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A B S T R A C T   

Forensic Facial Approximation (FFA) has evolved, with techniques advancing to refine the intercorrelation be-
tween the soft-tissue facial profile and the underlying skull. FFA has become essential for identifying unknown 
persons in South Africa, where the high number of migrant and illegal labourers and many unidentified remains 
make the identification process challenging. However, existing FFA methods are based on American or European 
standards, rendering them inapplicable in a South African context. We addressed this issue by conducting a study 
to create prediction models based on the relationships between facial morphology and known factors, such as 
population affinity, sex, and age, in white South African and French samples. We retrospectively collected 184 
adult cone beam computed tomography (CBCT) scans representing 76 white South Africans (29 males and 47 
females) and 108 French nationals (54 males and 54 females) to develop predictive statistical models using a 
projection onto latent structures regression algorithm (PLSR). On training and untrained datasets, the accuracy of 
the estimated soft-tissue shape of the ears, eyes, nose, and mouth was measured using metric deviations. The 
predictive models were optimized by integrating additional variables such as sex and age. Based on trained data, 
the prediction errors for the ears, eyes, nose, and mouth ranged between 1.6 mm and 4.1 mm for white South 
Africans; for the French group, they ranged between 1.9 mm and 4.2 mm. Prediction errors on non-trained data 
ranged between 1.6 mm and 4.3 mm for white South Africans, whereas prediction errors ranging between 
1.8 mm and 4.3 mm were observed for the French. Ultimately, our study provided promising predictive models. 
Although the statistical models can be improved, the inherent variability among individuals restricts the accu-
racy of FFA. The predictive validity of the models was improved by including sex and age variables and 
considering population affinity. By integrating these factors, more customized and accurate predictive models 
can be developed, ultimately strengthening the effectiveness of forensic analysis in the South African region.   

1. Introduction 

In South Africa’s medical-legal laboratories, numerous unidentified 
remains are discovered annually presenting challenges due to the lack of 
medical or dental records, fingerprints, DNA, and personal documents 
[1]. Forensic Facial Approximation (FFA) provides a promising tool for 
identification in this context, utilizing skull surface analysis and 
modeling to recreate facial features and improve recognition and po-
tential identification [2–6]. FFA represents the practical application of 
anatomy and forensic anthropology. 

Facial features (i.e., the eyes, ears, nose, and mouth) are crucial for 
facial recognition [7,8]. In facial approximation, precise eye positioning 
is crucial for facial recognition due to orbital structure [9–11]. Research 
emphasizes a supero-lateral eye placement within the orbit, supported 

by strong evidence [10–13]. Specific distances for these placements, 
while defined in certain populations, may not directly apply to the South 
African population [9–11]. Variations in landmark positioning, such as 
the endocanthion and exocanthion, are also discussed [10,13], 
providing insights into essential anatomical landmarks for accurate 
facial reconstruction and their population-specific variability. The 
human ear is a unique organ that varies distinctly among individuals and 
population groups [14–16]. Quantitative studies have examined ear 
morphology, including dimensions, proportions, and bilateral irregu-
larities, aiming to deduce population attributes for anthropological and 
forensic applications [17,18]. Predictive models for ear shape and di-
mensions have been developed for FFA [19,20], showing metric varia-
tions across individuals and populations, with larger parameters in 
males and bilateral asymmetry observed. The mouth is a prominent 
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facial area with significant relevance, particularly in FFA [21]. Its 
positioning plays a crucial role in determining accurate facial pro-
portions [22]. However, there is a discrepancy in mouth approximation 
techniques, with scholars noting a lack of objectively validated methods 
for efficient facial approximation [22–24]. The nose is a crucial facial 
feature with significant diversity, essential for identifying unknown in-
dividuals, particularly in facial approximation [25]. Accurate prediction 
of the nose shape is vital, especially in profile and three-quarter views 
[7,25]. Research since the 1950 s, inspired by Gerasimov’s work, has 
explored methods to predict nasal projection and shape based on the 
skeletal structure of the nose [26–29]. 

The literature explores the complex relationship between underlying 
skull anatomy and facial surface appearance [30,31]. Gerasimov 
emphasized the connection between skull relief and soft facial features, 
showcasing how skull asymmetry is mirrored in facial asymmetry [5]. 
Skeletal structures form the basis for facial appearance, influencing skin, 
muscle, fat, and overall appearance [5,32]. Facial approximation in-
volves assessing underlying bone structure, with eye morphology 
focusing on canthi position and eyeball location within the orbit [24]. 
Whitnall’s (1921) orbit study underpins current standards, noting eyelid 
margin asymmetry [33]. Nose reconstruction challenges stem from its 
relationship with surrounding bones [3,30,34], aiming for a wider soft 
nose than the bony aperture for support without airway obstruction 
[24]. Mouth morphology interpretation considers teeth alignment, 
dental patterns, and facial profile [3,35,36]. The ear shape’s relationship 
with skeletal structure lacks comprehensive study [30], with Gerasimov 
(1955) proposing earlobe attachment correlates with mastoid process 
orientation [3,37]. 

Facial structure results from a complex interplay of genetic, hor-
monal, and environmental factors, shaped by growth patterns and ge-
netic inheritance, alongside influences like age, sex, and population 
background [38–40]. Dietary habits, muscle activity, and societal trends 
also contribute significantly to individual facial characteristics [41–43]. 
Geographical origins and adaptations to diverse climates have influ-
enced facial traits in African, Asian, and European populations [44]. 
Historical barriers to interracial mating in regions like South Africa, 
Germany, and the United States have maintained distinct morphological 
differences [44,45], limiting gene flow and contributing to pronounced 
variations within and between groups [46]. Forensic anthropology relies 
on population affinity to construct biological profiles for identifying 
individuals [44,46], with measurable morphological diversity aiding in 
forensic identification [44]. Accurately estimating population affinity 
from skeletal remains guides the selection of the appropriate reference 
population for estimating other profile aspects such as sex, age, and 
stature [47]. Sex refers to biological characteristics encompassing ge-
notype, hormonal levels, and anatomy, leading to morphological dis-
tinctions between males and females known as sexual dimorphism [48]. 
Studies highlight the prominence of size in human sexual dimorphism, 
with males typically exhibiting larger craniofacial dimensions [49–51]. 
Research comparing North American and South African populations 
revealed greater cranial size disparities among white South African 
males and females, emphasizing notable sexual dimorphism [52]. A 
French study emphasized sexual dimorphism across various facial 
structures, with discernible differences between males and females [41]. 
Facial skeletal elements undergo changes in size and shape throughout 
human development to accommodate growth and maintain function-
ality [53,54]. The adult face typically undergoes downward and forward 
growth dynamics, involving resorption of certain facial regions like the 
canine fossae and nasal aperture [55]. Aging further influences facial 
morphology through remodeling of hard-tissue structure and alterations 
in facial musculature due to gravitational effects and dynamic expres-
sions [56,57]. Guyomarc’h et al. [41] demonstrated age-related shape 
alterations such as thinning of the lips due to tooth loss and changes in 
the prominence of the nose and chin. Cartilaginous growth in the nose 
and ears continues into adulthood [58]. 

The main objective of this study was to construct prediction models 

that account for the intricate relationship between the morphology of 
both hard and soft facial tissues and their interdependence on well- 
established variables such as population affinity, sex, and age. 

