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Abstract
The	updating	and	rethinking	of	vegetation	classifications	is	important	for	ecosystem	
monitoring	in	a	rapidly	changing	world,	where	the	distribution	of	vegetation	is	chang-
ing.	 The	 general	 assumption	 that	 discrete	 and	 persistent	 plant	 communities	 exist	
that	can	be	monitored	efficiently,	is	rarely	tested	before	undertaking	a	classification.	
Marion	 Island	 (MI)	 is	 comprised	of	 species-	poor	 vegetation	undergoing	 rapid	 envi-
ronmental	change.	 It	presents	a	unique	opportunity	to	test	the	ability	to	discretely	
classify	 species-	poor	 vegetation	 with	 recently	 developed	 objective	 classification	
techniques	and	relate	it	to	previous	classifications.	We	classified	vascular	species	data	
of	476	plots	sampled	across	MI,	using	Ward	hierarchical	clustering,	divisive	analysis	
clustering,	non-	hierarchical	kmeans	and	partitioning	around	medoids.	Internal	cluster	
validation	was	performed	using	silhouette	widths,	Dunn	index,	connectivity	of	clus-
ters	and	gap	statistic.	Indicator	species	analyses	were	also	conducted	on	the	best	per-
forming	clustering	methods.	We	evaluated	the	outputs	against	previously	classified	
units.	Ward	clustering	performed	the	best,	with	the	highest	average	silhouette	width	
and	Dunn	index,	as	well	as	the	lowest	connectivity.	The	number	of	clusters	differed	
amongst	 the	clustering	methods,	but	most	validation	measures,	 including	for	Ward	
clustering,	indicated	that	two	and	three	clusters	are	the	best	fit	for	the	data.	However,	
all	classification	methods	produced	weakly	separated,	highly	connected	clusters	with	
low	compactness	and	low	fidelity	and	specificity	to	clusters.	There	was	no	particularly	
robust	and	effective	classification	outcome	that	could	group	plots	into	previously	sug-
gested	vegetation	units	based	on	species	composition	alone.	The	relatively	recent	age	
(c.	450,000 years	B.P.),	glaciation	history	(last	glacial	maximum	34,500 years	B.P.)	and	
isolation	of	the	sub-	Antarctic	islands	may	have	hindered	the	development	of	strong	
vascular	plant	species	assemblages	with	discrete	boundaries.	Discrete	classification	at	
the	community-	level	using	species	composition	may	not	be	suitable	in	such	species-	
poor	environments.	Species-	level,	rather	than	community-	level,	monitoring	may	thus	
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1  |  INTRODUC TION

Plant	ecologists	identify,	describe	and	map	vegetation	variation	that	
represents	 underlying	 ecological	 processes	 in	 an	 effort	 to	 under-
stand	the	complex	spatial	and	temporal	 interactions	between	taxa	
and	the	environments	in	which	they	occur	(De	Cáceres	et	al.,	2015).	
While	vegetation	variation	is	complicated	and	arguably	varies	along	
a	continuum	in	space	and	time,	humans	tend	to	think	categorically.	
This	 requires	 simplification	 through	 classification	 to	 create	useful,	
logical	and	manageable	units	for	theoretical	and	practical	purposes	
(De	Cáceres	 et	 al.,	2015;	Wiser	&	De	Cáceres,	2013).	 The	 aim	 of	
vegetation	classification	is	to	delineate	and	describe	environments	
using	 the	 characteristics	 of	 the	 standing	 vegetation	 (De	 Cáceres	
et al., 2015)	to	provide	a	surrogate	for	ecosystem	delineation	(Brown	
et al., 2013).	A	vegetation	classification	serves	as	baseline	data	for	
ecosystem	research,	land-	use	planning,	environmental	assessments	
and	 scientifically	 based	 decisions	 in	 biodiversity	 management	
(Brown	&	Bredenkamp,	2018).	Policy-	making,	conservation	and	re-
search	therefore	depend	on	accurate	and	up	to	date	description	and	
delineation	of	vegetation	units.

Plant	 ecology	 concepts	 have	 evolved	 over	 time,	 and	 have	 re-
cently	enjoyed	renewed	interest,	especially	in	terms	of	updating	and	
advancing	previous	classifications	(De	Cáceres	et	al.,	2015;	Mucina	
et al., 2016;	van	Staden	et	al.,	2021).	Early	approaches	to	vegetation	
variation	viewed	vegetation	as	either	hierarchical,	 compositionally	
distinct	units	(“communities”)	that	vary	as	an	entire	unit	in	space	and	
time	(i.e.,	discrete	community	concept;	Weaver	&	Clements,	1929)	
or	entities	made	up	of	a	continuum	of	a	 temporary	co-	occurrence	
of	species	that	fluctuate	in	composition,	space	or	time	(i.e.,	the	con-
tinuum	concept;	Curtis	&	McIntosh,	1951).	The	continuum	concept	
proposes	 that	 vegetation	 does	 not	 consist	 of	 homogeneous	 per-
sistent	units,	but	is	the	outcome	of	individual	species'	responses	to	
their	environment	and	to	each	other	 (Palmer	&	White,	1994).	This	
concept is related to the niche concept which proposes that each 
species	 partitions	 a	 resource	 along	 a	 gradient	 (Austin,	2013).	 The	
two	extremes	 in	 approaches	 viewed	vegetation	 as	 either	 a	 super-	
organism	 of	 co-	evolved	 groups	 of	 species	 (i.e.,	 community)	 or	 as	
species	 that	 assemble	 entirely	 individualistically	 (Austin,	 2013).	
No	consensus	has	been	reached	on	which	perspective	 is	most	ap-
propriate	 for	 classifying	 particular	 environments	 (Austin,	 2013; 
Austin	&	Smith,	1989;	Curtis	&	McIntosh,	1951; Lortie et al., 2004; 
Scott,	1995;	Weaver	&	Clements,	1929).	However,	the	categorical,	

compositionally	 discontinuous,	 discrete	 model	 of	 plant	 commu-
nities,	 initially	 proposed	 by	Weaver	 and	Clements	 (1929),	 persists	
mainly	due	to	historical	legacy	and	its	utility	in	creating	vegetation	
maps	for	ecological	management	(Feilhauer	et	al.,	2020).	While	the	
two	 approaches	 are	 not	 necessarily	 incompatible,	most	 ecologists	
interested	 in	vegetation	description	continue	 to	define	vegetation	
as	 an	 assemblage	 of	 distinct	 hierarchical	 plant	 communities	 (De	
Cáceres	et	al.,	2018;	Gremmen,	1981;	Mucina	et	al.,	2016; Tsakalos 
et al., 2018;	van	Staden	et	al.,	2021).

The	 general	 assumption	 of	 the	 community	 concept,	 that	 dis-
crete	 and	persistent	 vegetation	units	 exist,	 is	 rarely	 tested	before	
undertaking	a	classification,	with	the	exception	of	more	recent	re-
search	(Feilhauer	et	al.,	2020; Lortie et al., 2004;	Pavão	et	al.,	2019).	
This	 raises	 concerns	 about	 the	 widespread	 use	 of	 the	 traditional	
community	 concept	 and	 the	 application	 of	 methods	 developed	
that	 have	 underlying	 assumptions	 rooted	 in	 the	 existence	 of	 ho-
mogenous	discrete	spatial	entities.	Assuming,	a	priori,	that	specific	
floristically	 distinct	 communities	 exist	 may	 disregard	 the	 unique	
vegetation	patterns	often	found	in	environments	with	few	vascular	
plant	 species	 such	 as	 in	Aquatic	 (Landucci	 et	 al.,	2015)	 or	 Tundra	
(Yang	et	al.,	2021)	vegetation.	 In	recent	decades,	a	variety	of	new	
tools	have	been	developed	for	vegetation	scientists	 (see,	e.g.,	Aho	
et al., 2008 or Lötter et al., 2013).	 While	 these	 approaches	 may	
encourage	new	perspectives	on	 the	complex	nature	of	vegetation	
patterns,	 they	bring	new	challenges,	 for	 example,	 in	 the	 selection	
of	appropriate	clustering	methods	(Maechler	et	al.,	2019;	Oksanen	
et al., 2020).	Lötter	et	al.	 (2013)	 referred	to	this	as	 “the	classifica-
tion	conundrum”.	The	amount	of	research	available	which	advocates	
particular	methods,	ideologies	and	approaches	to	classify	vegetation	
(Feilhauer	et	al.,	2020;	Lengyel	et	al.,	2021; Lortie et al., 2004; Lötter 
et al., 2013;	Pakgohar	et	al.,	2021),	reflects	the	impracticality	of	the	
use	 of	 one	 universal	 approach	 in	 all	 environments.	 Nevertheless,	
there	is	general	agreement	that	expert	opinion	is	needed	to	select	
vegetation	units	at	some	stage	in	the	classification	process	(Brown	
et al., 2013; Lötter et al., 2013;	 Mucina,	 1997)	 even	 if	 this	 adds	
subjectivity	 to	 the	 classification,	 possibly	 resulting	 in	 bias	 (Lötter	
et al., 2013;	Wolda,	1981),	with	little	objective	validation	of	cluster-
ing	results.	However,	recent	classification	methods,	especially	those	
used	in	data	science	(Flynt	&	Dean,	2016),	have	made	it	possible	to	
formally	 test	 the	effectiveness	of	classifications,	 thereby	 reducing	
the	 number	 of	 subjective	 choices	 (Lötter	 et	 al.,	 2013;	 Pakgohar	
et al., 2021).	The	existence	of	discrete	groups	in	the	data	can	thus	be	
tested	objectively,	before	expert	interpretation	is	needed.

