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Abstract
The updating and rethinking of vegetation classifications is important for ecosystem 
monitoring in a rapidly changing world, where the distribution of vegetation is chang-
ing. The general assumption that discrete and persistent plant communities exist 
that can be monitored efficiently, is rarely tested before undertaking a classification. 
Marion Island (MI) is comprised of species-poor vegetation undergoing rapid envi-
ronmental change. It presents a unique opportunity to test the ability to discretely 
classify species-poor vegetation with recently developed objective classification 
techniques and relate it to previous classifications. We classified vascular species data 
of 476 plots sampled across MI, using Ward hierarchical clustering, divisive analysis 
clustering, non-hierarchical kmeans and partitioning around medoids. Internal cluster 
validation was performed using silhouette widths, Dunn index, connectivity of clus-
ters and gap statistic. Indicator species analyses were also conducted on the best per-
forming clustering methods. We evaluated the outputs against previously classified 
units. Ward clustering performed the best, with the highest average silhouette width 
and Dunn index, as well as the lowest connectivity. The number of clusters differed 
amongst the clustering methods, but most validation measures, including for Ward 
clustering, indicated that two and three clusters are the best fit for the data. However, 
all classification methods produced weakly separated, highly connected clusters with 
low compactness and low fidelity and specificity to clusters. There was no particularly 
robust and effective classification outcome that could group plots into previously sug-
gested vegetation units based on species composition alone. The relatively recent age 
(c. 450,000 years B.P.), glaciation history (last glacial maximum 34,500 years B.P.) and 
isolation of the sub-Antarctic islands may have hindered the development of strong 
vascular plant species assemblages with discrete boundaries. Discrete classification at 
the community-level using species composition may not be suitable in such species-
poor environments. Species-level, rather than community-level, monitoring may thus 
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1  |  INTRODUC TION

Plant ecologists identify, describe and map vegetation variation that 
represents underlying ecological processes in an effort to under-
stand the complex spatial and temporal interactions between taxa 
and the environments in which they occur (De Cáceres et al., 2015). 
While vegetation variation is complicated and arguably varies along 
a continuum in space and time, humans tend to think categorically. 
This requires simplification through classification to create useful, 
logical and manageable units for theoretical and practical purposes 
(De Cáceres et al., 2015; Wiser & De Cáceres, 2013). The aim of 
vegetation classification is to delineate and describe environments 
using the characteristics of the standing vegetation (De Cáceres 
et al., 2015) to provide a surrogate for ecosystem delineation (Brown 
et al., 2013). A vegetation classification serves as baseline data for 
ecosystem research, land-use planning, environmental assessments 
and scientifically based decisions in biodiversity management 
(Brown & Bredenkamp, 2018). Policy-making, conservation and re-
search therefore depend on accurate and up to date description and 
delineation of vegetation units.

Plant ecology concepts have evolved over time, and have re-
cently enjoyed renewed interest, especially in terms of updating and 
advancing previous classifications (De Cáceres et al., 2015; Mucina 
et al., 2016; van Staden et al., 2021). Early approaches to vegetation 
variation viewed vegetation as either hierarchical, compositionally 
distinct units (“communities”) that vary as an entire unit in space and 
time (i.e., discrete community concept; Weaver & Clements, 1929) 
or entities made up of a continuum of a temporary co-occurrence 
of species that fluctuate in composition, space or time (i.e., the con-
tinuum concept; Curtis & McIntosh, 1951). The continuum concept 
proposes that vegetation does not consist of homogeneous per-
sistent units, but is the outcome of individual species' responses to 
their environment and to each other (Palmer & White, 1994). This 
concept is related to the niche concept which proposes that each 
species partitions a resource along a gradient (Austin, 2013). The 
two extremes in approaches viewed vegetation as either a super-
organism of co-evolved groups of species (i.e., community) or as 
species that assemble entirely individualistically (Austin,  2013). 
No consensus has been reached on which perspective is most ap-
propriate for classifying particular environments (Austin,  2013; 
Austin & Smith, 1989; Curtis & McIntosh, 1951; Lortie et al., 2004; 
Scott, 1995; Weaver & Clements, 1929). However, the categorical, 

compositionally discontinuous, discrete model of plant commu-
nities, initially proposed by Weaver and Clements  (1929), persists 
mainly due to historical legacy and its utility in creating vegetation 
maps for ecological management (Feilhauer et al., 2020). While the 
two approaches are not necessarily incompatible, most ecologists 
interested in vegetation description continue to define vegetation 
as an assemblage of distinct hierarchical plant communities (De 
Cáceres et al., 2018; Gremmen, 1981; Mucina et al., 2016; Tsakalos 
et al., 2018; van Staden et al., 2021).

The general assumption of the community concept, that dis-
crete and persistent vegetation units exist, is rarely tested before 
undertaking a classification, with the exception of more recent re-
search (Feilhauer et al., 2020; Lortie et al., 2004; Pavão et al., 2019). 
This raises concerns about the widespread use of the traditional 
community concept and the application of methods developed 
that have underlying assumptions rooted in the existence of ho-
mogenous discrete spatial entities. Assuming, a priori, that specific 
floristically distinct communities exist may disregard the unique 
vegetation patterns often found in environments with few vascular 
plant species such as in Aquatic (Landucci et al., 2015) or Tundra 
(Yang et al., 2021) vegetation. In recent decades, a variety of new 
tools have been developed for vegetation scientists (see, e.g., Aho 
et al.,  2008 or Lötter et al.,  2013). While these approaches may 
encourage new perspectives on the complex nature of vegetation 
patterns, they bring new challenges, for example, in the selection 
of appropriate clustering methods (Maechler et al., 2019; Oksanen 
et al., 2020). Lötter et al.  (2013) referred to this as “the classifica-
tion conundrum”. The amount of research available which advocates 
particular methods, ideologies and approaches to classify vegetation 
(Feilhauer et al., 2020; Lengyel et al., 2021; Lortie et al., 2004; Lötter 
et al., 2013; Pakgohar et al., 2021), reflects the impracticality of the 
use of one universal approach in all environments. Nevertheless, 
there is general agreement that expert opinion is needed to select 
vegetation units at some stage in the classification process (Brown 
et al.,  2013; Lötter et al.,  2013; Mucina,  1997) even if this adds 
subjectivity to the classification, possibly resulting in bias (Lötter 
et al., 2013; Wolda, 1981), with little objective validation of cluster-
ing results. However, recent classification methods, especially those 
used in data science (Flynt & Dean, 2016), have made it possible to 
formally test the effectiveness of classifications, thereby reducing 
the number of subjective choices (Lötter et al.,  2013; Pakgohar 
et al., 2021). The existence of discrete groups in the data can thus be 
tested objectively, before expert interpretation is needed.

