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A B S T R A C T

A novel Bayesian framework is proposed, which explicitly relates the homography of one video frame to
the next through an affine transformation while explicitly modelling keypoint uncertainty. The literature
has previously used differential homography between subsequent frames, but not in a Bayesian setting. In
cases where Bayesian methods have been applied, camera motion is not adequately modelled, and keypoints
are treated as deterministic. The proposed method, Bayesian Homography Inference from Tracked Keypoints
(BHITK), employs a two-stage Kalman filter and significantly improves existing methods. Existing keypoint
detection methods may be easily augmented with BHITK. It enables less sophisticated and less computationally
expensive methods to outperform the state-of-the-art approaches in most homography evaluation metrics.
Furthermore, the homography annotations of the WorldCup and TS-WorldCup datasets have been refined
using a custom homography annotation tool that has been released for public use. The refined datasets are
consolidated and released as the consolidated and refined WorldCup (CARWC) dataset.
1. Introduction

Homography estimation generally refers to a planar projective
transformation that relates corresponding points in two views of the
same scene. Homography estimation plays a crucial role in many
computer vision applications. Examples include automated panoramic
image stitching (Brown & Lowe, 2007), simultaneous localisation and
mapping (SLAM) (DeTone et al., 2016; Le et al., 2020; Mur-Artal
et al., 2015), camera calibration and pose estimation (Citraro et al.,
2020; Zhang, 1999) and video stabilisation (Vlahović et al., 2018).
Sports field registration applies specifically to the case where one of
the scene views represents a structured model of a sports field. Sports
field registration enables aligning virtual overlays, such as graphics,
annotations, or analysis tools, with the real-world sports field, as well
as accurate player tracking and augmented reality experiences.

While the application of interest in this work is sports field regis-
tration, the Bayesian homography estimation method presented in this
paper could also be applied to some of these other applications under
certain conditions. For example, given a suitable keypoint matching
algorithm and reasonable estimates of the process and measurement
noise parameters, the method could be applied to estimate the homog-
raphy of planar scenes in SLAM applications (Mur-Artal et al., 2015).
It may also be employed to estimate camera pose as in Citraro et al.
(2020). While this paper focuses on the specific use case of soccer
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field registration, it is hoped to inspire similar approaches in these
application areas.

1.1. Contributions

The main contributions of this paper are as follows:

• Whereas previous methods treat keypoints used for homography
estimation as deterministic, this work considers them stochastic.

• A novel dynamics model is proposed which explicitly relates the
homography of immediately subsequent frames to one another.

• A two-stage Kalman filter approach is used to filter the homogra-
phy from tracked keypoints.

• The proposed approach improves the results of a relatively sim-
ple keypoint detector to outperform an expensive state-of-the-art
method.

• Finally, the WorldCup (Homayounfar et al., 2017) and TS-
WorldCup (Chu et al., 2022) datasets have been refined using
a custom homography annotation tool (released for public use)
and released as the consolidated and refined WorldCup (CARWC)
dataset.

The remainder of the article is structured as follows. Section 2 pro-
vides the necessary background of projective spaces to understand what
vailable online 7 May 2024
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the homography matrix represents. Section 3 provides an overview of
previous works in the literature concerning homography estimation.
Section 4 describes the proposed approach in detail, including math-
ematical derivations, and summarises the main differences between
the proposed approach and previous methods from the literature. Sec-
tion 5 describes the experiments used to evaluate the proposed method.
This section includes parameter settings, details regarding datasets, a
description of how covariance matrices were measured and examples
of their values and formulae for the evaluation metrics that were
used. The results of these evaluations are presented and discussed in
Section 6. Finally, the main conclusions are presented in Section 7.

2. Background

The world in R3 is imaged through a projective camera, resulting
n a 3D projective space P3, which augments R3 with points at in-
inity (Hartley & Zisserman, 2004). A coordinate 𝐗 =

[

𝑋 𝑌 𝑍
]

n R3 is augmented to form 𝐗′ =
[

𝑋 𝑌 𝑍 𝑇
]⊤ (termed a ho-

ogeneous coordinate) in P3, with the corresponding point at infinity
ccurring for 𝑇 = 0. Although the 3D vector is augmented by the
lement 𝑇 , the projective space is, by convention, still considered three-
imensional. Hence, the superscript of P remains 3. A projective camera
hen performs a linear mapping on the homogeneous coordinate 𝐗′

rom the 3D projective space P3 (which represents the world space)
o the homogeneous coordinate 𝐱′ =

[

𝑥 𝑦 𝑡
]⊤ in the 2D projective

pace P2 (which represents the image space). The transformation from
D to 2D projective space is governed by

𝑥
𝑦
𝑡
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,

here 𝐏 = 𝜿 [𝐑|𝐂] and | denotes column-appended matrix augmenta-
ion. 𝜿 ∈ R3×3 represents the internal camera parameters and has the
eneral form

=
⎡

⎢

⎢

⎣

𝛼𝑥 𝑠 𝑥0
0 𝛼𝑦 𝑦0
0 0 1

⎤

⎥

⎥

⎦

,

here 𝛼𝑥 and 𝛼𝑦 are scale factors in the x- and y-coordinate directions,
espectively, 𝑠 is the skew which is non-zero if the x- and y-axes are not
erpendicular and

[

𝑥0 𝑦0
]⊤ represents the coordinates of the principal

oint — the geometric centre of the image. For further details regarding
𝑥, 𝛼𝑦, 𝑠, 𝑥0 and 𝑦0, the reader is referred to Hartley and Zisserman

(2004). 𝐑 ∈ R3×3 and 𝐂 ∈ R3 respectively relate the camera orientation
(rotation) and position (translation) to the world coordinate system.
These are the external camera parameters (Hartley & Zisserman, 2004).
An arbitrary homogeneous vector 𝐱′ =

[

𝑥 𝑦 𝑡
]⊤ in P2 may be

normalised to become
[

𝑥∕𝑡 𝑦∕𝑡 1
]⊤, 𝑡 ≠ 0, which represents

[

𝑥∕𝑡 𝑦∕𝑡
]⊤ (1)

in R2, a point in the image (Hartley & Zisserman, 2004). That is, for a
constant 𝐱′, 𝑘𝐱′ represents the same point in the image for any 𝑘 ≠ 0
and may be thought of as a ray in R3 passing through the centre of
projection of the camera. One may consider the projective space P2 as
a space consisting of the set of such rays, each representing a single
point in the image in R2. Finally, if all the world points are coplanar
such that 𝑍 = 0, the transformation from 3D to 2D projective space is
performed by the homography matrix 𝐇:
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It should be noted that 𝐇 is determined up to a scale and thus has only
2

ight degrees of freedom (Hartley & Zisserman, 2004).
3. Related work

This section examines previous homography estimation methods
from the literature to illustrate the novelty of the proposed method.

3.1. Homography estimation

Homography estimation is typically achieved by identifying cor-
responding features, or keypoints, between two images. This may be
achieved through the use of features extracted by methods such as the
scale-invariant feature transform (SIFT) (Lowe, 2004) or ORB (Oriented
FAST and Rotated BRIEF, where FAST refers to a keypoint detection
method and BRIEF refers to another feature descriptor (Rublee et al.,
2011)), and matching methods such as k-nearest neighbours (Brown &
Lowe, 2007) or bags of words (Mur-Artal et al., 2015). These keypoints
are subsequently used to estimate the mapping between the images
with the direct linear transform (DLT) (Hartley & Zisserman, 2004)
or random sample consensus (RANSAC) (Fischler & Bolles, 1987) algo-
rithms. Another approach to homography estimation is that of iterative
optimisation such that the alignment between a target image and the
transformation of another image is maximised through the minimisa-
tion of a chosen loss function (Evangelidis & Psarakis, 2008; Lucas &
Kanade, 1981). These methods are usually slower than feature-based
methods. Still, the robustness and accuracy of feature-based methods
are subject to the number of detected keypoints and the accuracy
with which keypoint correspondences can be determined (Hartley &
Zisserman, 2004). Thus, feature-based methods may be less reliable
when few correspondences exist due to large view differences or where
the extracted features are not sufficiently salient due to image-specific
lighting or noise. Methods that rely on estimating a differential homog-
raphy between subsequent video frames and other features have been
proposed (Nishida et al., 2011; Simon et al., 2000). Indeed, the authors
note that their methods fail under some lighting conditions. Recent
methods leverage deep neural networks to regress a parameterisation
of the homography matrix directly (DeTone et al., 2016; Le et al., 2020;
Nguyen et al., 2018; Vlahović et al., 2018), using features directly
computed from a tuple of image patches for which a homography
estimate is desired.

