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Abstract

A reliable way of calculating the width, Γ, of an extremely narrow quantum resonance

is suggested. The proposed method is based on expanding the Jost function in the

Taylor series around the real resonance energy, Er, and looking for its zero at the

nearby complex point Er− iΓ/2. The coefficients of such an expansion can be obtained

by solving a set of coupled differential equations. Using two simple exactly solvable

models, it is demonstrated that the method is efficient and accurate.

1 Introduction

As compared to the bound and scattering state problems in quantum mechanics, theoretical
analysis of the resonant states always was and still remains much more difficult and even
associated with some controversial interpretations such as, for example, the normalization of
these states [1]. There are many different approaches to solving the resonant state problems
(see, for example, Refs. [2, 3]). Among them the most accurate are those that are based on
searching for the S-matrix poles at complex energies, E = Er−iΓ/2, where Er is the resonant
collision energy and Γ is the width of the resonance. Most of these complex-energy methods
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use the so-called complex scaling which is also called complex rotation of the coordinate (see
Refs. [3–5]).

The complex-energy methods are not only accurate but also very efficient because they
are able to produce both Er and Γ at the same time. However, this their advantage turns
into disadvantage when it comes to locating extremely narrow resonances. Any calculations
with realistic forces can only be done numerically and with a finite accuracy. When searching
for an S-matrix pole, one has to find the complex number E = Er − iΓ/2 where both the
real and imaginary parts are found within the same numerical uncertainty, ǫ, i.e. Er ± ǫ and
Γ± ǫ. The difficulty shows up when Γ ≪ Er. Indeed, if Γ is of the same (or smaller) order
of magnitude as the numerical tolerance, ǫ, then Γ is lost, i.e. cannot be determined.

The need for analyzing extremely narrow resonances is not uncommon. For example,
the halflife of the α-radioactive nucleus 238U is 4.468 × 109 years [6], which corresponds
to Γ ∼ 10−39MeV, while the Q-value, i.e. the kinetic energy, Er, of the α-particle that
this resonant state emits is Er ≈ 4.270MeV. It is doubtful that, within the complex-scaling
approach and without additional effort or a trick, anybody could accurately locate the S-matrix
pole that is so close to the real axis.

Usually, the problems like that are solved in a two-step approach, separating the deter-
mination of the real and imaginary parts of the complex energy. The idea behind such a
separation is basically the same that was proposed by George Gamow many decades ago [7].
The real part of the energy, Er, is found as the energy of the corresponding bound state
under the assumption that the potential barrier, separating the internal and external regions
of space, is impenetrable. Then the penetration of the barrier at the energy thus found is
evaluated using the WKB approximation. Finally, the lifetime of the state (which is related
to Γ) is deduced from Er and the penetration probability. This final step is crucial and varies
from one method to the other.

Originally, Gamow’s theory was based on a simple intuitive picture of a particle moving
to and fro between the barrier walls and colliding with them (attempting to escape) with the
frequency determined by Er. Nowadays, the approaches of this kind take into account the
geometric shape of the nuclear state as well as the preformation probability of the emitted
cluster. In a deformed nucleus the distances to the barrier are different in different directions.

In the present paper, we are developing a method for finding the complex resonance
energy, E = Er − iΓ/2, of an ultra-narrow resonance without using the WKB approximation
and without resorting to the dubious notion of the barrier-assault frequency. Similarly to the
Gamow theory, we find Er and Γ separately, but we do it within a rigorous quantum mechanical
approach.

At the first step the real part, E0, of the energy is found (the same way as in Gamow’s
theory) assuming that the particle cannot escape. Actually, such an assumption does not
generate any noticeable error because the penetration through the barrier for an ultra-narrow
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resonance is significantly suppressed. After finding E0, we consider the Taylor series expansion
of the Jost function around this point (which is on the real axis) and determine a small complex
number ∆ such that the Jost function is zero (i.e. the S-matrix has a pole) at the energy
E0 + ∆. Knowing ∆, we can find the width, Γ = −2Im(∆), as well as a small correction,
Re(∆), to the resonance collision energy, i.e. Er = E0 + Re(∆).

Since the resonance is extremely narrow, the distance |∆| between E0 and the nearby
complex resonance point is extremely small. This means that it is sufficient to keep only the
constant and the linear terms in the Taylor expansion of the Jost function. For calculating
the Taylor-series coefficients, we numerically solve a system of first-order differential equations
with simple boundary conditions (see chapter 15 of the book [5]).

2 Neutral particles

To begin with and in order to present the main idea of the proposed method in a most simple
and clear way, let us consider a system of two spinless and structureless particles interacting
via a short-range central potential U(r).

2.1 Direct search for the S-matrix poles

The radial Schrödinger equation describing the relative motion of these particles with the
reduced mass µ and the reduced potential V (r) = (2µ/~2)U(r),

[

d2

dr2
+ k2 − ℓ(ℓ+ 1)

r2
− V (r)

]

uℓ(E, r) = 0 , (1)

where k2 = 2µE/~2 is the wave number squared, can be transformed into the following
equivalent system of the first-order differential equations (see chapter 2 of the book [5]):

∂rF
(in)
ℓ (E, r) = −h

(+)
ℓ (kr)

2ik
V (r)

[

h
(−)
ℓ (kr)F

(in)
ℓ (E, r) + h

(+)
ℓ (kr)F

(out)
ℓ (E, r)

]

,

∂rF
(out)
ℓ (E, r) =

h
(−)
ℓ (kr)

2ik
V (r)

[

h
(−)
ℓ (kr)F

(in)
ℓ (E, r) + h

(+)
ℓ (kr)F

(out)
ℓ (E, r)

]

.