be more appropriate in species-poor environments, aligning with continuum theory 
rather than community theory.
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Updating and rethinking vegetation classification is especially 
important in tracking shifts in the distribution of species in response 
to changes in climate and other anthropogenic drivers. In the sub-
Antarctic, the regional climate has changed at an accelerated pace 
compared with lower latitudes (le Roux & McGeoch, 2008a). For ex-
ample, between 1949 and 2003, Marion Island (MI) has experienced 
an increase in mean annual temperature from 5.4 to 6.4°C, which is 
double the mean global rate of increase (le Roux & McGeoch, 2008a). 
Mean annual rainfall has also decreased from c. 3000 mm to c. 
2000 mm during the same period (le Roux & McGeoch, 2008b). The 
vegetation is closely coupled with abiotic conditions and consists of 
23 native vascular plant species and ranges from near continuous 
short-statured plant cover in sub-Antarctic Tundra to barren Polar 
Desert (Smith & Mucina, 2006). The island is remote, has a relatively 
recent origin—only emerging above sea level for the first time c. 
450,000 B.P. (McDougall et al., 2001)—and has been glaciated with 
the greatest extent of ice occurring most recently c. 34,500 years 
ago during the last glacial maximum (Rudolph et al., 2020). Rapid 
climatic change has already altered the distribution and relation-
ships between plant species and perhaps redistributed some spe-
cies which were used to previously classify communities on MI (le 
Roux & McGeoch,  2008b). In addition, a more temperate climate 
coupled with anthropogenic disturbances has created new opportu-
nities for the establishment and spread of non-native species (Greve 
et al., 2017). Three alien plant species have become widespread on 
MI (Poa annua, Sagina procumbens, Cerastium fontanum), especially in 
areas influenced by animals near the coast (le Roux et al., 2013). The 
most widespread invasive species on MI is the House Mouse (Mus 
musculus) which has rapidly increased in density, abundance and dis-
tribution since feral cats, originally introduced to control mice, were 
eradicated in 1991 (McClelland et al., 2018). The mice impact most 
aspects of the biodiversity of MI including causing mortality in plant 
species (Phiri et al., 2009), decreasing invertebrate abundance (Smith 
et al., 2002), increasing seabird deaths (Dilley et al., 2016) and reduc-
ing indigenous seed caches (Smith et al., 2002). Due to both invasive 
species and climate change impacts, the vegetation has been chang-
ing on MI and is expected to change significantly in the near-future 
with the planned mouse eradication (Preston et al., 2019), with mon-
itoring becoming a key conservation objective for the island.

To effectively study and monitor the impact of climate change 
and alien species on the vegetation, an ecologically meaningful veg-
etation classification and monitoring unit is needed that can be ob-
jectively and repeatedly defined, mapped and monitored at a fine 
scale. Since using remote sensing data for image classification of 
vegetation in the near permanent cloud cover experienced on most 
islands in the sub-Antarctic is challenging (Fitzgerald et al., 2021), 
a floristic approach to classification using plot data may show in-
trinsic vegetation patterns and thus act as a proxy for underlying 
environmental variation and patterns that form the standing vegeta-
tion. Using a floristic classification may uncouple the vegetation dis-
tribution from previous assumptions of environmental drivers and 
allow modeling of change in abiotic conditions with resultant groups 
acting as the units of change.

Here, we tested whether vegetation forms compositionally 
discrete units in a species-poor environment, which are generally 
neglected environments in classification research. MI presents an 
opportunity to test plant community concepts and to elucidate ap-
propriate classification approaches in species-poor environments 
that are closely coupled with abiotic conditions. The first objective 
was to identify and differentiate vegetation units using both hier-
archical and non-hierarchical classification algorithms. The second 
objective was to compare and validate clustering methods. The third 
objective was to describe the vegetation units using indicator species 
analysis (ISA). The best performing clustering method was related to 
earlier classifications that used phytosociological relevè table sort-
ing based on vascular and bryophyte species (Gremmen, 1981) and a 
cluster analysis using scores from an ordination based largely on soil 
chemistry and plant guilds (Smith et al., 2001) to classify vegetation. 
Since previous research suggested viewing the vegetation as dis-
continuous, we expected compositionally well separated vegetation 
groups where the variation between groups can be related to abiotic 
and biotic influences.

2  |  METHODS

2.1  |  Study site

Marion Island (46°54′S, 37°45′E) is a volcanic, remote, sub-
Antarctic island covering an area of c. 290 km2 (Figure  1). The 
South African-governed island has a cool, thermally-stable, oce-
anic climate with mean annual precipitation of c. 2000 mm (le Roux 
& McGeoch,  2008a). The islands' geology consists of smoothed 
pre-glacial gray lava and rough post-glacial black lava (McDougall 
et al., 2001) with c. 130 more recent red scoriaceous cinder cones 
scattered around the island (Rudolph et al.,  2020; Figure  1). The 
vegetation changes along an elevational severity gradient (le Roux & 
McGeoch, 2008c), from the coast to the highest elevation of 1230 m, 
and generally occurs in two layers at lower elevations. These are a 
prostrate vascular plant layer, rarely exceeding 50 cm in height and 
a low ground cover of bryophytes (Gremmen, 1981). The flora com-
prises 23 indigenous species (Chau et al., 2020) and 17 alien vascular 
plant species (Greve et al., 2017), along with 134 bryophyte and 100 
lichen species (Øvstedal & Gremmen,  2001). Many alien vascular 
plant species have been controlled and only occur in isolated loca-
tions (Greve et al., 2017).

