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The rising levels of global GHG emissions underpin climate change, hence, taking an appropriate inven-
tory of the drivers and patterns of anthropogenic emissions remains crucial to mitigating global climate
effects. However, there are conflicting views in the literature on the relationship between respective dri-
vers and GHG emissions due to the lack of robust analysis that accommodates the interaction of all sig-
nificant drivers. We use novel estimation techniques to decipher the 26-year inventory of GHG
occurrences and simultaneous assessment of interactions in 50 countries stratified based on socioeco-
nomic developments over the period 1990–2018. This study highlights different drivers of GHG emis-
sions under broader categories such as population, economic development, forest density, and
agricultural practices. Non-parametric estimations roughly confirm the magnitude of the influence of for-
ests, agriculture, and land-use intensity on GHG emissions, ultimately tracking the most significant emis-
sion sinks.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of International Association for Gondwana
Research. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

Human needs for goods and services are indefinite, while the
Earth only provides finite resources for humans to exploit. This sit-
uation creates an imbalance between demand and supply, espe-
cially amid the continuously rising population and the shortening
availability of land to produce raw materials. During the last dec-
ade, the world’s population has increased by 12 %, from 6,922 bil-
lion in 2010 to 7,753 billion in 2020. This growing population
supplies more labour to the global economy, which in turn drove
the global Gross Domestic Product (GDP) by 38 %, from US$
66,163 trillion in 2010 to US$ 84,705 trillion in 2020. However, this
high growth ironically occurs at the cost of declining forest areas
and higher carbon emissions. The World Bank estimated that glo-
bal forest density, in terms of the percentage of land area, has
diminished from 31 % in 2006 to 30.71 % in 2016. Furthermore, car-
bon emission has also increased from 4,277 metrics ton per capita
in 2009 to 4,484 metric tons per capita in 2018 (World Develop-
ment Indicators data). This condition calls for attention from schol-
ars and policymakers about reducing Greenhouse Gas (GHG)
emissions across the globe.

Due to its global adverse impact, combating GHG has become a
top priority for the United Nations, and its importance is mani-
fested through the 2030 Agenda of Sustainable Development Goals
(SDGs). Adopted in 2015 and signed by 193 UN member countries,
the widely known ‘‘2030 Agenda” targets affordable and clean
energy as one of the channels to achieve its ultimate goal of ending
global poverty. Specifically, SDG-7 comprises specific targets on
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clean energy, recommends universal access to affordable, reliable,
and modern energy services (7.1), and increases the share of
renewables in the global energy mix (7.2) (Chopra et al., 2022).

Some recommendations for achieving the SDGs were expressed
by scholars. For example, according to Chen et al. (2021), the best
way to achieve sustainable growth and decent work (SDG-8) is to
increase transparency in the financial framework using technolog-
ical processes. Furthermore, industrial actors can lower their pollu-
tion by promoting the use of advanced technologies that support
clean and affordable energy (SDG-7). In addition, Sinha et al.
(2020) proposed that nations that have achieved SGD-7 should
be motivated to pursue a sustainable environment (SGD-13). Thus,
the transition from fossil-based energy to energy-efficient technol-
ogy can be realized through innovations that decrease environ-
mental deterioration, create green employment, and improve
environmental quality. Also, it is essential to determine Land Car-
rying Capacity (LCC) to ensure the safety of ecosystems and their
sustainable development, or at least to slow down the degradation
of natural capital (Magazzino and Santeramo, 2023; Ojekemi et al.,
2023).

