1	Elephant rewilding affects landscape openness and fauna habitat across a 92-year period		
2	Christopher E Gordon ^{1,2} , Michelle Greve ³ , Michelle Henley ^{4,5} , Anka Bedetti ⁵ , Paul Allin ⁶ and Jens-		
3	Christian Svenning ¹		
4	1. Centre for Biodiversity Dynamics in a Changing World and Section for Ecoinformatics and		
5	Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark		
6	2. Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797,		
7	Penrith, NSW 2751, Australia		
8	3. Department of Plant and Soil Sciences, University of Pretoria, 0028, Pretoria, South Africa		
9	4. Applied Behavioural Ecology and Ecosystem Research Unit, School of Environmental Sciences,		
10	University of South Africa, South Africa		
11	5. Elephants Alive, Mica village, 1382, Mica, South Africa		
12	6. Transfrontier Africa, Hoedspruit, 1380, South Africa		
13	Appendix S2		
14	Journal: Ecological Applications		
15			
16			

17 Appendix S2. Method used to select detection functions for Distance sampling of tree density.

18 Section S1: Description of the method used to select detection functions for Distance sampling.

To identify the most parsimonious method to tree estimate density, three models with different 19 detection functions were compared using Akaike Information Criterion (AIC) values: half-normal 20 key function and cosine adjustment, a uniform key function and cosine adjustment and a hazard-rate 21 key function and simple polynomial adjustment. To account for differences in detectability between 22 23 reserves with different elephant reintroduction times (and subsequent differences in vegetation density / cover), model selection was conducted separately for the reserve without elephants and the 24 reserves with a younger elephant reintroduction time (i.e. "thick" vegetation; 1995, 2003) and the 25 26 reserves with an older elephant reintroduction time (i.e. sparse vegetation;1972, 1927). The function with the lowest AIC score was used to estimate density. All models falling within two AIC points 27 of the "best" model were deemed equivalent. Where this occurred, we attempted to use the same 28 detection function between transects (Table SI.3). 29

Table S1: Akaike Information Criterion (AIC) values for Distance sampling models used to
estimate the density of trees bearing small- (a), medium- (b) and large-sized (c) tree hollows (HBT)
and the density of all trees (d), *Senegalia nigrescens* (e) and *Sclerocarya birrea* (f) trees. Different
detection functions were fit for sites occurring at three reserves with "thick" vegetation (maximum
transect width 20 m) and two reserves with "sparse" vegetation (maximum transect 40 m). *
indicates the detection function used to estimate density.

Detection function	Transect width	
	20 m	40 m
a) Small HBT		
Uniform cosine	592.31	210.36

Half-normal cosine	591.45*	210.79*		
Hazard-rate simple polynomial	592.73	210.64		
b) Medium HBT				
Uniform cosine	363.31	294.26		
Half-normal cosine	362.46	293.90		
Hazard-rate simple polynomial	358.99*	291.68*		
c) Large HBT				
Uniform cosine	63.10*	130.14*		
Half-normal cosine	63.47	130.77		
Hazard-rate simple polynomial	65.18	131.18		
d) All trees				
Uniform cosine	3601.41*	935.17*		
Half-normal cosine	3606.32	934.88		
Hazard-rate simple polynomial	3621.14	934.92		
e) Senegalia nigrescens				
Uniform cosine	2202.66	326.19		
Half-normal cosine	2200.63*	326.67*		
Hazard-rate simple polynomial	2209.97	327.21		
f) Sclerocarya birrea				
Uniform cosine	1114.27	373.12		
Half-normal cosine	1114.04*	373.96*		
Hazard-rate simple polynomial	1117.84	373.82		