Five vegetation units have been mapped previously based on 
field research, photographs and field observations, and informed 
by expert opinion (Smith & Mucina,  2006; Figure  1). Smith and 
Mucina (2006) recognized that mapping at the scale of plant com-
munity identified in previous studies (Gremmen,  1981; Smith  & 
Steenkamp, 2001), in vegetation that changes within a few meters, 
would not be possible, and thus mapped five units (Figure 1) at a 
broader scale. Polar Desert was indicated by the absence of vas-
cular plant species and by the presence of bryophytes (Smith  & 
Steenkamp, 2001). Cinder cones, conspicuous red volcanic ash 
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deposits, were largely associated with bryophytes, although 
Gremmen (1981) included cinder cones under Fellfield vegetation. 
Fellfield is dominated by Azorella selago cushion plants and epiphytic 
Polypogon magellanicus grasses, with several vascular plant species 
co-occurring at lower altitudes (Smith & Steenkamp, 2001). The 
Mire-Slope unit is made up of the Mire and Slope communities com-
bined, as mapping at the fine scale needed to differentiate Mires and 
Slopes was not possible (Smith & Mucina, 2006). Slope communities 
are either dominated by the fern Austroblechnum penna-marina or 
shrub Acaena magellanica (on slopes with impeded drainage). Mires 
occur on flat or slightly sloping areas, dominated by graminoids P. 
magellanicus and Uncinia compacta and various bryophytes. Lastly, 
Coastal vegetation is either largely dominated by Crassula moschata 
(exposed to high salt spray) or by Liptinella plumosa, Callitriche ant-
arctica or Poa cookii (in areas influenced by biotic activity; Smith & 
Steenkamp, 2001).

2.2  |  Vegetation sampling

Vegetation data consisted of 476 vegetation plots that were sam-
pled on MI using systematic randomized sampling in 2018 and 
2019. Plot locations thus included a wide range of environmental 

conditions (Figure  1). In each 3 × 3 m plot, the percentage ocular 
canopy cover of all vascular plant species was estimated by trained 
observers following Daubenmire  (1959). The percentage cover of 
two non-vegetated cover classes were also estimated: bare rock 
or soil and open water. A description of the vegetation was pro-
duced for each plot in the field to assist the classification. Two 
bryophytes were identified to genus level, namely Breutelia and 
Brachythesium, and three to species-level namely Marchantia poly-
morpha, Marchantia berteroana and Racomitrium lanuginosum. These 
bryophytes were easily identified in field and were indicator species 
for plant communities in previous classifications (Gremmen, 1981). 
All other bryophytes were estimated collectively as “bryophytes”. 
Lichens were also given a collective cover estimate. To reduce 
noise, species with two or less observations in the matrix were re-
moved and thus rare species were not considered (e.g., Addicott 
et al., 2018). Five alien species were recorded in the data, with only 
Poa annua, Sagina procumbens and Cerastium fontanum retained in 
analyses after rare species were removed. All analyses were initially 
conducted on two subsets of the data: including versus exclud-
ing the three alien species. However, the optimality of clustering 
did not improve with their exclusion, and these alien species were 
thus included in the analyses. Indeed, Smith et al. (2001) suggested 
that alien species should be included in classifications due to the 

F I G U R E  1 Vegetation map of MI showing the five units (in color) delineated by Smith and Mucina (2006). Black points indicate the 
location of plots sampled in this study.
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increasingly important role of invasive species on community func-
tion, structure, and dynamics.

2.3  |  Cluster analysis

To select the most robust classification procedure for our study site, 
the best practice was to test a variety of procedures to determine if 
the vegetation data do indeed form clusters that can be interpreted 
ecologically (Aho et al., 2008; Lötter et al., 2013). The classifications 
were undertaken in three steps: (1) pre-processing involved the se-
lection of a distance measure and normalization of the data; (2) clus-
ter analysis involved the selection and application of the clustering 
algorithm and its various parameters; (3) cluster validation involved 
the selection and application of appropriate internal validation tech-
niques to evaluate the quality of the classification. Four clustering 
algorithms and four validation measures were explored based on 
demonstrated performance in recent literature (Aho et al.,  2008; 
Handl et al., 2005; Lengyel et al., 2021; Pakgohar et al., 2021). We 
defined a vegetation classification as being comprised of a cluster 
of plots organized into units with discrete boundaries between 
them. The aim was to identify clusters of plots containing small 
within-cluster variance (i.e., compact clusters) and sufficiently large 
between-cluster variance (i.e., spatially well-separated). All analy-
ses were conducted in R Statistical Software v. 4.02 (R Core Team, 
2020).

One divisive and three agglomerative clustering algorithms 
prominent in the literature were tested using the raw data. 
Divisive analysis clustering (DIANA) (Maechler et al., 2019) was 
chosen as the divisive hierarchical clustering method; it starts with 
all plot data in one cluster and successively divides plots based 
on a “distance” metric, selected by the researcher, into clusters. 
Conversely, agglomerative hierarchical clustering starts with each 
plot as an individual cluster locating pairs of plots with the small-
est distance, fusing the two plots into a cluster. The approach 
then re-iteratively calculates the distance from fused plots to all 
remaining plots until all sites are grouped into one cluster. For ag-
glomerative clustering, the hierarchical Ward clustering method 
was chosen after comparison to single, average and complete link-
age clustering (linkage refers to the way the distance measure is 
implemented to form clusters; see Aho et al., 2008 for a summary 
of the linkage methods). This was done by calculating the agglom-
erative coefficient and divisive coefficient for DIANA in the “clus-
ter” package in R (Maechler et al., 2019). The Ward method aims 
to minimize the within-cluster variance and searches for clusters 
in multivariate Euclidean space (Murtagh & Legendre, 2014). The 
Ward Method, which showed the strongest clustering, implements 
squared Euclidian distances based on sum of squares (Murtagh & 
Legendre,  2014), but is not appropriate for non-metric distance 
(e.g., Bray-Curtis), thus Euclidean distance was chosen as the dis-
similarity metric, calculated using the “vegan” package (Oksanen 
et al.,  2020). To include non-hierarchical classification, kmeans 
and partitioning around medoids (PAM) clustering were chosen 

as centroid-based algorithms that identify k centroids, allocating 
each data point to the nearest centroid. Kmeans aims to minimize 
the sum of squared distances of data points to their cluster cen-
troid, whereas PAM minimizes dissimilarity between data points 
in a cluster and its cluster centre (medoids). Initial investigations 
showed that all dissimilarity measures explored (i.e., Hellinger, 
Manhattan and Bray-Curtis distances) with single, average and 
complete linkage, where possible, produced similar results (see 
also Aho et al., 2008).