One other popular channel in combating GHG is through popu-
lation control, economic growth, and land density. The relationship
between population, economic growth, forest density, and GHG
emissions (i.e., carbon emissions) has been studied extensively.
However, there are at least two research gaps existing in the pre-
vious literature. First, most studies investigated the nexus partially,
meaning that no study exactly investigated the impact of these
three variables – population, economic growth, and forest density,
simultaneously, on GHG. For example, Bu et al. (2022), Rehman
and Rehman (2022), Hong et al. (2022), and Alaganthiran and
Anaba (2022), among others, only focused on the relationship
between population and GHG, without considering economic
growth or land density. On the other hand, Champeecharoensuk
et al. (2022), Magazzino and Falcone (2022), Oladunni et al.
(2022), and Kais and Sami (2016) only focused on the relationship
between economic growth and carbon emissions without consid-
ering population growth or land density. Finally, other studies
comprising Rossi et al. (2023), Yang et al. (2023), Shen et al.
(2022), Noojipady et al. (2017), among others, only focused on
the impact of forest density – including arable land use or cropland
– on carbon emissions, without incorporating the role of economic
growth or population.

Second, in terms of the impact of population on GHG, different
studies produce different conclusions. For example, in terms of the
nexus between population and carbon emissions, some studies
demonstrated that a higher population induces more GHG emis-
sions (Rehman and Rehman, 2022; Oladunni et al., 2022). How-
ever, other studies found that population does not necessarily
increase carbon emissions (Hong et al., 2022; Bu et al., 2022). Like-
wise, Cui et al. (2019) argued that the impact of population on GHG
emissions follows a U-shaped relationship where the rise in popu-
lation is initially followed by carbon emission reduction, but the
impact becomes severe after surpassing a certain threshold. On
the contrary, other studies report that the impact of the population
on carbon emissions is negative, meaning that the rising popula-
tion can reduce GHG emissions due to higher economies of scale
(Liu et al., 2021). Daramola et al. (2021) demonstrate that the link
between population and carbon emissions is bidirectional and
higher carbon emissions have a negative impact on population
size.

Third, in the context of the relationship between economic
growth and environmental degradation, a debate is also persistent,
particularly in terms of the presence of the Environmental Kuznets
Curve (EKC) hypothesis. Some studies demonstrated that the
impact of economic growth on carbon emissions follows an
inverted U-curve. This implies that rising economic growth initially
5

increases emissions until it reaches an extreme point before the
impact diminishes gradually (Oladunni et al., 2022; Kais and
Sami, 2016). This argument is based on the assumption that higher
economic growth will encourage the development of technology
and innovation to tackle the carbon issue. Kostakis et al. (2023)
found that economic growth increases carbon emissions and fol-
lows the EKC hypothesis in MENA countries. In contrast, other
studies argue that the impact of economic growth on carbon emis-
sions does not follow the EKC hypothesis. For example, Mikayilov
et al. (2017) demonstrated that economic growth induces more
carbon emissions with no sign of a turning point as per the EKC
hypothesis. Contrarily, Magazzino (2016) found that carbon emis-
sion has a negative impact on economic growth.

Finally, in terms of the relationship between forest density and
carbon emissions, there are several existing studies with mixed
findings in assessing the role of deforestation on carbon emissions.
On one side, some studies demonstrate the detrimental impact of
deforestation on the environment. For instance, Yang et al.
(2023) showed that deforestation is the largest source of carbon
emissions. The study is conducted in China over the period of
1700–1980 using a bookkeeping model. Furthermore, Shen et al.
(2022) found that land use intensification significantly reduces
methane (CH4) emissions but increases nitrous oxide (N2O) emis-
sions. Thus, the impact of land use on environmental degradation
depends on the specific detailed land use. On the contrary, Rossi
et al. (2023), who evaluated the temporal variability of soil carbon
emissions and its relationship with related variables such as the
carbon dioxide (CO2) flux model, demonstrate that soil carbon
emission tends to be lower for high-density land use and higher
for native forests.