be	more	appropriate	in	species-	poor	environments,	aligning	with	continuum	theory	
rather	than	community	theory.
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Updating	 and	 rethinking	 vegetation	 classification	 is	 especially	
important	in	tracking	shifts	in	the	distribution	of	species	in	response	
to	changes	 in	climate	and	other	anthropogenic	drivers.	 In	the	sub-	
Antarctic,	the	regional	climate	has	changed	at	an	accelerated	pace	
compared	with	lower	latitudes	(le	Roux	&	McGeoch,	2008a).	For	ex-
ample,	between	1949	and	2003,	Marion	Island	(MI)	has	experienced	
an	increase	in	mean	annual	temperature	from	5.4	to	6.4°C,	which	is	
double	the	mean	global	rate	of	increase	(le	Roux	&	McGeoch,	2008a).	
Mean	 annual	 rainfall	 has	 also	 decreased	 from	 c.	 3000 mm	 to	 c. 
2000 mm	during	the	same	period	(le	Roux	&	McGeoch,	2008b).	The	
vegetation	is	closely	coupled	with	abiotic	conditions	and	consists	of	
23	native	vascular	plant	 species	 and	 ranges	 from	near	 continuous	
short-	statured	plant	cover	 in	sub-	Antarctic	Tundra	to	barren	Polar	
Desert	(Smith	&	Mucina,	2006).	The	island	is	remote,	has	a	relatively	
recent	 origin—	only	 emerging	 above	 sea	 level	 for	 the	 first	 time	 c. 
450,000 B.P.	(McDougall	et	al.,	2001)—	and	has	been	glaciated	with	
the	greatest	 extent	of	 ice	occurring	most	 recently	c.	 34,500 years	
ago	 during	 the	 last	 glacial	maximum	 (Rudolph	 et	 al.,	2020).	 Rapid	
climatic	 change	 has	 already	 altered	 the	 distribution	 and	 relation-
ships	 between	plant	 species	 and	perhaps	 redistributed	 some	 spe-
cies	which	were	used	to	previously	classify	communities	on	MI	 (le	
Roux	&	McGeoch,	 2008b).	 In	 addition,	 a	more	 temperate	 climate	
coupled	with	anthropogenic	disturbances	has	created	new	opportu-
nities	for	the	establishment	and	spread	of	non-	native	species	(Greve	
et al., 2017).	Three	alien	plant	species	have	become	widespread	on	
MI	(Poa annua, Sagina procumbens, Cerastium fontanum),	especially	in	
areas	influenced	by	animals	near	the	coast	(le	Roux	et	al.,	2013).	The	
most	widespread	invasive	species	on	MI	is	the	House	Mouse	(Mus 
musculus)	which	has	rapidly	increased	in	density,	abundance	and	dis-
tribution	since	feral	cats,	originally	introduced	to	control	mice,	were	
eradicated	in	1991	(McClelland	et	al.,	2018).	The	mice	impact	most	
aspects	of	the	biodiversity	of	MI	including	causing	mortality	in	plant	
species	(Phiri	et	al.,	2009),	decreasing	invertebrate	abundance	(Smith	
et al., 2002),	increasing	seabird	deaths	(Dilley	et	al.,	2016)	and	reduc-
ing	indigenous	seed	caches	(Smith	et	al.,	2002).	Due	to	both	invasive	
species	and	climate	change	impacts,	the	vegetation	has	been	chang-
ing	on	MI	and	is	expected	to	change	significantly	in	the	near-	future	
with	the	planned	mouse	eradication	(Preston	et	al.,	2019),	with	mon-
itoring	becoming	a	key	conservation	objective	for	the	island.

To	effectively	study	and	monitor	 the	 impact	of	climate	change	
and	alien	species	on	the	vegetation,	an	ecologically	meaningful	veg-
etation	classification	and	monitoring	unit	is	needed	that	can	be	ob-
jectively	 and	 repeatedly	defined,	mapped	and	monitored	at	 a	 fine	
scale.	 Since	 using	 remote	 sensing	 data	 for	 image	 classification	 of	
vegetation	in	the	near	permanent	cloud	cover	experienced	on	most	
islands	 in	 the	 sub-	Antarctic	 is	 challenging	 (Fitzgerald	et	 al.,	2021),	
a	 floristic	 approach	 to	 classification	 using	 plot	 data	may	 show	 in-
trinsic	 vegetation	 patterns	 and	 thus	 act	 as	 a	 proxy	 for	 underlying	
environmental	variation	and	patterns	that	form	the	standing	vegeta-
tion.	Using	a	floristic	classification	may	uncouple	the	vegetation	dis-
tribution	 from	previous	assumptions	of	environmental	drivers	 and	
allow	modeling	of	change	in	abiotic	conditions	with	resultant	groups	
acting	as	the	units	of	change.

Here,	 we	 tested	 whether	 vegetation	 forms	 compositionally	
discrete	 units	 in	 a	 species-	poor	 environment,	which	 are	 generally	
neglected	 environments	 in	 classification	 research.	MI	 presents	 an	
opportunity	to	test	plant	community	concepts	and	to	elucidate	ap-
propriate	 classification	 approaches	 in	 species-	poor	 environments	
that	are	closely	coupled	with	abiotic	conditions.	The	first	objective	
was	 to	 identify	 and	differentiate	vegetation	units	using	both	hier-
archical	 and	non-	hierarchical	 classification	algorithms.	The	 second	
objective	was	to	compare	and	validate	clustering	methods.	The	third	
objective	was	to	describe	the	vegetation	units	using	indicator	species	
analysis	(ISA).	The	best	performing	clustering	method	was	related	to	
earlier	classifications	that	used	phytosociological	relevè	table	sort-
ing	based	on	vascular	and	bryophyte	species	(Gremmen,	1981)	and	a	
cluster	analysis	using	scores	from	an	ordination	based	largely	on	soil	
chemistry	and	plant	guilds	(Smith	et	al.,	2001)	to	classify	vegetation.	
Since	 previous	 research	 suggested	 viewing	 the	 vegetation	 as	 dis-
continuous,	we	expected	compositionally	well	separated	vegetation	
groups	where	the	variation	between	groups	can	be	related	to	abiotic	
and	biotic	influences.

2  |  METHODS

2.1  |  Study site

Marion	 Island	 (46°54′S,	 37°45′E)	 is	 a	 volcanic,	 remote,	 sub-	
Antarctic	 island	 covering	 an	 area	 of	 c.	 290 km2	 (Figure 1).	 The	
South	 African-	governed	 island	 has	 a	 cool,	 thermally-	stable,	 oce-
anic	climate	with	mean	annual	precipitation	of	c.	2000 mm	(le	Roux	
&	 McGeoch,	 2008a).	 The	 islands'	 geology	 consists	 of	 smoothed	
pre-	glacial	 gray	 lava	 and	 rough	 post-	glacial	 black	 lava	 (McDougall	
et al., 2001)	with	c.	130	more	recent	red	scoriaceous	cinder	cones	
scattered	 around	 the	 island	 (Rudolph	 et	 al.,	 2020; Figure 1).	 The	
vegetation	changes	along	an	elevational	severity	gradient	(le	Roux	&	
McGeoch,	2008c),	from	the	coast	to	the	highest	elevation	of	1230 m,	
and	generally	occurs	in	two	layers	at	lower	elevations.	These	are	a	
prostrate	vascular	plant	layer,	rarely	exceeding	50 cm	in	height	and	
a	low	ground	cover	of	bryophytes	(Gremmen,	1981).	The	flora	com-
prises	23	indigenous	species	(Chau	et	al.,	2020)	and	17	alien	vascular	
plant	species	(Greve	et	al.,	2017),	along	with	134	bryophyte	and	100	
lichen	 species	 (Øvstedal	 &	 Gremmen,	 2001).	 Many	 alien	 vascular	
plant	species	have	been	controlled	and	only	occur	in	isolated	loca-
tions	(Greve	et	al.,	2017).