2.4  |  Number of clusters

There is no consensus on an ideal measure to estimate the opti-
mum number of clusters or most appropriate clustering method 
(Aho et al., 2008; Lötter et al., 2013). To choose the optimum num-
ber of clusters for each clustering method, we used (1) silhouette 
widths, (2) Dunn index and the (3) gap statistic in the “NbClust” 
package (Charrad et al., 2014). Silhouette width is widely used to 
simultaneously determine the optimum number of clusters and 
quality of the entire classification (Handl et al., 2005). Silhouette 
width estimates the average distance between clusters, i.e., how 
close data points in a cluster are to data points in neighboring clus-
ters (Rousseeuw, 1987). The Dunn index calculates the ratio be-
tween maximum intra-cluster distance and minimum inter-cluster 
distance (Dunn, 1974). The gap statistic compares within-cluster 
distance to a uniformly distributed null reference distribution 
with bootstrapping (Tibshirani et al.,  2001). The optimum clus-
ter number is indicated where the gap curve reaches an inflec-
tion point and changes to a higher value. Previous classifications 
of the vegetation on MI defined between five and 41 vegetation 
units (Gremmen, 1981; Huntley, 1971; Smith et al., 2001; Smith 
& Mucina, 2006), so there was no a priori reason to choose any 
particular number of clusters. However, we explored five clusters 
along with the optimal number of clusters indicated by the valida-
tion measures, to compare to the suggested five vegetation units 
mapped previously (Smith & Mucina, 2006).

2.5  |  Cluster validation

Since various R packages have been created for internal cluster 
validation, multiple packages and validation measures were ex-
plored. We evaluated optimality as maximizing intra-cluster ho-
mogeneity and inter-cluster distance, and minimizing the degree 
to which a cluster groups data points together with the nearest 
neighbors (Handl et al., 2005). To determine the optimal cluster-
ing method based on compactness, separation and connectivity 
(the three most important clustering criteria) of each clustering 
algorithm, the (1) silhouette widths, (2) Dunn index and (3) con-
nectivity of clusters were calculated for two to 20 clusters with 
the “clValid” package (Brock et al.,  2008). Individual silhouette 
plots were drawn for each clustering method with the “cluster” 
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package (Maechler et al., 2019) using the optimal number of clus-
ters per method. These plots show the silhouette widths esti-
mated for each plot within a cluster and calculates the average 
silhouette width (ASW) for each cluster. Both the Dunn index and 
silhouette width compute a final score that combines two clus-
tering criteria: compactness and separation (Handl et al., 2005). 
Connectivity indicates the degree to which clusters are connected 
to the nearest neighbors to determine to what extent data items 
are placed in the same cluster as their nearest neighbor (Saha & 
Bandyopadhyay, 2012). While most of these are heuristic meth-
ods, well-separated and compact clusters are indicated by large 
silhouette widths and Dunn index values. Ideally, connectivity 
should be minimized so that plots nearby are more related than 
plots further away. Furthermore, dendrograms and centroids as-
sisted to visually determine groupings in the data.

2.5.1  |  Indicator species analysis

Indicator species analysis (ISA) was conducted with the “indicspe-
cies” package (De Cáceres & Legendre, 2009), to determine the as-
sociation of diagnostic species with each cluster and to compare 
with previously classified groups which were indicated by particu-
lar species (Gremmen, 1981). The analysis was run for the optimal 
number of clusters in the best performing clustering method and 
also for five clusters, to compare to the five groups that were previ-
ously proposed in the vegetation map (Smith & Mucina, 2006). The 
ISA is based on an Indicator Value (Dufrêne & Legendre, 1997) that 
calculates a plant species' relative abundance and frequency of oc-
currence to estimate the strength of species associations with the 
predetermined groups (Dufrêne & Legendre, 1997). The statistical 
significance of the association is then tested with a permutation test 
(De Cáceres & Legendre, 2009). This analysis thus indicates species 
fidelity (the probability of finding the species in plots that belong 
to the cluster) and specificity (the probability that a plot belongs to 
the cluster given that the species is present in the plot). Fidelity is 
fundamental to interpreting the association of species with a veg-
etation group under the Braun-Blanquette approach. These two 
components combined gives an association statistic to a group.

A vegetation map was created with the output of the classifi-
cation using ArcGIS Desktop© and Google Earth Pro©. We used 
Google Earth satellite imagery, the previous vegetation map (Smith 
& Mucina, 2006), plot data from 2018 to 2020 and a digital surface 
model of the island to inform the map.

3  |  RESULTS

3.1  |  Cluster analysis

Ward hierarchical clustering consistently performed better than 
kmeans, DIANA and PAM clustering in all validation measures 
(Figure  2). Ward clustering also had the highest agglomerative 

coefficient (0.98), compared with single (0.80), complete (0.89) and 
average (0.86) linkage, and the divisive coefficient for DIANA (0.87). 
Ward clustering had the highest ASW (0.39, Table 1) and Dunn index 
(0.47, Table 1). It also had the lowest connectivity for any number of 
clusters (Figure 2).

3.2  |  Number of clusters

In all methods, clustering performance decreased with increasing 
cluster number (Figure  2). Most validation measures indicated that 
two clusters are the best fit for the data (Table 2). The ASW indicated 
that the data were clustered most strongly when the Ward method 
was clustered in two (0.34) or three (0.34) groups (Figure 3). DIANA 
had the highest ASW for three (0.37) and seven clusters (0.36), fol-
lowed by kmeans with the highest ASW for two (0.36) and three (0.35) 
clusters (Table 2). PAM clustering had the highest ASW for two (0.35) 
and three (0.33) clusters (see Figures A1–A3 in the Appendix S1 for 
detailed results). The Dunn index was the highest in the two-cluster 
solution for all clustering methods, decreasing with the number of 
clusters (Figure 2). If the first inflection point of the gap curve is con-
sidered, two clusters are suggested for Ward, kmeans and PAM, and 
three clusters for DIANA (see Figures A4–A7 in the Appendix  S1 
for detailed results). None of the validation methods indicated five 
groups as a good fit for the data (Figure 4). The highest linkage dis-
tance of the Ward cluster dendrograms also visually indicate two or 
three clusters may be appropriate for the data (Figure 5), as below 
three clusters (Height = 400), the linkage distance is short (i.e., the 
groups are not well separated; Figure 5). The Ward method with two, 
three and five clusters was chosen for the ISA.