Given the highlighted research gaps, this paper contributes to
the ongoing debate by pioneering the simultaneous assessment
of the interaction among population, economic growth, forest den-
sity, and GHG emissions from a global perspective. In fact, our
research integrates 50 countries with different levels of economic
development covering low-income, lower-middle, upper-middle,
and high-income economies. Some research objectives are the fol-
lowing. We can show that aside from understanding the nexus, we
further explore the topic more deeply by deciphering the 28-year
inventory of GHG occurrences and simultaneously assessing the
interaction between GHG emission and the key drivers in countries
stratified based on socioeconomic developments. Contrary to pre-
vious literature, our contributions include: first, a sample of 10
low-income, 18 lower-middle-income, 12 upper-middle-income,
and 10 high-income economies over the period from 1990 to
2018, which is the level of sample diversity not explored inten-
sively by the literature in the same area. This large and diverse
sample can provide a new perspective on the impact of forests,
agriculture, composite variable, population, and economic growth
on total GHG emissions at a global scale within multiple socioeco-
nomic developments. Second, this study highlights various drivers
of GHG emissions under broader categories such as population,
economic development, forest density, and agricultural practices.
Thus, we use a comprehensive indicator for assessing climate
change where GHG emissions are proxied by carbon dioxide,
methane, nitrous oxide, and fluorinated gases emissions, while
land-use intensity is proxied by the log of a composite measure
of agricultural land (i.e., arable, permanent pastures, and cropland)
and forest area. Third, we evaluate the nexus using a novel estima-
tion technique by employing Lasso regression and partially non-
parametric regression in a panel data context, a technique that,
to the best of our knowledge, has not been implemented on this
topic. Lasso regression is utilized to identify the most predictive
lag structure for the covariates included in the model. Once the
best linear specification to predict the dependent variable is found,
the partially nonparametric regression is applied to the identified



C. Magazzino, G. Cerulli, I. Haouas et al. Gondwana Research 127 (2024) 4–21
specification. Through this procedure, we can identify the contri-
bution of each driver to the total GHG emissions by partialling
out the effect of other drivers. GHG emissions depend on a complex
interplay among social, physical, and chemical factors, whose
dynamic cannot be entirely captured by traditional linear mod-
elling. The joint use of a Machine Learning (ML) approach (Lasso)
and of a partially nonparametric (or semi-parametric) approach
provides ground for a more accurate estimation of the relationship
between GHG emissions and their drivers. In different settings,
previous papers used nonparametric methods to model the rela-
tionship between GHG emissions and their drivers (Krüger and
Tarach, 2022; Magazzino et al., 2021; Wang and Feng, 2021;
Azomahou et al., 2006). Our paper is however the first to use a
semiparametric regression jointly with an ML optimal specification
method.

This paper delivers three model specifications, namely (1) the
effect of urban population on total GHG emissions, (2) the effect
of economic development on GHG emissions, and (3) the effect
of forest density on total GHG emissions. Some findings from the
paper stand out. First, we demonstrate that population growth
has a significant impact on GHG emission outgrowth. Specifically,
the increase in population size significantly corresponds to higher
GHG emissions. Second, based on the second model, we observe a
significant and negative impact of economic growth on GHG emis-
sions. This infers that higher economic development corresponds
to mitigating GHG emission intensity. Third, forest density has a
positive and significant effect on GHG emissions, implying that
more deforestation activities trigger more global anthropogenic
GHG emissions. Overall, the population has the greatest magnitude
of impact on GHG emissions, while the impact magnitude of forest
density is similar to that of economic growth.

This paper is organized as follows: Section 2 presents the liter-
ature review. Section 3 provides the materials and methods,
whereas Section 4 describes the regression methodologies.
Section 5 gives a discussion of the empirical findings, while
Section 6 concludes with policy directions.
2. Literature review