Five	 vegetation	 units	 have	 been	mapped	 previously	 based	 on	
field	 research,	 photographs	 and	 field	 observations,	 and	 informed	
by	 expert	 opinion	 (Smith	 &	 Mucina,	 2006; Figure 1).	 Smith	 and	
Mucina	(2006)	recognized	that	mapping	at	the	scale	of	plant	com-
munity	 identified	 in	 previous	 studies	 (Gremmen,	 1981;	 Smith	 &	
Steenkamp,	2001),	in	vegetation	that	changes	within	a	few	meters,	
would	not	be	possible,	 and	 thus	mapped	 five	units	 (Figure 1)	 at	a	
broader	 scale.	 Polar	Desert	was	 indicated	by	 the	 absence	of	 vas-
cular	 plant	 species	 and	 by	 the	 presence	 of	 bryophytes	 (Smith	 &	
Steenkamp,	 2001).	 Cinder	 cones,	 conspicuous	 red	 volcanic	 ash	
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deposits,	 were	 largely	 associated	 with	 bryophytes,	 although	
Gremmen	(1981)	 included	cinder	cones	under	Fellfield	vegetation.	
Fellfield	is	dominated	by	Azorella selago	cushion	plants	and	epiphytic	
Polypogon magellanicus grasses, with several vascular plant species 
co-	occurring	 at	 lower	 altitudes	 (Smith	 &	 Steenkamp,	 2001).	 The	
Mire-	Slope	unit	is	made	up	of	the	Mire	and	Slope	communities	com-
bined,	as	mapping	at	the	fine	scale	needed	to	differentiate	Mires	and	
Slopes	was	not	possible	(Smith	&	Mucina,	2006).	Slope	communities	
are	either	dominated	by	 the	 fern	Austroblechnum penna- marina or 
shrub	Acaena magellanica	(on	slopes	with	impeded	drainage).	Mires	
occur	on	flat	or	slightly	sloping	areas,	dominated	by	graminoids	P. 
magellanicus and Uncinia compacta	and	various	bryophytes.	Lastly,	
Coastal	vegetation	is	either	largely	dominated	by	Crassula moschata 
(exposed	to	high	salt	spray)	or	by	Liptinella plumosa, Callitriche ant-
arctica or Poa cookii	(in	areas	influenced	by	biotic	activity;	Smith	&	
Steenkamp,	2001).

2.2  |  Vegetation sampling

Vegetation	data	consisted	of	476	vegetation	plots	that	were	sam-
pled	 on	 MI	 using	 systematic	 randomized	 sampling	 in	 2018	 and	
2019.	Plot	 locations	 thus	 included	a	wide	 range	of	environmental	

conditions	 (Figure 1).	 In	 each	 3 × 3 m	 plot,	 the	 percentage	 ocular	
canopy	cover	of	all	vascular	plant	species	was	estimated	by	trained	
observers	 following	Daubenmire	 (1959).	 The	percentage	 cover	 of	
two	 non-	vegetated	 cover	 classes	 were	 also	 estimated:	 bare	 rock	
or	 soil	 and	open	water.	A	 description	of	 the	 vegetation	was	 pro-
duced	 for	 each	 plot	 in	 the	 field	 to	 assist	 the	 classification.	 Two	
bryophytes	 were	 identified	 to	 genus	 level,	 namely	 Breutelia and 
Brachythesium,	and	three	to	species-	level	namely	Marchantia poly-
morpha, Marchantia berteroana and Racomitrium lanuginosum. These 
bryophytes	were	easily	identified	in	field	and	were	indicator	species	
for	plant	communities	in	previous	classifications	(Gremmen,	1981).	
All	other	bryophytes	were	estimated	collectively	as	“bryophytes”.	
Lichens	 were	 also	 given	 a	 collective	 cover	 estimate.	 To	 reduce	
noise,	species	with	two	or	less	observations	in	the	matrix	were	re-
moved	 and	 thus	 rare	 species	were	 not	 considered	 (e.g.,	 Addicott	
et al., 2018).	Five	alien	species	were	recorded	in	the	data,	with	only	
Poa annua, Sagina procumbens and Cerastium fontanum retained in 
analyses	after	rare	species	were	removed.	All	analyses	were	initially	
conducted	 on	 two	 subsets	 of	 the	 data:	 including	 versus	 exclud-
ing	 the	 three	 alien	 species.	However,	 the	optimality	of	 clustering	
did	not	improve	with	their	exclusion,	and	these	alien	species	were	
thus	included	in	the	analyses.	Indeed,	Smith	et	al.	(2001)	suggested	
that	alien	species	 should	be	 included	 in	classifications	due	 to	 the	

F I G U R E  1 Vegetation	map	of	MI	showing	the	five	units	(in	color)	delineated	by	Smith	and	Mucina	(2006).	Black	points	indicate	the	
location	of	plots	sampled	in	this	study.
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increasingly	important	role	of	invasive	species	on	community	func-
tion,	structure,	and	dynamics.

2.3  |  Cluster analysis

To	select	the	most	robust	classification	procedure	for	our	study	site,	
the	best	practice	was	to	test	a	variety	of	procedures	to	determine	if	
the	vegetation	data	do	indeed	form	clusters	that	can	be	interpreted	
ecologically	(Aho	et	al.,	2008; Lötter et al., 2013).	The	classifications	
were	undertaken	in	three	steps:	(1)	pre-	processing	involved	the	se-
lection	of	a	distance	measure	and	normalization	of	the	data;	(2)	clus-
ter	analysis	involved	the	selection	and	application	of	the	clustering	
algorithm	and	its	various	parameters;	(3)	cluster	validation	involved	
the	selection	and	application	of	appropriate	internal	validation	tech-
niques	to	evaluate	the	quality	of	the	classification.	Four	clustering	
algorithms	 and	 four	 validation	 measures	 were	 explored	 based	 on	
demonstrated	 performance	 in	 recent	 literature	 (Aho	 et	 al.,	 2008; 
Handl	et	al.,	2005;	Lengyel	et	al.,	2021;	Pakgohar	et	al.,	2021).	We	
defined	a	vegetation	classification	as	being	comprised	of	a	cluster	
of	 plots	 organized	 into	 units	 with	 discrete	 boundaries	 between	
them.	 The	 aim	 was	 to	 identify	 clusters	 of	 plots	 containing	 small	
within-	cluster	variance	(i.e.,	compact	clusters)	and	sufficiently	large	
between-	cluster	 variance	 (i.e.,	 spatially	 well-	separated).	 All	 analy-
ses	were	conducted	in	R	Statistical	Software	v.	4.02	(R	Core	Team,	
2020).

One	 divisive	 and	 three	 agglomerative	 clustering	 algorithms	
prominent	 in	 the	 literature	 were	 tested	 using	 the	 raw	 data.	
Divisive	 analysis	 clustering	 (DIANA)	 (Maechler	 et	 al.,	2019)	 was	
chosen	as	the	divisive	hierarchical	clustering	method;	it	starts	with	
all	 plot	 data	 in	 one	 cluster	 and	 successively	 divides	 plots	 based	
on	 a	 “distance”	metric,	 selected	by	 the	 researcher,	 into	 clusters.	
Conversely,	agglomerative	hierarchical	clustering	starts	with	each	
plot	as	an	individual	cluster	locating	pairs	of	plots	with	the	small-
est	 distance,	 fusing	 the	 two	 plots	 into	 a	 cluster.	 The	 approach	
then	re-	iteratively	calculates	the	distance	from	fused	plots	to	all	
remaining	plots	until	all	sites	are	grouped	into	one	cluster.	For	ag-
glomerative	 clustering,	 the	 hierarchical	Ward	 clustering	method	
was	chosen	after	comparison	to	single,	average	and	complete	link-
age	clustering	 (linkage	refers	to	the	way	the	distance	measure	 is	
implemented	to	form	clusters;	see	Aho	et	al.,	2008	for	a	summary	
of	the	linkage	methods).	This	was	done	by	calculating	the	agglom-
erative	coefficient	and	divisive	coefficient	for	DIANA	in	the	“clus-
ter”	package	in	R	(Maechler	et	al.,	2019).	The	Ward	method	aims	
to	minimize	the	within-	cluster	variance	and	searches	for	clusters	
in	multivariate	Euclidean	space	(Murtagh	&	Legendre,	2014).	The	
Ward	Method,	which	showed	the	strongest	clustering,	implements	
squared	Euclidian	distances	based	on	sum	of	squares	(Murtagh	&	
Legendre, 2014),	 but	 is	 not	 appropriate	 for	 non-	metric	 distance	
(e.g.,	Bray-	Curtis),	thus	Euclidean	distance	was	chosen	as	the	dis-
similarity	metric,	calculated	using	 the	 “vegan”	package	 (Oksanen	
et al., 2020).	 To	 include	 non-	hierarchical	 classification,	 kmeans	
and	 partitioning	 around	 medoids	 (PAM)	 clustering	 were	 chosen	

as	centroid-	based	algorithms	that	 identify	k centroids, allocating 
each	data	point	to	the	nearest	centroid.	Kmeans	aims	to	minimize	
the	sum	of	squared	distances	of	data	points	to	their	cluster	cen-
troid,	whereas	PAM	minimizes	dissimilarity	between	data	points	
in	a	cluster	and	 its	cluster	centre	 (medoids).	 Initial	 investigations	
showed	 that	 all	 dissimilarity	 measures	 explored	 (i.e.,	 Hellinger,	
Manhattan	 and	 Bray-	Curtis	 distances)	 with	 single,	 average	 and	
complete	 linkage,	 where	 possible,	 produced	 similar	 results	 (see	
also Aho et al., 2008).