3.3  |  Cluster validation

The presence of clusters with below average silhouette scores, as 
well as the fluctuation in the thickness of silhouette width group 
sizes in the Ward two, three and five cluster solutions (Figure 3), indi-
cate suboptimal groupings for the data. Based on the overall silhou-
ette width and Dunn index ranges of all clustering methods, which 
generally increase with cluster compactness and separation, most 
clustering methods produced weak separation, low compactness, 
and high connectivity (Figure 2). None of the algorithms produced 
strong clusters, as even the highest ASW was still low (Table  1). 
Centroids for kmeans and PAM clustering are also visually not well 
separated for neither two nor five clusters (see Figures A8–A11 in 
the Appendix S1 for further detail). Therefore, overall, there is no 
strong clustering tendency in the data.

The Ward clustering with five groups does not spatially match 
the previously mapped units (Figure  4). The low overall ASW for 
the five-cluster solution also indicates poor clustering of groups 
(Figure 3). The in-field descriptions of vegetation in plots confirmed 
that plots were not classified correctly, according to previously sug-
gested units.
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3.4  |  Indicator species analysis

If two clusters are selected (Table 3), A. penna-marina, Brachythesium, 
P. cookii, L. plumosa, Juncus scheuchzerioides, M. polymorpha, P. annua 

and C. antarctica are indicator species for cluster 1 (i.e., there is 
high specificity for these species). Furthermore, A. magellanica, U. 
compacta and C. moschata are significant (p < .05) indicators species 
for cluster 1 based on high specificity, but are not strongly associ-
ated to the cluster (Table 3). None of the species occur in all or most 
plots belonging to cluster 1 (i.e., there is low fidelity). Lichen and 
Notogrammitis crassior are indicator species for cluster 2 (Table 3).

F I G U R E  2 Cluster validation measures to determine the optimal clustering method between Ward, kmeans, PAM and DIANA clustering 
(indicated by the colors) using (a) connectivity, (b) Dunn index, and (c) ASW for two to 20 clusters. The Dunn index calculates the ratio 
between maximum intra-cluster distance and minimum inter-cluster distance, and ASW estimates the average distance between clusters. 
Large Dunn index and silhouette width values thus indicate compact and well separated vegetation groups. Connectivity refers to the 
connectivity of clusters to nearest neighbors and should ideally be low so that plots nearby are more related than those further away.

TA B L E  1 Cluster validation results of the four cluster analyses

Method ASW Dunn Connectivity Rank

Ward 0.39 0.47 2.93 1

DIANA 0.37 0.18 40.94 2

kmeans 0.36 0.086 50.02 3

PAM 0.35 0.086 62.05 4

Note: Only the highest values for ASW and Dunn index, as well as 
lowest values for connectivity are shown. “Rank” indicates the best 
to worst performing clustering method based on all three validation 
measures.

TA B L E  2 Summary of the suggested number of clusters for each 
validation method for the four cluster analysis methods

Method ASW Dunn Gap

Ward 2 2 2

DIANA 3 2 3

kmeans 2 2 2

PAM 2 2 2

Note: See Figures A1–A7 in the Appendix S1 for detailed results.
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If three clusters are selected (Figure 5; Table 4), A. penna-marina 
is a good indicator for cluster 1; it occurs in almost all plots belonging 
to this cluster (i.e., high fidelity), and is largely restricted to cluster 1 
(Table 4). Leptinella plumosa, M. polymorpha, Montia fontana, P. annua, 
C. antarctica, C. moschata, open water and Collobanthus kergeulen-
sis are good indicators for cluster 2 (Table 4), with almost all plots 
containing these species belonging to cluster 2 (i.e., high specific-
ity), although they do not occur in all plots belonging to the cluster. 
Furthermore, most plots that contain P. cookii and Sagina procumbens 
also belong to this cluster (Table 4). No species occurs in all plots that 
belong to cluster 2 (Table 4). Lichen appears in many plots belonging 

to cluster 3 and is mostly restricted to cluster 3. Notogrammitis cras-
sior is also a good indicator species for cluster 3 with most plots con-
taining this species belonging to cluster 3 (Table 4).

If five clusters are selected (Figure 6), A. penna-marina is a good 
indicator for cluster 1, as it occurs in all plots belonging to this cluster 
(i.e., high fidelity), and it is mostly restricted to cluster 1 (Table 5). 
Leptinella plumosa, M. fontana, P. annua, C. antarctica, C. kergeulensis, 
C. moschatta were significant indicator species (p < .05) for cluster 
2, and to a lesser extent also P. cookii and M. polymorpha (Table 5). 
They are good indicator species for this cluster because they mostly 
occur in sites belonging to this cluster only (i.e., high specificity). No 

F I G U R E  3 Silhouette plots of Ward hierarchical clustering for (a) two, (b) three and (c) five clusters. The number of clusters (n = 2 and 3) 
were chosen based on the two clustering solutions with highest ASW and Dunn statistic. Five clusters were chosen based on the number of 
vegetation complexes suggested by Smith and Mucina (2006) for MI. Each gray horizontal line represents the silhouette width of a plot that 
was allocated to each cluster ( j). The number of plots (nj; n = 476) allocated to each cluster and the ASW for each cluster (aveieCiSi) is shown 
on the right, as well as the overall average of the entire classification (shown below the graph). Small within-cluster ASW values indicate 
that plots within a cluster are compositionally dissimilar. A small overall ASW for the entire classification indicates that clusters are not well 
separated and compact. Negative silhouette values indicate plots might have been placed in the incorrect cluster. Ideally, the plots clustered 
within a group would all have high and similar silhouette widths, i.e., the gray lines would be uniform within a cluster. The overall average 
would also ideally be high in a well separated and compact grouping of a data set.
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species occurs in all plots in cluster 2. Cluster 5 is indicated by N. 
crassior as most plots that contain this species belong to cluster 5. 
Other species are indicators for a combination of vegetation clus-
ters, but none are good indicators for only cluster 3 or cluster 4.

