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Abstract
There is a continuous arms race between pathogens and their
host plants. However, successful pathogens, such as phyto-
pathogenic oomycetes, secrete effector proteins to manipulate
host defense responses for disease development. Structural
analyses of these effector proteins reveal the existence of re-
gions that fail to fold into three-dimensional structures, intrinsi-
cally disordered regions (IDRs). Because of their flexibility, these
regions are involved in important biological functions of effector
proteins, such as effector–host protein interactions that perturb
host immune responses. Despite their significance, the role of
IDRs in phytopathogenic oomycete effector–host protein in-
teractions is not clear. This review, therefore, searched the
literature for functionally characterized oomycete intracellular
effectorswith known host interactors. We further classify regions
that mediate effector–host protein interactions into globular or
disordered binding sites in these proteins. To fully appreciate the
potential role of IDRs, five effector proteins encoding potential
disordered binding sites were used as case studies. We also
propose a pipeline that can be used to identify, classify aswell as
characterize potential binding regions in effector proteins. Un-
derstanding the role of IDRs in these effector proteins can aid in
the development of new disease-control strategies.
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Introduction
Phytopathogenic oomycetes are devastating plant
pathogens causing disease in a wide range of economi-
cally important crops, posing a threat to agriculture and
global food security [1,2]. The success of these patho-

gens is largely attributed to their ability to secrete a
plethora of virulence proteins, called effectors, that
modulate host physiology or immunity and promote
infection [3]. These effectors can either be secreted
into the apoplastic space (apoplastic effectors) to inhibit
non-specific defense mechanisms or are translocated
into the interior of the host cell to exert their functions
in different organelles (cytoplasmic/intracellular effec-
tors) [4,5]. Crinkler (CRN) and RxLR (Arg-Xaa-Leu-
Arg) effectors are two classes of oomycete cytoplastic/
intracellular effectors [6]. RxLR effectors are largely

implicated in the biotrophic phase of oomycete infec-
tion cycle; thus in some cases (not always), they inhibit
cell death caused by recognition of non-self-components
[7,8]. On the other hand, CRNs were initially identified
through their ability to cause crinkling and necrosis
upon expression in plant tissue, and thus, they were
considered as a class of cell death inducing effectors [9].
However, studies show that this is not a universal
feature of CRN proteins [10,11].

One of the mechanisms employed by these effectors to

manipulate host immune responses is by interacting with
crucial immunity-associated plant proteins [3,12]. Of
importance to note is that the functionality of proteins,
including effectors, lies not necessarily on the entire
protein sequence/structure, rather within important re-
gions or modules called domains or motifs. Most of these
modules assume a stable three-dimensional (3D) struc-
ture conforming to the structureefunction dogma, which
states that a protein’s structure determines its function.
The last few decades have seen the discovery of hybrid
proteins, protein with both well folded regions as well as

intrinsically disordered regions (IDRs) [13e15]. One
established function of IDRs is involvement in in-
teractions with structured binding pockets [16,17]. The
question that arises is: how do these regions mediate
such crucial biological functions? Advances in biochem-
ical and structural analyses of proteins reveal that IDRs
usually contain more charged residues than hydrophobic
amino acids [18], thus these charged molecules tend to
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2 Biotic interactions 2023
make larger interaction surfaces with a solvent instead of
forming a folding core [19]. The binding sites within
IDRs are often 3e8 amino acid long peptide for short
linear motifs (SLiMs) and 10e70 amino acid residues for
molecular recognition features (MoRFs) [20,21]. Inten-
sive studies have been carried out on the role of IDR
binding regions in viral proteins as well as bacterial ef-
fectors where they employ molecular mimicry by

displaying similarities with SLiMs of the host, thus
hijacking the host cellular machinery [22e26]. Although
the occurrence of IDRs in oomycete effector proteins has
been reported [8,27e29], to the best of our knowledge,
there is no study that has provided a direct link between
IDRs and host protein interaction in oomycete effector
proteins. This lag could be attributed to the fact that
there are few oomycete effector proteins with solved 3D
structures, limiting the identification of motifs/domains
that mediate effectorehost protein interactions. This
Figure 1