2.4  |  Number of clusters

There	 is	no	consensus	on	an	 ideal	measure	to	estimate	the	opti-
mum	number	 of	 clusters	 or	most	 appropriate	 clustering	method	
(Aho	et	al.,	2008; Lötter et al., 2013).	To	choose	the	optimum	num-
ber	of	clusters	for	each	clustering	method,	we	used	(1)	silhouette	
widths,	 (2)	Dunn	 index	and	 the	 (3)	gap	statistic	 in	 the	 “NbClust”	
package	(Charrad	et	al.,	2014).	Silhouette	width	is	widely	used	to	
simultaneously	 determine	 the	 optimum	 number	 of	 clusters	 and	
quality	of	the	entire	classification	(Handl	et	al.,	2005).	Silhouette	
width	estimates	the	average	distance	between	clusters,	 i.e.,	how	
close	data	points	in	a	cluster	are	to	data	points	in	neighboring	clus-
ters	 (Rousseeuw,	1987).	The	Dunn	 index	calculates	 the	ratio	be-
tween	maximum	intra-	cluster	distance	and	minimum	inter-	cluster	
distance	 (Dunn,	1974).	The	gap	statistic	compares	within-	cluster	
distance	 to	 a	 uniformly	 distributed	 null	 reference	 distribution	
with	 bootstrapping	 (Tibshirani	 et	 al.,	 2001).	 The	 optimum	 clus-
ter	 number	 is	 indicated	where	 the	 gap	 curve	 reaches	 an	 inflec-
tion	point	and	changes	to	a	higher	value.	Previous	classifications	
of	the	vegetation	on	MI	defined	between	five	and	41	vegetation	
units	 (Gremmen,	1981;	Huntley,	1971;	 Smith	 et	 al.,	2001;	 Smith	
&	Mucina,	2006),	 so	 there	was	no	a	priori	 reason	 to	choose	any	
particular	number	of	clusters.	However,	we	explored	five	clusters	
along	with	the	optimal	number	of	clusters	indicated	by	the	valida-
tion	measures,	to	compare	to	the	suggested	five	vegetation	units	
mapped	previously	(Smith	&	Mucina,	2006).

2.5  |  Cluster validation

Since	 various	 R	 packages	 have	 been	 created	 for	 internal	 cluster	
validation,	 multiple	 packages	 and	 validation	 measures	 were	 ex-
plored.	We	 evaluated	 optimality	 as	maximizing	 intra-	cluster	 ho-
mogeneity	and	 inter-	cluster	distance,	and	minimizing	 the	degree	
to which a cluster groups data points together with the nearest 
neighbors	 (Handl	et	al.,	2005).	To	determine	the	optimal	cluster-
ing	method	 based	 on	 compactness,	 separation	 and	 connectivity	
(the	 three	most	 important	 clustering	 criteria)	 of	 each	 clustering	
algorithm,	 the	 (1)	 silhouette	widths,	 (2)	Dunn	 index	 and	 (3)	 con-
nectivity	of	clusters	were	calculated	 for	 two	 to	20	clusters	with	
the	 “clValid”	 package	 (Brock	 et	 al.,	 2008).	 Individual	 silhouette	
plots	were	 drawn	 for	 each	 clustering	method	with	 the	 “cluster”	
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package	(Maechler	et	al.,	2019)	using	the	optimal	number	of	clus-
ters	 per	 method.	 These	 plots	 show	 the	 silhouette	 widths	 esti-
mated	 for	 each	 plot	within	 a	 cluster	 and	 calculates	 the	 average	
silhouette	width	(ASW)	for	each	cluster.	Both	the	Dunn	index	and	
silhouette	width	 compute	 a	 final	 score	 that	 combines	 two	 clus-
tering	 criteria:	 compactness	 and	 separation	 (Handl	 et	 al.,	2005).	
Connectivity	indicates	the	degree	to	which	clusters	are	connected	
to	the	nearest	neighbors	to	determine	to	what	extent	data	items	
are	placed	 in	 the	same	cluster	as	 their	nearest	neighbor	 (Saha	&	
Bandyopadhyay,	2012).	While	most	of	 these	are	heuristic	meth-
ods,	well-	separated	 and	 compact	 clusters	 are	 indicated	 by	 large	
silhouette	 widths	 and	 Dunn	 index	 values.	 Ideally,	 connectivity	
should	be	minimized	 so	 that	plots	nearby	 are	more	 related	 than	
plots	 further	away.	Furthermore,	dendrograms	and	centroids	as-
sisted	to	visually	determine	groupings	in	the	data.

2.5.1  |  Indicator	species	analysis

Indicator	species	analysis	 (ISA)	was	conducted	with	the	“indicspe-
cies”	package	(De	Cáceres	&	Legendre,	2009),	to	determine	the	as-
sociation	 of	 diagnostic	 species	with	 each	 cluster	 and	 to	 compare	
with	previously	classified	groups	which	were	indicated	by	particu-
lar	species	(Gremmen,	1981).	The	analysis	was	run	for	the	optimal	
number	of	 clusters	 in	 the	best	 performing	 clustering	method	 and	
also	for	five	clusters,	to	compare	to	the	five	groups	that	were	previ-
ously	proposed	in	the	vegetation	map	(Smith	&	Mucina,	2006).	The	
ISA	is	based	on	an	Indicator	Value	(Dufrêne	&	Legendre,	1997)	that	
calculates	a	plant	species'	relative	abundance	and	frequency	of	oc-
currence	to	estimate	the	strength	of	species	associations	with	the	
predetermined	groups	(Dufrêne	&	Legendre,	1997).	The	statistical	
significance	of	the	association	is	then	tested	with	a	permutation	test	
(De	Cáceres	&	Legendre,	2009).	This	analysis	thus	indicates	species	
fidelity	 (the	probability	of	 finding	 the	species	 in	plots	 that	belong	
to	the	cluster)	and	specificity	(the	probability	that	a	plot	belongs	to	
the	cluster	given	that	the	species	is	present	in	the	plot).	Fidelity	is	
fundamental	to	 interpreting	the	association	of	species	with	a	veg-
etation	 group	 under	 the	 Braun-	Blanquette	 approach.	 These	 two	
components	combined	gives	an	association	statistic	to	a	group.

A	 vegetation	map	was	 created	with	 the	output	 of	 the	 classifi-
cation	 using	 ArcGIS	Desktop©	 and	Google	 Earth	 Pro©.	We	 used	
Google	Earth	satellite	imagery,	the	previous	vegetation	map	(Smith	
&	Mucina,	2006),	plot	data	from	2018	to	2020	and	a	digital	surface	
model	of	the	island	to	inform	the	map.

3  |  RESULTS

3.1  |  Cluster analysis

Ward	 hierarchical	 clustering	 consistently	 performed	 better	 than	
kmeans,	 DIANA	 and	 PAM	 clustering	 in	 all	 validation	 measures	
(Figure 2).	 Ward	 clustering	 also	 had	 the	 highest	 agglomerative	

coefficient	(0.98),	compared	with	single	(0.80),	complete	(0.89)	and	
average	(0.86)	linkage,	and	the	divisive	coefficient	for	DIANA	(0.87).	
Ward	clustering	had	the	highest	ASW	(0.39,	Table 1)	and	Dunn	index	
(0.47,	Table 1).	It	also	had	the	lowest	connectivity	for	any	number	of	
clusters	(Figure 2).