4  |  DISCUSSION

The low clustering tendency in all methods indicates that the veg-
etation of MI is not well differentiated by cover-abundance. Since 
all classification attempts failed to strongly cluster vegetation into 
stable units on MI, vascular plant species may not form composi-
tionally discrete communities based on aerial cover. In all methods, 
the clusters that were generated were not well isolated and were 
also not ecologically meaningful based on the presence of particular 
species suggested by the ISA. Bricher (2012) similarly tested various 
clustering methods and found that clusters were not well isolated for 
the species-poor vegetation on the sub-Antarctic Macquarie Island, 
concluding that stable groupings could not be found in the floristic 
data and suggesting individual species distributions rather be used 
to differentiate vegetation. Macquarie Island has a similar climate, 
age, plant functional groups and species richness (45 vascular plant 
species) to MI (Bricher, 2012). Therefore, this study suggests that 

a discrete community concept may not be appropriate for species-
poor vegetation.

Our initial intention was to update previous vegetation classi-
fications, but the plot data could not robustly be divided into the 
previously mapped five vegetation units (Smith & Mucina,  2006) 
or into the plant communities suggested in earlier classifications 
(Gremmen,  1981; Huntley, 1971; Smith & Steenkamp, 2001). 
Previous classifications used various methods to classify the veg-
etation on MI, although all applied the discrete concept of hierar-
chical plant communities (Gremmen, 1981; Huntley, 1971; Smith & 
Steenkamp, 2001). The first two classifications of MI were floristic 
and largely qualitative (Gremmen, 1981; Huntley, 1971). Smith and 
Steenkamp (2001) then defined 21 habitats in seven habitat com-
plexes based on the main drivers of variation, such as moisture and 
biotic influence, found with ordination, rather than species occur-
rence. These previous classifications informed the MI vegetation 
map that delineated five vegetation units (Smith & Mucina, 2006). 
We expected to find similar groupings in our data despite using a 
different methodology since the previous classifications were con-
sistent with each other. However, we found weak substantiation 
for a floristic community classification with all ISAs having low fi-
delity, which is a key metric under the Braun-Blanquette approach. 
Indeed, if ecologists require discrete communities for management 

F I G U R E  4 Smith and Mucina's (2006) vegetation map of MI (same as in Figure 1) with the location of plots allocated to each cluster in 
this study indicated as five differently-colored dots. The five clusters are the result of the Ward cluster analysis with five groups, chosen to 
compare to the five mapped vegetation units. The five clusters do not match well with the five vegetation units.
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on MI, incorporating the full range of abiotic factors to which spe-
cies are known to respond, such as wind (Momberg et al., 2021) or 
soil chemistry (Cramer et al., 2022), may need to be included in the 
classification.

Our inability to find previously identified communities in the 
current classification, may be because the previous research did not 
formally describe the cluster analysis choices in detail or validate 
the classification (Gremmen, 1981; Smith & Steenkamp, 2001). The 

F I G U R E  5 Ward hierarchical clustering dendrogram showing three clusters (colored). Height indicates the Euclidian distance between 
clusters and the horizontal end points show the 476 plots. Short distances (i.e., small differences in height) between data points indicate 
similarity. Below height = 400 or three clusters, branches split at relatively short distances, indicating low separation between clusters or 
high similarity. The height of the link that joins two clusters is the longest.

Species Cluster Specificity Fidelity
Association 
statistic p value

Austroblechnum 
penna-marina

1 0.93 0.69 0.80 .001

Acaena magellanica 1 0.89 0.52 0.68 .001

Uncinia compacta 1 0.83 0.34 0.53 .001

Brachythesium spp. 1 0.97 0.19 0.43 .001

Poa cookii 1 0.97 0.30 0.53 .001

Leptinella plumosa 1 0.98 0.13 0.35 .001

Juncus scheuchzerioides 1 0.94 0.11 0.32 .001

Marchantia polymorpha 1 1.0 0.10 0.30 .001

Poa annua 1 1.0 0.06 0.24 .001

Crassula moschata 1 0.84 0.06 0.21 .05

Callitriche antarctica 1 0.98 0.04 0.19 .02

Lichen 2 0.87 0.69 0.78 .001

Notogrammitis crassior 2 0.90 0.10 0.30 .002

Note: Only results for significant (p < .05) indicator species are shown. The ISA is based on a species' 
relative abundance and frequency of occurrence to estimate the strength of species associations 
within the predetermined groups. Specificity indicates the probability that the plots belong to 
the group given that the species has been found. Fidelity estimates the probability of finding the 
species in the plots belonging to the group. These two components combined give an association 
statistic. Strong indicator species would have fidelity and/or specificity values close to 1.

TA B L E  3 ISA results showing species 
that are associated with two vegetation 
groups
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justification for a discontinuous view of the vegetation was not de-
scribed and, as was common in classification research at the time 
(Lötter et al., 2013), the classification was not methodologically or 
conceptually specified at the detail necessary to be reproduceable. 
Therefore, the previously described communities or habitats will 
likely not be suitable for tracking vegetation change, as they are 
not objectively reproducible. While expert opinion is invaluable in 
interpreting classifications, the formal testing of the effectiveness 
of classifications with various internal and external measures is an 
essential step that should be reported. Therefore, cluster validation 
is recommended to improve the quality of the results and increase 
confidence (Handl et al., 2005). Providing detailed justification for 
methodological choices in classification research may aid compar-
isons between classifications and help future researchers in their 
analytical decision-making.

A key limitation in the present study is that bryophyte species 
were not included, unlike Gremmen (1981) who identified all bryo-
phyte species and Smith and Steenkamp (2001) who included some 
plant guilds of non-vascular plants. The taxonomic bias towards vas-
cular plant species may have overlooked a substantial part of the 
vegetation. Nevertheless, regardless of bryophyte species exclusion, 
vascular plant species were still expected to indicate previously iden-
tified communities, as most communities had at least one diagnostic 

vascular plant species or guild (Gremmen, 1981; Smith & Steenkamp, 
2001) and communities dominated by vascular plant species were 
predicted to become more important (at the expense of bryophytes) 
in the vegetation as a whole (Smith & Steenkamp, 1990).