(2)

In these equations, h
(±)
ℓ (z) = jℓ(z) ± inℓ(z) are the Riccati-Hankel functions defined as

in Appendix D of the book [5]. In order to avoid possible confusion, it should be noted
that we follow F. Calogero [8] who used the notation jℓ(z) and nℓ(z) for the Riccati-Bessel
and Riccati-Neumann functions. The standard spherical Bessel and Neumann functions are
therefore jℓ(z)/z and nℓ(z)/z, respectively.
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The unknown functions F
(in/out)
ℓ (E, r) are the factorized parts of the regular solution of

(1),

uℓ(E, r) = h
(−)
ℓ (kr)F

(in)
ℓ (E, r) + h

(+)
ℓ (kr)F

(out)
ℓ (E, r) . (3)

The simple boundary conditions at r = 0,

F
(in)
ℓ (E, 0) = F

(out)
ℓ (E, 0) =

1

2
, (4)

make uℓ(E, r) behaving near the origin as the Riccati-Bessel function,

uℓ(E, r) −→
r→0

jℓ(kr) . (5)

At large distances the functions F
(in/out)
ℓ (E, r) converge to the corresponding Jost functions,

f
(in/out)
ℓ (E) = lim

r→∞
F

(in/out)
ℓ (E, r) , (6)

that determine the S-matrix,

Sℓ(E) = f
(out)
ℓ (E)

[

f
(in)
ℓ (E)

]−1

. (7)

Its poles can be found by looking for the roots of the equation

f
(in)
ℓ (E) = 0 . (8)

In searching for these roots, we numerically integrate Eqs. (2) for each complex value of E that
is needed in the chosen search algorithm. The integration starts at r = 0 with the boundary
values (4) and stops at some faraway point rmax where the potential is practically zero (within
the required accuracy) and where the limits (6) are therefore reached. As is explained in
chapter 7 of the book [5], the integration of Eqs. (2) may require the complex rotation of the
coordinate r, if the energy E is complex. In other words, to get to the point rmax, we have to
use a path (a detour) in the complex r-plane.

In Ref. [9] it was demonstrated that such an approach allows one to accurately locate
very wide as well as very narrow resonances. However the uncertainty in determining Γ is the
same as for the real part, Er, of the resonance energy. This means that for Γ ≪ Er (i.e. not
for very narrow but for extremely narrow resonances) the method fails to determine Γ. A way
to circumvent this difficulty is described next.
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2.2 Power-series expansion of the Jost function

If Γ is extremely small, the search for the resonance root of Eq. (8) can be done in two steps.
At the step one, we approximately determine the real part of the resonance energy, E0 ≈ Er.
To find E0, we can look for the complex root as is described in the preceding section and
temporarily ignore Γ (which is inaccurate anyway), or we can simply find the corresponding
bound state energy under the assumption that the barrier is completely impenetrable. In fact,
this means that the barrier at its highest value U0 (see Fig. 1) extends to r = ∞ with a
flat top. If the potential-well that is constructed in such a way near r = 0, supports a bound
state, then E0 is the (positive) energy of this state counted from the thereshold, E = 0, of
the original problem. In the case of the simple potential depicted in Fig. 1, the potential well
is formed by moving R2 to infinity, and E0 counted from the bottom of the well in the interval
1○.

At the second step, we consider the Taylor expansion of the Jost function around the
point E0 (which is on the real axis),

f
(in)
ℓ (E) = f

(in)
ℓ (E0) +

.
f
(in)

ℓ (E0)(E −E0) +
1

2

..
f

(in)

ℓ (E0)(E −E0)
2 + . . . , (9)

where the “dot” means the derivative with respect to variable E. Since the resonance is
extremely narrow, the point we are looking for is extremely close to E0. This means that we
can safely ignore all the higher powers of (E − E0) in (9) and retain only the constant and
the linear terms,

f
(in)
ℓ (E) = f

(in)
ℓ (E0) +

.
f
(in)

ℓ (E0)∆ , (10)

where ∆ = E − E0. Therefore the complex root of Eq. (8) corresponds to

∆ = −f
(in)
ℓ (E0)
.
f
(in)

ℓ (E0)
. (11)

In other words, the complex number ∆ added to the approximate real resonance energy, E0,
that was found at the first step, moves us from the real axis to the resonance pole. Therefore

Γ = −2Im∆ (12)

and the value of Re∆ gives the correction to the real part, namely, Er = E0+Re∆. Actually,
if the resonance is extremely narrow, this correction is always beyond the required accuracy
and can be ignored.

Therefore in order to find an extremely small Γ, we need not only the value of the Jost

function, f
(in)
ℓ (E0), but also its derivative,

.
f
(in)

ℓ (E0), at the point E0 on the real axis. The Jost
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function can be easily calculated as is described in Sec. 2.1. What about its derivative? The
direct numerical differentiation cannot be used if Γ is extremely small, because such a numerical
procedure cannot give the necessary accuracy. In fact, the most efficient algorithm, the so
called Newton method, for finding complex roots is based on such a numerical differentiation
(see Ref. [10]). If it could provide a sufficient accuracy, we would simply locate the extremely
narrow resonances the same way as is described in Sec. 2.1.

There is an alternative way of finding the Taylor-series coefficients in the expansion (9).
It can be shown (see Sec. 7.7 of the book [5]) that in the case of a short-range single-channel
potential the Jost functions have the following factorized structure:

f
(in/out)
ℓ (E) = aℓ(E)∓ ik2ℓ+1bℓ(E) , (13)

where the odd power of the momentum, k2ℓ+1, is the only factor responsible for the square-
root branching of the Riemann surface. The unknown functions aℓ(E) and bℓ(E) are always
single-valued and analytic.

Differentiating Eq. (13), we find:

.
f
(in)

ℓ (E) =
.
aℓ(E)− i(2ℓ+ 1)k2ℓ

.
kbℓ(E)− ik2ℓ+1

.
bℓ(E) , (14)

where the derivative of k with respect to E is given by

.
k =

µ

~2k
. (15)

The fact that aℓ(E) and bℓ(E) are analytic allows us to expand them in the convergent Taylor
series around the point E0,

aℓ(E) =

∞
∑

n=0

αn(ℓ, E0)(E − E0)
n , bℓ(E) =

∞
∑

n=0

βn(ℓ, E0)(E − E0)
n . (16)

Actually, since we only need the first derivatives,
.
aℓ(E0) and

.
bℓ(E0), it is sufficient to find only

the coefficients α1 and β1 of the linear terms in the expansions (16),

.
aℓ(E0) = α1(ℓ, E0) ,

.
bℓ(E0) = β1(ℓ, E0) . (17)

It can be shown (see Sec. 15.1.2 of the book [5]) that the coefficients αn and βn are the
asymptotic values of the r-dependent functions α̃n and β̃n,

αn(ℓ, E0) =
1

2
lim
r→∞

α̃n(ℓ, E0, r) βn(ℓ, E0) =
1

2
lim
r→∞

β̃n(ℓ, E0, r) , (18)
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obeying the following set of differential equations:

∂rα̃n = −
∑

i+j+k=n

γiV (ϕjα̃k − γjβ̃k) ,

∂rβ̃n = −
∑

i+j+k=n

ϕiV (ϕjα̃k − γjβ̃k) ,
(19)

with the boundary conditions

α̃n(ℓ, E0, 0) = δn0 , β̃n(ℓ, E0, 0) = 0 , ∀n . (20)

In Eqs. (19) the quantities ϕn and γn are the coefficients of the power-series expansions of
the Riccati-Bessel and the Riccati-Neumann functions, jℓ(kr) and nℓ(kr), respectively. They
can be found as follows (see Appendix D.2.1 of the book [5]):

ϕn(ℓ, E0, r) =
1

n!