3.2. Sports field registration

Various recent methods of sports field registration identify corre-
sponding features between the field template and camera image with
the use of deep (convolutional) neural networks (Chen & Little, 2018;
Chu et al., 2022; Citraro et al., 2020; Cuevas et al., 2022; Homayounfar
et al., 2017; Nie et al., 2021; Sha et al., 2020; Theiner & Ewerth,
2022). These are subsequently used to estimate a mapping between
the image and field template. This estimation may be achieved with
the DLT (Hartley & Zisserman, 2004) or RANSAC (Fischler & Bolles,
1987) algorithms (Chu et al., 2022; Citraro et al., 2020; Nie et al.,
2021; Theiner & Ewerth, 2022). Some methods refine this estimate
with, or otherwise rely entirely on, a combination of the following:
regressing the homography directly from the input image and field
model with a deep neural network (Jiang et al., 2019; Shi et al.,
2022), obtaining an estimate for the camera pose by matching with a
feature-pose database (Chen & Little, 2018; Sha et al., 2020), iterative
optimisation of the camera pose or homography based on re-projection
error or some other metric (Chen & Little, 2018; Jiang et al., 2019; Sha
et al., 2020; Shi et al., 2022; Theiner & Ewerth, 2022), or the use of a
Markov Random Field (MRF) (Homayounfar et al., 2017).

Using a feature-pose database is cumbersome and will almost always
require additional optimisation. Furthermore, methods that rely on

optimisation tend to be slow, from experiments with Theiner and
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Ewerth (2022). Similarly, the authors of Homayounfar et al. (2017)
report many average iterations and an average inference time of 0.44 s
with their MRF-based method when applied to soccer field registration.

In comparison, keypoint-detection-based models are attractive due
to their relatively small computational footprint and the potential to use
the detected keypoints in a Bayesian framework, which is the approach
in this paper.

3.3. Tracking

Few existing methods exploit the temporal consistency between sub-
sequent video frames, with some exceptions being found in Citraro et al.
(2020), Nie et al. (2021), Nishida et al. (2011), Simon et al. (2000).
The differential homography between video frames is used in Nishida
et al. (2011), Simon et al. (2000) for road plane detection (which is
important in autonomous driving applications) with optical flow and
human-assisted keypoint-less tracking, respectively. However, neither
of these methods considers the differential homography in a Bayesian
setting. Nie et al. (2021) make use of online homography refinement by
minimising two loss functions, one of which also takes into account the
relative homography �̂�𝑡�̂�−1

𝑡−1 between the current and previous frame as
n Nishida et al. (2011), Simon et al. (2000). Once again, this is not per-
ormed with a Bayesian treatment of the homography. Finally, (Citraro
t al., 2020) makes use of player positions and field keypoints detected
y a U-Net architecture (Ronneberger et al., 2015). A homography
stimate is obtained for each frame in a sequence and decomposed
o estimate camera intrinsic and extrinsic parameters. A condensation
article filter (Isard & Blake, 1998) is applied, which only considers
nd enforces temporal consistency on the external camera parameters
.e. the dynamics model applied is [𝐑 ∣ 𝐂]𝑡 = [𝐑 ∣ 𝐂]𝑡−1 + (𝟎,Σ) with

particle weights obtained by a re-projection metric. While this method
employs the Bayesian particle filter framework, the dynamics model is
unsuitable. Particularly, camera movement is not effectively modelled:
changes in the estimated pose are modelled as noise. Additionally,
keypoint uncertainty is not taken into account. Indeed, a heuristic
measure is required to determine when the filter should be re-initialised
after it inevitably diverges.

To the best of the authors’ knowledge, the literature has not ex-
plored a Bayesian approach that explicitly incorporates homography,
field template and keypoint measurement uncertainty while also mod-
elling relative camera motion.

4. Approach

The proposed approach, Bayesian Homography Inference from
Tracked Keypoints (BHITK), is inspired by recent developments in
tracking-by-detection methods. Specifically, those which employ a form
of camera motion compensation. It has been shown that tracking per-
formance can be improved by transforming bounding boxes forecasted
at time 𝑡 − 1 such that they align more closely with detections at
time 𝑡. This transformation effectively estimates and corrects for the
non-stationarity in measurements induced by camera motion. This is
performed in Bergmann et al. (2019), Han et al. (2020), Khurana
et al. (2020) with the image registration algorithm in Evangelidis and
Psarakis (2008), which estimates a non-linear mapping of pixels from
one frame to the next. Another method makes use of ORB (Rublee
et al., 2011) and RANSAC (Fischler & Bolles, 1987) to quickly align
subsequent frames (Du et al., 2021). The global motion compensation
technique of the Video Stabilisation module of OpenCV (Bradski, 2000)
is used instead in Aharon et al. (2022). Its use is motivated by sparse
optical flow features and translation-based local outlier rejection, which
allows the resulting affine matrix estimated by RANSAC to be largely
unaffected by dynamic objects. Since this method is more focused on
background motion, it is ideal for use in the present case where several
dynamic objects (e.g. soccer players, the ball, referees and spectator
movement) are expected to be present.
3

Table 1
A comparison between the approaches of BHITK and related methods.

Method Relative
(inter-frame)
homography or pose

Bayesian
framework

Keypoint
uncertainty (fully
Bayesian approach)a

Nishida et al.
(2011)

✓ X X

Simon et al.
(2000)

✓ X X

Nie et al.
(2021)

✓ X X

Citraro et al.
(2020)

Modelled
inappropriately

✓ X

BHITK
(proposed)

✓ ✓ ✓

a Equivalently, whether RANSAC is used to obtain the homography from noisy point
estimates (indicated with a cross) or whether the homography is inferred with the
fusion of different keypoint distributions (indicated with a checkmark).

As noted by Nie et al. (2021), sparse features due to generally
texture-less sports fields, narrow camera field of view, and occlusion by
players represent the most significant challenges to keypoint-detection-
based methods since these challenges lead to fewer detected keypoints
and consequently a less robust homography estimate. This work pro-
poses a dynamics model that explicitly relates image keypoint positions
from one frame to the next. A relation between subsequent homogra-
phies is derived from this, appropriately considering camera motion.
A Kalman filter framework with linear and non-linear components is
used, encompassing the homography as part of the state vector. Thus,
even when few or no keypoints are detected in narrow-field-of-view or
occluded situations, the homography estimate forecasted by the dynam-
ics model – which is independent of specific field template keypoints –
may still be reasonably accurate due to the incorporation of the history
of keypoints that were visible up until that time, and the possible esti-
mation of out-of-frame keypoint positions. Furthermore, keypoint noise
is modelled explicitly, contributing to even more accurate homography
estimation. Contrary to the status quo, RANSAC (Fischler & Bolles,
1987) is only used to obtain an initial homography estimate. Thereafter,
the homography is inferred solely from the dynamics and measurement
models and the fusion of the measured keypoint statistics. Whereas
RANSAC considers keypoint measurements to be noisy point estimates,
the proposed method instead considers the entire estimated distribution
of each keypoint. The approach is flexible and can extend existing
keypoint detection methods. Table 1 summarises the contributions of
BHITK compared to related methods in the literature.