2. Materials and methods 

2.1. Materials 

Seventy-six CBCT scans of white South Africans and 108 of French 
nationals were obtained from the Oral and Dental Hospital (University 
of Pretoria) and Groenkloof Life Hospital in South Africa, as well as the 
Pellegrin Hospital Group in Bordeaux, France. The age range for the 
white South Africans was 18–80 years, while for the French nationals, 
the age ranged between 18 and 50 years. Additionally, the sample was 
divided into four age categories: 18 – 29 years old, 30 – 44 years old, 45 – 
59 years old, and a group aged 60 years and above. Utilizing a Planmeca 
ProMax® CBCT scanner with specifications including 90 kV, 11.2 mA, 
voxel size of 0.4 mm, and field view of 230 ×260 mm, patients were 
scanned in a seated position, with eyes closed and a relaxed facial 
expression. All patient data utilized in this study underwent anonym-
ization, retaining only sex, age, and population affinity for analysis. 
Subjects presenting with conditions potentially impacting facial 
morphology and subsequent results, such as orthodontic treatment, 
pathological conditions, facial asymmetry, or facial reconstructive sur-
gery, were excluded from the sample. Approval for the South African 
sample was obtained from the Research Ethics Committee of the Faculty 
of Health Sciences at the University of Pretoria, South Africa (Ethics 
Reference No. 222/2022). Furthermore, for the French sample, approval 
for the utilization of CBCT data for research purposes was granted by the 
Pellegrin Hospital Group, Bordeaux, France (Ethics Reference No. DC 
2015/172). 

2.2. Methods 

The CBCT scan images in DICOM format were processed using 
MeVisLab © v2.7.1 (01–10–2015), a free software platform developed 
and manufactured by MeVis Medical Solutions AG in Bremen, Germany, 
for segmentation and the generation of three-dimensional (3D) surface 
meshes (Fig. 3A). The software interpolated spaces between slices based 
on a predetermined threshold to create a 3D representation. The "Half 
Maximum Height" (HMH) quantitative iterative thresholding method 
was used for segmenting the hard and soft tissue surfaces [59]. The 
object (hard- or soft-tissue) was segmented into 3D surface meshes [60], 
which were then saved in a Polygon File Format (ply). In this study, 
hard-tissue represented the facial skeleton, and soft-tissue represented 
the external facial features. Structures of hard- and soft-tissue matrices 
were formed by placing anatomical and sliding landmarks to evaluate 
shape variation. The utilization of biological landmarks ensured that 
each identified point was in the same location on all other surfaces in the 
sample [61]. To ensure homology and comparability between studies, 
classic definitions of craniometric and capulometric landmarks (types I, 
II, and III) were utilized [41,61–64]. Overall, 185 landmarks were used 
in this study, described in Tables 1, 2, and 3 and illustrated in Figs. 1 and 
2. 

Forty-three craniometric landmarks (Table 1), including 92 sliding 
landmarks (Table 2) were recorded on the hard-tissue, and 50 capulo-
metric landmarks (Table 3) were recorded on the soft-tissue. These 
landmarks delineated regions of interest on the facial skeleton and 
external facial features. The midfacial matrix which comprises of the left 
and right orbits, left and right nasal bones, anterior nasal aperture, left 
and right zygoma and left and right maxillae indicated the hard-tissue 
region of interest (Fig. 1). The exterior curves of the left and right 
external auditory meatuses (EAM) indicated the regions of interest for 
the hard-tissue sliding matrices (Fig. 2). Soft-tissue regions of interest 
included the ears, eyes, nose, and mouth (Fig. 2), with specific bilateral 
pairs and median landmarks recorded for each. Statistical models were 
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developed using hard-tissue configurations to predict soft-tissue shapes 
(Fig. 2). 

2.3. Alignment 

The study employed the Frankfurt Horizontal Plane (FHP) to orient 
the hard-tissue surfaces and Natural Head Position (NHP) to orient the 
soft-tissue surfaces. The FHP, defined by three osteometric points (both 
porions and left orbitale), systematically oriented the skull [65], while 
the highly reproducible NHP ensured consistent landmark placement 
throughout the study [66,67]. 

2.4. Automatic landmarking 

Automatic landmarking is a non-rigid generic mesh-to-mesh 
matching algorithm that uses a generated reference template with 
dense landmarks to associate every point on the reconstructed surfaces 
(3D images) with the anatomically corresponding point on the reference 
template [68–70]. This method was first suggested by [71] and has been 
recently tested by [68]. Fig. 3 displays the modified workflow for the 
automatic landmarking procedure. 

Before registration, all surfaces were adjusted to the same coordinate 
system, a step known as surface mesh initialization (Fig. 3B). This 
involved repositioning the floating surface near the target system’s co-
ordinate system using affine transformation, manually done in this 
study. Landmarks on both surfaces were chosen to iteratively rotate and 
translate them, aligning them closely. These transformations mapped 
the floating surface’s points to the target surface’s coordinate space, 
impacting the subsequent non-rigid surface registration quality. 

To align surfaces closely, surface registration is essential [71]. In this 
study, all surfaces underwent non-rigid registration for statistical 3D 
shape analysis (Fig. 3C). Each surface consisted of a dense set of inter-
connected 3D points, ensuring identical numbers of points and con-
nectivity. A standardized reference surface, initially generic, with 
known point connectivity, was matched to the database surfaces 

Table 1 
Definitions of craniometric landmarks used for this study [41,64].  

No Landmark Abbreviation Nature Definition 

1 Nasion n Median Midline point on the nasofrontal suture. 
2 Mid-nasal mn Median Midline point on the internasal suture midway between nasion and rhinion. 
3 Rhinion rhi Median Most rostral (end) point on the internasal suture. Cannot be determined accurately if nasal bones are broken 

distally. 
4 Nasospinale ns Median The point where a line drawn between the inferior most points of the nasal aperture cross the median plane. Note 

that this point is not necessarily at the tip of the nasal spine. 
5 Prosthion pr Median Median point between the central incisors on the anterior most margin of the maxillary alveolar rim. 
6/7 Zygotemporale 

superior 
zts Bilateral Most superior point of the zygomatico-temporal suture. 

8/9 Zygotemporale 
inferior 

zti Bilateral Most inferior point of the zygomatico-temporal suture. 

10/ 
11 

Jugale ju Bilateral Vertex of the posterior zygomatic angle, between the vertical edge and horizontal part of the zygomatic arch. 

12/ 
13 

Frontomalare 
temporale 

fmt Bilateral Most lateral part of the zygomaticofrontal suture. 

14/ 
15 

Frontomalare orbitale fmo Bilateral Point on the orbital rim marked by the zygomaticofrontal suture. 

16/ 
17 

Nasomaxillofrontale nmf Bilateral Point at the intersection of the frontal, maxillary, and nasal bones. 

18/ 
19 

Mid-infraorbital mio Bilateral Point on the anterior aspect of the inferior orbital rim, at a line that vertically bisects the orbit. 

20/ 
21 

Maxilla fronatale mf Bilateral Intersection of the anterior lacrimal crest with the frontomaxillary suture. 

22/ 
23 

Nasomaxillare nm Bilateral Most inferior point of the nasomaxillary suture on the nasal aperture. 

24/ 
25 

Alare al Bilateral Instrumentally determined as the most lateral point on the nasal aperture in a transverse plane. 

26/ 
27 

Piriform curvature cp Bilateral Most infero-lateral point of the piriform aperture. 

28/ 
29 

Nariale na Bilateral Most inferior point of the piriform aperture. 

30/ 
31 

Zygomaxillare zm Bilateral Most inferior point on the zygomaticomaxillary suture. 

32/ 
33 

Supra-canine sc Bilateral Point on the superior alveolar ridge superior to the crown of the maxillary canine. 

34/ 
35 

Mid-supraorbitale mso Bilateral Point on the anterior aspect of the superior orbital rim, at a line that vertically bisects the orbit. 

36/ 
37 

Ectoconchion ec Bilateral Lateral point on the orbit at a line that bisects the orbit transversely. 