Potential role of intrinsically disordered regions (IDRs) in five oomycete effecto
(green) and virulent (red) phenotypes. The virulent phenotype is characterized
and virulent AVR2 can interact with the target protein phosphatase BSU-LIKE P
leads to recognition by the host resistance-protein (R2); however, the presen
leading to the effector escaping R2 recognition. (2) PexRD54 effector encode
interaction of the effector with a host autophagy-related protein 8 (ATG8) by ou
process for disease development. Similarly, Phytophthora parasitica Avh195 e
effector with ATG8 to lower autophagic influx, thus promoting virulence. Howe
established. (3) Phytophthora infestans, Pi04314 RxLR effector, interacts with
an IDR. It does this by mimicking a host regulatory subunit (yellow bar) to form a
for disease development. (4) Avrblb2 effector from the P. infestans encodes a c
in the presence of calcium ions (brown stars) leading to immune response si
unknown.
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review, therefore, seeks to (i) collect data from the
literature describing verified targets of oomycete RxLR
and CRN effector proteins and further analyze for the
presence of binding sites mediating protein interactions;
(ii) use these characterized effectors to establish the
potential role of IDR binding sites in mediating
effectorehost protein interactions; (iii) propose a pipe-
line for identifying, classifying, and characterizing po-

tential binding sites within IDRs (Figure 1).
Targets of oomycete intracellular effectors:
A decade of known preys
Since the discovery of E3 ligase CMPG1 as a host target
protein of the well characterized AVR3 effector from
Phytophthora infestans [30], various studies have been
conducted in the past 10 years in search of phytopath-
ogen oomycete effector preys [31]. This has been made
r proteins (grouped into four case studies). (1) AVR2 effector with avirulent
by IDRs (straight line) at both N and C terminal regions. Both the avirulent
ROTEIN1 (BSL1). The interaction between avirulent phenotype and BSL1
ce of IDRs in the virulent phenotype promotes mutations (blue triangle)
s an autophagy interacting motif (AIM), within an IDR, that mediates the
tcompeting the autophagy cargo receptor Joka2 to activate an autophagic
ffector encodes a potential AIM motif that facilitates the association of the
ver, the mechanism of action of this short linear motif (SLiM) is yet to be
host protein phosphatase 1 catalytic (PP1c) via R/KVxF motif found within
holoenzyme leading to dephosphorylation of an unknown target substrate

almodulin binding motif (yellow) that promotes binding to calmodulin (CaM)
gnaling and hypersensitive reactions. The mechanism of binding remains
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Potential role of intrinsically disordered regions Chepsergon and Moleleki 3
possible through recent developments in methods that
enable mass screening of these targets using yeast two-
hybrid (Y2H) or in planta coimmunoprecipitation/
tandem mass spectrometry (coIP/MS) assays [32e34]
as well as specific methods such as bimolecular fluo-
rescence complementation, pairwise-Y2H, or fluores-
cence resonance energy transfer [35e37]. Effectors
employ different mechanisms to target various host

proteins/processes implicated in defense. To determine
host proteins that are targeted by oomycetes, we
manually collected data from the literature describing
verified host targets of oomycete intracellular effectors
and further classify these proteins manually based on
their biological functions (Supplemental Table 1). Our
data mining revealed 56 targets of oomycete effector
proteins with the majority of these being involved in
transcription and signaling. Other effector targets
include proteins involved in metabolism, cellular traf-
ficking, protein regulation, or RNA trafficking/process-

ing (Figure 2a). It is important to note that these targets
are positive as well as negative regulators/susceptibility
factors (S factors) (Supplemental Table 1). Effectors
from filamentous phytopathogens have been recently
shown to target S factors for disease development [12].
Knowledge on S factors can help to develop new and
effective strategies to control plant disease.

Although several oomycete effectors are known to
interact with host proteins, specific domains/motifs that
mediate the interactions have not been fully explored.