4.1. Derivations

Given a set of 𝑁 known field template keypoints represented by nor-
malised homogeneous world coordinates

{

𝐗𝐹 ,𝑗 ∈ P2
|1 ≤ 𝑗 ≤ 𝑁

}

, and
a set of 𝑁 image keypoints represented by normalised homogeneous
image coordinates

{

𝐱𝐼,𝑗 ∈ P2
|1 ≤ 𝑗 ≤ 𝑁

}

, the corresponding points in
these sets are assumed to be coplanar in world coordinates. The goal
is to estimate the homography 𝐇, which relates keypoints in the image
and their corresponding coordinates in the field template. Assume that
an image motion 𝐀 is available at each time step 𝑡 such that

𝐱𝐼,𝑗𝑡 = 𝐀𝑡𝐱
𝐼,𝑗
𝑡−1. (3)

Furthermore, since field template keypoints are constant:

𝐗𝐹 ,𝑗
𝑡 = 𝐗𝐹 ,𝑗

𝑡−1, (4)

where the dependence on time is retained since time-dependent ran-
dom samples are later added to model the possible uncertainty of field

2
template keypoint positions. From (2), the coordinates in P of an
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Fig. 1. Implemented Kalman filter framework. The first stage filters measured keypoint
positions 𝐲𝐼𝑡 according to the estimated affine transformation �̂�𝑡. The EKF makes use of
the filtered positions, �̂�𝐼𝑡 , and the estimated affine transformation to infer an estimate
of the homography, �̂�𝑡.

image keypoint 𝐱𝐼,𝑗 which corresponds to a field template keypoint 𝐗𝐹 ,𝑗

may be obtained by

𝐱𝐼,𝑗𝑡 = 𝐇𝑡𝐗
𝐹 ,𝑗
𝑡 . (5)

Substituting (5) into (3):

𝐱𝐼,𝑗𝑡 = 𝐀𝑡𝐇𝑡−1𝐗
𝐹 ,𝑗
𝑡−1.

Making use of the relation in (4):

𝐱𝐼,𝑗𝑡 = 𝐀𝑡𝐇𝑡−1𝐗
𝐹 ,𝑗
𝑡 .

Finally, comparing this result with (5):

𝐇𝑡 = 𝐀𝑡𝐇𝑡−1. (6)

In practice, it is necessary to obtain the image coordinates in R2

represented by 𝐱𝐼,𝑗𝑡 ∈ P2. This is achieved by normalising the ho-
mogeneous 𝐱𝐼,𝑗𝑡 with respect to its last element, as illustrated in (1).
Let norm(⋅) denote this normalisation, such that norm(

[

𝑥 𝑦 𝑧
]⊤) =

[

𝑥∕𝑧 𝑦∕𝑧 1
]⊤. Thus, (5) becomes

𝐱𝐼,𝑗𝑡 = norm
(

𝐇𝑡𝐗
𝐹 ,𝑗
𝑡

)

. (7)

𝐀𝑡 is an affine transformation matrix which allows for translation,
rotation and uniform scaling in the 𝑥 and 𝑦 image dimensions. It
is estimated at each time step with the global motion compensation
method of OpenCV (Bradski, 2000):

�̂�𝑡 =
[

𝐀𝑢
𝑡 ∈ R2×2 𝐛𝑡 ∈ R2×1

𝟎1×2 1

]

,

where 𝐀𝑢
𝑡 is a rotation and scaling matrix and 𝐛𝑡 is a translation vector,

such that, for arbitrary vectors, 𝐱 and 𝐲 in R2,

= 𝐀𝑢
𝑡 𝐱 + 𝐛𝑡

s equivalent to

𝐲
1

]

= �̂�𝑡

[

𝐱
1

]

in homogeneous coordinates. It is easily shown that, for an arbitrary
𝐱 ∈ P2, norm(𝐀𝑡𝐱) = 𝐀𝑡 norm(𝐱). Therefore, the relation obtained
in (6) remains valid despite the alteration to (5) given in (7). Note
that this is not generally the case if 𝐀𝑡 is replaced with, e.g. an
inter-frame homography (i.e. a homography that provides a mapping
between the current and previous frames) where the last row is not
[

0 0 1
]

, which would require additional normalisation. Therefore,
the proposed affine transformation enables the relationship between
subsequent homographies to be expressed and precludes normalisation
in (3), maintaining linearity in the keypoint dynamics model. Another
advantage of using the proposed affine transformation is that it is inde-
pendent of detecting specific, pre-defined keypoints. Thus, the absence
of any number of such keypoints is assumed not to affect the dynamics
model significantly. Nevertheless, incorporating a robust, global trans-
formation of keypoints between subsequent frames (which may also be
4

non-linear) into the state vector is a compelling prospect but deemed
a topic for future research. For now, it is assumed that uncertainties
in the estimation of 𝐀𝑡 are largely mitigated by modelling (3) and (6)
as stochastic processes. Uncertainty in field template keypoint positions
may also be specified, although this inclusion may only benefit practical
applications where field dimensions vary. The dynamics model is thus
obtained by treating (3), (4) and (6) as random variables:

𝐱𝐼,𝑗𝑡 = 𝐀𝑡𝐱
𝐼,𝑗
𝑡−1 + 𝐰𝐼,𝑗

𝑡 , (8)

𝐗𝐹 ,𝑗
𝑡 = 𝐗𝐹 ,𝑗

𝑡−1 + 𝐰𝐹 ,𝑗
𝑡 , (9)

𝐇𝑡 = 𝐀𝑡𝐇𝑡−1 +𝐖𝐻
𝑡 , (10)

here 𝐰𝐼,𝑗
𝑡 ∼ 

(

𝟎,Σ𝐼,𝑗) and 𝐰𝐹 ,𝑗
𝑡 ∼ 

(

𝟎,Σ𝐹 ,𝑗). The elements of 𝐖𝐻
𝑡

re drawn from 
(

𝟎,Σ𝐻 ∈ R9×9). Similarly, the measurement model
s obtained from (7):
𝐼,𝑗
𝑡 = norm

(

𝐇𝑡𝐗
𝐹 ,𝑗
𝑡

)

+ 𝐰𝑀,𝑗
𝑡 , (11)

here 𝐰𝑀,𝑗
𝑡 ∼  (𝟎,Σ𝑀,𝑗 ). The last element of each homogeneous

oordinate 𝐱𝐼,𝑗𝑡 and 𝐗𝐹 ,𝑗
𝑡 is always 1. For the remainder of this paper,

hese coordinates are assumed to be transformed to R2 by simply
mitting their last elements. Therefore, the distributions from which
𝐼,𝑗
𝑡 , 𝐰𝐹 ,𝑗

𝑡 and 𝐰𝑀,𝑗
𝑡 are drawn are also considered elements of R2, with

orresponding covariance matrices in R2×2.
The above dynamics and measurement models are used in a two-

tage Kalman filter. Fig. 1 concisely illustrates the roles of the estimated
ffine transformation �̂�𝑡, keypoint measurements 𝐲𝐼𝑡 and two-stage
ilter in the proposed approach. The filter stages are subsequently
escribed in detail.