38/ 
39 

Medial orbit mo Bilateral Point on the anterior lacrimal crest at the same level as ectoconchion. 

40/ 
41 

Orbitale or Bilateral Most inferior point of the orbital margin. 

42/ 
43 

Zygoorbitale zo Bilateral Intersection of the orbital margin and the zygomaticomaxillary suture.  

Table 2 
Starting point and number of landmarks for each hard-tissue sliding matrix [64].  

Matrix Number of 
landmarks 

Starting 
point 

Definition 

Left 
EAM  

46 porion 
(left) 

Most superior point on the upper 
margin of the external auditory 
meatus. 

Right 
EAM  

46 porion 
(right) 

Most superior point on the upper 
margin of the external auditory 
meatus.  
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Table 3 
Definition of capulometric landmarks used for this study [41,62–64].  

Matrix No Landmark Abbreviation Position Definition 

Ears 1 Tragion t’ Bilateral The notch 
above the 
tragus where 
the upper edge 
of the 
cartilage 
disappears 
into the skin of 
the face. 

2 Posterotragion pt’ Bilateral Most posterior 
point on the 
tragus. 

3 Otobasion 
inferius 

obi’ Bilateral Point of 
attachment of 
the ear lobe to 
the cheek. 

4 Subaurale sba’ Bilateral Most inferior 
point on the 
free margin of 
the auricle. 

5 Lobule posterior lp’ Bilateral Most posterior 
point of the 
lobule where 
it meets the 
helix. 

6 Postaurale pa’ Bilateral Most posterior 
point on the 
free margin of 
the auricle. 

7 Posterohelixa 
interna 

phi’ Bilateral Posterior most 
aspect of the 
inner helix 
margin. 

8 Superhelixa 
interna 

shi’ Bilateral Superior most 
aspect of the 
inner helix 
margin. 

9 Superaurale sa’ Bilateral Most superior 
point on the 
free margin of 
the auricle. 

10 Otobasion 
superius 

obs’ Bilateral Point of 
attachment of 
the helix in 
the temporal 
region. 

11 Preaurale pra’ Bilateral Most anterior 
point of the 
ear located 
just in front of 
the otobasion 
superius. 

12 Supraconchale sc’ Bilateral Most posterior 
point of the 
conchal rim 
where it 
crosses under 
the helix. 

13 Origohelixa oh’ Bilateral Point of origin 
of the helix 
from the 
concha. 

14 Antitragion at’ Bilateral Apex of the 
antitragus. 

15 Intertragion it’ Bilateral Apex of the 
groove 
between the 
tragus and the 
antitragus. 

16 Subanguili 
conchali 

iac’ Bilateral Inferior angle 
of the conchal 
rim. 

17 Posterosuperior 
aurale 

psa’ Bilateral Strongest 
helical  

Table 3 (continued ) 

Matrix No Landmark Abbreviation Position Definition 

curvature 
around the 
midpoint 
between 
superaurale 
and 
posteroaurale. 

18 Supra-anguili 
conchali 

sac’ Bilateral Superior angle 
of the conchal 
rim. 

19 Strongest anti- 
helical 
curvature 

shc’ Bilateral The most 
posterior 
point of the 
conchal rim. 

Eyes 1/2 Exocanthion ex’ Bilateral Lateral point 
of the outer 
corner of the 
eye fissure. 

3/4 Endocanthion en’ Bilateral Most medial 
point of the 
palpebral 
fissure, at the 
inner 
commissure of 
the eye; best 
seen when the 
subject is 
gazing 
upward. 

Nose 1 Pronasale prn’ Median Most anterior 
midline point 
of the nose. 

2 Nasale inferius ni’ Median Most inferior 
point of the 
apex nasi. 

3 Columella c’ Median Midpoint of 
the nasal 
columella 
crest, 
intersecting a 
line between 
the two 
columella 
points. 

4 Subnasale sn’ Median Most postero- 
superior 
midline point 
of the nasal 
septum. 

5 Sellion se’ Median Deepest 
midline point 
of the 
nasofrontal 
angle. 

6/7 External alar 
curvature 

eac’ Bilateral Most anterior 
point of the 
nasal wing at 
the maximum 
of the 
curvature. 

8/9 Superior alar 
curvature 

sac’ Bilateral Most superior 
point of the 
nasal wing. 

10/ 
11 

Alare al’ Bilateral The most 
lateral point 
on the nasal 
ala. 

12/ 
13 

Alar curvature 
point 

ac’ Bilateral The most 
posterolateral 
point of the 
curvature of 
the baseline of 
each nasal ala. 

14/ 
15 

Mid-nostril mn’ Bilateral Midpoint of 
the maximal 
nostril width – 

(continued on next page) 
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through dense point correspondences. Consequently, every facial sur-
face in the database was uniformly represented, facilitating the deter-
mination of corresponding points across all surfaces. The fundamental 
idea of automatic landmarking revolves around a reference template 
depicting the anatomical surface of interest, comprising a dense array of 
landmarks, which serve as a dense counterpart to traditional sparse, 
discrete anatomical landmarks. Reference templates for both hard and 
soft tissues were generated through a non-rigid surface registration 
procedure (Fig. 3C). For this study, two reference templates were 
created. For each sample, whether South African or French, had one 
template individually created and applied to it. 

In order to extract shape information, this study employed a 
landmark-based geometric morphometric (GMM) method to extract and 
compare details encoded in 3D surface representations. Landmarks 
positioned on the reference templates were projected onto each subject’s 
surface, establishing a dense point-based anatomical correspondence 
across all subjects (Fig. 3D-E). GMM facilitated the utilization of geo-
metric data stored within these landmarks, enabling the recording of all 
landmark coordinates within a shared coordinate system for subsequent 
statistical analysis. 

2.5. Statistical analysis 

Firstly, utilizing landmark dispersion, this study compared the 
reproducibility of 43 craniometric, 50 capulometric, and 92 sliding 
landmarks to previous research studies [25,69]. Dispersion is the 
average distance estimated for each landmark and individual between a 
landmark’s mean placement and subsequent placements. The repeat-
ability of landmarks was measured by calculating dispersion Δij for each 
landmark i and individual j, which is the Mean Euclidean Distance 
(MED) between landmarks i over every observation k (inter, intra, resp.) 
for subject j: 

Δij =
∑K

k=1

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
pijk − p

ij

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

K
,with

∑K

K=1

pijk

K 

Intra-observer errors (INTRA-OE) and inter-observer errors (INTER- 
OE) between automatic and manual landmarking were used to assess the 
repeatability of placing landmarks automatically. MeVisLab © v2.7.1 
was used for manual landmarking, and ten scans were chosen at random 
from the whole sample for INTRA-OE and INTER-OE. 

Secondly, two separate shape spaces were utilized—one for hard 
tissue and the other for soft tissue—to create statistical models for pre-
dicting soft tissue shape from the underlying hard tissue structure. Both 
hard and soft tissues were scaled, translated, rotated, and predicted 
within the same space using hard-tissue information. Firstly, cartesian 
(x, y, z) coordinates of hard and soft tissue containing information on 
configurations of landmark shape and size, as well as "nuisance pa-
rameters" (orientation and position) were examined using a generalized 
Procrustes analysis (GPA) to obtain orientation-invariant shape co-
ordinates [72–74] (Fig. 4A). By translating, scaling, and rotating all 
landmark datasets to the same centroid size, Procrustes shape co-
ordinates were generated, which provide information about the shape of 
the configurations [75–77]. A PLSR algorithm was applied for extracting 
information for predicting soft-tissue shape and to select linear combi-
nations required for explaining the predictor variables while maxi-
mizing covariation between predictors (hard-tissue shape and additional 
factors) and response (soft-tissue shape) [78–80] (Fig. 4B). A PLSR 
employs a linear multivariate model to combine two data matrices, X 
and Y. Finally, the accuracy of predicting facial soft tissues was evalu-
ated using metric deviations, which allows for future comparison with 
other research findings. The validation of the prediction models was 
carried out by estimating the mean square error (MSE) with 
leave-one-out cross-validation (LOOCV) (Fig. 4C). The estimated MSEs 
from training and predicted data (RMSE) were compared [81]. The in-
fluence of population affinity, sex, and age on the models was evaluated 
by including these variables as predictors and comparing the resulting 
MSE. The soft-tissue shape of all specimens from the two population 
groups was then assessed using a regression model to establish if the 
covariation was population-dependent. 