From the few motifs that are known, we used the
Figure 2

(a) Percentage of host plant proteins targeted by phytopathogenic oomycete
function in plants. (b) Percentage of known and unknown binding sites of 56
gorized as either globular or intrinsically disordered motifs. The total numbers

www.sciencedirect.com
eukaryotic linear motif (ELM) resource to classify these
motifs into globular and disordered binding sites
(Figure 2b). Based on our analysis, WY motif is a prev-
alent globular motif in oomycete effectors followed by
Helixehairpinehelix motif. Other globular motifs
include kinase and ubiquitin-associated motifs,
ethylene-responsive element binding factor-associated
amphiphilic repression motif as well as linker regions

(T-regions). On the other hand, autophagy-associated
motif, calmodulin (CaM)-binding motif, and protein
phosphatase 1 (PP1) docking motifs can be classified as
disordered binding sites (Figure 2b).

Playing both ‘hide-seek’ and ‘copycat’
games: Role of IDRs in evading host
immune responses and molecular mimicry
The inability of IDRs to fold into a well-defined struc-
ture is portrayed as an advantage to effector proteins due
to (i) increased interaction surface area; (ii) conforma-
tional flexibility to interact with several protein targets;
(iii) the presence of molecular recognition elements
that fold upon binding to facilitate their interaction with
target substrates; (iv) accessibility of post-translational
modification sites as described by Tompa [38]. These
features promote molecular promiscuity of effectors
such that they are able to interact with more than one

host target. Of importance to note is that the N termi-
nus of oomycete effectors is more enriched with
intrinsically disordered content than the C terminus
implying its role in effector translocation [27,28].
Intriguingly, the C terminal regions of these effectors is
effector proteins. The proteins were classified based on their biological
oomycete intracellular effectors. The identified binding sites can be cate-
of motifs are indicated in brackets.
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where the activity lies. Does this mean that IDRs in this
region play a role in mediating the biological activity of
these effectors? To answer this question, we conducted
a case study of five oomycetes cytoplasmic effectors
with known host targets as well as known motifs/do-
mains mediating interactions. We first submitted the
effectors’ sequences to predictor of natural disordered
regions (PONDR) tool http://www.pondr.com/to predict

the presences of IDRs, followed by classification of
binding regions within IDRs using the ELM http://elm.
eu.org/.
AVR2 effector: Role of IDRs in evasion of
host recognition
Effector recognition is a central event in the activation
of host immune responses that leads to taming of
pathogen progression [39]. However, successful plant
pathogens are constantly mutating their effectors to
evade host recognition [40]. As an example, AVR2
effector can not only be perceived by the R2 protein
(avirulent) inside plant cells, leading to an immunity
reaction but it can also evade host recognition (virulent)
by sequence and expression polymorphisms [41]. Both
the avirulent and virulent AVR2 can interact with the

target protein phosphatase BSU-LIKE PROTEIN1
(BSL1). However, only the avirulent type further pro-
moted the interaction of BSL1 with R2 [42,43]. This
Figure 3

Prediction of IDRs in five oomycete intracellular effectors using PONDR® tool
types of predictors: VLXT, XLI_XT, CAN_XT, VL3-BA, and VSL2 (shown in diffe
AVR2 effector with IDRs largely at the C terminus. (b) PexRD54 effector with
IDRs both at the N as well as C terminal regions. (d) Pi04314 effector encod
between 136 and 142 amino acids at the C terminal region. (e) Avrblb2 effect
disordered region.
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suggests structural differences between the avirulent
and virulent phenotypes [44,45]. A recent study showed
that the virulent phenotype of this effector has a higher
disorder content in both the N and C terminal regions
than the avirulent phenotype [8]. The presence of IDRs
at the C terminal of AVR2 effector domain (Figure 3a)
allows the effector to be flexible and open to mutations
such as deletion, insertion as well as intragenic recom-