Another possible reason for the inability to classify discrete com-
munities, is that the vegetation may have changed rapidly since the 
previous classifications were formulated, perhaps resulting in spe-
cies reorganization and novel associations due to climate change 
(le Roux & McGeoch, 2008a; Raath-Krüger et al., 2019), as well as 
an increase in mouse populations due to the eradication of cats 
(McClelland et al.,  2018; Smith & Steenkamp,  1990, 2001; Smith 
et al., 2001). The previous classifications' fieldwork was conducted at 
times with much smaller mouse populations, as cats were still present 
(Gremmen, 1981; Huntley, 1971) and/or recently eradicated (Smith & 
Steenkamp, 2001), which together with climate change has increased 
peak mouse densities by 430% from 1979–1980 to 2008–2011 
(McClelland et al., 2018). While we cannot definitely establish whether 
these changes are a cause of the inability to classify discrete com-
munities, sub-Antarctic vegetation has changed rapidly in recent de-
cades, including changes in plant species distributions (Raath-Krüger 
et al., 2019), community reorganization (le Roux & McGeoch, 2008b), 
changes in phenology (March-Salas & Pertierra, 2020) and the col-
lapse of an entire ecosystem (Bergstrom et al., 2015). There is thus 

TA B L E  4 ISA results showing significant indicator species for three vegetation clusters

Species Cluster Specificity Fidelity Association statistic p value

Austroblechnum penna-marina 1 0.87 0.99 0.93 .001

Poa cookii 2 0.85 0.35 0.55 .001

Water 2 0.94 0.06 0.23 .002

Collobanthus kergeulensis 2 0.97 0.03 0.17 .03

Leptinella plumosa 2 0.99 0.24 0.49 .001

Marchantia polymorpha 2 0.99 0.15 0.39 .001

Sagina procumbens 2 0.81 0.19 0.39 .002

Poa annua 2 0.98 0.10 0.32 .001

Crassula moschata 2 0.91 0.10 0.31 .05

Callitriche antarctica 2 0.99 0.07 0.26 .03

Montia fontana 2 0.98 0.13 0.35 .002

Lichen 3 0.77 0.69 0.73 .001

Notogrammitis crassior 3 0.82 0.10 0.29 .001

Acaena magellanica 1 + 2 0.94 0.52 0.70 .001

Uncinia compacta 1 + 2 0.91 0.34 0.56 .001

Brachythecium 1 + 2 0.99 0.19 0.43 .001

Juncus scheuchzerioides 1 + 2 0.97 0.11 0.33 .001

Racomitrium 1 + 3 0.90 0.62 0.75 .001

Lycopodium magellanicum 1 + 3 0.98 0.08 0.28 .02

Ranunculus biternatus 2 + 3 0.85 0.22 0.43 .003

Note: The ISA is based on a plant species' relative abundance and frequency of occurrence to estimate the strength of species associations with the 
predetermined clusters (De Cáceres & Legendre, 2009). Specificity indicates the probability that the plots belong to the cluster given that the species 
has been found. Fidelity estimates the probability of finding the species in the plots belonging to the cluster. These two components combined 
give an association statistic to a cluster. Strong indicator species would have fidelity and/or specificity values close to 1. Only results for significant 
(p < .05) indicator species are shown.
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a possibility that the vegetation has reorganized or become transi-
tional between previously described communities, as was predicted 
by the authors of previous classifications (Smith et al., 2001; Smith & 

Steenkamp, 1990, 2001), leading to more continuous vegetation as 
species expanded their ranges across the island in response to the 
changes in climate (le Roux & McGeoch, 2008b).

F I G U R E  6 Ward hierarchical clustering dendrogram showing five clusters (colored). Height indicates the Euclidian distance between 
clusters and the horizontal end points show the 476 plots. Short distances (i.e., small differences in height) between data points indicate 
similarity. Below height = 400 or three clusters, branches split at relatively short distances, indicating low separation between clusters 
or high similarity. The height (c. 350) of the links that split the dendrogram into five clusters is at a low linkage distance, indicating a small 
difference between clusters.

TA B L E  5 ISA results showing significant indicator species for five vegetation clusters, as suggested by previous research (Smith & 
Mucina, 2006)

Species Cluster Specificity Fidelity Association statistic p value

Austroblechnum penna-marina 1 0.78 0.99 0.88 .001

Leptinella plumosa 2 0.97 0.52 0.71 .001

Poa cookii 2 0.81 0.56 0.67 .001

Poa annua 2 0.99 0.29 0.54 .001

Crassula moschata 2 0.92 0.27 0.50 .001

Marchantia polymorpha 2 0.86 0.25 0.46 .001

Callitriche antarctica 2 0.91 0.15 0.37 .001

Collobanthus kergeulensis 2 0.98 0.077 0.27 .001

Notogrammitis crassior 5 0.79 0.14 0.33 .002

Brachythecium 1 + 2 0.94 0.25 0.48 .001

Uncinia compacta 1 + 3 0.82 0.41 0.58 .001

Montia fontana 2 + 3 0.98 0.13 0.35 .002

Water 2 + 3 0.92 0.06 0.23 .01

Lichen 4 + 5 0.84 0.69 0.76 .001

Note: The ISA is based on a plant species' relative abundance and frequency of occurrence to estimate the strength of species associations with the 
predetermined clusters (De Cáceres & Legendre, 2009). Specificity indicates the probability that the plots belong to the cluster given that the species 
has been found. Fidelity estimates the probability of finding the species in the plots belonging to the cluster. These two components combined 
give an association statistic to a cluster. Strong indicator species would have fidelity and/or specificity values close to 1. Only results for significant 
(p < .05) indicator species are shown.
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In this study, the strongest clustering was for two or three clus-
ters. Here, we interpret the three clusters and attempt to relate them 
to earlier vegetation descriptions that applied a discontinuous view 
of vegetation variation (Smith & Steenkamp, 2001). From the ISA of 
three clusters, the first is indicated by the specialist species (see le 
Roux et al., 2013) on the coast (labeled “Coastal zone” in Figure 7). 
In the Coastal zone, the biotic nutrient input by seals and seabirds, 
or salt spray created by rough seas on the high cliffs, increases the 
nutrient content of soils (Smith & Steenkamp, 2001) and thus creates 
conditions for species with narrow ecological amplitude to occur. 
Crassula moschata for instance, only occurs where there is high salt 
spray and thrive in coastal areas where many generalist species can-
not (le Roux & McGeoch, 2008b). Poa annua, L. plumosa, P. cookii, C. 
antartica and M. polymorpha also occur in the coastal zone in areas 
with biotic nutrient input (Smith & Steenkamp, 2001). The three 
most widespread alien plant species are also common here (le Roux 
et al., 2013). Similarly, in previous classifications, the coastal vegeta-
tion was very strongly distinguished as the cluster that differed from 
all other vegetation (Gremmen, 1981; Smith & Steenkamp, 2001). 
The next cluster (labeled “Inland vegetation” in Figure  7), is only 

indicated here by the fern A. penna-marina which is widespread and 
abundant across the lowlands of the island and occurs occasionally 
at higher altitudes. It is the dominant species on inland slopes and 
could be related to the “Slope” complex of previous classifications 
(Smith & Steenkamp, 2001). The third cluster (labeled “Fellfield” in 
Figure  7) includes sites with low vegetation cover (i.e., high rock 
cover), as the only indicators were lichens and N. crassior which is 
a small fern that grows between rock crevices. Despite this attempt 
to identify clusters, interpreting these as discrete units is mislead-
ing because there were no strong grounds for this based on floristic 
composition, because (a) the silhouette widths and Dunn index were 
low for any number of clusters, (b) fidelity and specificity to optimal 
clusters were low and (c) the in-field descriptions of vegetation did 
not match well with the three-cluster classification.