There is rising scholarly attention on the nexus among emis-
sions, population, economic growth, and land density. The role of
population and its related series, including population growth,
population size, or urbanization rate on carbon emissions has been
studied through the lens of different methodologies (Magazzino
and Cerulli, 2019). Theoretically, a higher population growth corre-
sponds to higher energy demands; notwithstanding, findings from
studies investigating its impact on emissions remain inconsistent.
Bu et al. (2022) investigated the impact of population on energy
consumption and carbon emission in China. The sample covered
30 provinces during the period 2000–2019 using population
migration as a proxy for population. The results demonstrate that
population migration increases energy consumption in terms of
natural gas and coal consumption, without increasing carbon emis-
sions. Furthermore, the study also shows that population migra-
tion raises energy poverty in the form of gaps among provinces
in terms of their access to energy. Hong et al. (2022) inspected
the impact of urban population and urban density on carbon emis-
sions in China. The results highlight that increasing urban density
has a positive impact on environmental quality and thus reduces
carbon emissions when the urban population is smaller than one
million. Otherwise, if the urban population is beyond this thresh-
old, urban density exerts a detrimental effect on environmental
quality.

Rehman and Rehman (2022) explored the impact of population
growth and urbanization on energy consumption, carbon emis-
6

sions, and economic development in the five most populated coun-
tries in Asia (China, Indonesia, Pakistan, India, and Bangladesh)
from 2001 to 2004. The study shows that the nexus among popu-
lation growth, urbanization, emissions, and economic development
is mixed. In fact, the study found that population growth and eco-
nomic development are two major causes of emissions in India,
while the major contribution of carbon emissions in Pakistan and
China is urbanization and energy consumption, respectively. The
study also provides a possible causal relationship between unsus-
tainable population growth and environmental degradation at a
regional level. Alaganthiran and Anaba (2022) analyzed the key
drivers of carbon dioxide emissions in 20 Sub-Saharan African
(SSA) countries from 2000 to 2020. Some key drivers include per
capita GDP, international tourist arrivals, energy use, and urban
population. Based on panel data regression analysis, the study
demonstrates that international tourist arrival and energy use –
particularly fossil fuel – drive carbon emissions in the region. These
findings are also similar to those by Daramola et al. (2021), who
also investigated the relationship between population growth
and carbon emissions in African countries, showing that popula-
tion growth shares a negative relationship with carbon emissions.

Using data on eastern, central, and western regions of mainland
China over the period 2000–2016, Cui et al. (2019) argued that the
impact of population size on carbon emissions is not linear.
Instead, a U-shaped relationship emerges, where the negative
impact of population size becomes substantial after a certain level
of emissions. The research applied panel threshold regression with
carbon dioxide (CO2) emissions per unit of electricity production as
a dependent variable, while urban population was approximated
by the year-end total population in districts or cities. The study
found that urban population size and carbon emissions have a U-
shaped relationship. This implies that at the level before the
extreme point, the rise in population size inhibits carbon emissions
before it becomes detrimental once the population size exceeds the
threshold level. In that case, rising population size can induce
higher carbon emissions. Based on a study conducted using the
Magna cum oil-producing African countries over the period of
2000–2019, Daramola et al. (2021) explained the possibility of a
backward relationship between changes in population growth
and carbon emissions. Thus, the study revealed a significant nega-
tive effect of carbon emissions on population growth. In contrast,
other papers clarify that aside from population size, the flow of
population from rural to urban areas affects carbon emissions.
The increasing standard of living in urban areas explains why
urbanization appears as a link through which population growth
leads to higher energy demands, thus intensifying carbon emis-
sions. Wang et al. (2014) and Zhang and Lin (2012) state that
urbanization and carbon emissions are positively associated. Even
more, Wang et al. (2014) found that the two variables constituted a
long-run relationship with a bi-directional positive causality. In
addition, the strength of the association in China varies across
regions. These findings on the positive association between urban-
ization and carbon emissions confirm the theory presented by
Jones (1991), asserting that urbanization permits higher econo-
mies of scale in production, due to more demand for transportation
and food, which inevitably increases energy consumption.