[

(

−µr
~2

)n jℓ+n(kr)

kℓ+n+1

]

E=E0

, (21)

γn(ℓ, E0, r) =
1

n!

(µr

~2

)n
[

kℓ−nnℓ−n(kr)
]

E=E0

. (22)

The sums in Eqs. (19) only run over the subscripts obeying the condition i+ j+ k = n. This
means that not all the equations in that system are coupled to each other. Since we need α1

and β1, it is sufficient to solve the first four equations,

∂rα̃0 = −γ0V (ϕ0α̃0 − γ0β̃0) , (23)

∂rβ̃0 = −ϕ0V (ϕ0α̃0 − γ0β̃0) ,

∂rα̃1 = −γ1V (ϕ0α̃0 − γ0β̃0)− γ0V (ϕ1α̃0 − γ1β̃0)− γ0V (ϕ0α̃1 − γ0β̃1) ,

∂rβ̃1 = −ϕ1V (ϕ0α̃0 − γ0β̃0)− ϕ0V (ϕ1α̃0 − γ1β̃0)− ϕ0V (ϕ0α̃1 − γ0β̃1) .

It is important to note that for real E0 (central point of the Taylor expansion) all the coefficients
in Eqs. (19) are real. This means that all αn and βn as well as aℓ and bℓ along the real axis are

also real. Therefore f
(in)
ℓ (E0) =

[

f
(out)
ℓ (E0)

]∗

. The following fact needs to be emphasized:

since E0 is real, no complex rotation is needed when solving the system (23) (for more details
see chapter 7 of the book [5]). This means that even a discontinuous or a tabulated potential
can be used.

In summary, the procedure of finding an ultra-narrow resonance width is as follows:
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• Firstly, we determine the real part of the resonance energy, Er ≈ E0.

• Then we integrate the system (23) with the boundary values (20) from r = 0 up to a
faraway point rmax where the potential on the right hand sides of Eqs. (23) vanishes
and the limits (18) are reached.

• In this way, we obtain

f
(in)
ℓ (E0) = α0 − ik2ℓ+1

0 β0 ,

.
f
(in)

ℓ (E0) = α1 − i(2ℓ+ 1)k2ℓ0
.
k0β0 − ik2ℓ+1

0 β1 .

• Finally, we find ∆ and Γ as is given by Eqs. (11, 12).

2.3 Numerical example

In order to test the accuracy and efficiency of the proposed method, we consider a simple
model potential for which the problem can be solved exactly. The chosen potential is shown
in Fig. 1. This is a spherically symmetric square barrier,

U(r) =



















0 , 0 6 r < R1 ,

U0 , R1 6 r 6 R2 ,

0 , r > R2 .

(24)

It is clear that for this potential the collision energy, Er, at which the lowest resonance occurs,
should be close to the ground-state level in the square-well potential when R2 = ∞. The
greater is R2, the closer Er is to that bound-state level. At sufficiently large values of R2

the point E0 ≈ Er (which is used for the Taylor expansion) is practically fixed (i.e. does not
depend on R2). By increasing R2 further, we can arbitrarily reduce Γ of the resonance and
thus can test the accuracy of our calculations at extremely small widths.

For the purpose of comparison, we need an exact solution of the problem. The regular
solution of Eq. (1) with the potential (24) is known on each of the three intervals, 1○, 2○,
and 3○, where U(r) is constant. The corresponding Jost function can be found in an explicit
form via matching this regular solution at the points R1 and R2.

In order to avoid unnecessary complications, we consider the state with ℓ = 0. In such
a case the regular solution on the three intervals of r (shown in Fig. 1) looks as follows (we
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r

U(r)

1 2 3

U0

0 R1 R2

−→ R2

variations

Figure 1: Square-barrier potential (24) that is used to test the accuracy of the method
proposed in Sec. 2.2. At sufficiently large thickness of the barrier 2○ the resonant collision
energy practically coincides with the bound state level of the square-well potential 1○ with
R2 = ∞. The width of this resonace can be arbitrarily decreased by moving R2 to the right.

drop the subscript ℓ):

1○ : u(r) = sin(kr) , (25)

2○ : u(r) = xeik2r + ye−ik2r , (26)

3○ : u(r) = zeikr + we−ikr , (27)

where

k2 =
1

~

√

2µ(E − U0) = iκ (28)

is (pure imaginary) local wave number on the interval 2○, and x, y, z, w are some unknown
constants determined by the smooth matching of the solutions (25, 26, 27) at the points R1
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and R2. Equalizing the functions and their derivatives at these points, we obtain:

x =
e−ik2R1

2ik2
(ik2φ1 + φ′

1) , (29)

y =
eik2R1

2ik2
(ik2φ1 − φ′

1) , (30)

z =
e−ikR2

2ik
(ikφ2 + φ′

2) , (31)

w =
eikR2

2ik
(ikφ2 − φ′

2) , (32)

where

φ1 = u(R1) = sin(kR1) , (33)

φ′
1 = u′(R1) = k cos(kR1) , (34)

φ2 = u(R2) = xeik2R2 + ye−ik2R2 , (35)

φ′
2 = u′(R2) = ik2

(

xeik2R2 − ye−ik2R2

)

. (36)

The Jost functions are the amplitudes of the incoming and outgoing spherical waves in the
asymptotic behaviour of the regular solution [5],

uℓ(E, r) −→
r→∞

h
(−)
ℓ (kr)f

(in)
ℓ (E) + h

(+)
ℓ (kr)f

(out)
ℓ (E) . (37)

Using the fact that h
(±)
0 (kr) = ∓ie±ikr, and comparing (37) with (27), we find that

f
(in)
0 = −iw , f

(out)
0 = iz . (38)

Therefore the final explicit formula for f
(in)
0 can be obtained by sequential substitutions of

Eqs. (29-36) into each other. It is simple but a bit cumbersome expression. We therefore do
not write it here. Similarly, an explicit formula for the energy derivative of the Jost function,
.
f
(in)

0 , can be obtained. This derivative is needed for finding the exact resonance-pole position,
using Eqs. (10, 11, 12), when this pole is too close to the real axis. In such a case the Taylor

expansion is necessary even if we have an explicit formula for f
(in)
0 , because the root of Eq.

