of this 
research will encompass multi-microgrid systems, using advanced 

Fig. 14. Convergence characteristics.  

Fig. 15. SOH of a battery with and with out implementation of DR Programs.  

Table 7 
User Satisfaction index with different DR Programs.  

S. No Without DR RTP TOU CPP 

Base load 0.7686 0.78675 0.84619 0.92881  
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benchmarks like IEEE-69 and IEEE-123, and will incorporate advance-
ments in machine learning while contrasting results with heuristic, 
meta-heuristic, and other cutting-edge algorithms. 
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Appendix  

DG Distributed Generation 

AC Annual Cost 
DC Depreciation cost 
IC Investment Cost 
PSO Particle Swarm Optimization 
TLBO Teaching Learning Based Optimization 
GWO Grey Wolf Optimization 
RTP Real time Pricing 
TOU Time of Use 
CPP Critical Peak Pricing 
DN Distribution Network 
DER Distributed Energy Resources 
RES Renewable Energy Sources 
MP Market Price 
IBDR Incentive Based demand response 
LF Load Factor 
PR Peak Reduction 
EC Energy Consumption 
ACO Ant Colony optimization 
AFSO Artificial Fish Swarm Optimization 
PD Probability distribution 
PDF Probability distribution function 
MG Microgrid 
EMS Energy Management System 
MT Micro Turbine 
FC Fuel Cell 
FPE Flexible Price Elasticity 
BES Battery Energy Storage 
DFA Dragon Fly Algorithm 
FFA Firefly Algorithm 
PBDR Price Based demand response  

Indices.  

A Decision variable vector 

DSG Distributed Generator 
ψ DG Unit Status 
mx Maximum 
BS Battery Storage 
ith ith DG Unit 
jth jth Battery storge Unit 
MP Market price 
P t

ue Power export/import to/from the utility during time interval t. 
Pt

BS Active power output of Battery storage unit during time interval t. 
Pt

DSG Active power output of distributed generator unit 
Pc,t Battery charging during time interval t. 
Pd,t Battery discharging during time interval t 
EBS,t Amount of Energy stored in the battery during time interval t 
P pv Output Power of solar 
Irad Solar irradiance 
Tc Module Temperature 
V r,V ci,V co Rated, cut-in, cut-out speeds of wind turbine 
Pr Rated Wind power 
S

on
DSGi ,S

off
DSGi 

Start-up/Shutdown status of DG units 
A c Annual Cost 
D c Depreciation Cost  
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Bello, " energy management model for a standalone hybrid MG through a particle 
swarm optimization and artificial neural networks approach", Energy Convers. 
Manag. 267 (2022), 115920, https://doi.org/10.1016/j.enconman.2022.115920. 
ISSN01968904. 

[4] Santosh Chalise, Jason Sternhagen, Timothy M. Hansen, Reinaldo Tonkoski, 
Energy management of remote MGs considering battery lifetime, Electr. J. 29 (6) 
(2016) 1–10, https://doi.org/10.1016/j.tej.2016.07.003. ISSN 1040-6190. 

[5] Shuoqi Wang, Dongxu Guo, Xuebing Han, Languang Lu, Kai Sun, Weihan Li, Dirk 
Uwe Sauer, Minggao Ouyang, "Impact of battery degradation models on energy 
management of a grid-connected DC MG, Energy 207 (2020), 118228, https://doi. 
org/10.1016/j.energy.2020.118228. ISSN 0360-5442. 

[6] Soham Mandal, Kamal K. Mandal, Optimal energy management of MGs under 
environmental constraints using chaos enhanced differential evolution, Renewable 
Energy Focus 34 (2020) 129–141, https://doi.org/10.1016/j.ref.2020.05.002. 
ISSN 1755-0084. 

[7] Ramin Torkan, Ilinca Adrian, Milad Ghorbanzadeh, A genetic algorithm 
optimization approach for smart energy management of MGs, Renew. Energy 197 
(2022) 852–863. ISSN 0960-1481. 

[8] M. Rawa, Y. Al-Turki, K. Sedraoui, S. Dadfar, M. Khaki, Optimal operation and 
stochastic scheduling of renewable energy of a microgrid with optimal sizing of 
battery energy storage considering cost reduction, J. Energy Storage 59 (2023), 
106475. 