3.2  |  Number of clusters

In	 all	 methods,	 clustering	 performance	 decreased	 with	 increasing	
cluster	number	 (Figure 2).	Most	validation	measures	 indicated	 that	
two	clusters	are	the	best	fit	for	the	data	(Table 2).	The	ASW	indicated	
that	the	data	were	clustered	most	strongly	when	the	Ward	method	
was	clustered	in	two	(0.34)	or	three	(0.34)	groups	(Figure 3).	DIANA	
had	the	highest	ASW	for	three	(0.37)	and	seven	clusters	(0.36),	fol-
lowed	by	kmeans	with	the	highest	ASW	for	two	(0.36)	and	three	(0.35)	
clusters	(Table 2).	PAM	clustering	had	the	highest	ASW	for	two	(0.35)	
and	three	(0.33)	clusters	(see	Figures	A1–	A3	in	the	Appendix	S1	for	
detailed	results).	The	Dunn	index	was	the	highest	in	the	two-	cluster	
solution	 for	 all	 clustering	methods,	 decreasing	with	 the	number	of	
clusters	(Figure 2).	If	the	first	inflection	point	of	the	gap	curve	is	con-
sidered,	two	clusters	are	suggested	for	Ward,	kmeans	and	PAM,	and	
three	 clusters	 for	 DIANA	 (see	 Figures	 A4–	A7	 in	 the	 Appendix	 S1 
for	detailed	results).	None	of	 the	validation	methods	 indicated	five	
groups	as	a	good	fit	for	the	data	(Figure 4).	The	highest	linkage	dis-
tance	of	the	Ward	cluster	dendrograms	also	visually	indicate	two	or	
three	clusters	may	be	appropriate	 for	 the	data	 (Figure 5),	as	below	
three	clusters	(Height	=	400),	the	linkage	distance	is	short	(i.e.,	the	
groups are not well separated; Figure 5).	The	Ward	method	with	two,	
three	and	five	clusters	was	chosen	for	the	ISA.

3.3  |  Cluster validation

The	presence	of	clusters	with	below	average	silhouette	scores,	as	
well	 as	 the	 fluctuation	 in	 the	 thickness	 of	 silhouette	width	 group	
sizes	in	the	Ward	two,	three	and	five	cluster	solutions	(Figure 3),	indi-
cate	suboptimal	groupings	for	the	data.	Based	on	the	overall	silhou-
ette	width	and	Dunn	index	ranges	of	all	clustering	methods,	which	
generally	 increase	with	 cluster	 compactness	 and	 separation,	most	
clustering	 methods	 produced	 weak	 separation,	 low	 compactness,	
and	high	connectivity	 (Figure 2).	None	of	the	algorithms	produced	
strong	 clusters,	 as	 even	 the	 highest	 ASW	was	 still	 low	 (Table 1).	
Centroids	for	kmeans	and	PAM	clustering	are	also	visually	not	well	
separated	for	neither	two	nor	five	clusters	(see	Figures	A8–	A11	in	
the	Appendix	S1	 for	 further	detail).	Therefore,	overall,	 there	 is	no	
strong	clustering	tendency	in	the	data.

The	Ward	clustering	with	 five	groups	does	not	spatially	match	
the	 previously	mapped	 units	 (Figure 4).	 The	 low	 overall	 ASW	 for	
the	 five-	cluster	 solution	 also	 indicates	 poor	 clustering	 of	 groups	
(Figure 3).	The	in-	field	descriptions	of	vegetation	in	plots	confirmed	
that	plots	were	not	classified	correctly,	according	to	previously	sug-
gested units.
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3.4  |  Indicator species analysis

If	two	clusters	are	selected	(Table 3),	A. penna- marina, Brachythesium, 
P. cookii, L. plumosa, Juncus scheuchzerioides, M. polymorpha, P. annua 

and C. antarctica	 are	 indicator	 species	 for	 cluster	 1	 (i.e.,	 there	 is	
high	 specificity	 for	 these	 species).	 Furthermore,	A. magellanica, U. 
compacta and C. moschata	are	significant	(p < .05)	indicators	species	
for	cluster	1	based	on	high	specificity,	but	are	not	strongly	associ-
ated	to	the	cluster	(Table 3).	None	of	the	species	occur	in	all	or	most	
plots	 belonging	 to	 cluster	 1	 (i.e.,	 there	 is	 low	 fidelity).	 Lichen	 and	
Notogrammitis crassior	are	indicator	species	for	cluster	2	(Table 3).

F I G U R E  2 Cluster	validation	measures	to	determine	the	optimal	clustering	method	between	Ward,	kmeans,	PAM	and	DIANA	clustering	
(indicated	by	the	colors)	using	(a)	connectivity,	(b)	Dunn	index,	and	(c)	ASW	for	two	to	20	clusters.	The	Dunn	index	calculates	the	ratio	
between	maximum	intra-	cluster	distance	and	minimum	inter-	cluster	distance,	and	ASW	estimates	the	average	distance	between	clusters.	
Large	Dunn	index	and	silhouette	width	values	thus	indicate	compact	and	well	separated	vegetation	groups.	Connectivity	refers	to	the	
connectivity	of	clusters	to	nearest	neighbors	and	should	ideally	be	low	so	that	plots	nearby	are	more	related	than	those	further	away.

TA B L E  1 Cluster	validation	results	of	the	four	cluster	analyses

Method ASW Dunn Connectivity Rank

Ward 0.39 0.47 2.93 1

DIANA 0.37 0.18 40.94 2

kmeans 0.36 0.086 50.02 3

PAM 0.35 0.086 62.05 4

Note:	Only	the	highest	values	for	ASW	and	Dunn	index,	as	well	as	
lowest	values	for	connectivity	are	shown.	“Rank”	indicates	the	best	
to	worst	performing	clustering	method	based	on	all	three	validation	
measures.

TA B L E  2 Summary	of	the	suggested	number	of	clusters	for	each	
validation	method	for	the	four	cluster	analysis	methods

Method ASW Dunn Gap

Ward 2 2 2

DIANA 3 2 3

kmeans 2 2 2

PAM 2 2 2

Note:	See	Figures	A1–	A7	in	the	Appendix	S1	for	detailed	results.
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If	three	clusters	are	selected	(Figure 5; Table 4),	A. penna- marina 
is	a	good	indicator	for	cluster	1;	it	occurs	in	almost	all	plots	belonging	
to	this	cluster	(i.e.,	high	fidelity),	and	is	largely	restricted	to	cluster	1	
(Table 4). Leptinella plumosa, M. polymorpha, Montia fontana, P. annua, 
C. antarctica, C. moschata, open water and Collobanthus kergeulen-
sis	are	good	 indicators	 for	cluster	2	 (Table 4),	with	almost	all	plots	
containing	 these	 species	belonging	 to	 cluster	2	 (i.e.,	 high	 specific-
ity),	although	they	do	not	occur	in	all	plots	belonging	to	the	cluster.	
Furthermore,	most	plots	that	contain	P. cookii and Sagina procumbens 
also	belong	to	this	cluster	(Table 4).	No	species	occurs	in	all	plots	that	
belong	to	cluster	2	(Table 4).	Lichen	appears	in	many	plots	belonging	

to	cluster	3	and	is	mostly	restricted	to	cluster	3.	Notogrammitis cras-
sior	is	also	a	good	indicator	species	for	cluster	3	with	most	plots	con-
taining	this	species	belonging	to	cluster	3	(Table 4).

If	five	clusters	are	selected	(Figure 6),	A. penna- marina is a good 
indicator	for	cluster	1,	as	it	occurs	in	all	plots	belonging	to	this	cluster	
(i.e.,	high	fidelity),	and	 it	 is	mostly	restricted	to	cluster	1	 (Table 5).	
Leptinella plumosa, M. fontana, P. annua, C. antarctica, C. kergeulensis, 
C. moschatta	were	 significant	 indicator	 species	 (p < .05)	 for	 cluster	
2,	and	to	a	lesser	extent	also	P. cookii and M. polymorpha	(Table 5).	
They	are	good	indicator	species	for	this	cluster	because	they	mostly	
occur	in	sites	belonging	to	this	cluster	only	(i.e.,	high	specificity).	No	

F I G U R E  3 Silhouette	plots	of	Ward	hierarchical	clustering	for	(a)	two,	(b)	three	and	(c)	five	clusters.	The	number	of	clusters	(n =	2	and	3)	
were	chosen	based	on	the	two	clustering	solutions	with	highest	ASW	and	Dunn	statistic.	Five	clusters	were	chosen	based	on	the	number	of	
vegetation	complexes	suggested	by	Smith	and	Mucina	(2006)	for	MI.	Each	gray	horizontal	line	represents	the	silhouette	width	of	a	plot	that	
was	allocated	to	each	cluster	( j).	The	number	of	plots	(nj; n =	476)	allocated	to	each	cluster	and	the	ASW	for	each	cluster	(aveieCiSi)	is	shown	
on	the	right,	as	well	as	the	overall	average	of	the	entire	classification	(shown	below	the	graph).	Small	within-	cluster	ASW	values	indicate	
that	plots	within	a	cluster	are	compositionally	dissimilar.	A	small	overall	ASW	for	the	entire	classification	indicates	that	clusters	are	not	well	
separated	and	compact.	Negative	silhouette	values	indicate	plots	might	have	been	placed	in	the	incorrect	cluster.	Ideally,	the	plots	clustered	
within	a	group	would	all	have	high	and	similar	silhouette	widths,	i.e.,	the	gray	lines	would	be	uniform	within	a	cluster.	The	overall	average	
would	also	ideally	be	high	in	a	well	separated	and	compact	grouping	of	a	data	set.
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species	occurs	 in	all	plots	 in	cluster	2.	Cluster	5	 is	 indicated	by	N. 
crassior	as	most	plots	that	contain	this	species	belong	to	cluster	5.	
Other	 species	are	 indicators	 for	a	combination	of	vegetation	clus-
ters,	but	none	are	good	indicators	for	only	cluster	3	or	cluster	4.