On the contrary, other studies establish that due to economies
of scale, higher population size correlates with lower carbon emis-
sions. This relationship is mostly found for cities. Dodman (2009)
showed that cities refer to higher economies of scale that can drive
technological innovation to reduce carbon pollution. For China, Liu
et al. (2021) demonstrated that, although a higher population size
encourages carbon emissions, it surprisingly curbs emissions per
capita in 175 cities. However, this argument contradicts Fragkias
et al. (2013), who investigated the impact of population size on
carbon emissions using cities in the US covering 366 metropolitan
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statistical areas and 576 micropolitan areas. The study demon-
strates that higher-populated cities are slightly more efficient than
less-populated cities. As such, they do not solidify the presence of
economies of scale in large cities compared to smaller cities.

Oladunni et al. (2022) examined the factors affecting environ-
mental degradation emissions in 9 provinces in South Africa dur-
ing the period of 2011–2020. The environmental degradation is
approximated using GHG emissions, while the key drivers
include economic growth, energy intensity, national population,
infrastructural investments, freight turnover, fuel consumption,
and passenger vehicles. The findings highlight that economic
growth, population, and energy intensity represent the major
drivers of GHG emissions in this region. Using decomposition
analysis, Alajmi (2021) demonstrated that industrial activity
and real energy intensity – particularly electricity production
and petroleum processing – is a major determinant of carbon
emissions in Saudi Arabia. However, applied studies on the topic
of pollution determinants always incorporate various economic
variables as controls. Among others, economic growth (i.e., usu-
ally approximated by GDP) is mostly the dominant variable
included in the estimated model. Recently, the impact of eco-
nomic growth on the environment has gained attention as global
warming is becoming a serious issue (Kais and Sami, 2016).
Therefore, most environmental studies take into account eco-
nomic growth either as a focused independent variable or as a
control. The general finding on the relationship between eco-
nomic growth and emissions underpins the EKC hypothesis
(where the relationship follows an inverted U-shaped relation-
ship), which is indicated by the presence of an extreme point.
This peak reflects a structural and technological change resulting
from high economic growth, which in turn curbs long-term
emission intensity. However, the inverted U-shaped relationship
between economic growth and emissions is evident in some
studies (Magazzino et al., 2023).

Using the cross-sectional dependence test, Granger causality,
and panel data estimators, Kostakis et al. (2023) showed that eco-
nomic growth is positively correlated with carbon emissions while
validating the EKC hypothesis in MENA countries.
Champeecharoensuk et al. (2022) investigated the impact of eco-
nomic development on environmental degradation in Thailand
from 2007 to 2020. The study shows that transportation con-
tributes to environmental degradation in the country, even though
with a small impact. Kais and Sami (2016) applied dynamic panel
data analysis (GMM System) for the years 1990–2012, finding that
economic growth and per capita carbon emissions create an
inverted U-shaped relationship, confirming the EKC hypothesis
across 48 countries in 3 macro-areas (European and North Asian,
Latin American and Caribbean, and Middle East and North Africa
countries). On the contrary, multiple studies invalidate the pres-
ence of the EKC in the selected sample. Mikayilov et al. (2018)
investigated the relationship between economic growth and car-
bon emissions in Azerbaijan between 1992 and 2013. The study
shows that economic growth increases long-run emissions, con-
firming the absence of the EKC hypothesis. This finding also res-
onates with that of Mikayilov et al. (2017), who argued that a
higher population induces more carbon emissions due to greater
use of transportation.

Among studies in the area of carbon emissions, little attention is
being paid to the nexus of GHG emissions and land, which is
mostly cultivated for agricultural purposes such as arable land
and cropland. Land use has been widely considered a local cause
of environmental degradation (Foley, 2005), given that human
exploitation of land has been expanding due to the increasing
demand. Several studies in this literature ascertain how land use
stimulates carbon emissions. In Brazil, land use, land conversion,
and forestry accounted for two-thirds of Brazil’s GHG emissions
7