bination contributing to the evasion of resistance-
protein detection in P. infestans [8]. Therefore, the
structural flexibility of IDR regions provides functional
advantages for effectors to maintain key features
required for pathogen virulence activity but prevent
recognition by host immunity systems.
PexRD54 and Avh195 effectors: Role of
IDRs in manipulation of host autophagy
Plants employ autophagy to protect themselves against
pathogens [46,47]. However, pathogens deploy effector
proteins to interfere with autophagy-related processes
for disease development. P. infestans PexRD54 effector
has been shown to promote infection by interacting with
plant autophagy-related protein ATG8CL, subsequently
stimulating the formation of autophagosomes [48]. This

allows PexRD54 to direct autophagic vesicles to the
feeding sites of P. infestans so that the pathogen can
potentially divert nutrients [49].
(Predictor of Natural Disordered Regions). The tool integrates five different
rent color lines). Identified binding sites within IDRs are shaded in gray. (a)
IDRs spanning the entire protein sequence. (c) Avh195 effector encoding
es IDRs largely at the N terminus with a conspicuous disordered region
or encodes IDRs at the N as well as C terminal regions. IDR, intrinsically
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Potential role of intrinsically disordered regions Chepsergon and Moleleki 5
Structural dissection of PexRD54 effector reveals five
tandem WY domains with a disordered C terminal
AIM from amino acid 378e381 that mediated the ef-
fector’s activity [50]. Using the ELM resource, we
classified this motif Asp-Trp-Glu-Ile-Val (DWEIV) as a
ligand binding SLiM (LIG_LIR_Gen_1) (Figure 3b).
How does a five amino acid motif take charge of the host
autophagy machinery? The motif mimics autophagy

adaptor/receptor (Joka2) by binding to host ATG8 pro-
tein to stimulate the formation of ATG8-marked auto-
phagosome thus eliminating molecules implicated in
defense [48]. Previous studies have shown that molec-
ular SLiM mimicry is used by pathogenic bacteria ef-
fectors to hijack host cell machinery [24,51].

Similarly, Phytophthora parasitica RxLR effector Avh195
(not orthologous to PexRD54) interacts with ATG8 to
manipulate the host immune responses [52]. Unlike
PexRD54 effector that activates autophagy after its

interaction with host ATG8, Avh195 was shown to slow
down the autophagic influx [52]. The effector executes
this activity with the help of three potential AIM motifs
(DRWIRL, KSYDDI, and PIWREV) that are encoded in
this effector. Among the three motifs, DRWIRL motif
from amino acids 131e136 recorded the highest binding
score. Interestingly, our prediction revealed that this
region is within an IDR as depicted in Figure 3c. In
addition, ELM database classified this motif as a ligand
binding motif (LIG_LIR_Gen_1). Thus, Avh195 en-
codes a potential SLiM that is crucial in manipulating

host autophagy. It remains to be determined whether its
mechanism of action is like that of PexRD54 motif. From
these findings, it is evident that effectors can encode
more than one SLiM of the same class within IDRs.
This could be a strategy the pathogen uses to increase
its odds in manipulating host processes that are crucial
for defense. Also, the same motif found in different ef-
fectors can employ different mechanisms to achieve a
common goal.
Pi04314 effector: Role of IDRs in
manipulating host protein regulation
Our structural analyses show that Pi04314 effector en-
codes IDRs at both the N and C terminal regions.
Interestingly, SLiM classification using the ELM data-

base revealed that the C terminal region amino acids
136e142 (Figure 3d) corresponds to a molecular dock-
ing motif (DOC_PP1_RVXF_1). The motif is found in
regulatory subunits that either link PP1 with the sub-
strates or inhibit it [53]. Remarkably, functional char-
acterization of Pi04314 revealed that this effector
interacts with three host PP1c isoforms via a conserved
R/KVxF motif [54]. This is a typical example of mo-
lecular mimicry where the effector ‘acts’ as a regulatory
subunit to co-opt host PP1c activity for the benefit of
P. infestans pathogen. Previously, the regulation of PP1