(8) is found numerically anyway.
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It is interesting to compare the ultra-narrow resonance widths obtained within our method,
not only with their exact values but also with the corresponding values that are found within
widely used Gamow theory. In this theory the probability, P , of penetration through a po-
tential berrier between the classical turning points R1 and R2 is calculated using the WKB
approximation (see, for example, chapter 6 of the book [12]),

P (E) = exp

{

−2

~

∫ R2

R1

dr
√

2µ[U(r)−E]

}

. (39)

In the case of our model potential the integral in this exponential function is trivial and we
have

P (Er) = exp

[

−2

~
(R2 − R1)

√

2µ(U0 −Er)

]

. (40)

The frequency, ν, of assaulting the barrier is determined by the particle velocity, v, and the
internal diameter, 2R1, which the particle needs to travel between any two collisions with the
barrier,

ν =
v

2R1

=
c

R1

√

Er

2µc2
. (41)

The exponential constant, λ, in the radioactive-decay law, N(t) = N(t0) exp(−λt), is the
product

λ = SνP , (42)

where S is the probability of the emitted particle preformation. Since in the present paper
we deal with a simple model where the emitted particle is always present, we put S = 1 and
therefore

Γ = ~λ =
~c

R1

√

Er

2µc2
P (Er) . (43)

The parameters of our model potential (24) were chosen rather arbitrarily but when doing
the choice we kept in mind the corresponding values that are typical in physics of heavy nuclei.
The internal radius, R1, was taken to be 6 fm, which is roughly the radial size of the Uranium
isotopes. The height of the barrier we used, U0 = 20MeV, is of the same order of magnitude
as for many nuclear decay and fission processes. The reduced mass was (arbitrarily) taken
to be equal to the mass of proton, µ = mp. With these parameters, the internal square-
well potential (if we assume that R2 = ∞) supports an S-wave bound state at the energy
4.11200126201MeV above the bottom.

We started the calculations with R2 = 20 fm and gradually moved R2 to the right. For
each value of R2, we calculated the parameters of the lowest resonance, Er and Γ, using four
different methods, namely,
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R2 (fm)

Γ (MeV)

40 45 50 55
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s
s

←− direct search for the
S-matrix poles

←−

exact values of Γ
and the results of
the Taylor expansion;
these two curves are
indistinguishable

−→Gamow theory

Figure 2: Variation of the width of the resonance generated by the square-barrier potential
(shown in Fig. 1) when the barrier thickness increases. The continuous curve shows both the
exact values of Γ and practically coinciding with them the points obtained with the help of
the Taylor expansion. The round dots represent the results of the direct search for the Jost
function zero at complex energies. The square dots are obtained using the standard Gamow
theory.

1. Using the explicit formulae that detemine the Jost function (exact solution);
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2. Using the Taylor expansion and integrating Eqs. (23);

3. Directly searching for the Jost function zero with the help of Eqs. (2);

4. Using Gamow formula (43).

The barrier for R2 = 20 fm is already sufficiently thick. The corresponding resonant energy,
Er = 4.11200126198MeV differs from the square-well bound state energy in the ninth digit
after the decimal point. The resonance width was found to be 7.729561869 × 10−11MeV.
These values of Er and Γ turned out to be the same when we calculated them using the
methods 1, 2, and 3. The Gamow method used at these R2 and Er gives Γ = 3.521194750×
10−11MeV, which differs from the exact value by the factor of ∼ 2.2.

When increasing R2, we found that the methods 1 and 2 always give the same results.
The method 3 gives the correct Γ only up to R2 ∼ 44 fm. For larger values of R2 (i.e. when
Γ . 10−29MeV) the direct search of the S-matrix pole fails. The Gamow formula always
gives a correct order of magnitude of Γ but its value remains smaller than the exact one by
the same factor ∼ 2.2. This is illustrated in Fig. 2.

Since the difference (by the factor of ∼ 2.2) between the exact and Gamow values of Γ
remains the same for different R2, the reason for such an inaccuracy of the Gamow’s theory can
only be attributed to the simplified classical visualization of the decay process as a sequence
of assaults of the barrier with the frequency ν given by Eq. (41). Although this is not the
subject of the present paper, it is worthwhile to mention a couple of different approaches to
calculating the frequency ν.

Some authors (see, for example, Refs. [13,14]) put the radius, R1, instead of the diameter,
2R1, in the denominator of the first expression on the right hand side of Eq. (41). Possible
explanation for such a choice could be found in considering quantum spherical wave that moves
simultaneously in all directions and passes the distance R1 before colliding with the barrier.
Of course, this is also not a rigorous but a naive model consideration. However, it is a bit
more “quantum” in contrast to the classical picture of a particle bouncing to and fro within
the spherical shell. It is interesting to note that the frequency ν doubles as a result of such
a “quantum” consideration. This would significantly reduce the difference between the exact
and the Gamow curves in Fig. 2.

Yet another approach is based on using the relation E = hν between the energy and
the frequency, assuming that the assaults of the barrier result from quantum vibrations of the
system (see, for example, Refs. [15, 16]). In some cases such a reasoning helps to increase Γ
by a factor of ∼ 2 as compared to the traditional model with bouncing particle.

As we already said, finding inaccuracy in the Gamow theory is not the subject but rather
a byproduct of the present work. We only would like to note that, when doing an analysis
of the decay processes, one should always keep in mind that this theory can only give the
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correct order of magnitude of a resonance width. It may generate few times difference from
the exact Γ. This fact should therefore be taken into account in estimating the ambiguity in
the preformation factor S, when it is deduced from an experimental Γ with the help of Eq.
(42).