in 2005 (Noojipady et al., 2017). In the UK, the production and sup-
ply of food contribute to 20–30 % of GHG emissions (Kulak et al.,
2013). Spawn et al. (2019) found that cropland expansion increases
carbon emissions in the US. However, a global study that examined
the inducing impact of land use on emissions argues that croplands
do not contribute to production intensity (i.e., GHG emissions)
across countries (Carlson et al., 2016). Shen et al. (2022) inspected
the impact of land use intensification on environmental degrada-
tion in China (Taihu Lake region). The study approximates environ-
mental degradation using CH4 and N2O emissions, demonstrating
that land use intensification significantly reduces CH4 emissions
but increases N2O emissions. Thus, the impact of land use on envi-
ronmental degradation depends on the specific land use. That is,
converting natural wetlands to rice-wealth rotation fields can
enhance the greenhouse effect, although it weakens the green-
house effect when the land is converted from rice-wealth rotation
fields to greenhouse vegetable fields. Yang et al. (2023) estimated
the size of carbon emissions in China using a bookkeeping model.
The study provides evidence that deforestation is the largest car-
bon emission source. More specifically, over 70 % of carbon emis-
sions were caused by harvesting wood, while less than 30 % were
caused by converting forest and grassland to cropland. Rossi
et al. (2023) evaluated the temporal variability of soil carbon emis-
sions and its relationship with related variables such as the CO2

flux model, enhanced vegetation index, gross primary productivity,
leaf area index, soil moisture, and soil CO2. The results highlight
that soil carbon emission tends to be lower for high-density land
use and higher for native forests.

In summary, there is no consensus in the existing literature that
examines the impact of population, economic growth, and land on
emissions. Many studies show mixed findings on the nexus of
these three variables, indicating a sensitivity issue in terms of sam-
ple and methodology selection. Across the literature we have
assessed, there are some research gaps that exist in the previous
literature.
3. Materials and methods

3.1. Data

The global sample includes 50 countries across all develop-
ment levels from 1990 to 2018. The 50 countries selected are
based on data availability and comprise 10 low-income econo-
mies, 18 lower-middle-income economies, 12 upper-middle-
income economies, and 10 high-income economies. All the vari-
ables utilized in the model are derived from the World Develop-
ment Indicators (WDI), a World Bank (WB) database. The total
GHG emissions (kt of CO2 equivalent) represent the dependent
variable, whereas the independent variables in each model
include urban population, economic growth, and land-use inten-
sity. Contrary to previous attempts, we use a comprehensive
indicator for assessing climate change, viz. GHG emissions com-
prise carbon dioxide, methane, nitrous oxide, and fluorinated
gases. The population is proxied by the log of population size,
economic growth is approximated by the log of GDP, and land-
use intensity is proxied by the log of a composite measure of agri-
cultural land (i.e., arable, permanent pastures, and cropland) and
forest area. Based on methodologies and guidelines of the indica-
tors of sustainable development, land-use intensity, a composite
variable is calculated as ((Agric*weight of Agric) + (Forest*weight
of forest))/2, where the weight of Agric is defined as Agric divided
by the sum of Agric and forest, and weight of forest is defined as
forest divided by sum of Agric and forest (Sarkodie and Owusu,
2022). All the variables in the model are presented in terms of
the natural logarithm.
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3.2. Model estimation

In this study, we jointly use optimal model specification
through the Lasso method, and a partially nonparametric regres-
sion for GHG emissions. The use of a model embedded in the larger
family of nonparametric regression models has several advantages
over traditional parametric regression models (Henderson and
Parmeter, 2015; Li and Racine, 2007; Pagan and Ullah, 1999):

Flexibility: nonparametric regression methods are more flexible
in terms of the shape of the relationship between the predictors
and response variables. Unlike parametric models, nonparamet-
ric methods do not require strong assumptions about the func-
tional form of the relationship.
Robustness: nonparametric regression models are generally
more robust to outliers and other data anomalies than paramet-
ric models. Since nonparametric methods are not based on
specific assumptions about the data distribution, they can han-
dle a wider range of data distributions, thus making results
more transparent.
Data-driven: nonparametric methods are data-driven, which
means they are designed to adapt to the data rather than trying
to force the data to fit a specific model. This makes nonparamet-
ric methods more suitable for complex and nonlinear
relationships.
Interpretation: nonparametric regression models can provide
more interpretable results than parametric models in certain
cases. For example, kernel regression methods can produce
smoothed estimates of the data distribution, which can be use-
ful in visualizing the relationship between the predictor and
response variables.
Scalability: Nonparametric methods can be used to analyze
large datasets with many predictors and observations. Many
nonparametric regression methods are computationally effi-
cient and can handle large datasets with ease.