.2. Linear keypoint filter

The left-hand side of (8)–(10) represents the state space under
onsideration. The state elements are not independent. A given set
f keypoint measurements may be related to the state in two ways:
ither directly since the keypoint positions are part of the state vector
r through the re-projection of the field keypoints to image keypoints
y the homography. Although not strictly required for homography
nference, image keypoint positions are retained as part of the state
ector. This can improve the homography estimation since the filtered
eypoint positions are likely more accurate, as long as the zero-mean
aussian measurement noise assumption is reasonable and the process
nd measurement covariances are appropriately tuned. Hence, a two-
tage approach is proposed. The first stage consists of a linear Kalman
ilter (LKF), which considers the image keypoints the only part of its
tate vector. The state vector takes the form 𝐱𝐼𝑡 =

[

(

𝐱𝐼,1
)⊤

⋯
(

𝐱𝐼,𝑗
)⊤

]⊤

𝑡
,

here 𝐱𝐼,𝑗 ∈ R2, 𝑗 ≤ 𝑁 . Its dynamics are governed by (8). The
rediction step is implemented as follows:

̂𝐼𝑡∣𝑡−1 = �̃�𝑡�̂�𝐼𝑡−1∣𝑡−1 + �̃�𝑡,
𝐼
𝑡∣𝑡−1 = �̃�𝑡𝐏𝐼

𝑡−1∣𝑡−1�̃�
⊤
𝑡 +𝐐𝐼 ,

here �̂�𝐼𝑡∣𝑡−1 and �̂�𝐼𝑡−1∣𝑡−1 denote the estimates of the means of the
redicted and filtered states at time 𝑡− 1, respectively. Similarly, 𝐏𝐼

𝑡∣𝑡−1
nd 𝐏𝐼

𝑡−1∣𝑡−1 denote the predicted and filtered estimates of the state
ovariance matrix. 𝐐𝐼 represents the process noise covariance matrix.
inally, similar to Aharon et al. (2022):

̃
𝑡 =

⎡

⎢

⎢

⎣

𝐀𝑢
𝑡 𝟎 𝟎
𝟎 ⋱ 𝟎
𝟎 𝟎 𝐀𝑢

𝑡

⎤

⎥

⎥

⎦

, �̃�𝑡 =
⎡

⎢

⎢

⎣

𝐛𝑡
⋮
𝐛𝑡

⎤

⎥

⎥

⎦

.

Upon receiving 𝐾 keypoint measurements 𝐲𝐼𝑡 =
[

(

𝐲𝐼,𝑗1

)⊤
⋯

(

𝐲𝐼,𝑗𝑘

)⊤
]⊤

𝑡
,

where 𝐲𝐼,𝑗 ∈ R2, 𝑘 ≤ 𝐾, the update step is performed:
𝑘
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𝐏

𝐊𝑡 = 𝐏𝐼
𝑡∣𝑡−1𝐇

⊤
𝑡

(

𝐇𝑡𝐏𝐼
𝑡∣𝑡−1𝐇

⊤
𝑡 + 𝐑𝐼

)−1
,

�̂�𝐼𝑡∣𝑡 = �̂�𝐼𝑡∣𝑡−1 +𝐊𝑡

(

𝐲𝐼𝑡 −𝐇𝑡�̂�𝐼𝑡∣𝑡−1
)

,
𝐼
𝑡∣𝑡 =

(

𝐈 −𝐊𝑡𝐇𝑡
)

𝐏𝐼
𝑡∣𝑡−1,

where 𝐑𝐼 is the measurement noise covariance matrix and 𝐇𝑡 ∈ R2𝐾×2𝑁

is a matrix which consists of sub-matrices 𝐡𝑘,𝑗 ∈ R2×2 that relate the
state to the measurements:

𝐡𝑘,𝑗 =
{

𝐈, if ∃𝐲𝐼,𝑗𝑘 ∈ 𝐲𝐼𝑡 ,
𝟎, otherwise,

where 𝐈 is the identity matrix.

4.3. Non-linear homography filter

The second stage of the proposed method directly incorporates the
homography, in addition to the field template keypoints, into its state
vector 𝐱𝐹𝐻

𝑡 =
[

(

𝐗𝐹 ,1)⊤ ⋯
(

𝐗𝐹 ,𝑗)⊤ 𝐡⊤1 𝐡⊤2 𝐡⊤3
]⊤

𝑡
, where 𝐗𝐹 ,𝑗 ∈

R2, 𝑗 ≤ 𝑁 and 𝐡1, 𝐡2 and 𝐡3 respectively denote the first, second and
third columns of the homography matrix. Its dynamics are governed
by (9) and (10), which are linear processes. The prediction step is thus
performed by

�̂�𝐹𝐻
𝑡∣𝑡−1 = �̃�𝑡�̂�𝐹𝐻

𝑡−1∣𝑡−1,

𝐏𝐹𝐻
𝑡∣𝑡−1 = �̃�𝑡𝐏𝐹𝐻

𝑡−1∣𝑡−1�̃�
⊤
𝑡 +𝐐𝐹𝐻 ,

where 𝐏𝐹𝐻 and 𝐐𝐹𝐻 denote the state and process covariance matrices,
respectively. Furthermore,

�̃�𝑡 =
[

𝐈2𝑁×2𝑁 𝟎
𝟎 �̂�𝑡

]

.

The non-linear measurement model (11) requires the transformation
of the state by (7). This may be performed whilst retaining relatively
high-order moments using the Unscented Transform in the Unscented
Kalman Filter (UKF) (Wan & Merwe, 2000). However, since the relative
homography between frames is expected to be small, the Extended
Kalman Filter (EKF) approach is used instead by linearising around
the current state estimate. Enforcing this belief in the UKF requires
tuning its hyper-parameters (i.e. how close to the mean sigma points
are sampled), which is avoided. Using the UKF slightly degraded per-
formance due to significant errors before convergence. The update step
is therefore performed as follows:

𝐊𝐹𝐻
𝑡 = 𝐏𝐹𝐻

𝑡∣𝑡−1𝐉
⊤
𝑡

(

𝐉𝑡𝐏𝐹𝐻
𝑡∣𝑡−1𝐉

⊤
𝑡 + 𝐏𝐼

𝑡∣𝑡

)−1
,

�̂�𝐹𝐻
𝑡∣𝑡 = �̂�𝐹𝐻

𝑡∣𝑡−1 +𝐊𝐹𝐻
𝑡

(

�̂�𝐼𝑡∣𝑡 − h
(

�̂�𝐹𝐻
𝑡∣𝑡−1

))

,

𝐏𝐹𝐻
𝑡∣𝑡 =

(

𝐈 −𝐊𝐹𝐻
𝑡 𝐉𝑡

)

𝐏𝐹𝐻
𝑡∣𝑡−1,

where h(⋅) represents (7), �̂�𝐹𝐻
𝑡∣𝑡−1 is augmented with a one in (7) to

transform it to P2, and 𝐉𝑡 is the Jacobian of h
(

�̂�𝐹𝐻
𝑡∣𝑡−1

)

with respect to
each of the state elements.

The proposed approach is adaptable to any keypoint detection
method. Furthermore, the state and measurement models may be ex-
panded to incorporate image distortion parameters. However, mod-
elling distortion with a single-parameter division model as in Wu et al.
(2017) slightly degraded performance and is therefore not considered,
although such parameters may be useful in some practical applications.

5. Experiments

The following section describes the experiments used to evaluate
BHITK in detail. This includes details on the practical implementation,
5

parameter settings, datasets and evaluation metrics.
5.1. Practical considerations

The state mean estimates �̂�𝐼0∣0 and �̂�𝐹𝐻
0∣0 are initialised with the first

measured keypoint positions, known field template positions and the
initial homography estimate obtained with RANSAC. Since the homog-
raphy matrix is determined up to a scale (2), the initial estimate is
normalised with respect to ℎ33. The Kalman filter state vector excludes
this element (ℎ33).

For the current purposes, Σ𝐹 ,𝑗 = 𝟎∀𝑗. The other process covariance
matrices Σ𝐼,𝑗 and Σ𝐻 are estimated empirically from the training
data using the estimated affine transformation between training video
frames, the ground truth keypoint positions and the ground truth
homography annotations. Specifically, the mean-squared error (MSE) is
used to estimate the variance of Σ𝐼,𝑗 and Σ𝐻 in each state dimension,
and the mean of the product of the errors of different state dimensions
are used to estimate the covariances.