3 Charged particles

Realistic physical systems that may exhibit the resonant behaviour with ultra-narrow widths,
usually involve particles with electric charges. In the radial Schrödinger equation describing
them, the total potential can always be split in a short-range part, U(r), and pure Coulomb
one,

[

∂2r + k2 − ℓ(ℓ+ 1)

r2
− V (r)− 2kη

r

]

uℓ(E, r) = 0 , (44)

where V = (2µ/~2)U and η = µe2Z1Z2/(k~
2) is the Sommerfeld parameter. The presence

of the Coulomb potential makes significant changes to the theory described in the preceding
sections (all the details can be found in Ref. [5]). In particular the Riccati-Hankel functions

in Eqs. (2, 3) are replaced with the corresponding combinations, H
(±)
ℓ (η, kr) = Fℓ(η, kr)∓

iGℓ(η, kr) of the standard regular and irregular Coulomb functions, Fℓ and Gℓ.
The main idea of finding an ultra-narrow Γ using Eqs. (11, 12), remains the same.

However, the calculation of the numerator and denominator in Eq. (11) requires a bit more
effort. First of all, the analytic structure of the Jost functions becomes more complicated as
compared with Eq. (13) (see Eq. (8.100) of Ref. [5]):

f
(in/out)
ℓ (E) =

e∓iσℓ

Cℓ(η)

{

aℓ(E)−
[

2ηh(η)

C2
0(η)

± i

]

C2
ℓ (η)k

2ℓ+1bℓ(E)

}

. (45)

Similarly to (13) here the functions aℓ(E) and bℓ(E) are single-valued and analytic and there-
fore can be expanded in converging Taylor series. All the complications associated with multi-
valuedness of the Jost functions and the branching of the Riemann surface where they are
defined on, are caused by the explicitly given factors, where

σℓ(η) =
1

2i
[ln Γ(ℓ+ 1 + iη)− ln Γ(ℓ+ 1− iη)] −→

η→0
0 , (46)

Cℓ(η) =
e−πη/2

Γ(ℓ+ 1)
exp

{

1

2
[ln Γ(ℓ+ 1 + iη) + ln Γ(ℓ+ 1− iη)]

}

−→
η→0

1 , (47)

h(η) =
1

2
[ψ(iη) + ψ(−iη)]− ln η , ψ(z) =

Γ′(z)

Γ(z)
. (48)
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As is seen, in order to find the derivative
.
f
(in)

ℓ , we have to differentiate not only aℓ(E) and
bℓ(E), but all the explicit factors as well. Such a differentiation gives:

.
f
(in)

ℓ = −
(
.
Cℓ

Cℓ

+ i
.
σℓ

)

f
(in)
ℓ +

e−iσℓ

Cℓ

{

.
aℓ −

(

2ηh

C2
0

+ i

)

C2
ℓ k

2ℓ+1
.
bℓ−

− (2ℓ+ 1)k2ℓ
.
kC

2
ℓ bℓ

[(

2ηh

C2
0

+ i

)(

1 +
2

2ℓ+ 1

k
.
Cℓ.
kCℓ

)

+

+
2

2ℓ+ 1

k
.
k C2

0

(

.
ηh+ η

.
h− 2ηh

.
C0

C0

)]}

. (49)

It is not difficult to check that the derivatives of the explicitly known functions involved in this
expression can be found as follows:

.
η = −η

.
k

k
,

.
k =

µ

~2k
, (50)

.
Cℓ

Cℓ
=

i

2

.
η [ψ(ℓ+ 1 + iη)− ψ(ℓ+ 1− iη) + iπ] , (51)

.
Cℓ

Cℓ
+ i

.
σℓ =

.
η
[

iψ(ℓ+ 1 + iη)− π

2

]

, (52)

.
h =

i

2

.
η [ψ′(iη)− ψ′(−iη)] +

.
k

k
. (53)

The digamma function, ψ, is defined in (48), and its derivative can be found using Eqs. (6.3.5)
and (6.4.1) of Ref. [11],

ψ′(z) = ψ′(z + 1) +
1

z2
, ψ′(z + 1) =

∫ ∞

0

te−(z+1)t

1− e−t
dt , Re (z + 1) > 0 . (54)

Since in all our calculations the expansion point E0 is on the real axis, the Sommerfeld
parameter is also real. This means that ψ(ℓ+ 1 + iη) = ψ∗(ℓ+ 1− iη) and therefore

ψ(ℓ+ 1 + iη)− ψ(ℓ+ 1− iη) = 2i Imψ(ℓ+ 1 + iη) .

This imaginary part of the ψ-function can be found using Eqs. (6.3.5) and (6.3.11) of Ref. [11],
namely,

ψ(z + 1) = ψ(z) +
1

z
, Imψ(iη) =

1

2η
+
π

2
coth(πη) .
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The only quantities in Eq. (49) that remain unknown, are the derivatives
.
aℓ and

.
bℓ. Similarly

to the neutral-particle case (see Sec. 2.2), they can be found with the help of the Taylor
expansions (16), where the coefficients αn and βn can be found using the same equations (18,
19, 20, 23), where the coefficients ϕn and γn are of course different (corresponding not to
Riccati-Bessel and Riccati-Neumann but to the Coulomb functions). They can be calculated
as is described in the Appendix A.

3.1 Numerical example

Similarly to Sec. 2.3, for the purpose of testing the theory, we choose here a simple square-well
potential with a Coulomb tail extending to infinity (see Fig. 3),

U(r) =











U0 , 0 6 r < R ,

e2Z1Z2

r
, r > R .

(55)

In order to deal with the units typical for nuclear systems, the parameters of this potential
were chosen in such a way that they are similar to those of the proton-emitting nucleus 19Na.
The inner radius R was taken to be 3 fm and the charges Z1 = 1, Z2 = 10. This makes the
height of the Coulomb barrier at r = R to be ∼ 4.8MeV. The depth of the inner potential
well varies in our calculations from −10MeV to −10.64MeV. With such a depth the lowest
resonance is very close to the threshold (16 keV . Er . 400 keV), where the Coulomb barrier
is very thick and therefore Γ is very small. These values of U0 of course do not correspond
to actual depth of the p18Ne interaction. Our calculations therefore cannot be considered as
an attempt to describe this particular system. What we did was just an analysis of a model
problem where the parameters where chosen to be similar to those for a real physical system.
The reduced mass, µ, was also taken to be as for p18Ne.