Overall, nonparametric regression methods are a powerful tool
for analyzing complex data relationships as the ones considered in
this study and can provide more flexible and robust models than
traditional parametric regression methods.

We estimate a partially nonparametric autoregressive equation
in a panel data context. The underlying regression for N cross-
sectional units observed over T periods is modelled as follows:

yi;t ¼ ai þ kt þm zi;t
� �þXK

k¼1

ckyi;t�k þ
XK
k¼1

dkzi;t�k þ
XK
k¼1

b1kx1i;t�k

þ
XK
k¼1

b2kx2i;t�kþei;t ð1Þ

where i = 1,. . .,N and t = 1,. . .,T; ai captures the country effect; kt the
time effect; ck the autoregressive endogenous parameters; b1k and
b2k the exogenous autoregressive parameters of the variables x1
and x2, respectively; dk the exogenous autoregressive parameters
of the variable z; m(zi,t) is the function linking yi,t to zi,t in an
unknown way; and ei,t is a pure error shock with zero mean and
finite variance. The main goal of our analysis is to estimatem �ð Þ con-
ditional on the country and time fixed effects and the auto-
regressive components of the dependent and independent vari-
ables. We also assume that k = 3, to account for at most a three-
year autoregressive process (Cerulli, 2015).

In Eq. (1), the first problem is to identify the structure of the
autoregressive components. Indeed, we do not want to leave in
the model all the k = 3 components, as only a subset of them should
matter for predicting the outcome. We thus run a Lasso regression
of Eq. (1) by dropping out m(zi,t). The Lasso is an ML feature-
8

selector linear method allowing us to select the sole autoregressive
components that have high predictive power on our outcome
excluding all those with poor predictive power. This makes us able
to obtain a more parsimonious model producing an optimal pre-
dicting balance between bias and variance. By stacking the set of
Lasso selected regressors in the column vector wi,t also containing
the fixed effects, Eq. (1) becomes:

yi;t ¼ m zi;t
� �þ pwi;tþei;t ð2Þ

where p collects the parameters of the predictors selected by the
Lasso. Eq. (2) is a partially linear (or partially nonparametric)
regression that can be consistently estimated by the so-called ‘‘dou-
ble partialling out” method provided in Robinson (1988). This pro-
cedure allows for nonparametrically estimating the unknown
function m(zi,t) obtaining at the same time a root-N consistent esti-
mate of p. The ‘‘double partialling out” procedure goes as follows:

Step 1. Take the expectation of Eq. (2) conditional on zi,t, thus
obtaining:

E yi;t jzi;t
� � ¼ m zi;t

� �þ pE wi;t jzi;t
� � ð3Þ

Step 2. Subtract Eq. (3) to Eq. (1) obtaining:

yi;t � E yi;t jzi;t
� �

� ¼ p wi;t � E wi;t jzi;t
� ��þei;t�h

ð4Þ

Step 3. Estimate nonparametrically (for instance, by a kernel
polynomial regression) the two conditional expectations E yi;tjzi;t

� �
and E wi;t jzi;t

� �
, compute the two residuals bry;it and brw;it , and esti-

mate consistently p by a Least Squares (LS) regression of bry;it on
brw;it .