The measurement covariance matrix Σ𝑀,𝑗 of each keypoint 𝑗 is
estimated similarly using the measured and ground truth keypoint
positions from the training set. The measured keypoint positions are
used with RANSAC to produce a homography estimate for each training
frame. These estimates are used with the ground truth homography
annotations to estimate the covariance matrix with which the initial
homography estimate is initialised. These are the only covariance
matrices dependent on the keypoint detection method.

The process covariance matrices 𝐐𝐼 and 𝐐𝐹𝐻 , and the measurement
covariance matrix 𝐑𝐼 are constructed by concatenating the applicable
covariance matrices obtained in the manner described above diag-
onally. The estimation of the covariance between distinct keypoints
is complicated by the fact that keypoints do not always co-occur in
the same image. Thus, independence between distinct keypoints is
assumed. Finally, independence between distinct field template key-
points and between field template keypoints and the homography is
also assumed. This follows from treating the field template positions
as known (Σ𝐹 ,𝑗 = 𝟎∀𝑗), which is justified in the present case since
the ground truth homography annotations are also obtained with this
assumption.

While the discussion of the LKF and EKF in 4.2 and 4.3 imply that
all of the known field template keypoint positions have corresponding
image keypoints in 𝐱𝐼𝑡 , only the keypoints which have been measured at
times prior to and including the current time step 𝑡 are used in the EKF
update step. Furthermore, the best results have been obtained when
only the keypoints measured at the current time step 𝑡 are used in the
EKF update step. However, in the case of sparse keypoint positions,
it may be helpful to initialise all image keypoint positions through
the initial homography estimate and use all of the estimated keypoint
positions in the EKF update, especially since the covariance estimates
of those keypoints that have not been measured recently would be
larger than that of those that have. The EKF takes this uncertainty into
account.

5.1.1. Assumptions
The following summarises the major assumptions of the proposed

BHITK method:

• The true playing field dimensions correspond to the template field
dimensions.

• Eqs. (8)–(10) are reasonable approximations of the true state dy-
namics i.e. nonlinearities in the true state dynamics are negligible.

• Eq. (11) is a reasonable approximation of the true observation
model i.e. lens distortion effects are negligible.

• The process and measurements noise terms in (8)–(11) are rea-
sonably approximated by zero-mean Gaussian distributions.

• The linearisation error of the EKF is smaller than the measure-

ment noise.



Expert Systems With Applications 252 (2024) 124156P.J. Claasen and J.P. de Villiers

5

5

f
2
S
o
s
2
l
2
e
i
k
T
h
b
h
g
I
I
r

5

W
2
u
I
t
a
e

5

i
A
a
p
m
r

• Distinct keypoints are independent of one another in the image
and ground plane, and the homography is independent of specific
field template positions (see the discussion in 5.1).

.2. Datasets

.2.1. WC14 dataset
The WorldCup (WC14) dataset is typically used to evaluate soccer

ield registration (Chen & Little, 2018; Chu et al., 2022; Citraro et al.,
020; Homayounfar et al., 2017; Jiang et al., 2019; Nie et al., 2021;
ha et al., 2020; Shi et al., 2022; Theiner & Ewerth, 2022). It consists
f 209 image-homography pairs in a training set and 186 in a test
et. The images were obtained from broadcast television videos of the
014 FIFA World Cup. The ground truth homography matrices are
abelled manually. Unfortunately, as already noted (Theiner & Ewerth,
022), the annotation of homography matrices is biased since the
ntire field is usually not visible in any given image. This problem
s exacerbated by using too few ground-truth keypoints, i.e. a sparse
eypoint annotation template focusing only on certain parts of the field.
his is illustrated in Fig. 2(a), which shows an example of low-quality
omography annotation in the WC14 dataset by re-projecting the grass
and keypoints proposed in Cuevas et al. (2022) with the annotated
omography. Notice that the keypoints do not align well with the
rass bands, particularly those further away from the penalty area.
nadequate homography annotations undermine the reliability of the
ntersection over Union (IoU) metrics often used to evaluate soccer field
egistration methods (Citraro et al., 2020; Theiner & Ewerth, 2022).

.2.2. TS-WorldCup dataset
The TS-WorldCup dataset (TSWC) was introduced to augment the

C14 dataset since the WC14 dataset is relatively small (Chu et al.,
022). Unlike the WC14 dataset, the TSWC dataset consists of consec-
tive frames from 43 2014 and 2018 Soccer World Cup event videos.
t contains 2925 and 887 images in its training and test sets. Similar
o the WC14 dataset, the TSWC dataset suffers from annotation bias,
lbeit somewhat. This is illustrated in Fig. 3(a), where the annotation
rror is especially visible towards the bottom of the image.

.2.3. CARWC dataset
In this work, a consolidated and refined WorldCup (CARWC) dataset

s introduced. The dataset combines the WC14 and TSWC datasets.
dditionally, all images are re-annotated with the help of publicly
vailable custom homography refinement software developed by the
rincipal author of this paper, which makes use of image deformation
ethods (Schaefer et al., 2006) to ease the annotation process and is

eleased along with the CARWC dataset1. The grass band keypoints
proposed in Cuevas et al. (2022) are used during annotation. These key-
points are selected since they are dense while also retaining semantic
meaning. There is a total of 147 grass band keypoints across the field. In
comparison, (Nie et al., 2021) uses only 91 keypoints spread uniformly
across the field. The grass band keypoints are placed in semantically
meaningful locations, which could aid in their detection. While uniform
keypoints do not necessarily occur at the intersections of lines or other
distinguishable field markings, the grass band keypoints mainly occur
at the intersection of grass bands with some other field marking (which
may be extended, e.g. the horizontal lines of the penalty box, with some
exceptions). This also makes these keypoints easier to identify during
annotation. Fig. 2(b) and Fig. 3(b) illustrate two examples of the refined
annotations.

The ground truth keypoint position labels are also included along
with the homography annotations. This could allow for the investiga-
tion of image distortion in future work.

1 https://github.com/Paulkie99/KeypointAnnotator.
6

To obtain a sense of scale for the process covariance matrices of
the CARWC training set, the mean matrix entries over all 𝑗 of Σ𝐼,𝑗 ,
estimated as described in 5.1, are
[

4.95 −0.06
−0.06 0.95

]

.

Similarly, for Σ𝐻 , the mean entries are

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3.35 0.05 0.00 1.58 0.27 0.00 −373 12.77
0.05 0.01 0.00 0.02 0.00 0.00 −4.66 −0.08
0.00 0.00 0.00 0.00 0.00 0.00 −0.10 0.00
1.58 0.02 0.00 0.77 0.13 0.00 −179 6.45
0.27 0.00 0.00 0.13 0.03 0.00 −30.11 0.94
0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00
−373 −4.66 −0.10 −179 −30.11 0.05 41943 −1458
12.77 −0.08 0.00 6.45 0.94 0.00 −1458 81.31

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where covariances associated with ℎ33 have been omitted because this
element is not included in the Kalman filter state vector as discussed in
5.1.

5.3. Baselines

The proposed method will be evaluated primarily by comparison
with two state-of-the-art keypoint-detection-based methods, namely
those of Chu et al. (2022), Nie et al. (2021).

The method proposed by Nie et al. (2021) makes use of a ResNet-18-
based (He et al., 2015), U-Net-like (Ronneberger et al., 2015) architec-
ture with non-local blocks (Wang et al., 2017) and dilated convolutions.
They propose the use of 91 keypoints spread uniformly across the field.
In a multi-task learning approach, their method simultaneously predicts
keypoints and dense features defined as the normalised distance of
non-line or non-region pixels to the nearest line or region pixel in the
image (referred to as line and region features, respectively). Finally,
they use an online refinement scheme that considers these predicted
features and the homography estimates for the current and previous
frames. The re-implementation of their method in Chu et al. (2022) is
used, which does not include dense feature regression or online refine-
ment (i.e. performs keypoint detection only), and expanded with dense
feature regression and online refinement, where the hyper-parameters
for online refinement are set as in Nie et al. (2021). Fig. 4 shows the
keypoint error distribution of the trained model on the CARWC training
set — it is clear that the zero-mean Gaussian assumption is reasonable.
The median matrix entries over all 𝑗 of Σ𝑀,𝑗 , estimated as described in
5.1 using the method of Nie et al. (2021) on the CARWC training set,
are
[

20.81 −0.01
−0.01 14.56

]

.