To avoid unnecessary complications, we consider the S-wave case, ℓ = 0. The Jost
functions for such a problem can be found analytically (see Sec. 18.3 of the book [5]),

f
(in/out)
0 (E) = ± e∓iσ0(η)

2ik

[

H
(±) ′
0 (η, kR) sin(k1R)−H

(±)
0 (η, kR)k1 cos(k1R)

]

, (56)

where

k =
1

~

√

2µE , k1 =
1

~

√

2µ(E − U0) , (U0 < 0) , (57)

and the “prime” means the derivative with respect to variable r.
The roots of this f

(in)
0 (E) on the uphysical sheet of the Riemann surface give us the

exact resonance energies, Er − iΓ/2. When doing numerical search for such roots, we should
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e2Z1Z2/r

U0

r

U(r)

R

Er

resonance

↓

U0 variations

↓

Figure 3: Square-well potential with the Coulomb tail for r > R, defined by Eq. (55). It
is used to test the accuracy of the method proposed in Sec. 3. The collision energy, Er,
of a possible resonance for such a potential roughly corresponds to a bound-state level in
the square-well with a completely impenetrable barrier. The width of this resonance can be
arbitrarily decreased by moving U0 down because such a change reduces Er and thus makes
the barrier more thick at the new level.

choose an appropriate sign in front of the square root (57) for k in order to make its imaginary
part negative, which is equivalent to placing complex variable E on the unphysical sheet.
The choice of the sign for k1 is immaterial because it can only change the sign of the whole
expression for f

(in)
0 (E) and thus does not play any role in Eq. (8).

When Γ becomes too small and we still try to find it via direct numerical search for the
root of Eq. (8), the accuracy is lost (as is discussesd in Sec. 2.2) even if we use the exact
formula (56) for the Jost function. This difficulty can be circumvented by using the first two

terms of the Taylor series for the function f
(in)
0 (E) near the point Er on the real axis. Its first

derivative,
.
f
(in)

0 , that is needed for that, can be found using Eq. (49). The functions a0(E)
and b0(E) for the exact expression (56) are given by Eqs. (18.51, 18.52) of the book [5],
namely,

a0(E) =
1

2k

[

G̃0(E,R)k1 cos(k1R)− G̃ ′
0(E,R) sin(k1R)

]

, (58)

b0(E) =
1

2k

[

F̃ ′
0 (E,R) sin(k1R)− F̃0(E,R)k1 cos(k1R)

]

, (59)

where the tilded functions F̃0 and G̃0 are defined by Eqs. (67, 68) in Appendix A. The
derivatives

.
a0 and

.
b0 can be evaluated via the corresponding derivatives of the functions F̃0

and G̃0 as is described in Appendix A. Some details of the numerical calculations are given in
Appendix B.
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exact Γ and the Taylor expansion
(two indistinguishable curves)
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direct search for
the S-matrix
poles ↑

Gamow theory

Figure 4: Dependence of the width of the lowest resonance generated by the potential shown
in Fig. 3, on the Q-value which is equal to Er, i.e. to the height of the resonance level above
the threshold energy. The continuous curve shows both the exact values of Γ and practically
coinciding with them the points obtained with the help of the Taylor expansion. The round
dots represent the results of the direct search for the Jost function zero at complex energies.
The square dots are obtained using the standard Gamow theory.

In a general case (when the Jost function is not known analytically), an ultra-narrow Γ
can be found using the method, which we propose in the present work and which we are
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Figure 5: Ratio of the exact values of Γ to the corresponding widths obtained within the
standard Gamow theory. This ratio is calculated for the curves shown in Fig. 4. The Q-value
grows when the bottom of the square well potential (see Fig. 3) moves up. The horizontal
dashed lines show the range within which the width ratio varies for the interval of the Q-values
presented in the Figure.

testing in this numerical example. Within this method, we need to integrate the system of the
differential equations (23). For the charged-particle case, the potential V in these equations
is the short-range part of the total potential because the pure Coulomb term is present in Eq.
(44) explicitly. In other words,

V (r) =
2µ

~2
U(r)− 2ηk

r
. (60)

Therefore, in the numerical example we consider here, V (r) is identical zero for r > R. In
other words, this potential is of a finite range and therefore the integration of the differential
equations (23) runs up to the point r = R, where the limits (18) are reached.
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The results of our calculations for the potential (55) are shown in Fig. 4, where the
notation and the symbols are the same as in Fig. 2. The difference is that here the width is
given as the function of the Q-value of the decay, i.e. as the function of the height of the
resonant energy above the threshold.

The exact values of Γ are presented in Fig. 4 by the solid curve. The corresponding values
obtained with the help of the Taylor expansion, practically coincide with the exact ones and
therefore lie on the same curve. The direct search for the Jost function zeros remains accurate
for Γ & 10−14MeV. For smaller widths this method gives completely wrong results (see round
dots in Fig. 4).

Similarly to the neutral-particle case, the Gamow theory gives the widths that are system-
atically below the exact ones. It may seem that at small values of Γ the difference between the
Gamow widths and the exact ones becomes smaller. This however is just an optical illusion
because the scale on the vertical axis is logarithmic. The actual difference is shown in Fig. 5.
As is seen, for extremely narrow resonances the Gamow theory may give even wrong order of
magnitude of Γ.

4 Possible generalization for multi-channel problems

In multi-channel problems the Jost functions become matrices (see, for example, Chapter 12
of Ref. [5]). The S-matrix is their “matrix-ratio”,

S(E) = f (out)(E)
[

f (in)(E)
]−1

, (61)

and the resonances correspond to zeros of the incoming Jost-matrix determinant on an appro-
priate sheet of the Riemann surface,

D(E) = det f (in)(E) = 0 . (62)

If the resonance is extremely narrow, then the function D(E) can be replaced with the first
two terms of the Taylor series,

D(E) = D(E0) +
.
D(E0)∆ , (63)

where ∆ = E −E0 is a complex number that determines the total width of the resonance as
is given by Eq. (12), and E0 is an approximately found resonant collision energy on the real
axis. In order to find ∆, we need the values of the determinant and its energy-derivative at
the point E0,

∆ = −D(E0).
D(E0)

. (64)
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The multi-channel Jost matrices (and therefore the determinant D) can be calculated using
the matrix (and Coulomb) generalization of the differential equations (2) as is described in
Ref. [5]. The derivative of the determinant is given by the trace of the following matrix product
(see Eq. (F.13) of the book [5]):

.
D = Sp

[

M ·
.
f
(in)

]

, (65)

where the square matrix M is composed of the transposed minors of the corresponding ele-
ments of f (in), such that

[

f (in)
]−1

=
M

D
. (66)

The derivatives,
.
f
(in)

, of all the elements of the Jost matrix can be found either by a direct
numerical differentiation, or (more accurately) in the way similar to the one described in the
preceding sections for the single-channel case. Matrix generalizations of Eqs. (13) and (45)
are given by Eqs. (13.24) and (14.70) of Ref. [5]. Chapter 15 of the same book describes
the matrix versions of the Taylor expansions (16) as well as the corresponding differential
equations that generalize Eqs. (19).