[9] Hai-Tra Nguyen, Usman Safder, Jorge Loy-Benitez, ChangKyoo Yoo, Optimal 
demand side management scheduling-based bidirectional regulation of energy 
distribution network for multi-residential demand response with self-produced 
renewable energy, Appl. Energy 322 (2022), 119425, https://doi.org/10.1016/j. 
apenergy.2022.119425. ISSN 0306-2619. 

[10] Yingying Zheng, Bryan M. Jenkins, Kurt Kornbluth, Alissa Kendall, 
Chresten Træholt, Optimization of a biomass-integrated renewable energy MG with 
demand side management under uncertainty, Appl. Energy 230 (2018) 836–844, 
https://doi.org/10.1016/j.apenergy.2018.09.015. ISSN 0306-2619. 

[11] Dimitrios Thomas, Gaspard D’Hoop, Olivier Deblecker, Konstantinos 
N. Genikomsakis, Christos S. Ioakimidis, "An integrated tool for optimal energy 
scheduling and power quality improvement of a MG under multiple demand 
response schemes", Appl. Energy 260 (2020), 114314, https://doi.org/10.1016/j. 
apenergy.2019.114314. ISSN 0306-2619. 

[12] Lavinia Amorosi, Luca Cedola, Paolo Dell’Olmo, Francesca Lucchetta, " Multi- 
objective mathematical programming for optimally sizing and managing battery 
energy storage for solar photovoltaic system integration of a multi-apartment 
building", Eng. Optim. (2020) 1–20. 

[13] Nima Nikmehr, Sajad Najafi-Ravadanegh, Khodaei Amin, Probabilistic optimal 
scheduling of networked MGs considering time-based demand response programs 
under uncertainty, Appl. Energy 198 (2017) 267–279, https://doi.org/10.1016/j. 
apenergy.2017.04.071. ISSN 0306-2619. 

[14] H. Haddadian, R. Noroozian, Multi-MG-based operation of active distribution 
networks considering demand response programs, IEEE Trans. Sustain. Energy 10 
(4) (Oct. 2019) 1804–1812, https://doi.org/10.1109/TSTE.2018.2873206. 

[15] M. Mohammadjafari, R. Ebrahimi, V. Parvin Darabad, Optimal energy 
management of a MG incorporating a novel efficient demand response and battery 
storage system, J. Electr. Eng. Technol. 15 (2020) 571–590, https://doi.org/ 
10.1007/s42835-020-00345-5. 

[16] T. Adefarati, R.C. Bansal, M. Bettayeb, R. Naidoo, Optimal energy management of a 
PV-WTG-BSS-DG MG system, Energy 217 (2021), 119358, https://doi.org/ 
10.1016/j.energy.2020.119358. ISSN 0360-5442. 

[17] Mohammadreza Daneshvar, Behnam Mohammadi-Ivatloo, Kazem Zare, Two-stage 
optimal robust scheduling of hybrid energy system considering the demand 
response programs, J. Clean. Prod. 248 (2020), 119267, https://doi.org/10.1016/ 
j.jclepro.2019.119267. ISSN 0959-6526. 

[18] Alireza Soltani Nejad Farsangi, Shahrzad Hadayeghparast, Mehdi Mehdinejad, 
Heidarali Shayanfar, "A novel stochastic energy management of a MG with various 
types of distributed energy resources in presence of demand response programs", 
Energy 160 (2018) 257–274, https://doi.org/10.1016/j.energy.2018.06.136. ISSN 
0360-5442. 

[19] Ramin Nourollahi, Pouya Salyani, Kazem Zare, Behnam Mohammadi-Ivatloo, 
"Resiliency-oriented optimal scheduling of MGs in the presence of demand 
response programs using a hybrid stochastic-robust optimization approach", Int. J. 
Electr. Power Energy Syst. 128 (2021), 106723, https://doi.org/10.1016/j. 
ijepes.2020.106723. ISSN 0142-0615. 