4  |  DISCUSSION

The	low	clustering	tendency	in	all	methods	indicates	that	the	veg-
etation	of	MI	 is	not	well	differentiated	by	cover-	abundance.	Since	
all	classification	attempts	failed	to	strongly	cluster	vegetation	 into	
stable	 units	 on	MI,	 vascular	 plant	 species	may	not	 form	 composi-
tionally	discrete	communities	based	on	aerial	cover.	In	all	methods,	
the clusters that were generated were not well isolated and were 
also	not	ecologically	meaningful	based	on	the	presence	of	particular	
species	suggested	by	the	ISA.	Bricher	(2012)	similarly	tested	various	
clustering	methods	and	found	that	clusters	were	not	well	isolated	for	
the	species-	poor	vegetation	on	the	sub-	Antarctic	Macquarie	Island,	
concluding	that	stable	groupings	could	not	be	found	in	the	floristic	
data	and	suggesting	individual	species	distributions	rather	be	used	
to	differentiate	vegetation.	Macquarie	 Island	has	a	 similar	 climate,	
age,	plant	functional	groups	and	species	richness	(45	vascular	plant	
species)	 to	MI	 (Bricher,	2012).	 Therefore,	 this	 study	 suggests	 that	

a	discrete	community	concept	may	not	be	appropriate	for	species-	
poor vegetation.

Our	 initial	 intention	was	 to	update	previous	 vegetation	 classi-
fications,	but	 the	plot	data	could	not	 robustly	be	divided	 into	 the	
previously	 mapped	 five	 vegetation	 units	 (Smith	 &	Mucina,	 2006)	
or	 into	 the	 plant	 communities	 suggested	 in	 earlier	 classifications	
(Gremmen,	 1981;	 Huntley,	 1971;	 Smith	 &	 Steenkamp,	 2001).	
Previous	 classifications	used	various	methods	 to	 classify	 the	 veg-
etation	on	MI,	although	all	applied	the	discrete	concept	of	hierar-
chical	plant	communities	(Gremmen,	1981;	Huntley,	1971;	Smith	&	
Steenkamp,	2001).	The	first	two	classifications	of	MI	were	floristic	
and	largely	qualitative	(Gremmen,	1981;	Huntley,	1971).	Smith	and	
Steenkamp	(2001)	 then	defined	21	habitats	 in	seven	habitat	com-
plexes	based	on	the	main	drivers	of	variation,	such	as	moisture	and	
biotic	 influence,	 found	with	ordination,	 rather	 than	species	occur-
rence.	 These	 previous	 classifications	 informed	 the	MI	 vegetation	
map	that	delineated	five	vegetation	units	(Smith	&	Mucina,	2006).	
We	expected	to	 find	similar	groupings	 in	our	data	despite	using	a	
different	methodology	since	the	previous	classifications	were	con-
sistent	 with	 each	 other.	 However,	 we	 found	 weak	 substantiation	
for	a	 floristic	community	classification	with	all	 ISAs	having	 low	fi-
delity,	which	is	a	key	metric	under	the	Braun-	Blanquette	approach.	
Indeed,	if	ecologists	require	discrete	communities	for	management	

F I G U R E  4 Smith	and	Mucina's	(2006)	vegetation	map	of	MI	(same	as	in	Figure 1)	with	the	location	of	plots	allocated	to	each	cluster	in	
this	study	indicated	as	five	differently-	colored	dots.	The	five	clusters	are	the	result	of	the	Ward	cluster	analysis	with	five	groups,	chosen	to	
compare	to	the	five	mapped	vegetation	units.	The	five	clusters	do	not	match	well	with	the	five	vegetation	units.
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on	MI,	incorporating	the	full	range	of	abiotic	factors	to	which	spe-
cies	are	known	to	respond,	such	as	wind	(Momberg	et	al.,	2021)	or	
soil	chemistry	(Cramer	et	al.,	2022),	may	need	to	be	included	in	the	
classification.

Our	 inability	 to	 find	 previously	 identified	 communities	 in	 the	
current	classification,	may	be	because	the	previous	research	did	not	
formally	 describe	 the	 cluster	 analysis	 choices	 in	 detail	 or	 validate	
the	classification	(Gremmen,	1981;	Smith	&	Steenkamp,	2001).	The	

F I G U R E  5 Ward	hierarchical	clustering	dendrogram	showing	three	clusters	(colored).	Height	indicates	the	Euclidian	distance	between	
clusters	and	the	horizontal	end	points	show	the	476	plots.	Short	distances	(i.e.,	small	differences	in	height)	between	data	points	indicate	
similarity.	Below	height	=	400	or	three	clusters,	branches	split	at	relatively	short	distances,	indicating	low	separation	between	clusters	or	
high	similarity.	The	height	of	the	link	that	joins	two	clusters	is	the	longest.

Species Cluster Specificity Fidelity
Association 
statistic p value

Austroblechnum 
penna- marina

1 0.93 0.69 0.80 .001

Acaena magellanica 1 0.89 0.52 0.68 .001

Uncinia compacta 1 0.83 0.34 0.53 .001

Brachythesium spp. 1 0.97 0.19 0.43 .001

Poa cookii 1 0.97 0.30 0.53 .001

Leptinella plumosa 1 0.98 0.13 0.35 .001

Juncus scheuchzerioides 1 0.94 0.11 0.32 .001

Marchantia polymorpha 1 1.0 0.10 0.30 .001

Poa annua 1 1.0 0.06 0.24 .001

Crassula moschata 1 0.84 0.06 0.21 .05

Callitriche antarctica 1 0.98 0.04 0.19 .02

Lichen 2 0.87 0.69 0.78 .001

Notogrammitis crassior 2 0.90 0.10 0.30 .002

Note:	Only	results	for	significant	(p < .05)	indicator	species	are	shown.	The	ISA	is	based	on	a	species'	
relative	abundance	and	frequency	of	occurrence	to	estimate	the	strength	of	species	associations	
within	the	predetermined	groups.	Specificity	indicates	the	probability	that	the	plots	belong	to	
the	group	given	that	the	species	has	been	found.	Fidelity	estimates	the	probability	of	finding	the	
species	in	the	plots	belonging	to	the	group.	These	two	components	combined	give	an	association	
statistic.	Strong	indicator	species	would	have	fidelity	and/or	specificity	values	close	to	1.

TA B L E  3 ISA	results	showing	species	
that are associated with two vegetation 
groups
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justification	for	a	discontinuous	view	of	the	vegetation	was	not	de-
scribed	and,	 as	was	 common	 in	 classification	 research	at	 the	 time	
(Lötter	et	al.,	2013),	 the	classification	was	not	methodologically	or	
conceptually	specified	at	the	detail	necessary	to	be	reproduceable.	
Therefore,	 the	 previously	 described	 communities	 or	 habitats	 will	
likely	 not	 be	 suitable	 for	 tracking	 vegetation	 change,	 as	 they	 are	
not	objectively	 reproducible.	While	expert	opinion	 is	 invaluable	 in	
interpreting	classifications,	 the	 formal	 testing	of	 the	effectiveness	
of	classifications	with	various	 internal	and	external	measures	 is	an	
essential	step	that	should	be	reported.	Therefore,	cluster	validation	
is	recommended	to	improve	the	quality	of	the	results	and	increase	
confidence	 (Handl	et	al.,	2005).	Providing	detailed	 justification	 for	
methodological	 choices	 in	 classification	 research	may	 aid	 compar-
isons	 between	 classifications	 and	 help	 future	 researchers	 in	 their	
analytical	decision-	making.

A	key	 limitation	 in	the	present	study	 is	 that	bryophyte	species	
were	not	included,	unlike	Gremmen	(1981)	who	identified	all	bryo-
phyte	species	and	Smith	and	Steenkamp	(2001)	who	included	some	
plant	guilds	of	non-	vascular	plants.	The	taxonomic	bias	towards	vas-
cular	 plant	 species	may	 have	 overlooked	 a	 substantial	 part	 of	 the	
vegetation.	Nevertheless,	regardless	of	bryophyte	species	exclusion,	
vascular	plant	species	were	still	expected	to	indicate	previously	iden-
tified	communities,	as	most	communities	had	at	least	one	diagnostic	

vascular	plant	species	or	guild	(Gremmen,	1981;	Smith	&	Steenkamp,	
2001)	 and	communities	dominated	by	vascular	plant	 species	were	
predicted	to	become	more	important	(at	the	expense	of	bryophytes)	
in	the	vegetation	as	a	whole	(Smith	&	Steenkamp,	1990).