In addition to the total width given by Eq. (12), the partial widths for all the channels
can be found as is described in Sec. (12.4.2) of Ref. [5].

Such a generalized multi-channel theory can be used, for example, to calculate the ultra-
narrow widths of the two-body systems with non-central potentials, where each partial wave
is a different channel with the same (degenerate) threshold energy. The theory can be further
generalized to describe the N -body resonances using the expansion of the wave function over
the hyperspherical harmonics. In doing this, we can introduce the N -body Jost matrices as is
given in Sec. 17.1 of the book [5], and then can use the same multi-channel theory outlined
here.

5 Conclusion

As is shown, the difficulties associated with calculation of the widths of extremely narrow
resonances can be circumvented with the help of the Taylor series expansion of the Jost
function. A way of finding the corresponding expansion coefficients is suggested. It is based
on the semi-analytic representation (45) of the Jost function and on the differential equations
(19) whose solutions asymptotically converge to the quantities that are part of the expression
(49) for the first energy-derivative of the Jost function. Using two exactly solvable models, the
accuracy of the suggested approach is demonstrated. Possible multi-channel generalization of
the theory is discussed.
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Appendices

A Power-series expansions of the Coulomb functions

The standard regular and irregular Coulomb functions, Fℓ and Gℓ, are multi-valued and are
defined on a complicated Riemann surface (see, for example, Ref. [5]). Their analytic structure
involves multi-valued as well as single-valued factors. The representations of Fℓ and Gℓ, where
these factors are separated,

Fℓ(η, kr) = Cℓ(η)k
ℓ+1F̃ℓ(E, r) , (67)

Gℓ(η, kr) =
2ηh(η)Cℓ(η)k

ℓ+1

C2
0(η)

F̃ℓ(η, kr) +
1

Cℓ(η)kℓ
G̃ℓ(E, r) , (68)

are used in Ref. [5] to derive the corresponding semi-analytic representations (45) of the Jost
functions. In an explicit form the representations (67, 68) were obtained by J. Humblet in
Ref. [17]. Here F̃ℓ(E, r) and G̃ℓ(E, r) are entire (analytic and single-valued) functions of the
energy-variable E. They therefore can be expanded in converging Taylor series around an
arbitrary complex point E0,

F̃ℓ(E, r) =
∞
∑

n=0

ϕn(ℓ, E0, r)(E − E0)
n , (69)

G̃ℓ(E, r) = −
∞
∑

n=0

γn(ℓ, E0, r)(E − E0)
n . (70)

The expansion coefficients ϕn and γn are those that appear in the differential equations (19,
23) for the case of charged particles. The “minus” sign on the right hand side of Eq. (70)
is chosen for the sake of keeping these differential equations in exactly the same form as for
neutral particles. This is needed because the standard irregular Coulomb function is defined in
such a way that Gℓ −→

η→0
−nℓ. Then in the zero-charge limit the coefficients ϕn and γn that

are defined here, should coinside with the corresponding coefficients given by Eqs. (21, 22).
In Ref. [17] Humblet derived explicit iterative formulae for calculating the coefficients ϕn

and γn in the particular case E0 = 0, i.e. for the Taylor expansions of the functions F̃ℓ(E, r)
and G̃ℓ(E, r) around the threshold energy. Since these series are convergent on the whole
plane of complex energies, we can use them to calculate the coefficients ϕn and γn for a pont
E0 6= 0.
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Below are the formulae extracted from Ref. [17]. It should be noted that our definition
of the Coulomb barrier factor (47) differs from the one used by Humblet, by the factor of
1/(2ℓ+ 1)!!,

C Humblet

ℓ =
1

(2ℓ+ 1)!!
C our

ℓ . (71)

This is done to have the correct zero-charge limits in all the equations. It should also be noted
that we give here the formulae for the case of a repulsive Coulomb potential and try to use
the same notation (where possible) as in Ref. [17].

Using the appropriate equations from Ref. [17], we obtain the following:

F̃ℓ(E, r) = (2ℓ)!! rℓ+1Φℓ(E, r) , (72)

Φℓ(E, r) =

∞
∑

m=0

(−1)m
(

E

g

)m

I(ℓ)m (r) , (73)

where

q =
Z1Z2e

2µ

~2
= ηk , g =

(~q)2

2µ
, x =

√

8qr , (74)

I(ℓ)m (r) =
1

12mm!

(x

2

)4m
m
∑

λ=0

a
(ℓ)
mλ

(x

2

)−2ℓ−1−m−λ

I2ℓ+1+m+λ(x) , (75)

with Iℓ(x) being the modified Bessel function of the first kind (see Ref. [11]). The coefficients

a
(ℓ)
mλ can be found using the following recurrency relations:

a
(ℓ)
mλ = 0 for λ < 0 , λ > m , (76)

a
(ℓ)
00 = 1 , a

(ℓ)
10 = 1 , a

(ℓ)
11 = ℓ , a

(ℓ)
m0 = 1 , (77)

a(ℓ)mm =
ℓ

m
a
(ℓ)
m,m−1 , m > 1 , (78)

a
(ℓ)
m1 = m

[

ℓ− 1

5
(m− 1)

]

, m > 1 , (79)

a
(ℓ)
m2 =

m(m− 1)

2

[

ℓ2 − ℓ

5
(2m− 3) +

(m− 2)(7m− 1)

175

]

, m > 2 , (80)

a
(ℓ)
m3 =

m(m− 1)(m− 2)

6

[

ℓ3 − 3ℓ2(m− 2)

5
+ (81)

+
ℓ(21m2 − 66m+ 29)

175
− (m− 3)(m+ 1)(7m− 10)

875

]

, m > 3 ,
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a
(ℓ)
mλ =

3m

3m− λ
a
(ℓ)
m−1,λ +

(2ℓ−m+ λ)(m− λ+ 1)

3m− λ
a
(ℓ)
m,λ−1 . (82)

It is clear that for an arbitrary E0

ϕn(ℓ, E0, r) =
1

n!