3. Results 

3.1. Reproducibility testing 

The average displacement errors of landmarks in the white South 
African group were generally less than 2 mm for most matrices, except 
for the left orbit, which had errors less than 3 mm. Table 4 provides 
detailed data. Regarding soft-tissue configurations, the eyes exhibited 
the least dispersion for INTRA-OE. For INTER-OE, the mouth displayed 
the lowest dispersion of landmark placements. The left ear showed the 
highest INTRA-OE, while the right ear had the highest INTER-OE 
dispersion. Across all repeatability tests for hard-tissue matrices, the 
left orbit consistently had the highest dispersion errors for both INTRA- 
OE and INTER-OE. Conversely, the left EAM exhibited the lowest 
dispersion for INTER-OE. Lastly, the anterior nasal aperture showed the 

Table 3 (continued ) 

Matrix No Landmark Abbreviation Position Definition 

projected on 
the transition 
nostril/ 
philtrum. 

16/ 
17 

Mid-columella mc’ Bilateral Midpoint of 
the nasal 
columella 
crest on either 
side – where 
the columella 
thickness is 
measured. 

18/ 
19 

Nasal depth nd’ Bilateral Most medial 
point of the 
transition 
nose/eye. 

Mouth 1/2 Chelion ch’ Bilateral Most lateral 
point of the 
mouth fissure, 
where both 
lips meet. 

3 Labiale superius ls’ Median Midpoint of 
the vermillion 
border of the 
upper lip. 

4 Labiale inferius li’ Median Midpoint of 
the vermillion 
border of the 
lower lip. 

5/6 Vermillion 
superius 

vs’ Bilateral Most superior 
point of the 
vermillion 
border of the 
upper lip at its 
apex on either 
side of the 
mouth. 

7/8 Vermillion 
inferius 

vi’ Bilateral Most 
inferolateral 
point of the 
vermillion 
border of the 
lower lip at 
the maximum 
curve change 
on either side 
of the mouth.  
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lowest INTRA-OE. 
The average dispersion error for all capulometric landmarks in the 

French group was less than 1 mm for both inter- and intra-observations. 
Regarding craniometric and sliding landmarks on hard-tissue configu-
rations, the mean dispersion error for both INTER-OE and INTRA-OE 
was less than 2 mm (Table 4). Soft-tissue matrices indicated that the 
right ear exhibited the highest variation for both INTER-OE and INTRA- 
OE. Conversely, the eyes had the lowest INTRA-OE, while the mouth had 
the lowest dispersion of landmark placements for INTER-OE. Cranio-
metric landmarks on the mid-facial matrix displayed similar INTRA-OE 
and INTER-OE, with the INTRA-OE slightly lower than the INTER-OE. 
Concerning hard-tissue sliding landmarks, the left EAM had the lowest 
INTER-OE but the highest INTRA-OE. 

3.2. Statistical models 

A PLSR model was employed to create a finely tuned prediction 
system for soft-tissue facial data, using hard-tissue configurations of the 
EAMs, orbits, and midfacial matrix to estimate the soft-tissue profiles of 
the ears, eyes, nose, and mouth. 

3.3. Ears 

In the analysis of the left ear, the white South African group (Table 5) 
and the French group (Table 6) exhibited errors ranging from 2.1 mm to 
2.9 mm (RSMEP = 2.3 mm to 2.7 mm) for trained data (standard de-
viation [SD] 0.6) and 2.5 mm to 4.1 mm (RSMEP = 3.0 mm to 3.4 mm) 
for untrained data (SD 1.1). Notably, both sex and age showed compa-
rable prediction errors across both samples. Furthermore, the supra-
conchale and origohelixa emerged as superior predictors for both 
populations, demonstrating the lowest prediction errors. For the right 

ear, average errors ranging from 1.9 mm to 3.0 mm (RSMEP = 2.2 mm 
to 2.7 mm) were noted for trained data (SD 0.8), and 2.3 mm to 4.2 mm 
(RSMEP = 2.8 mm to 3.5 mm) for untrained data (SD 0.5) in the white 
South African (Table 7) and French (Table 8) samples. Moreover, the 
influence of sex and age proved to improve prediction quality in both 
populations. Notably, the supraconchale and origohelixa remained the 
most reliable predictors. 

3.4. Eyes 

During the analysis of the left eye, the white South African (Table 9) 
and French (Table 10) groups displayed average errors ranging from 
1.6 mm to 4.1 mm (RSMEP = 1.8 mm to 3.7 mm) for trained data (SD 
1.8) and 1.6 mm to 4.0 mm (RSMEP = 1.7 mm to 3.6 mm) for untrained 
data (SD 1.7). The consideration of sex led to enhanced prediction ac-
curacy in both sample sets. Notably, the right endocanthion and exo-
canthion landmarks emerged as particularly reliable predictors. For the 
right eye, the white South African (Table 11) and French (Table 12) 
samples exhibited average errors ranging from 1.9 mm to 4.2 mm 
(RSMEP = 2.0 mm to 3.8 mm) for trained data (SD 1.6) and 1.8 mm to 
4.1 mm (RSMEP = 1.9 mm to 3.6 mm) for untrained data (SD 1.6). The 
inclusion of sex consistently improved predictions within each sample. 
Once more, the right endocanthion and exocanthion landmarks emerged 
as the most reliable predictors. 

3.5. Nose 

Training data indicated errors ranging from 2.3 mm to 3.0 mm 
(RSMEP = 2.5 mm to 2.6 mm) (SD 0.5) for the white South African 
(Table 13) and French (Table 14) groups. Conversely, for untrained data, 
errors ranged from 2.7 mm to 4.0 mm (RSMEP = 3.1 mm to 3.4 mm) 

Fig. 1. Hard-tissue region of interest: a) Midfacial matrix, b) Components of the midfacial matrix: orbits (in red), nasal bones (in yellow) and aperture (in green), 
zygoma (purple), and maxillae (in orange). 

T.M. Mbonani et al.                                                                                                                                                                                                                            



Forensic Science International 359 (2024) 112026

7

(SD 0.9) across both samples. In the white South African and French 
groups, sex and age exhibited comparable prediction errors. This study 
also focused on evaluating the average prediction errors of the pronasale 
and alae, which serve as capulometric landmarks previously examined 
in nose prediction studies [25,26,29,63]. On training data, the pronasale 
exhibited errors ranging from 2.5 mm to 3.0 mm (SD 0.2), while on 
non-trained data, the errors ranged between 3.0 mm and 3.5 mm (SD 
0.2) across both samples. For the alae, based on trained data, errors 
ranging from 3.0 mm to 3.5 mm (SD 0.2) were observed, while un-
trained data exhibited errors ranging from 2.7 mm to 4.0 mm (SD 0.4). 