[20] Ghasemi Ahmad, Mehdi Enayatzare, Optimal energy management of a renewable- 
based isolated MG with pumped-storage unit and demand response, Renew. Energy 
123 (2018) 460–474, https://doi.org/10.1016/j.renene.2018.02.072. ISSN 0960- 
1481. 

[21] E. Shahryari, H. Shayeghi, B. Mohammadi-ivatloo, M. Moradzadeh, A copula-based 
method to consider uncertainties for multi-objective energy management of MG in 

presence of demand response, Energy 175 (2019) 879–890, https://doi.org/ 
10.1016/j.energy.2019.03.129. ISSN 0360-5442. 

[22] Javad Najafi, Peiravi Ali, Amjad Anvari-Moghaddam, JosepM. Guerrero, An 
efficient interactive framework for improving resilience of power-water 
distribution systems with multiple privately-owned MGs, Int. J. Electr. Power 
Energy Syst. 116 (2020), 105550, https://doi.org/10.1016/j.ijepes.2019.105550. 
ISSN 0142-0615. 

[23] Pouria Hajiamoosha, Abdollah Rastgou, Salah Bahramara, S. Muhammad Bagher 
Sadati, Stochastic energy management in a renewable energy-based MG 
considering demand response program, Int. J. Electr. Power Energy Syst. 129 
(2021), 106791, https://doi.org/10.1016/j.ijepes.2021.106791. ISSN 0142-0615. 

[24] Fangyuan Xu, Wanli Wu, Fei Zhao, Ya Zhou, Yongjian Wang, Runji Wu, Tao Zhang, 
Yongchen Wen, Yiliang Fan, Shengli Jiang, A micro-market module design for 
university demand-side management using self-crossover genetic algorithms, Appl. 
Energy 252 (2019), 113456, https://doi.org/10.1016/j.apenergy.2019.113456. 
ISSN 0306-2619. 

[25] Roozbeh Morsali, Gokul Sidarth Thirunavukkarasu, Mehdi Seyedmahmoudian, 
Alex Stojcevski, Ryszard Kowalczyk, A relaxed constrained decentralized demand 
side management system of a community-based residential MG with realistic 
appliance models, Appl. Energy 277 (2020), 115626, https://doi.org/10.1016/j. 
apenergy.2020.115626. ISSN 0306-2619. 

[26] R. Seshu Kumar, L. Phani Raghav, D. Koteswara Raju, Arvind R. Singh, Intelligent 
demand side management for optimal energy scheduling of grid connected MGs, 
Appl. Energy 285 (2021), 116435, https://doi.org/10.1016/j. 
apenergy.2021.116435. ISSN 0306-2619. 

[27] Bishoy E. Sedhom, Magdi M. El-Saadawi, M.S. El Moursi, MohamedA. Hassan, 
Abdelfattah A. Eladl, IoT-based optimal demand side management and control 
scheme for smart MG, Int. J. Electr. Power Energy Syst. 127 (2021), 106674, 
https://doi.org/10.1016/j.ijepes.2020.106674. ISSN 0142-0615. 

[28] X. Yang, Y. Zhang, H. He, S. Ren, G. Weng, Real-time demand side management for 
a MG considering uncertainties, IEEE Trans. Smart Grid 10 (3) (May 2019) 
3401–3414, https://doi.org/10.1109/TSG.2018.2825388. 

[29] M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, M. Abapour, S. Asadi, A. Anvari- 
Moghaddam, Chance-constrained scheduling of hybrid MGs under transactive 
energy control, Int. J. Energy Res. (2021) 1–8, https://doi.org/10.1002/er.6505. 

[30] Yuli Astriani, G.M. Shafiullah, Farhad Shahnia, Incentive determination of a 
demand response program for MGs, Appl. Energy (2021), 116624, https://doi.org/ 
10.1016/j.apenergy.2021.116624. ISSN 0306-2619. 

[31] M.H. Mostafa, S.H.E.A. Aleem, S.G. Ali, A.Y. Abdelaziz, P.F. Ribeiro, Z.M. Ali, 
Robust energy management and economic analysis of MGs considering different 
battery characteristics, in: IEEE Access 8, 2020, pp. 54751–54775, https://doi.org/ 
10.1109/ACCESS.2020.2981697. 