Similarly, the mean entries of the estimated covariance matrix of the
homography obtained with RANSAC (used to initialise the homography
elements of the Kalman filter state vector) are

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

254 1.76 0.06 123 22.81 −0.03 −28795 947
1.76 0.25 0.00 0.54 0.05 0.00 −163 −1.17
0.06 0.00 0.00 0.03 0.01 0.00 −6.51 0.21
123 0.54 0.03 60.23 11.22 −0.02 −14023 472
22.81 0.05 0.01 11.22 2.18 0.00 −2605 87.42
−0.03 0.00 0.00 −0.02 0.00 0.00 3.85 −0.12
−28795 −163 −6.51 −14023 −2605 3.85 3280363 −108856
947 −1.17 0.21 472 87.42 −0.12 −108856 4186

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where the elements associated with ℎ33 have been omitted as in 5.2.3.
The method proposed by Chu et al. (2022), referred to as KpSFR,

uses a ResNet-34-based encoder–decoder architecture incorporating
skip connections. Using the same keypoint template proposed by Nie
et al. (2021), dynamic filter learning is used to predict keypoints. While
state-of-the-art results are reported, the method requires pre-processed
results, e.g. acquired by the method of Nie et al. (2021), to obtain key-

point identity encodings during inference. Ignoring this pre-requisite,

https://github.com/Paulkie99/KeypointAnnotator
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Fig. 2. Re-projected keypoints using WC14 and custom (CARWC) annotated homographies. The re-projection error of the WC14 annotation is most noticeable when considering
the alignment with the right-most grass band.
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Fig. 3. Re-projected keypoints using TSWC and custom (CARWC) annotated homographies. The re-projection error of the TSWC annotation is most noticeable when considering
the alignment with the bottom length-wise horizontal field line.
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Fig. 4. Keypoint (KP) measurement error distribution in the x- and y dimensions with
the baseline model of Nie et al. (2021), trained and evaluated on the CARWC training
set.

the method uses approximately 73 million parameters, and inference
occurs at approximately 1.5 frames per second2. In comparison, the re-
implementation of Nie et al. (2021) requires approximately 42 million
parameters and executes at approximately 50 frames per second (Nie
et al., 2021).

Both of these networks are trained in a manner similar to Nie et al.
(2021): with the Adam (Kingma & Ba, 2014) optimiser (𝛽1 = 0.9, 𝛽2 =
0.999) for 300 epochs, where the initial learning rate of 1𝑒−4 decays to
1𝑒−5 after 200 epochs. Training takes place on the CARWC training set.

The performance obtained before and after augmentation with our
proposed method is of particular interest. Variations of the method
of Nie et al. (2021) (brought about by changes to the training pro-
gramme, the number or distribution of keypoints in the field template)
are augmented with our BHITK approach. While some of these varia-
tions improve over other baseline methods without BHITK, additional
improvements are attained using BHITK. Thus, the Bayesian mod-
elling approach enables performance improvements which may not be
attainable through other means.

It has been shown that using stochastic gradient descent (SGD)
instead of Adam leads to better generalisation (Zhou et al., 2020). Fur-
thermore, sharpness-aware minimisation (SAM) (Foret et al., 2020) has
been proposed to avoid sharp local minima, improving generalisation.
The first variation of Nie et al. (2021) uses SAM and SGD instead of
Adam. The learning rate for SGD is set to 0.1, with a momentum of
0.9. Adaptive SAM is used with 𝜌 = 2.

The keypoint layout, i.e. the number and distribution of the key-
points in the field template, affects performance (Nie et al., 2021).
Another variation, therefore, uses the grass band keypoints (Cuevas
et al., 2022). To investigate the effect of uniform versus non-uniform
keypoint layouts, where the total number of keypoints remains con-
stant, yet another variation considers an increased number of uniform
keypoints, such that the total matches that of the grass band keypoints
(i.e. 147 keypoints with a uniform spatial distribution).

2 As measured on an NVIDIA RTX 3090 GPU with an AMD Ryzen 9 5900X
CPU, with the following inference script: https://github.com/ericsujw/KpSFR/
blob/main/inference.py.
9

5.4. Introduction to evaluation metrics

Following Chu et al. (2022), Citraro et al. (2020), Nie et al. (2021),
the mean and median of various evaluation metrics are reported in Sec-
tion 6. These metrics are briefly explained, followed by more detailed
explanations in the following subsections.

5.4.1. Homography evaluation metrics
Two types of IoU metrics evaluate the homographic projections

of the video frame and the field template, respectively. Additionally,
the projection error of randomly sampled points in the video frame
projected onto the field template and the re-projection error of the field
template keypoints into the video frame are reported. Re-projection
refers to transforming a coordinate in the field template to a point
in the video frame using the ground truth or estimated (predicted)
homography. Projection refers to the inverse of this transformation.

5.4.2. Keypoint measurement metrics
The normalised root-mean-square errors (NRMSE) for keypoint co-

ordinates in the 𝑥 and 𝑦 image dimensions are reported to evaluate
image keypoint position estimates. Furthermore, precision and recall
are reported for a given distance threshold, while the mean average
precision (mAP) is used to evaluate keypoint detections over a range
of distance thresholds.

5.5. Evaluation metrics

5.5.1. Intersection over union
The first type of IoU considered, IoUentire, is obtained by re-

projecting the field template mask – i.e. the rectangle that repre-
sents the soccer field – using the ground truth homography. This
re-projection is then projected using the predicted homography. The
IoUentire is equal to the area of intersection of this projected polygon
and the field template polygon, divided by the area of their union. I.e.
if the estimated homography performs the same mapping as that of
the ground truth over the entire field, IoUentire = 1. This definition
of IoUentire is consistent with Citraro et al. (2020), Nie et al. (2021).
However, the IoUentire is calculated incorrectly in Chu et al. (2022).
Instead of using the field template mask, Chu et al. (2022) projects
the binary mask representing the image area onto the field template
using the ground truth homography. The resulting polygon is then
re-projected to image coordinates using the predicted homography.
The IoUentire is obtained as the area of intersection of the re-projected
polygon and the binary mask representing the image area, divided by
the area of their union3.

The second type of IoU, IoUpart, considers only the part of the field
which is visible in the video frame. The ground truth homography
projects the binary mask representing the image area. The predicted
homography also performs this projection. Each of these projections
results in a polygon in the field template. The IoUpart is equal to the
area of intersection of these polygons divided by their area of union.

A point of concern in Citraro et al. (2020) is that IoUpart does not
take the mapping accuracy outside of the visible field into account.
Nevertheless, it was pointed out in Nie et al. (2021) that the ground
truth homography is determined only from the visible part of the field.
Therefore, IoUentire is not necessarily reliable since the ground truth
mapping is not guaranteed to be accurate outside of the visible field.
These concerns are valid, and annotations are never perfect. However,
with the re-annotation of the WC14 and TSWC datasets, resulting in
the CARWC dataset, it is believed that both of these metrics are more
reliable.

3 https://github.com/ericsujw/KpSFR/blob/main/metrics.py.

https://github.com/ericsujw/KpSFR/blob/main/inference.py
https://github.com/ericsujw/KpSFR/blob/main/inference.py
https://github.com/ericsujw/KpSFR/blob/main/metrics.py
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Table 2
A comparison of the homography evaluation performance of the baseline detection methods with and without BHITK on the time-series part of the CARWC dataset. Models
augmented with BHITK are marked with a checkmark in the BHITK column.