has been mediated by intrinsically disordered proteins
www.sciencedirect.com
[55]. This shows that IDR binding sites are not only
important for establishing interactions between cata-
lytic and regulatory subunits but also contribute to the
regulation of these interactions.
Avrblb2 effector: IDRs in perturbing host
signaling pathways
P. infestans Avrblb2 effector encodes IDRs in both the N
and C terminal regions (Figure 3e). Deletion of 1e87 aa
and 77e100 aa in this effector impaired its activity.
Specifically, amino acids 78e82 correspond to CaM-
binding motif (CaM-binding site). Interestingly, ELM
database classification revealed that amino acids 78e84
(RPDIKIS) correspond to a molecular docking motif
(DOC_PP2B_PxIxI_1), classified as calcineurin sub-
strate docking site implicated in dephosphorylation of
serine/threonine phosphorylation sites. Furthermore, in
planta functional analyses of this effector reveals that in
the presence of Ca2þ, the effector binds to CaM via the
CaM-binding site to perturb host signaling pathways
[56]. These findings suggest IDR-associated motif
(CaM-binding site) plays a critical role in determining
the virulence activity of Avrblb2 in host cells. However,
molecular and biochemical studies are needed to dissect

the specific mode of action of this motif. In another
P. infestans effector, SFI5 was reported to suppress host
immune responses by interacting with CaM via CaM-
binding motif [57]. However, this motif is unique with
an alpha helical fold and amphipathic properties, thus it
could not be classified under the ELM database.
Conclusion and future perspective
Significant progress has been made over the past two
decades in the identification and functional character-
ization of oomycete intracellular effectors. However,
many effectors await structural characterization to
ascertain the occurrence of IDRs as well as motifs that
mediate the activity of these effectors. What makes
many oomycete effectors remain structurally uncharac-
terized? One significant challenge is that laboratory
approaches for protein structure determination are

expensive and cannot be used on all proteins. Therefore,
there is a need to exploit existing in silico tools to predict
the occurrence of both globular and disordered regions,
identify as well as classify potential binding regions
within IDRs. A typical pipeline used for identifying
potential IDRs and motifs mediating effectorehost
protein interactions is presented in Figure 4. This
starts with prediction of the presence of IDRs in
effector protein sequences using web-based predictors
such as PONDR, IUPred2 as well as DISOPRED
(Figure 4a). This is followed by the identification and

classification of potential binding sites such as SLiMs as
well as MoRFs within the identified IDRs (Figure 4b).
Finally, the potential IDR binding sites can be assessed
for their role in binding to host targets using both in silico
as well as in planta analyses (Figure 4c).
Current Opinion in Plant Biology 2023, 75:102402
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Figure 4

Proposed pipeline toward the identification and characterization of IDR binding sites. (a) Prediction of IDRs in protein sequences using Predictor of
Natural Disordered Regions (PONDR), IUPred2, and DISOPRED predictors. Amino acids with a score of >0.50 are considered as disordered in all the
three predictors. (b) Prediction of IDR binding sites (MoRFs and SLiMs) using MoRFchibi system and ANCHOR tools. This is followed by the classification
of predicted SLiMs using the eukaryotic linear motif (ELM) resource. (c) Finally, the binding potential of MoRFs or SLiMs to potential targets is determined
using molecular docking tools (Schrodinger suite, Autodock, Genetic Optimization for Ligand Docking (GOLD), Docking wIth eVolutionary AlgorIthms
(DIVALI) as well as DARWIN). In addition, in vivo validation of the interactions can be performed using (1) bimolecular fluorescence complementation
(BiFC) assays, (2) pairwise yeast two-hybrid (Y2H), or (3) fluorescence resonance energy transfer (FRET) assays. IDR, intrinsically disordered regions;
MoRF, molecular recognition features; SLiM, short linear motif.
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From the five effectors reviewed here, it is evident that
IDRs are directly involved in oomycete effector activ-
ities such as escaping host recognition as well as
proteineprotein interactions. Therefore, more work is
required on IDRs to provide a better understanding of
their role in pathogenesis.
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