[32] R. Seshu Kumar, L. Phani Raghav, D. Koteswara Raju, Arvind R. Singh, Impact of 
multiple demand side management programs on the optimal operation of grid- 
connected MGs, Appl. Energy 301 (2021), 117466, https://doi.org/10.1016/j. 
apenergy.2021.117466. ISSN 0306-2619. 

[33] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for 
solving single-objective, discrete, and multi-objective problems, Neural Comput. 
Appl. 27 (2016) 1053–1073, https://doi.org/10.1007/s00521-015-1920-1. 

[34] Weihe Huang, Yichen Li, Weichao Yu, Haitao Yu, Xiangying Shan, Hao Wang, 
Jing Gong, An evaluation index system of the user satisfaction for the natural gas 
pipeline network, J. Pipeline Sci. Eng. 1 (Issue 4) (2021) 452–458, https://doi.org/ 
10.1016/j.jpse.2021.11.001. ISSN 2667-1433. 

[35] K.S. Ei-Bidairi, H. Duc Nguyen, S.D.G. Jayasinghe, T.S. Mahmoud, Multiobjective 
intelligent energy management optimization for grid-connected microgrids, in: 
IEEE International Conference on Environment and Electrical Engineering and 
2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I&CPS 
Europe), Palermo, Italy, 2018, pp. 1–6, https://doi.org/10.1109/ 
EEEIC.2018.8493751, 2018. 

[36] O. Abedinia, A. Ghasemi-Marzbali, V. Nurmanova, M. Bagheri, A new reconfigured 
electricity market bidding strategy in view of players’ concerns, IEEE Trans. Ind. 
Appl. 58 (6) (Nov.-Dec. 2022) 7034–7046, https://doi.org/10.1109/ 
TIA.2022.3200348. 

[37] Shoujun Huang, Oveis Abedinia, Investigation in economic analysis of microgrids 
based on renewable energy uncertainty and demand response in the electricity 
market, Energy 225 (2021), 120247, https://doi.org/10.1016/j. 
energy.2021.120247. ISSN 0360-5442. 

[38] Chong Wang, Zheng Zhang, Oveis Abedinia, Saeid Gholami Farkoush, Modeling 
and analysis of a microgrid considering the uncertainty in renewable energy 
resources, energy storage systems and demand management in electrical retail 
market, J. Energy Storage 33 (2021), 102111, https://doi.org/10.1016/j. 
est.2020.102111. ISSN 2352-152X. 

[39] Mohammadreza Daneshvar, Behnam Mohammadi-Ivatloo, Kazem Zare, 
Somayeh Asadi, Transactive energy management for optimal scheduling of 
interconnected microgrids with hydrogen energy storage, Int. J. Hydrogen Energy 
46 (30) (2021) 16267–16278, https://doi.org/10.1016/j.ijhydene.2020.09.064. 
ISSN 0360-3199. 

[40] Mohammadreza Daneshvar, Behnam Mohammadi-Ivatloo, Somayeh Asadi, 
Amjad Anvari-Moghaddam, Mohammad Rasouli, Mehdi Abapour, B. Gevork, 
Gharehpetian, “Chance-constrained models for transactive energy management of 
interconnected microgrid clusters”, J. Clean. Prod. 271 (2020), 122177 https:// 
doi.org/10.1016/j.jclepro.2020.122177. ISSN 0959-6526. 

[41] M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, S. Asadi, A. Anvari-Moghaddam, 
A novel operational model for interconnected microgrids participation in 
transactive energy market: a hybrid IGDT/stochastic approach, IEEE Trans. Ind. 
Inf. 17 (6) (June 2021) 4025–4035, https://doi.org/10.1109/TII.2020.3012446. 