Method BHITK IoUentire (%) ↑ IoUpart(%) ↑ Proj. (meter) ↓ Re-Proj. (%)↓

Mean Median Mean Median Mean Median Mean Median

Nie et al. (2021) with online
refinement

X 86.76 89.67 98.18 98.43 0.38 0.35 0.89 0.78

Nie et al. (2021) X 86.79 89.67 98.19 98.43 0.37 0.35 0.88 0.78
✓ 90.48 92.14 98.63 98.88 0.34 0.33 0.77 0.73

Nie et al. (2021) + SAM +
SGD

X 85.77 87.93 98.37 98.64 0.32 0.28 0.77 0.71
✓ 92.29 93.68 98.87 99.00 0.25 0.22 0.59 0.57

Nie et al. (2021) + SAM +
SGD + more KPs

X 85.08 87.31 98.48 98.67 0.30 0.28 0.76 0.68
✓ 91.33 92.99 98.89 99.06 0.26 0.23 0.61 0.52

Nie et al. (2021) + SAM +
SGD + grass band KPs

X 84.65 88.26 98.52 98.66 0.30 0.28 0.70 0.66
✓ 91.69 93.68 98.94 99.08 0.23 0.23 0.55 0.53

KpSFR (Chu et al., 2022) X 89.52 91.40 98.36 98.68 0.42 0.37 0.83 0.71
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5.5.2. Projection error
The projection error is calculated similarly to Chu et al. (2022), Nie

et al. (2021). First, 2500 image points are randomly sampled from a
uniform distribution defined over the part of the image where the soc-
cer field is visible. This image portion is determined by the re-projection
of the field template mask using the ground truth homography. The
projection error in meters is then calculated as the average pair-wise
distance between the projections of these points using the predicted
homography and their projections using the ground truth homography.
However, whereas Chu et al. (2022), Nie et al. (2021) assumed field
dimensions of 100 × 60 m, dimensions of 105 × 68 m are used instead
unless otherwise specified) — which more accurately reflect FIFA
egulations (FIFA, 2022).

.5.3. Re-projection error
Re-projection error is the average pair-wise distance between the

ield template keypoints re-projected in the image using the ground
ruth homography and those re-projected using the predicted homog-
aphy, normalised by the image height (Chu et al., 2022; Nie et al.,
021).

.5.4. Normalised root-mean-square error
To investigate the effect of keypoint filtering on keypoint position

stimates, the NRMSE is used:

RMSE = 1

𝑍
√

𝐿

√

√

√

√

𝐿
∑

𝑙=1

(

𝑥𝐼,𝑗𝑙 − �̂�𝐼,𝑗𝑙

)2
,

here 𝐿 is the total number of measured keypoints which correspond
o the ground truth, 𝑥𝐼,𝑗𝑙 and �̂�𝐼,𝑗𝑙 are the corresponding ground truth
nd estimated keypoint positions, respectively, in either the x- or y-
imension. Finally, 𝑍 is the image width or height corresponding to
he computation of the NRMSE in the x- or y-dimension.

.5.5. Precision, recall and mean-average precision
Precision is the ratio of true positive detections to the number of

redicted detections, while recall is the ratio of true positive detections
o the number of ground truth detections. Following Chu et al. (2022), a
eypoint is considered a true positive if it is within a distance of 5 pixels
o the ground truth position in the predicted image space (320 × 180),
hich is equivalent to 20 pixels in the actual image space (1280 × 720)
r ∼ 2.78% of the image height. Additionally, the average precision (AP)
s evaluated at 5, 10, 15 and 20-pixel thresholds (in the actual image
pace):

P =
∑

𝑛

(

𝑅𝑛 − 𝑅𝑛−1
)

𝑃𝑛,

where 𝑅𝑛 and 𝑃𝑛 are the recall and precision at the 𝑛th threshold. The
10

mAP is then obtained as the mean AP. a
6. Results and discussion

The following evaluation metrics are obtained by performing infer-
ence on the CARWC test set unless specified otherwise.

6.1. Baseline results

The results of the baseline methods are presented in Table 2 and
Table 3, where they are marked with a cross in the BHITK column.
Table 2 shows the homography evaluation metrics, and Table 3 shows
the keypoint detection and measurement metrics.

The online refinement algorithm using two loss functions proposed
by Nie et al. (2021) did not improve the results. This may be because
the self-verification step, which must fail for the online refinement
to occur, is consistently successful. In other words, according to the
criteria of the online refinement algorithm, the estimated homography
is sufficient for most of the CARWC test set. This is consistent with the
results presented in Nie et al. (2021), where this refinement algorithm
had an insignificant impact on the WC14 dataset.

The use of SAM and SGD improves every metric when compared to
the network trained with Adam (except IoUentire), thus confirming their
positive effect on the generalisation of keypoint detection. With SAM
and SGD, recall increases from 90.59% to 95.10%, and mAP increases
from 61.70% to 68.58%. The NRMSE, projection error and re-projection
error are also lowered significantly. Despite the improvements to the
keypoint detection metrics and IoUpart, the performance of IoUentire is
egraded compared to the network trained with Adam. This is because
ANSAC (Fischler & Bolles, 1987) only considers keypoints visible

n the current frame, with no mechanism to maintain consistency in
he homography between subsequent frames. Thus, it is possible for
he out-of-frame mapping to be inconsistent while the within-frame
apping improves. Another explanation could be that the detection
odel prefers specific keypoints over others. This preference could be
ue to similarities between the preferred and training data keypoints,
hile the undetected or less preferred keypoints may be dissimilar.
hus, it is possible that keypoints which may have been essential to
btain an accurate IoUentire are missed. However, this explanation is
ess likely since the keypoint detection metrics (specifically recall) are
elatively high.

Adding more uniform keypoints to the field template slightly im-
roves the IoUpart, projection and re-projection metrics but degrades
he keypoint detection metrics and IoUentire. The increased dimension-
lity of the output may explain the degradation in detection metrics.
evertheless, this is not sufficient to negate the positive effect of having
n increased number of detected keypoints on IoUpart.

The use of grass band keypoints results in the highest precision,
owest re-projection error, and highest mean IoUpart obtained amongst

ll the baseline methods. However, it may be concluded from the more



Expert Systems With Applications 252 (2024) 124156P.J. Claasen and J.P. de Villiers

6

a
t
a

B
w
m
r
i
m
m
t
s

b
t
N
r
t
s

p

Table 3
A comparison of the keypoint detection and measurement performance of the baseline detection methods with and without BHITK on the
time-series part of the CARWC dataset. Models augmented with BHITK are marked with a checkmark in the BHITK column.
Method BHITK NRMSE (%)↓ P(%)↑ R(&)↑ mAP(%)↑

y x

Nie et al. (2021) with online refinement X 0.65 0.71 94.98 90.59 61.70

Nie et al. (2021) X 0.65 0.71 94.98 90.59 61.70
✓ 0.63 0.68 95.49 91.08 62.26

Nie et al. (2021) + SAM + SGD X 0.53 0.57 96.14 95.10 68.58
✓ 0.50 0.55 96.42 95.36 69.97

Nie et al. (2021) + SAM + SGD + more KPs X 0.59 0.58 95.95 94.96 66.77
✓ 0.55 0.56 96.23 95.24 67.87

Nie et al. (2021) + SAM + SGD + grass band KPs X 0.63 0.58 96.44 94.86 65.39
✓ 0.58 0.55 96.95 95.36 66.37

KpSFR (Chu et al., 2022) X 0.67 0.66 95.13 93.28 66.58
Table 4
The percentage improvement of the best performance metrics obtained with BHITK, relative to those obtained without BHITK.

IoUentire IoUpart Proj. (meter) Re-Proj. NRMSE P R mAP

Mean Median Mean Median Mean Median Mean Median y x

3.09% 2.49% 0.43% 0.41% 23.33% 21.43% 21.43% 21.21% 5.66% 3.51% 0.53% 0.27% 2.03%
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considerable difference between the mean and median IoUentire (3.61%)
that there are more outlier homography estimates when the entire
field is taken into consideration. Although detections are more precise,
possibly due to keypoints being placed in more semantically meaningful
locations, recall and mAP are lower than for uniform keypoints.