[

∂nEF̃ℓ(E, r)
]

E=E0

(83)

=
(2ℓ)!! rℓ+1

gnn!

∞
∑

m=n

(−1)mm!

(m− n)!

(

E0

g

)m−n

I(ℓ)m (r) ,

which is the recipe for calculating ϕn that we were looking for.
Similarly, the coefficiets γn can be calculated. From the formulae derived in Ref. [17], we

obtain (please take note of Eq. (71)):

G̃ℓ(E, r) =

[

Cℓ(η)

C0(η)

]2 ∞
∑

m=0

(−1)m
(

E

g

)m+ℓ

T (ℓ)
m (r) , (84)

where

T (ℓ)
m (r) = −2(2ℓ)!! q2ℓ+1rℓ+1

(2ℓ+ 1)!!

[

2K(ℓ)
m (r) +

m
∑

s=0

(−1)sbsI
(ℓ)
m−s(r)

]

(85)

and K
(ℓ)
m (r) is a finite sum involving the modified Bessel functions of the second kind, Km(x)

(x =
√
8qr),

K(ℓ)
m (r) =

1

12mm!

(x

2

)4m
m
∑

λ=0

a
(ℓ)
mλ

(

−x
2

)−2ℓ−1−m−λ

K2ℓ+1+m+λ(x) . (86)

The coefficients bs in Eq. (85) are expressed via the Bernoulli numbers, Bn, with even
subscripts,

b0 = 0 , bs =
|B2s|
2s

, s > 1 , (87)

Bn = lim
t→0

dn

dtn
t

et − 1
. (88)

From the definition (47) of the barrier factor and using the properties of the Γ-function, it is
not difficult to find that

[

Cℓ(η)

C0(η)

]2

=



















1 , ℓ = 0 ,

1

(ℓ!)2

ℓ
∏

λ=1

(λ2 + η2) , ℓ > 1 .
(89)
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Therefore, since η2 = g/E, the first energy-dependent factor in Eq. (84) is a polynomial
of the ratio g/E and the highest power of this polynomial is ℓ. Taking the common factor
(E/g)ℓ out of the infinite series in that equation and introducing the polynomial

Eℓ(E) =

(

E

g
ℓ2 + 1

)[

E

g
(ℓ− 1)2 + 1

] [

E

g
(ℓ− 2)2 + 1

]

· · ·
(

E

g
+ 1

)

=
ℓ
∏

λ=0

(

E

g
λ2 + 1

)

, (90)

we re-write Eq. (84) in the form

G̃ℓ(E, r) = Eℓ(E)
∞
∑

m=0

(−1)m
(

E

g

)m

T (ℓ)
m (r) , (91)

which is more convenient for calculating the E-derivatives that are needed for finding the
coefficients γn:

γn(ℓ, E0, r) = − 1

n!

[

dn

dEn
G̃ℓ(E, r)

]

E=E0

. (92)

In fact, for our present calculations, we only need γ0 and γ1 (see Eq. (23)), which can be
found as follows:

γ0(ℓ, E0, r) = −G̃ℓ(E0, r) , (93)

γ1(ℓ, E0, r) = −
∞
∑

m=0

(−1)m
(

E0

g

)m−1 [ .
E ℓ(E0)

E0

g
+ Eℓ(E0)

m

g

]

T (ℓ)
m (r) . (94)

Using Eq. (90), we find that

.
Eℓ(E) =

ℓ
∑

λ′=0

λ′ 2

g

ℓ
∏

λ=0,λ6=λ′

(

E

g
λ2 + 1

)

. (95)

In the numerical calculations the sums
∑∞

m=0 in Eqs. (91) and (94) can usually be truncated
at m ∼ 10 depending on a required accuracy.

B Some details of the numerical calculations

All the numerical calculations presented in this paper, were done using the GNU-Fortran
under Linux. For Γ & 10−14MeV it was sufficient to use the double precision, REAL*8 and
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COMPLEX*16, for the real and complex variables, respectively. When the width becomes
smaller, the necessary accuracy can only be achieved with the quadruple precision, REAL*16
and COMPLEX*32. It is not widely known and therefore should be mentioned that the
transition from double to quadruple precision in the “gfortran” is simple and does not require
revamping of the whole code. The compiler option “-freal-8-real-16” makes such a transition
automatically.

For calculating the standard Coulomb functions Fℓ(η, kr) and Gℓ(η, kr), we used the
fortran code “WCLBES” from the CERN library [18, 19].

The direct search for the Jost function zeros at complex energies was done using the New-
ton method in combination with the parabolic approximation of this function (see, Appendix
H of the book [5]). When such a zero is close to the real axis a special care is needed in the
algorithm for choosing the sign of the momentum k as well as in calculating the corresponding
Coulomb-related functions (46, 47, 48). This is because at the real axis the unphysical sheet
of the Riemann surface of the energy is connected to the physical sheet. When converging to
the zero, the trial point E may jump above and below the real axis. This point must always
be placed on the correct sheet.

Alternatively to the Newton method (which sometimes goes completely astray, if the
starting point is chosen far from the zero we are looking for) we can locate the root of Eq. (8)

as the minimum of the function |f (in)
ℓ (E)|2. This method is less efficient because requires

more calculations of the function, but it is more robust.
There is a useful numerical trick that can be very helpful when the root of Eq. (8) is too

close to the real axis and therefore is difficult to locate. One of the parameters of the potential
can be changed in such a way that this root is far enough from the axis. For instance, in the
potential shown in Fig. 3, the inner potential well can be chosen shallow. After finding the
root for this modified potential, we gradually (in small steps) move the modified parameter of
the potential back to its actual value. In doing this, at each next step we choose the starting
point for the Newton method as the root that was found at the previous step. If the steps are
sufficiently small, then each new root is close to the previous one. This makes the searching
algorithm stable.
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