A. Kumar et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.energy.2018.06.136
https://doi.org/10.1016/j.est.2020.101301
https://doi.org/10.1016/j.est.2020.101301
https://doi.org/10.1016/j.enconman.2022.115920
https://doi.org/10.1016/j.tej.2016.07.003
https://doi.org/10.1016/j.energy.2020.118228
https://doi.org/10.1016/j.energy.2020.118228
https://doi.org/10.1016/j.ref.2020.05.002
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref7
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref7
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref7
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref8
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref8
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref8
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref8
https://doi.org/10.1016/j.apenergy.2022.119425
https://doi.org/10.1016/j.apenergy.2022.119425
https://doi.org/10.1016/j.apenergy.2018.09.015
https://doi.org/10.1016/j.apenergy.2019.114314
https://doi.org/10.1016/j.apenergy.2019.114314
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref12
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref12
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref12
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref12
https://doi.org/10.1016/j.apenergy.2017.04.071
https://doi.org/10.1016/j.apenergy.2017.04.071
https://doi.org/10.1109/TSTE.2018.2873206
https://doi.org/10.1007/s42835-020-00345-5
https://doi.org/10.1007/s42835-020-00345-5
https://doi.org/10.1016/j.energy.2020.119358
https://doi.org/10.1016/j.energy.2020.119358
https://doi.org/10.1016/j.jclepro.2019.119267
https://doi.org/10.1016/j.jclepro.2019.119267
https://doi.org/10.1016/j.energy.2018.06.136
https://doi.org/10.1016/j.ijepes.2020.106723
https://doi.org/10.1016/j.ijepes.2020.106723
https://doi.org/10.1016/j.renene.2018.02.072
https://doi.org/10.1016/j.energy.2019.03.129
https://doi.org/10.1016/j.energy.2019.03.129
https://doi.org/10.1016/j.ijepes.2019.105550
https://doi.org/10.1016/j.ijepes.2021.106791
https://doi.org/10.1016/j.apenergy.2019.113456
https://doi.org/10.1016/j.apenergy.2020.115626
https://doi.org/10.1016/j.apenergy.2020.115626
https://doi.org/10.1016/j.apenergy.2021.116435
https://doi.org/10.1016/j.apenergy.2021.116435
https://doi.org/10.1016/j.ijepes.2020.106674
https://doi.org/10.1109/TSG.2018.2825388
https://doi.org/10.1002/er.6505
https://doi.org/10.1016/j.apenergy.2021.116624
https://doi.org/10.1016/j.apenergy.2021.116624
https://doi.org/10.1109/ACCESS.2020.2981697
https://doi.org/10.1109/ACCESS.2020.2981697
https://doi.org/10.1016/j.apenergy.2021.117466
https://doi.org/10.1016/j.apenergy.2021.117466
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.jpse.2021.11.001
https://doi.org/10.1016/j.jpse.2021.11.001
https://doi.org/10.1109/EEEIC.2018.8493751
https://doi.org/10.1109/EEEIC.2018.8493751
https://doi.org/10.1109/TIA.2022.3200348
https://doi.org/10.1109/TIA.2022.3200348
https://doi.org/10.1016/j.energy.2021.120247
https://doi.org/10.1016/j.energy.2021.120247
https://doi.org/10.1016/j.est.2020.102111
https://doi.org/10.1016/j.est.2020.102111
https://doi.org/10.1016/j.ijhydene.2020.09.064
https://doi.org/10.1016/j.jclepro.2020.122177
https://doi.org/10.1016/j.jclepro.2020.122177
https://doi.org/10.1109/TII.2020.3012446


Energy Strategy Reviews 50 (2023) 101222

15

[42] Ehsan Akbari, Seyed Farzin Mousavi Shabestari, Sasan Pirouzi, 
Morteza Jadidoleslam, Network flexibility regulation by renewable energy hubs 
using flexibility pricing-based energy management, Renew. Energy 206 (2023) 
295–308, https://doi.org/10.1016/j.renene.2023.02.050. ISSN 0960-1481. 

[43] Ghasem Piltan, Sasan Pirouzi, Alireza Azarhooshang, Ahmad Rezaee Jordehi, 
Paeizi Ali, Mojtaba Ghadamyari, Storage-integrated virtual power plants for 
resiliency enhancement of smart distribution systems, Part B, J. Energy Storage 55 
(2022), 105563, https://doi.org/10.1016/j.est.2022.105563. ISSN 2352-152X. 