The sub-Antarctic islands have a relatively recent origin 
(Rudolph et al.,  2020). There have been three glaciations in the 
last 300,000 years on MI, with the last glaciation reaching a maxi-
mum extent around 34,500 years ago, and no evidence of glaciation 
during the Holocene (Rudolph et al., 2020). Biological refugia, which 
allowed species to persist, most likely occurred in low lying areas 

F I G U R E  7 Updated vegetation map of MI showing the three vegetation clusters from the classification in this study. Inland vegetation 
corresponds to previously mapped “slope” and “mire” complexes. Vegetation previously called “Polar Desert” and “fellfield” were allocated 
to one cluster called “fellfield” in the current classification due to lack of differentiation by indicator species. The area mapped in the 
Centre of the map with diagonal lines is near 100% bare rock, which would indicate “Polar Desert”. The coastal zone was clearly separated 
in the classification by specialist species that only occur along the coast. Cinder cones did not form a vegetation unit but are conspicuous 
geological features in the landscape with little vegetation and are indicated by crossed lines. The updated map was created with the 
assumption that the original Smith and Mucina (2006) vegetation map was accurate for their classification.
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(Rudolph et al., 2020). MI's age and glaciation history, coupled with 
extreme isolation from continental species pools, has thus resulted 
in a taxonomically and functionally depauperate system (Smith & 
Mucina, 2006). Environments with low species richness and turnover 
do not conform to a methodology that relies on diagnostic species. 
This is because the vegetation on MI has a high percentage of shared 
species across the island, and their occurrence does not differentiate 
between sites, except perhaps along the coast. In older environments 
(such as Fynbos vegetation in South Africa) that have been stable for 
millennia and that have contained continental refugia during periods 
of glaciation (Verboom et al.,  2009), community-level associations 
may be more apparent, and thus changes more easily monitored.

No comprehensive studies have been published that differenti-
ate criteria for community versus continuum approaches, or under 
which conditions either are appropriate (Austin, 2013). However, our 
results align more with the continuum theory where vegetation is 
viewed as the outcome of individualistic species responses to their 
environment and to each other (Curtis & McIntosh, 1951; Palmer & 
White, 1994). Austin (2013) suggested that the continuum concept 
is preferred in vegetation-environment investigation. Since the veg-
etation on MI is closely coupled with the harsh abiotic conditions 
(Cramer et al., 2022; le Roux & McGeoch, 2008c), a continuum view 
may better represent the vegetation variation. Indeed, species on MI 
do respond independently to abiotic conditions (Cramer et al., 2022; 
Momberg et al., 2021), biotic interactions (Raath-Krüger et al., 2019) 
and disturbance (Phiri et al., 2009). The individual responses may 
vary along gradients, such as the change in vegetation structure 
along an elevation gradient (le Roux & McGeoch, 2008c). For ex-
ample, A. selago, is a keystone generalist cushion plant species that 
occurs at low and high elevations, but at different densities (i.e., 
the structure differs; Phiri et al., 2009). At high elevations, in low 
densities, A. selago facilitates other generalist species that cannot 
necessarily survive without the protection of cushion plants (Raath-
Krüger et al., 2019). Therefore, while species distributions may over-
lap at high and low elevations, each responds differently to abiotic 
conditions and biotic interactions (le Roux & McGeoch, 2008b). The 
recent rapid change in climate on MI has also altered the distribution 
of (Raath-Krüger et al., 2019) and relationships between vascular 
species with some ranges expanding and others retracting (le Roux 
& McGeoch, 2008b). This suggests that individual plant species may 
respond variably to climate change and biotic disturbance (Cramer 
et al., 2022; Raath-Krüger et al., 2019).

Despite the acknowledged difficulty in using species fidel-
ity to classify vegetation into communities in cold-temperate 
(Gremmen, 1981), species-poor environments (Landucci et al., 2015), 
the vegetation on MI continues to be discretely defined at the 
community-level, perhaps in order to adhere to the European stan-
dard (Braun-Blanquet,  1932; Mucina et al.,  2016). The discrete 
community concept was originally predominantly used to classify 
broad-scale representative stands in environments with sharp com-
positional boundaries that have high turnover and species fidelity to 
differentiate communities (Pavão et al., 2019). However, the unit for 
monitoring vegetation in species-poor environments should not rely 

on assemblages of species, but rather individual species, as shown to 
be more suitable on Macquarie Island (Bricher et al., 2013). Species 
distribution models (Elith & Leathwick, 2009; Poggiato et al., 2021) 
could be more promising for differentiating and monitoring vegeta-
tion in environments with few vascular plant species that respond 
individualistically to abiotic conditions, as it predicts species distri-
butions based on their environmental niches (Cramer et al., 2022).

5  |  CONCLUSION

Despite testing a range of clustering and validation methods for 
MI vegetation, there was no solution that could reliably separate 
clusters, suggesting that the traditional discrete community view 
of vegetation may not be appropriate in species-poor and/or young 
environments. The marine and terrestrial ecosystems of the sub-
Antarctic have been identified as core areas to understand the rapid 
climate change that is occurring in the region (Ansorge et al., 2017). 
In this region, permanent plots to track individual changes in species 
occurrence and abundance, including bryophytes, across the struc-
tural vegetation gradient will likely be more effective to monitor and 
easily detect real world change than tracking hard to define “plant 
communities”. Future research should thus focus on the continu-
ous variation in individual species distributions along key environ-
mental gradients, rather than viewing vegetation as discontinuous 
communities.
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