3.6. Mouth 

In the white South African (Table 15) and French (Table 16) samples, 
training data exhibited errors ranging from 2.6 mm to 3.6 mm (RSMEP 
= 2.8 mm to 3.6 mm) (SD 0.7). However, for untrained data, the 
average prediction errors ranged from 3.0 mm to 4.3 mm (RSMEP =
3.5 mm to 3.8 mm) (SD 0.9). As depicted in Tables 15 and 16, both the 
white South African and French samples showed comparable prediction 
errors for sex and age. Furthermore, among the facial features evaluated 
in this study, the mouth displayed the highest overall prediction errors. 
In the white South African sample (Table 15), the labiale inferius and left 
vermillion inferius landmarks were superior predictors, while in the 
French sample (Table 16), the left chelion and left vermillion superius 
landmarks were better predictors. 

Table 17 summarizes the PLSR’s predictive performance on pre-
dictions obtained from white South African and French models, pro-
duced using training and untrained data from the other population. 
Given that the prediction method was unable to exploit population- 
specific covariation between both types of tissue, the prediction error 

was higher for predictions based on the original population database. 

4. Discussion 

Our research investigated statistical models and the impact of vari-
ables (population affinity, sex, and age) on predicting soft-tissue facial 
morphology based on underlying hard-tissue architecture. Adding age 
and sex to predictive models for the ears, nose, and mouth in both white 
South African and French groups notably improved prediction quality, 
with sex specifically enhancing predictions for the eyes. Our study 
identified specific anatomical landmarks as better predictors for soft- 
tissue morphology, such as supraconchale and origohelixa for ear 
shape in both samples, and endocanthions for eye morphology. 
Consistent with prior research [3,68], our findings highlighted prona-
sale and alae positioning as valuable predictors of nose morphology 
across both samples. Additionally, labiale inferius and left vermillion 
inferius were effective predictors of mouth shape in the white South 
African sample, while left chelion and left vermillion superius showed 
better predictability in the French sample. Several studies have explored 
the relationship between soft facial contours and the cranial structural 
framework, influenced by hormonal, genetic, and epigenetic factors, as 
well as soft tissue development, dental maturation, and biomechanical 
dynamics [38–40,54]. Facial skeleton components undergo morpho-
logical adjustments during human development to maintain functional 
integrity and proportional growth [38,40,55]. Our study emphasizes 
that craniofacial development involves bone structure remodeling, 
suggesting that facial features should not be isolated from the cranio-
facial skeleton. It highlights the importance of considering population 
affinity, sex, and age in understanding these morphological changes 
[57]. The findings highlight notable prediction errors when comparing 

Fig. 2. Hard- and soft-tissue matrices tested in this study for prediction analysis: A. External auditory meatusues and ears B. Orbits and eyes C. Midfacial matrix and 
nose D. Midfacial matrix and mouth. 
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data from white South Africans with the French group, emphasizing the 
need for population-specific guidelines in assessing soft-tissue facial 
morphology and considering population affinity in such analyses. 
Tailored predictive models were developed to mitigate the impact of 
population differences. Studies in bioanthropology underscore the sub-
stantial influence of environmental factors on facial morphology varia-
tion across diverse populations [82–84]. Biological anthropologists have 
examined morphological diversity among populations using a culturally 
constructed labeling system to translate biological characteristics [44, 
85]. Population affinity presents a complex aspect of a biological profile, 
integrating societal norms, environmental variables, and biological 
characteristics, which allows forensic anthropologists to categorize un-
known deceased individuals into populations most similar to them [47]. 

Sexual dimorphism notably impacted prediction accuracy for the 
ears, nose, and mouth in both the white South African and French 
samples, with notable improvements observed for the eyes. Guyomarc’h 
et al. [41] introduced a computerized technique using GMM to estimate 
facial morphology in a French sample, emphasizing the impact of sex on 
craniofacial structure in facial approximation models. Moreover, similar 
sexually dimorphic patterns were observed in the nasal, buccal, and 
auditory regions across craniometric and capulometric landmark 
groups. South African studies [47,83,86] using traditional morpho-
metric techniques demonstrated substantial sexual dimorphism in 

craniofacial morphology, affecting both size and shape. In FFA, dis-
tinguishing between male and female faces based on facial shape and 
size is crucial for accurate facial approximations [52,87]. Our observa-
tions also indicate that aging notably affects the prediction accuracy of 
the ears, nose, and mouth. With advancing age, the facial skeleton tends 
to adopt a more convex shape, while soft tissues become more promi-
nent, resulting in nasal and auricular growth, as well as elongation of the 
mouth [57,88]. Biochemical changes in connective tissue reduce skin 
elasticity, affecting adherence to underlying bone or musculature [89]. 
Bone resorption and tooth loss modify jawline and mouth contours [90]. 
Nasal and chin prominence increases with age, reducing the distance 
between them and making the mouth appear sunken [58]. Cartilaginous 
nose and ear segments continue to grow throughout adulthood, 
contributing to predictable changes in facial shape and size influenced 
by biological and environmental factors [58]. Moreover, our findings 
highlight the importance of age and sex in improving predictive quality. 
However, inherent human variation poses challenges to the accuracy of 
facial approximation. To address this, our study recommends including 
more diverse demographic groups in reference samples, such as black 
and coloured South Africans, along with incorporating new measures 
such as soft tissue thickness values, craniometrics, corpulence etc. to 
enhance model reliability. While our study highlighted the importance 
of variables like sex in improving prediction accuracy for specific facial 

Fig. 3. Workflow of automatic placement of landmarks. A. Segmentation and surface mesh generation B. Surface mesh initialization: repositioning of the floating 
surface (grey) and the target surface (red) into the same coordinate system (initialization). C. Non-rigid surface registration D. Landmarking and automatic placement 
of anatomical landmarks E. Semi-landmarking and automatic semi-landmarking. 

Fig. 4. Creating statistical models to predict facial soft-tissue shape using the underlying hard-tissue configuration.  
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features such as the eyes, it is crucial to recognize the broader benefits of 
incorporating multiple variables like sex and age when constructing 
prediction models. Firstly, this approach enhances accuracy by 
comprehensively analyzing various factors influencing facial 
morphology, leading to more precise predictions compared to 
single-variable models. Secondly, using multiple variables reduces po-
tential biases, promoting fairer and more reliable analyses. Additionally, 
prediction models with multiple variables demonstrate greater gener-
alizability across diverse populations or contexts, considering a wider 
spectrum of influencing factors. 

Statistical models tailored to specific populations were developed for 
the ears, eyes, nose, and mouth, yielding errors when applied to non- 
trained data using landmark-to-landmark distances. Currently, there is 
a scarcity of scientific literature focusing on soft-tissue predictions of 
facial regions based on landmark-to-landmark distances, similar to the 