[44] Anoosh Dini, Alireza Hassankashi, Sasan Pirouzi, Matti Lehtonen, 
Behdad Arandian, Ali Asghar Baziar, A flexible-reliable operation optimization 
model of the networked energy hubs with distributed generations, energy storage 
systems and demand response, Part A, Energy 239 (2022), 121923, https://doi. 
org/10.1016/j.energy.2021.121923. ISSN 0360-5442. 

[45] Mahmoud Zadehbagheri, Mohammad Javad Kiani, Sasan Pirouzi, 
Mehrdad Movahedpour, Sirus Mohammadi, The impact of sustainable energy 
technologies and demand response programs on the hub’s planning by the practical 
consideration of tidal turbines as a novel option, Energy Rep. 9 (2023) 5473–5490. 
ISSN 2352-4847. 

[46] Zhaoyang Qu, Chuanfu Xu, Fang Yang, Ling Fan, Sasan Pirouzi, Market clearing 
price-based energy management of grid-connected renewable energy hubs 

including flexible sources according to thermal, hydrogen, and compressed air 
storage systems, J. Energy Storage 69 (2023), 107981, https://doi.org/10.1016/j. 
est.2023.107981. ISSN 2352-152X. 

[47] XiaoWei Zhang, Xiaoping Yu, Xinping Ye, Sasan Pirouzi, Economic energy 
managementof networked flexi-renewable energy hubs according to uncertainty 
modeling by the unscented transformation method, Part B, Energy 278 (2023), 
128054, https://doi.org/10.1016/j.energy.2023.128054. ISSN 0360-5442. 

[48] Mohammad Reza Jokar, Saeid Shahmoradi, Adil Hussein Mohammed, Loke 
Kok Foong, Binh Nguyen Le, Sasan Pirouzi, Stationary and mobile storages-based 
renewable off-grid system planning considering storage degradation cost based on 
information-gap decision theory optimization, J. Energy Storage 58 (2023), 
106389, https://doi.org/10.1016/j.est.2022.106389. ISSN 2352-152X. 

[49] Afshin Pirouzi, Jamshid Aghaei, Sasan Pirouzi, Vahid Vahidinasab, Ahmad 
Rezaee Jordehi, “Exploring potential storage-based flexibility gains of electric 
vehicles in smart distribution grids”, Part C, J. Energy Storage 52 (2022), 105056, 
https://doi.org/10.1016/j.est.2022.105056. ISSN 2352-152X. 

[50] K. Sureshkumar, Vijayakumar Ponnusamy, ” Power flow management in micro grid 
through renewable energy sources using a hybrid modified dragonfly algorithm 
with bat search algorithm”, Energy 181 (2019) 1166–1178, https://doi.org/ 
10.1016/j.energy.2019.06.029. ISSN 0360-5442. 

A. Kumar et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.renene.2023.02.050
https://doi.org/10.1016/j.est.2022.105563
https://doi.org/10.1016/j.energy.2021.121923
https://doi.org/10.1016/j.energy.2021.121923
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref45
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref45
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref45
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref45
http://refhub.elsevier.com/S2211-467X(23)00172-4/sref45
https://doi.org/10.1016/j.est.2023.107981
https://doi.org/10.1016/j.est.2023.107981
https://doi.org/10.1016/j.energy.2023.128054
https://doi.org/10.1016/j.est.2022.106389
https://doi.org/10.1016/j.est.2022.105056
https://doi.org/10.1016/j.energy.2019.06.029
https://doi.org/10.1016/j.energy.2019.06.029

	An effective energy management system for intensified grid-connected microgrids
	CRediT authorship contribution statement
	1 Introduction
	2 Problem formulation
	2.1 Objective function
	2.2 Operational constraints
	2.3 Flexible price elasticity (FPE)

	3 System configuration
	3.1 PV solar
	3.2 Wind turbine
	3.3 Bid prices of distributed generators
	3.4 Uncertainty assessment with scenario based strategy

	4 Dragon Fly Algorithm
	5 Integration of AHP method on the evaluation of users satisfaction
	6 Numerical analysis and discussion
	7 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix Acknowledgment
	Indices Acknowledgment
	References