Interestingly, KpSFR (Chu et al., 2022) obtains the worst projection
error and fairs quite poorly when considering the re-projection and key-
point detection metrics. Nevertheless, it achieves the highest IoUentire
metrics by a comfortable margin. It slightly improves upon the best
median IoUpart achieved by the variations of Nie et al. (2021).

.2. Results with the proposed method

The results of augmenting the baseline methods with the proposed
pproach are in Table 2 and Table 3, marked with a checkmark in
he BHITK column. For each distinct variation of Nie et al. (2021),
ll evaluation metrics improve using BHITK. The IoUentire benefits

significantly from homography filtering: the large difference between
the mean and median of IoUentire for the variation which uses grass
band keypoints has been reduced from 3.61% to 1.99% (i.e. there
are fewer outlier homography estimates compared to the baseline).
Furthermore, the mean IoUentire increased by 7.04% for this variation.
Relative to the unaugmented mean IoUentire, this is an improvement
of 8.32%. Significant improvements of the IoUentire metrics are also
seen for the other baseline methods. While IoUpart also improves with

HITK, these improvements are less striking since the IoUpart obtained
ithout BHITK is already relatively high. The best of the unaugmented
ean and median projection errors were reduced by 7 cm and 6 cm,

espectively, with BHITK. Similarly, the best re-projection errors were
mproved by 0.15% and 0.14% (when compared to the best of these
etrics obtained with BHITK over all the experiments). These improve-
ents may seem marginal, but the percentage improvement relative to

he results obtained with the unaugmented methods is significant, as
hown in Table 4.

With BHITK, the best mAP increased from 68.58% to 69.97%, the
est recall from 95.10% to 95.36% and the best precision from 96.44%
o 96.95%. There are also minor improvements to the best of the
RMSE metrics. This shows that the keypoint positions are effectively

efined, contributing to the homography filter’s effectiveness. However,
he low mAP metrics relative to the generally high precision and recall
uggest that keypoint identification still suffers at lower thresholds.

Augmenting (Nie et al., 2021), with no variations, with BHITK im-
roves nearly all homography evaluation metrics over those achieved
11

t

y KpSFR (Chu et al., 2022), except for the median re-projection error
here the difference is only 0.02% (a relative degradation of 2.82%).
his is despite having a much lower mAP, recall and slightly higher
RMSE in the 𝑥 dimension. The improvement is especially significant
onsidering the increased parameter count (73 million) and inference
ime (1.5 frames per second) of KpSFR compared to Nie et al. (2021)
42 million and 50 frames per second, respectively). Thus, BHITK
nables a less sophisticated and less computationally expensive method
o outperform the state-of-the-art in most homography evaluation met-
ics. Furthermore, these improvements are obtained without necessarily
ltering the existing method. Finally, BHITK may enable performance
hat is not attainable by considering such alterations, as is shown by the
act that each distinct variation improved significantly using BHITK.

.3. Results on TSWC

The proposed method is applied to a variation of Nie et al. (2021)
ithout dense feature regression, as implemented in Chu et al. (2022),

o compare results on the TSWC dataset. Table 5 shows that the
mprovement afforded by the proposed method is consistent across
he different datasets. The simplified (Nie et al., 2021) network with
HITK outperforms or achieves similar homography metrics to more
omputationally expensive methods, such as KpSFR (Chu et al., 2022)
nd the method of Chen and Little (2018). These improvements are
chieved despite a much lower recall than that of KpSFR — similar to
he improvement of Nie et al. (2021) over KpSFR despite lower recall
n 6.2. Most keypoint detection metrics also do not show a significant
mprovement. Thus, it may be concluded that the homography filter
lays the most significant role in the proposed method.

.4. Qualitative evaluations

Qualitative comparisons are shown in Figs. 5 and 6. In each figure,
he homography estimate predicted for the same image is used to
e-project the field template keypoints into the image and project
he image onto the field template. In each case, the first sub-figure
epresents the results obtained without using BHITK, while the second
hows the results using BHITK. Specifically, Fig. 5(a) shows the results
btained with the homography estimate obtained from the method
f Nie et al. (2021), while Fig. 5(b) shows the results obtained when
he same method is augmented with BHITK. Similarly, Fig. 6(a) shows

he results obtained with the variation of Nie et al. (2021) trained with
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Fig. 5. This figure depicts both the re-projected keypoints within the image and the image projected onto the field template. The projection and re-projection in each sub-figure
utilise distinct homography estimates: one derived from Nie et al. (2021)’s method and the other obtained by augmenting this same network with the proposed method (BHITK).
The sub-figures represent the same frame from the same test video. The red circles represent the keypoints re-projected using the predicted homography, and the green circles
represent the keypoints re-projected using the ground truth homography.
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Fig. 6. This figure depicts both the re-projected keypoints within the image and the image projected onto the field template. The projection and re-projection in each sub-figure
utilise distinct homography estimates: one derived from a variant of Nie et al. (2021)’s method, which is trained with SAM, SGD and 147 keypoints, and the other obtained by
augmenting this same network with the proposed method (BHITK). The sub-figures represent the same frame from the same test video. The red circles represent the keypoints
re-projected using the predicted homography, and the green circles represent the keypoints re-projected using the ground truth homography.
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Table 5
A comparison of BHITK with past methods on the TSWC dataset.

Method IoUentire (%) ↑ IoUpart(%) ↑ Proj. (meter) ↓ Re-Proj. (%)↓ NRMSE (%) ↓ P(%)↑ R(%)↑ mAP(%)↑

Mean Median Mean Median Mean Median Mean Median y x

Chen and Little (2018) as
reported in Chu et al. (2022)

90.7a 94.1a 96.8 97.4 0.54b 0.38b 1.6 1.3 – – – – –

Nie et al. (2021) as in Chu
et al. (2022)

92.5a 94.2a 97.4 97.9 0.43b 0.37b 1.1 1.0 0.66 0.78 94.96 83.23 56.87

KpSFR (Chu et al., 2022) 94.8a 95.4a 98.1 98.2 0.36b 0.33b 0.9 0.8 – – – 87 –

Nie et al. (2021) as in Chu
et al. (2022) + BHITK

94.8a 95.8a 97.9 98.3 0.36b 0.32b 0.9 0.8 0.62 0.76 95.06 83.32 56.92

a The IoUentire metric is calculated as in Chu et al. (2022).
b The projection error is calculated using field template dimensions of 100 × 60 m, as in Chu et al. (2022).
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AM, SGD and 147 keypoints, while Fig. 6(b) shows the results when
his variation is augmented with BHITK.

In Fig. 5 and Fig. 6, the re-projected keypoints are closer to their
round truth positions when BHITK is employed. Furthermore, the
rojected field lines align more closely with those of the field template
hen using BHITK.

. Conclusion

Exploiting the temporally consistent nature of homographic projec-
ions in a Bayesian framework is shown to be beneficial. The proposed
pproach effectively enforces temporal consistency between subsequent
omography estimates through an affine transformation. As long as the
nderlying keypoint detection method satisfies the standard Kalman
ilter assumptions (i.e. approximately zero-mean Gaussian-distributed
easurement noise), homography filtering from tracked keypoints is

hown to be effective. When augmented with the proposed method,
he overall weakest-performing baseline method outperforms the state-
f-the-art, which is much more computationally expensive, in all but
ne of the homography evaluation metrics (median re-projection error,
here the difference is only 0.02%). Furthermore, all baseline evalua-

ion metrics improve when the baseline methods are augmented with
HITK. Thus, the method will likely improve the performance of several
xisting keypoint detection methods. Finally, the annotations of the
orldCup and TS-WorldCup datasets are refined and released along
ith a custom homography annotation tool as the CARWC dataset.
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