Another	possible	reason	for	the	inability	to	classify	discrete	com-
munities,	is	that	the	vegetation	may	have	changed	rapidly	since	the	
previous	 classifications	were	 formulated,	 perhaps	 resulting	 in	 spe-
cies	 reorganization	 and	 novel	 associations	 due	 to	 climate	 change	
(le	Roux	&	McGeoch,	2008a; Raath- Krüger et al., 2019),	 as	well	 as	
an	 increase	 in	 mouse	 populations	 due	 to	 the	 eradication	 of	 cats	
(McClelland	 et	 al.,	 2018;	 Smith	 &	 Steenkamp,	 1990, 2001;	 Smith	
et al., 2001).	The	previous	classifications'	fieldwork	was	conducted	at	
times	with	much	smaller	mouse	populations,	as	cats	were	still	present	
(Gremmen,	1981;	Huntley,	1971)	and/or	recently	eradicated	(Smith	&	
Steenkamp,	2001),	which	together	with	climate	change	has	increased	
peak	 mouse	 densities	 by	 430%	 from	 1979–	1980	 to	 2008–	2011	
(McClelland	et	al.,	2018).	While	we	cannot	definitely	establish	whether	
these	changes	are	a	cause	of	 the	 inability	 to	classify	discrete	com-
munities,	sub-	Antarctic	vegetation	has	changed	rapidly	in	recent	de-
cades,	including	changes	in	plant	species	distributions	(Raath-	Krüger	
et al., 2019),	community	reorganization	(le	Roux	&	McGeoch,	2008b),	
changes	 in	phenology	 (March-	Salas	&	Pertierra,	2020)	and	the	col-
lapse	of	an	entire	ecosystem	(Bergstrom	et	al.,	2015).	There	is	thus	

TA B L E  4 ISA	results	showing	significant	indicator	species	for	three	vegetation	clusters

Species Cluster Specificity Fidelity Association statistic p value

Austroblechnum penna- marina 1 0.87 0.99 0.93 .001

Poa cookii 2 0.85 0.35 0.55 .001

Water 2 0.94 0.06 0.23 .002

Collobanthus kergeulensis 2 0.97 0.03 0.17 .03

Leptinella plumosa 2 0.99 0.24 0.49 .001

Marchantia polymorpha 2 0.99 0.15 0.39 .001

Sagina procumbens 2 0.81 0.19 0.39 .002

Poa annua 2 0.98 0.10 0.32 .001

Crassula moschata 2 0.91 0.10 0.31 .05

Callitriche antarctica 2 0.99 0.07 0.26 .03

Montia fontana 2 0.98 0.13 0.35 .002

Lichen 3 0.77 0.69 0.73 .001

Notogrammitis crassior 3 0.82 0.10 0.29 .001

Acaena magellanica 1 + 2 0.94 0.52 0.70 .001

Uncinia compacta 1 + 2 0.91 0.34 0.56 .001

Brachythecium 1 + 2 0.99 0.19 0.43 .001

Juncus scheuchzerioides 1 + 2 0.97 0.11 0.33 .001

Racomitrium 1 + 3 0.90 0.62 0.75 .001

Lycopodium magellanicum 1 + 3 0.98 0.08 0.28 .02

Ranunculus biternatus 2 + 3 0.85 0.22 0.43 .003

Note:	The	ISA	is	based	on	a	plant	species'	relative	abundance	and	frequency	of	occurrence	to	estimate	the	strength	of	species	associations	with	the	
predetermined	clusters	(De	Cáceres	&	Legendre,	2009).	Specificity	indicates	the	probability	that	the	plots	belong	to	the	cluster	given	that	the	species	
has	been	found.	Fidelity	estimates	the	probability	of	finding	the	species	in	the	plots	belonging	to	the	cluster.	These	two	components	combined	
give	an	association	statistic	to	a	cluster.	Strong	indicator	species	would	have	fidelity	and/or	specificity	values	close	to	1.	Only	results	for	significant	
(p < .05)	indicator	species	are	shown.
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a	possibility	 that	 the	vegetation	has	 reorganized	or	become	 transi-
tional	between	previously	described	communities,	as	was	predicted	
by	the	authors	of	previous	classifications	(Smith	et	al.,	2001;	Smith	&	

Steenkamp,	1990, 2001),	 leading	to	more	continuous	vegetation	as	
species	expanded	 their	 ranges	across	 the	 island	 in	 response	 to	 the	
changes	in	climate	(le	Roux	&	McGeoch,	2008b).

F I G U R E  6 Ward	hierarchical	clustering	dendrogram	showing	five	clusters	(colored).	Height	indicates	the	Euclidian	distance	between	
clusters	and	the	horizontal	end	points	show	the	476	plots.	Short	distances	(i.e.,	small	differences	in	height)	between	data	points	indicate	
similarity.	Below	height	=	400	or	three	clusters,	branches	split	at	relatively	short	distances,	indicating	low	separation	between	clusters	
or	high	similarity.	The	height	(c.	350)	of	the	links	that	split	the	dendrogram	into	five	clusters	is	at	a	low	linkage	distance,	indicating	a	small	
difference	between	clusters.

TA B L E  5 ISA	results	showing	significant	indicator	species	for	five	vegetation	clusters,	as	suggested	by	previous	research	(Smith	&	
Mucina,	2006)

Species Cluster Specificity Fidelity Association statistic p value

Austroblechnum penna- marina 1 0.78 0.99 0.88 .001

Leptinella plumosa 2 0.97 0.52 0.71 .001

Poa cookii 2 0.81 0.56 0.67 .001

Poa annua 2 0.99 0.29 0.54 .001

Crassula moschata 2 0.92 0.27 0.50 .001

Marchantia polymorpha 2 0.86 0.25 0.46 .001

Callitriche antarctica 2 0.91 0.15 0.37 .001

Collobanthus kergeulensis 2 0.98 0.077 0.27 .001

Notogrammitis crassior 5 0.79 0.14 0.33 .002

Brachythecium 1 + 2 0.94 0.25 0.48 .001

Uncinia compacta 1 + 3 0.82 0.41 0.58 .001

Montia fontana 2 + 3 0.98 0.13 0.35 .002

Water 2 + 3 0.92 0.06 0.23 .01

Lichen 4 + 5 0.84 0.69 0.76 .001

Note:	The	ISA	is	based	on	a	plant	species'	relative	abundance	and	frequency	of	occurrence	to	estimate	the	strength	of	species	associations	with	the	
predetermined	clusters	(De	Cáceres	&	Legendre,	2009).	Specificity	indicates	the	probability	that	the	plots	belong	to	the	cluster	given	that	the	species	
has	been	found.	Fidelity	estimates	the	probability	of	finding	the	species	in	the	plots	belonging	to	the	cluster.	These	two	components	combined	
give	an	association	statistic	to	a	cluster.	Strong	indicator	species	would	have	fidelity	and/or	specificity	values	close	to	1.	Only	results	for	significant	
(p < .05)	indicator	species	are	shown.



    |  13 of 17van der MERWE et al.

In	this	study,	the	strongest	clustering	was	for	two	or	three	clus-
ters.	Here,	we	interpret	the	three	clusters	and	attempt	to	relate	them	
to earlier vegetation descriptions that applied a discontinuous view 
of	vegetation	variation	(Smith	&	Steenkamp,	2001).	From	the	ISA	of	
three	clusters,	the	first	is	indicated	by	the	specialist	species	(see	le	
Roux	et	al.,	2013)	on	the	coast	(labeled	“Coastal	zone”	in	Figure 7).	
In	the	Coastal	zone,	the	biotic	nutrient	input	by	seals	and	seabirds,	
or	salt	spray	created	by	rough	seas	on	the	high	cliffs,	increases	the	
nutrient	content	of	soils	(Smith	&	Steenkamp,	2001)	and	thus	creates	
conditions	 for	 species	with	 narrow	 ecological	 amplitude	 to	 occur.	
Crassula moschata	for	instance,	only	occurs	where	there	is	high	salt	
spray	and	thrive	in	coastal	areas	where	many	generalist	species	can-
not	(le	Roux	&	McGeoch,	2008b).	Poa annua, L. plumosa, P. cookii, C. 
antartica and M. polymorpha	also	occur	in	the	coastal	zone	in	areas	
with	 biotic	 nutrient	 input	 (Smith	 &	 Steenkamp,	 2001).	 The	 three	
most	widespread	alien	plant	species	are	also	common	here	(le	Roux	
et al., 2013).	Similarly,	in	previous	classifications,	the	coastal	vegeta-
tion	was	very	strongly	distinguished	as	the	cluster	that	differed	from	
all	 other	 vegetation	 (Gremmen,	1981;	 Smith	&	 Steenkamp,	2001).	
The	 next	 cluster	 (labeled	 “Inland	 vegetation”	 in	 Figure 7),	 is	 only	

indicated	here	by	the	fern	A. penna- marina which is widespread and 
abundant	across	the	lowlands	of	the	island	and	occurs	occasionally	
at	higher	altitudes.	 It	 is	the	dominant	species	on	inland	slopes	and	
could	be	related	to	the	“Slope”	complex	of	previous	classifications	
(Smith	&	Steenkamp,	2001).	The	third	cluster	(labeled	“Fellfield”	 in	
Figure 7)	 includes	 sites	 with	 low	 vegetation	 cover	 (i.e.,	 high	 rock	
cover),	as	 the	only	 indicators	were	 lichens	and	N. crassior which is 
a	small	fern	that	grows	between	rock	crevices.	Despite	this	attempt	
to	 identify	clusters,	 interpreting	these	as	discrete	units	 is	mislead-
ing	because	there	were	no	strong	grounds	for	this	based	on	floristic	
composition,	because	(a)	the	silhouette	widths	and	Dunn	index	were	
low	for	any	number	of	clusters,	(b)	fidelity	and	specificity	to	optimal	
clusters	were	low	and	(c)	the	in-	field	descriptions	of	vegetation	did	
not	match	well	with	the	three-	cluster	classification.