methods outlined in this study, as evidenced by [25,41,63,91,92]. In the 
case of the ears, the prediction errors ranged between 1.9 mm and 
3.8 mm for white South Africans and from 2.3 mm to 4.2 mm for the 
French sample. Guyomarc’h [41] reported prediction errors ranging 
from 4.7 mm to 8.3 mm based on point-to-point distances for the 
auditory matrix. For the eyes, prediction errors fell within the range of 
1.6 mm to 4.2 mm for the exocanthion and endocanthion in the white 
South African and French samples. Guyomarc’h noted errors ranging 
from 2.6 mm to 3.2 mm for the endocanthion and exocanthion in the 
optical subset [41]. In terms of the nose, errors for the pronasale and 
alae among white South Africans ranged from 2.3 mm to 3.9 mm, 
whereas the French sample exhibited errors ranging from 2.4 mm to 
4.0 mm. In Ridel’s study [25], the error distribution based on 
landmark-to-landmark distances revealed errors ranging from 2.0 mm 
to 2.6 mm around the pronasale and from 2.0 to 2.9 mm for the alae. 
Tilotta et al. [91] documented an average error of merely 1 mm, 
determined through point-to-mesh distances, across a subset of 49 
specimens spanning the entire surface. Vandermeulen et. al [92] 
revealed an error distribution based on mesh-to-mesh distances, with 
errors ranging from 2.0 to 2.5 mm around the pronasale and from 1 to 
2 mm for the alae. Guyomarc’h [41] found prediction errors between 
2.7 and 3.1 mm for the respiratory matrix based on point-to-point dis-
tances [41]. Schlager [63] presents prediction errors ranging from 1.2 to 
1.4 mm when utilizing mesh-to-mesh distances. Additionally, Schlager 
[63] conducted separate analyses for two population groups (Chinese 
and European). In the European sample, prediction errors ranged be-
tween 2.2 mm and 2.7 mm at the alae and pronasale, whereas they 
varied from 2.0 mm to 2.4 mm for the Chinese subsample. For the 
mouth, both the white South African and French groups demonstrated 
errors between 2.7 mm to 4.3 mm. Guyomarc’h found prediction errors 
between 4.1 mm to 4.8 mm for the buccal matrix [41]. Tilotta [91] and 
Vandermeulen [92] employed different methodologies compared to our 
study, focusing on distinct facial regions. Our study aligns closely with 
approaches by Schlager [63], Guyomarc’h [41] and Ridel [25], 
emphasizing the delineation of biologically relevant substructures using 
landmarks [25,41] and semi-landmarks [63]. Areas of the face with 
underlying bone structure tend to yield more accurate predictions, a 
similarity noted in these studies. 

Our study encountered challenges in comparing with existing liter-
ature due to the limited research specifically focused on prediction 
models for individual facial features such as the eyes, nose, mouth, and 

Table 4 
Mean (M) and standard deviation (SD) of the dispersion errors for soft- and hard- 
tissue landmarks and hard-tissue sliding landmarks in the French sample and 
white South African sample.    

French sample White South African 
sample   

INTRA- 
OE 

INTER- 
OE 

INTRA- 
OE 

INTER- 
OE   

M SD M SD M SD M SD 

Soft- 
tissue 

Left ear  0.9  0.3  0.7  0.2  1.0  0.4  1.3  0.7 
Right ear  1.0  0.2  0.9  0.3  0.8  0.3  1.7  0.8 
Eyes  0.6  0.1  0.4  0.1  0.4  0.0  1.2  0.7 
Nose  0.8  0.1  0.7  0.1  0.8  0.2  1.1  0.5 
Mouth  0.5  0.2  0.5  0.2  0.6  0.1  1.1  0.5 

Hard- 
tissue 

Midfacial 
matrix  

1.0  0.1  0.9  0.1  0.8  0.1  1.1  0.2 

Left EAM  2.0  0.0  0.4  0.2  0.8  0.0  0.4  0.2 
Right EAM  1.3  0.1  2.0  0.1  0.5  0.0  0.5  0.1 
Left orbit  3.4  2.1  3.3  2.2  2.1  0.1  1.6  0.1 
Right orbit  2.3  0.1  2.0  0.1  1.0  0.0  1.5  0.1 
Nasal 
aperture  

0.4  0.1  0.7  0.1  0.3  0.1  0.9  0.2 

Dispersion mean values < 2 mm indicate a significant degree of dependability 
and consistency in the automated landmarking process. M, representing the 
mean; SD, denoting the standard deviation; and EAM, referring to the external 
acoustic meatus. 

Table 5 
Prediction errors (in mm) of the predicted capulometric landmarks of the left ear in the white South African sample, calculated on 76 individuals, based on training 
and on non-trained data.  

White South Africans Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Left ear 1 Tragion 2.5  3.0  2.4  2.9  2.4  3.0  2.4  2.9 
2 Posterotragion  2.4  3.5  2.4  3.5  2.4  3.3  2.3 3.5 
3 Otobasion inferius  2.6  3.3  2.6  3.2  2.5  3.0  2.5 3.1 
4 Subaurale  2.3  3.0  2.3  2.9  2.3  2.9  2.3 2.9 
5 Lobule posterior  2.5  3.6  2.5  3.6  2.4  3.4  2.4 3.7 
6 Postaurale  2.6  3.3  2.6  3.2  2.5  3.0  2.5 3.1 
7 Posterohelixa interna  2.3  2.9  2.3  2.8  2.3  2.8  2.2 2.7 
8 Superhelixa interna  2.6  3.7  2.6  3.6  2.5  3.5  2.6 3.7 
9 Superaurale  2.3  3.0  2.3  2.9  2.3  2.8  2.2 2.8 
10 Otobasion superius  2.3  2.9  2.3  2.8  2.3  2.9  2.3 2.7 
11 Preaurale  2.6  3.6  2.6  3.6  2.5  3.6  2.6 3.8 
12 Supraconchale  2.2  2.8  2.2  2.7  2.1  2.6  2.2 2.6 
13 Origohelixa  2.1  2.6  2.1  2.5  2.1  2.6  2.1 2.5 
14 Antitragion  2.6  3.6  2.6  3.6  2.5  3.5  2.6 3.7 
15 Intertragion  2.3  3.0  2.3  3.0  2.3  2.9  2.3 2.8 
16 Subanguili conchali  2.3  2.9  2.3  2.9  2.3  2.7  2.3 2.7 
17 Posterosuperior aurale  2.3  2.9  2.3  2.8  2.3  2.8  2.3 2.8 
18 Supra-anguili conchali  2.4  2.9  2.4  2.9  2.4  2.9  2.4 2.9 
19 Strongest anti-helical curvature  2.2  3.2  2.2  3.2  2.2  3.0  2.2 3.2   

RMSEP 2.4  3.1  2.4  3.1  2.3  3.0  2.4  3.1 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 

T.M. Mbonani et al.                                                                                                                                                                                                                            



Forensic Science International 359 (2024) 112026

10

ears. While extensive research exists on facial recognition and analysis, 
including prediction models for overall facial structure or specific 
landmarks, there is a notable gap in studies addressing distinct facial 
features. This gap highlights the need for further exploration into 
developing and refining prediction models for individual facial attri-
butes. Addressing this gap could enhance our understanding of facial 
morphology and improve the accuracy and applicability of facial 
recognition technologies. 

The population-specific predictive models developed in this study 
show promise, with an average prediction error of about 3–4 mm, which 
is deemed acceptable [41]. Guyomarc’h et al. [41] evaluated prediction 
accuracy by compiling a full set of landmarks for estimating sensory 
landmarks in 500 French individuals, enabling calculation of average 
distances between true and estimated landmarks through leave-one-out 
resampling. Reconstruction uncertainty varied across facial regions, 
notably high for the ear (7 mm), moderate for the mouth (4.5 mm), and 

relatively lower for the nasal (3.1 mm) and eye (2.9 mm) regions [41]. 
Our models suggest potential for improved facial approximations, with 
relatively low average errors; however, caution is advised in cross-study 
comparisons due to variations in measurement methods like 
mesh-to-mesh distance [92], point-to-mesh distance [63,91], or 
point-to-point distance [25,41,63]. Independent validation of our 
approach using separate samples is imperative. 

5. Conclusion 

Our research introduces a novel facial approximation method using 
geometric morphometrics to estimate soft-tissue facial morphology in 
white South Africans and French individuals. These prediction models 
have critical applications in forensic facial approximations and anthro-
pology, enabling precise facial estimates from skeletal remains to 
enhance identification accuracy. By incorporating population-specific 

Table 6 
Prediction errors (in mm) of the predicted capulometric landmarks of the left ear in the French sample, calculated on 108 individuals, based on training and on non- 
trained data.  

French Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Left ear  1 Tragion  2.7  3.2  2.7  3.2  2.7  3.2  2.6  3.1  
2 Posterotragion  2.6  3.7  2.6  3.7  2.6  3.6  2.6  3.7  
3 Otobasion inferius  2.9  3.5  2.9  3.5  2.7  3.3  2.8  3.4  
4 Subaurale  2.6  3.2  2.6  3.1  2.6  3.2  2.6  3.1  
5 Lobule posterior  2.7  3.9  2.7  3.9  2.7  3.7  2.7  3.9  
6 Postaurale  2.9  3.6  2.9  3.5  2.7  3.3  2.7  3.3  
7 Posterohelixa interna  2.6  3.1  2.5  3.1  2.5  3.1  2.5  3.0  
8 Superhelixa interna  2.8  3.9  2.8  3.9  2.8  3.8  2.8  4.0  
9 Superaurale  2.6  3.2  2.6  3.2  2.5  3.0  2.5  3.0  

10 Otobasion superius  2.6  3.1  2.6  3.1  2.6  3.1  2.6  3.0  
11 Preaurale  2.8  3.9  2.8  3.9  2.8  3.8  2.8  4.1  
12 Supraconchale  2.5  3.1  2.5  3.0  2.4  2.8  2.4  2.9  
13 Origohelixa  2.4  2.9  2.4  2.8  2.4  2.8  2.4  2.7  
14 Antitragion  2.8  3.9  2.8  3.9  2.8  3.8  2.8  4.0  
15 Intertragion  2.6  3.2  2.6  3.2  2.6  3.2  2.5  3.1  
16 Subanguili conchali  2.6  3.2  2.6  3.2  2.5  3.0  2.5  3.0  
17 Posterosuperior aurale  2.6  3.2  2.6  3.1  2.6  3.1  2.5  3.0  
18 Supra-anguili conchali  2.7  3.2  2.7  3.2  2.7  3.2  2.6  3.1  
19 Strongest anti-helical curvature  2.5  3.5  2.5  3.4  2.4  3.3  2.5  3.4    

RMSEP  2.7  3.4  2.6  3.4  2.6  3.3  2.6  3.3 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 

Table 7 
Prediction errors (in mm) of the predicted capulometric landmarks of the right ear in the white South African sample, calculated on 76 individuals, based on training 
and on non-trained data.  

White South African Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Right ear  1 Tragion  2.3  2.8  2.3  2.8  2.2  2.8  2.2  2.7  
2 Posterotragion  2.2  3.3  2.2  3.3  2.2  3.1  2.1  3.3  
3 Otobasion inferius  2.4  3.1  2.4  3.0  2.3  2.8  2.3  2.9  
4 Subaurale  2.1  2.8  2.1  2.7  2.1  2.7  2.1  2.7  
5 Lobule posterior  2.3  3.4  2.3  3.4  2.2  3.3  2.2  3.5  
6 Postaurale  2.4  3.1  2.4  3.1  2.3  2.9  2.3  2.9  
7 Posterohelixa interna  2.1  2.7  2.1  2.6  2.1  2.6  2.1  2.5  
8 Superhelixa interna  2.4  3.5  2.4  3.4  2.4  3.3  2.4  3.5  
9 Superaurale  2.1  2.8  2.1  2.7  2.1  2.6  2.1  2.6  

10 Otobasion superius  2.1  2.7  2.1  2.6  2.1  2.7  2.1  2.6  
11 Preaurale  2.4  3.5  2.4  3.5  2.3  3.4  2.4  3.6  
12 Supraconchale  2.0  2.6  2.0  2.5  1.9  2.4  2.0  2.4  
13 Origohelixa  1.9  2.4  1.9  2.4  1.9  2.4  1.9  2.3  
14 Antitragion  2.4  3.5  2.4  3.4  2.3  3.3  2.4  3.5  
15 Intertragion  2.1  2.8  2.1  2.8  2.1  2.7  2.1  2.6  
16 Subanguili conchali  2.1  2.7  2.1  2.7  2.1  2.5  2.1  2.6  
17 Posterosuperior aurale  2.1  2.7  2.1  2.7  2.1  2.6  2.1  2.6  
18 Supra-anguili conchali  2.3  2.7  2.3  2.7  2.2  2.7  2.2  2.7  
19 Strongest anti-helical curvature  2.1  3.0  2.0  3.0  2.0  2.8  2.0  3.0    

RMSEP  2.2  2.9  2.2  2.9  2.2  2.8  2.2  2.9 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 
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Table 8 
Prediction errors (in mm) of the predicted capulometric landmarks of the right ear in the French sample, calculated on 108 individuals, based on training and on non- 
trained data.  

French Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Right ear  1 Tragion  2.8  3.3  2.8  3.3  2.8  3.3  2.7  3.2  
2 Posterotragion  2.7  3.8  2.7  3.8  2.7  3.6  2.7  3.8  
3 Otobasion inferius  3.0  3.6  3.0  3.6  2.8  3.4  2.8  3.4  
4 Subaurale  2.7  3.3  2.7  3.2  2.6  3.3  2.7  3.2  
5 Lobule posterior  2.8  3.9  2.8  4.0  2.8  3.8  2.8  4.0  
6 Postaurale  3.0  3.7  3.0  3.6  2.8  3.4  2.8  3.4  
7 Posterohelixa interna  2.6  3.2  2.6  3.2  2.6  3.2  2.6  3.1  
8 Superhelixa interna  2.9  4.0  2.9  4.0  2.9  3.9  2.9  4.1  
9 Superaurale  2.7  3.3  2.7  3.2  2.6  3.1  2.6  3.1  

10 Otobasion superius  2.7  3.2  2.7  3.1  2.7  3.2  2.7  3.1  
11 Preaurale  2.9  4.0  2.9  4.0  2.9  3.9  2.9  4.2  
12 Supraconchale  2.5  3.2  2.5  3.1  2.5  2.9  2.5  3.0  
13 Origohelixa  2.5  2.9  2.5  2.9  2.5  2.9  2.4  2.8  
14 Antitragion  2.9  4.0  2.9  3.9  2.9  3.8  2.9  4.1  
15 Intertragion  2.7  3.3  2.7  3.3  2.6  3.2  2.6  3.1  
16 Subanguili conchali  2.7  3.2  2.7  3.3  2.6  3.1  2.6  3.1  
17 Posterosuperior aurale  2.7  3.2  2.7  3.2  2.6  3.2  2.6  3.1  
18 Supra-anguili conchali  2.8  3.3  2.8  3.3  2.8  3.3  2.7  3.2  
19 Strongest anti-helical curvature  2.6  3.6  2.6  3.5  2.5  3.4  2.5  3.5    

RMSEP  2.7  3.5  2.7  3.4  2.7  3.4  2.7  3.4 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 

Table 9 
Prediction errors (in mm) of the predicted capulometric landmarks of the left eye in the white South African sample, calculated on 76 individuals, based on training 
and on non-trained data.  

White South African Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Left eye  1 Exocanthion L  2.0  1.9  1.9  1.8  3.2  3.2  3.9  3.7  
2 Exocanthion R  2.0  1.9  1.9  1.8  2.7  2.7  3.3  3.1  
3 Endocanthion L  2.0  1.9  1.8  1.7  3.0  3.0  3.7  3.6  
4 Endocanthion R  1.9  1.8  1.6  1.6  2.6  2.6  3.0  2.9    

RMSEP  2.0  1.9  1.8  1.7  2.9  2.9  3.5  3.3 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 

Table 10 
Prediction errors (in mm) of the predicted capulometric landmarks of the left eye in the French sample, calculated on 108 individuals, based on training and on non- 
trained data.  

French Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Left eye  1 Exocanthion L  2.3  2.2  2.2  2.0  3.5  3.5  4.1  4.0  
2 Exocanthion R  2.2  2.2  2.1  2.1  3.0  3.0  3.5  3.4  
3 Endocanthion L  2.2  2.1  2.0  2.0  3.3  3.3  3.9  3.8  
4 Endocanthion R  2.2  2.0  1.9  1.8  2.8  2.8  3.2  3.1    

RMSEP  2.2  2.1  2.1  2.0  3.1  3.1  3.7  3.6 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 

Table 11 
Prediction errors (in mm) of the predicted capulometric landmarks of the right eye in the white South African sample, calculated on 76 individuals, based on training 
and on non-trained data.  

White South African Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Right eye  1 Exocanthion L  2.2  2.1  2.1  2.0  3.4  3.4  4.1  4.0  
2 Exocanthion R  2.2  2.1  2.1  2.1  2.9  2.9  3.5  3.4  
3 Endocanthion L  2.2  2.1  2.0  1.9  3.2  3.2  3.9  3.8  
4 Endocanthion R  2.1  2.0  1.9  1.8  2.8  2.8  3.2  3.1    

RMSEP  2.2  2.1  2.0  1.9  3.1  3.1  3.7  3.5 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 
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guidelines, tailored facial approximations that reflect regional varia-
tions in facial features improve identification outcomes. Our findings 
also advance forensic anthropology research by providing insights into 

the relationship between hard and soft tissue in facial morphology. 
Integrating these models into training programs may enhance profi-
ciency in facial approximation techniques and victim identification, 

Table 12 
Prediction errors (in mm) of the predicted capulometric landmarks of the right eye in the French sample, calculated on 108 individuals, based on training and on non- 
trained data.  

French Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Right eye  1 Exocanthion L  2.3  2.2  2.2  2.1  3.5  3.5  4.2  4.1  
2 Exocanthion R  2.3  2.2  2.2  2.2  3.0  3.0  3.6  3.5  
3 Endocanthion L  2.3  2.2  2.1  2.0  3.3  3.3  4.0  3.9  
4 Endocanthion R  2.2  2.1  2.0  1.9  2.9  2.9  3.3  3.2    

RMSEP  2.3  2.2  2.1  2.0  3.2  3.2  3.8  3.6 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 

Table 13 
Prediction errors (in mm) of the predicted capulometric landmarks of the nose in the white South African sample, calculated on 76 individuals, based on training and 
on non-trained data.  

White South Africans Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Nose  1 Pronasale  2.6  3.1  2.6  3.1  2.6  3.1  2.5  3.0  
2 Nasale inferius  2.5  3.6  2.5  3.6  2.5  3.4  2.5  3.6  
3 Columella  2.7  3.4  2.7  3.4  2.6  3.2  2.6  3.2  
4 Subnasale  2.5  3.1  2.4  3.0  2.4  3.1  2.4  3.0  
5 Sellion  2.6  3.7  2.6  3.8  2.6  3.6  2.6  3.8  
6 External alar curvature L  2.7  3.4  2.7  3.4  2.6  3.2  2.6  3.2  
7 External alar curvature R  2.4  3.0  2.4  3.0  2.4  3.0  2.4  2.9  
8 Superior alar curvature L  2.7  3.8  2.7  3.8  2.7  3.6  2.7  3.9  
9 Superior alar curvature R  2.5  3.1  2.5  3.0  2.4  2.9  2.4  2.9  

10 Alare L  2.5  3.0  2.5  2.9  2.5  3.0  2.4  2.9  
11 Alare R  2.3  3.0  2.3  2.9  2.3  2.7  2.3  2.8  
12 Alar curvature point L  2.7  3.8  2.7  3.7  2.7  3.6  2.7  3.9  
13 Alar curvature point R  2.5  3.1  2.5  3.1  2.4  3.0  2.4  2.9  
14 Mid-nostril L  2.5  3.0  2.5  3.1  2.4  2.9  2.4  2.9  
15 Mid-nostril R  2.5  3.0  2.5  3.0  2.4  3.0  2.4  2.9  
16 Mid-columella L  2.6  3.1  2.6  3.0  2.6  3.1  2.5  3.0  
17 Mid-columella R  2.4  3.4  2.4  3.3  2.3  3.2  2.3  3.3  
18 Nasal depth L  2.4  3.4  2.3  3.4  2.3  3.2  2.3  3.4  
19 Nasal depth R  2.5  3.0  2.5  3.0  2.4  2.9  2.4  2.9    

RMSEP  2.5  3.3  2.5  3.2  2.5  3.1  2.5  3.2 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 

Table 14 
Prediction errors (in mm) of the predicted capulometric landmarks of the nose in the French sample, calculated on 108 individuals, based on training and on non- 
trained data.  

French Plain Sex Age Sex*Age 

Predicted capulometric landmarks PE PE_cv PE PE_cv PE PE_cv PE PE_cv 

Nose  1 Pronasale  3.0  3.5  3.0  3.5  3.0  3.5  2.9  3.4  
2 Nasale inferius  2.6  3.7  2.6  3.7  2.6  3.5  2.6  3.7  
3 Columella  2.9  3.5  2.9  3.5  2.7  3.3  2.7  3.3  
4 Subnasale  2.6  3.2  2.6  3.1  2.5  3.2  2.6  3.1  
5 Sellion  2.7  3.8  2.7  3.9  2.7  3.7  2.7  3.9  
6 External alar curvature L  2.9  3.6  2.9  3.5  2.7  3.3  2.7  3.3  
7 External alar curvature R  2.5  3.1  2.5  3.1  2.5  3.1  2.5  3.0  
8 Superior alar curvature L  2.8  3.9  2.8  3.9  2.8  3.8  2.8  4.0  
9 Superior alar curvature R  2.6  3.2  2.6  3.2  2.5  3.0  2.5  3.0  

10 Alare L  2.6  3.1  2.6  3.0  2.6  3.1  2.6  3.0  
11 Alare R  2.4  3.1  2.4  3.0  2.4  2.8  2.4  2.9  
12 Alar curvature point L  2.8  3.9  2.8  3.8  2.8  3.7  2.8  4.0  
13 Alar curvature point R  2.6  3.2  2.6  3.6  2.5  3.1  2.5  3.0  
14 Mid-nostril L  2.6  3.1  2.6  3.2  2.5  3.0  2.5  3.0  
15 Mid-nostril R  2.6  3.1  2.6  3.1  2.5  3.1  2.5  3.0  
16 Mid-columella L  2.7  3.2  2.7  3.2  2.7  3.2  2.6  3.1  
17 Mid-columella R  2.5  3.5  2.5  3.4  2.4  3.3  2.4  3.4  
18 Nasal depth L  2.5  3.5  2.5  3.5  2.4  3.3  2.4  3.5  
19 Nasal depth R  2.6  3.1  2.6  3.1  2.5  3.0  2.5  3.0    

RMSEP  2.6  3.4  2.6  3.4  2.6  3.3  2.6  3.3 

PE: Prediction errors on training data; PE_cv: prediction errors on non-trained data. Better predictions are indicated in bold. 
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improving forensic investigation quality. Understanding the impact of 
population affinity on facial morphology underscores the need for 
tailored assessment guidelines, reducing prediction errors across diverse 
demographic groups. Moreover, integrating sex-specific and age-related 
predictors into biometric technology enhances accuracy and reliability 
across different demographics. In summary, these predictive models 
drive advancements in facial approximation and forensic anthropology, 
improving the accuracy of soft-tissue facial estimations and deepening 
our understanding of demographic influences on facial morphology for 
enhanced forensic outcomes. 
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