The	 sub-	Antarctic	 islands	 have	 a	 relatively	 recent	 origin	
(Rudolph	 et	 al.,	 2020).	 There	 have	 been	 three	 glaciations	 in	 the	
last	 300,000 years	 on	MI,	with	 the	 last	 glaciation	 reaching	 a	maxi-
mum	extent	around	34,500 years	ago,	and	no	evidence	of	glaciation	
during	the	Holocene	(Rudolph	et	al.,	2020).	Biological	refugia,	which	
allowed	 species	 to	 persist,	 most	 likely	 occurred	 in	 low	 lying	 areas	

F I G U R E  7 Updated	vegetation	map	of	MI	showing	the	three	vegetation	clusters	from	the	classification	in	this	study.	Inland	vegetation	
corresponds	to	previously	mapped	“slope”	and	“mire”	complexes.	Vegetation	previously	called	“Polar	Desert”	and	“fellfield”	were	allocated	
to	one	cluster	called	“fellfield”	in	the	current	classification	due	to	lack	of	differentiation	by	indicator	species.	The	area	mapped	in	the	
Centre	of	the	map	with	diagonal	lines	is	near	100%	bare	rock,	which	would	indicate	“Polar	Desert”.	The	coastal	zone	was	clearly	separated	
in	the	classification	by	specialist	species	that	only	occur	along	the	coast.	Cinder	cones	did	not	form	a	vegetation	unit	but	are	conspicuous	
geological	features	in	the	landscape	with	little	vegetation	and	are	indicated	by	crossed	lines.	The	updated	map	was	created	with	the	
assumption	that	the	original	Smith	and	Mucina	(2006)	vegetation	map	was	accurate	for	their	classification.
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(Rudolph	et	al.,	2020).	MI's	age	and	glaciation	history,	coupled	with	
extreme	 isolation	from	continental	species	pools,	has	thus	resulted	
in	 a	 taxonomically	 and	 functionally	 depauperate	 system	 (Smith	 &	
Mucina,	2006).	Environments	with	low	species	richness	and	turnover	
do	not	conform	to	a	methodology	that	relies	on	diagnostic	species.	
This	is	because	the	vegetation	on	MI	has	a	high	percentage	of	shared	
species	across	the	island,	and	their	occurrence	does	not	differentiate	
between	sites,	except	perhaps	along	the	coast.	In	older	environments	
(such	as	Fynbos	vegetation	in	South	Africa)	that	have	been	stable	for	
millennia	and	that	have	contained	continental	refugia	during	periods	
of	 glaciation	 (Verboom	 et	 al.,	 2009),	 community-	level	 associations	
may	be	more	apparent,	and	thus	changes	more	easily	monitored.

No	comprehensive	studies	have	been	published	that	differenti-
ate	criteria	for	community	versus	continuum	approaches,	or	under	
which	conditions	either	are	appropriate	(Austin,	2013).	However,	our	
results	align	more	with	 the	continuum	theory	where	vegetation	 is	
viewed	as	the	outcome	of	individualistic	species	responses	to	their	
environment	and	to	each	other	(Curtis	&	McIntosh,	1951;	Palmer	&	
White,	1994).	Austin	(2013)	suggested	that	the	continuum	concept	
is	preferred	in	vegetation-	environment	investigation.	Since	the	veg-
etation	on	MI	 is	 closely	 coupled	with	 the	harsh	abiotic	 conditions	
(Cramer	et	al.,	2022;	le	Roux	&	McGeoch,	2008c),	a	continuum	view	
may	better	represent	the	vegetation	variation.	Indeed,	species	on	MI	
do	respond	independently	to	abiotic	conditions	(Cramer	et	al.,	2022; 
Momberg	et	al.,	2021),	biotic	interactions	(Raath-	Krüger	et	al.,	2019)	
and	 disturbance	 (Phiri	 et	 al.,	2009).	 The	 individual	 responses	may	
vary	 along	 gradients,	 such	 as	 the	 change	 in	 vegetation	 structure	
along	 an	 elevation	 gradient	 (le	 Roux	&	McGeoch,	2008c).	 For	 ex-
ample,	A. selago,	is	a	keystone	generalist	cushion	plant	species	that	
occurs	 at	 low	 and	 high	 elevations,	 but	 at	 different	 densities	 (i.e.,	
the	 structure	differs;	Phiri	 et	 al.,	2009).	At	high	elevations,	 in	 low	
densities, A. selago	 facilitates	 other	 generalist	 species	 that	 cannot	
necessarily	survive	without	the	protection	of	cushion	plants	(Raath-	
Krüger et al., 2019).	Therefore,	while	species	distributions	may	over-
lap	at	high	and	low	elevations,	each	responds	differently	to	abiotic	
conditions	and	biotic	interactions	(le	Roux	&	McGeoch,	2008b).	The	
recent	rapid	change	in	climate	on	MI	has	also	altered	the	distribution	
of	 (Raath-	Krüger	 et	 al.,	2019)	 and	 relationships	 between	 vascular	
species	with	some	ranges	expanding	and	others	retracting	(le	Roux	
&	McGeoch,	2008b).	This	suggests	that	individual	plant	species	may	
respond	variably	to	climate	change	and	biotic	disturbance	(Cramer	
et al., 2022; Raath- Krüger et al., 2019).

Despite	 the	 acknowledged	 difficulty	 in	 using	 species	 fidel-
ity	 to	 classify	 vegetation	 into	 communities	 in	 cold-	temperate	
(Gremmen,	1981),	species-	poor	environments	(Landucci	et	al.,	2015),	
the	 vegetation	 on	 MI	 continues	 to	 be	 discretely	 defined	 at	 the	
community-	level,	perhaps	in	order	to	adhere	to	the	European	stan-
dard	 (Braun-	Blanquet,	 1932;	 Mucina	 et	 al.,	 2016).	 The	 discrete	
community	 concept	 was	 originally	 predominantly	 used	 to	 classify	
broad-	scale	representative	stands	in	environments	with	sharp	com-
positional	boundaries	that	have	high	turnover	and	species	fidelity	to	
differentiate	communities	(Pavão	et	al.,	2019).	However,	the	unit	for	
monitoring	vegetation	in	species-	poor	environments	should	not	rely	

on	assemblages	of	species,	but	rather	individual	species,	as	shown	to	
be	more	suitable	on	Macquarie	Island	(Bricher	et	al.,	2013).	Species	
distribution	models	(Elith	&	Leathwick,	2009;	Poggiato	et	al.,	2021)	
could	be	more	promising	for	differentiating	and	monitoring	vegeta-
tion	 in	environments	with	few	vascular	plant	species	that	respond	
individualistically	to	abiotic	conditions,	as	it	predicts	species	distri-
butions	based	on	their	environmental	niches	(Cramer	et	al.,	2022).

5  |  CONCLUSION

Despite	 testing	 a	 range	 of	 clustering	 and	 validation	 methods	 for	
MI	 vegetation,	 there	was	 no	 solution	 that	 could	 reliably	 separate	
clusters,	 suggesting	 that	 the	 traditional	 discrete	 community	 view	
of	vegetation	may	not	be	appropriate	in	species-	poor	and/or	young	
environments.	 The	marine	 and	 terrestrial	 ecosystems	 of	 the	 sub-	
Antarctic	have	been	identified	as	core	areas	to	understand	the	rapid	
climate	change	that	is	occurring	in	the	region	(Ansorge	et	al.,	2017).	
In	this	region,	permanent	plots	to	track	individual	changes	in	species	
occurrence	and	abundance,	including	bryophytes,	across	the	struc-
tural	vegetation	gradient	will	likely	be	more	effective	to	monitor	and	
easily	detect	real	world	change	than	tracking	hard	to	define	“plant	
communities”.	 Future	 research	 should	 thus	 focus	 on	 the	 continu-
ous	variation	 in	 individual	 species	distributions	along	key	environ-
mental	gradients,	 rather	 than	viewing	vegetation	as	discontinuous	
communities.
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