Step 4. Once obtained bp by the previous step, we can use Eq. (2)
and obtain:

Yi;t ¼ m zi;t
� �þ ei;t ð5Þ

where Yi;t ¼ yi;t � bpwi;t is the partialled-out yi,t. In Eq. (5), we can
estimate m(zi,t) with any possible non-parametric method. In this
application, a univariate kernel local linear approach is performed,
as it shares good asymptotic properties together with reasonable
computational costs.

Once we have an estimate of m(zi,t), we can plot it as a function
of zi,t.Moreover, we can compute the partial effect of zi,t on Yi,t, that
is:

@E Yi;tjzi;t
� �
@zi;t

¼ m0 zi;t
� � ð6Þ

The expectation of this function over the support of zi,t will pro-
vide us with the APE of zi,t on Yi,t:

APEz!Y ¼
@E Yi;t jzi;t

� �
@zi;t

¼ Ez m zi;t
� �� � ð7Þ

This is a singleton number synthesizing the overall effect of zi,t
on Yi,t. Standard Errors and P-Values are obtained via bootstrapping
technique.
4. Empirical results

By carrying out three times the previous procedure, we esti-
mated m(zi,t) and m’(zi,t) assuming zi,t to be equal to the log of PO
(urban population), log of GDP (gross domestic product), and log
COMP (composite measures of arable, permanent pastures, crop-
land, and forest). In this way, we can identify the contribution of
each driver zi,t to the EM (total GHG emissions), by partialling out
the effect of the other drivers. The log transformation allows to



Table 2
Partially nonparametric regression results: Effect of FOR on EM.

Variable Coefficient

EMt-1 �0.0151 (0.0274)
EMt-2 �0.1117*** (0.0302)
EMt-3 0.0250 (0.0293)
GDPt �0.0786 (0.0500)
POt 1.2868*** (0.1357)
AGRICt �0.1029 (0.0673)
GDPt-1 �0.1452*** (0.0470)
GDPt-2 �0.1473*** (0.0520)
GDPt-3 0.0462 (0.0443)
POt-2 0.2668** (0.1238)
POt-3 0.2659* (0.1495)
AGRICt-1 �0.0824 (0.0658)
AGRICt-2 �0.1033 (0.0666)
AGRICt-3 0.0225 (0.0632)
FORt-1 �0.0533 (0.0944)
FORt-2 �0.0166 (0.1202)

Notes: country and time coefficients are not reported for brevity. Standard Errors
are given in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Table 3
Non-parametric estimation of the effects of FOR on EM.

Observed estimate

Mean 12.5018*** (0.0258)
Effect 0.3875*** (0.0274)

Notes: *** p < 0.01, ** p < 0.05, * p < 0.10. Bootstrap Standard Errors are reported in
parentheses. Parameter estimate using Local-linear regression. Kernel: Epanech-
nikov. Bandwidth: Cross-validation. Effect estimates are averages of derivatives.
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account for data heteroskedasticity and presents parameters in the
form of elasticities.

4.1. The effect of forests on GHG emissions

We start by estimating Eq. (1) via a Lasso regression to identify
the most predictive lag structure for the covariates included in the
model (Table 1). In this case, we use 10-fold cross-validation over
92 variables and 1,269 observations. The optimal tuning of the
model is obtained at a lambda of 0.0012 at which 81 out of 92 pre-
dictors are selected, mostly dummy variables related to country
and year fixed effects. Once we found the best linear specification
able to predict the log of EM, we run Eq. (2) over this specification
to then estimate m(z) and m’(x).

Table 2 presents the results of the linear component of Eq. (2),
where the two lags of FOR are not statistically significant; However,
it is evident the significant effect of the second lag of EM with a neg-
ative sign, and a size smaller than one (remember that the coeffi-
cients should be interpreted as elasticities). PO stands out with a
positive and significant elasticity of 1.29, indicating an increasing
return of CO2 emissions to this variable. Also, the lags of PO have pos-
itive and significant effects, but with small elasticities. GDP has weak
mixed effects, mainly with a negative sign. The adjusted R-squared is
0.68 (with an RMSE = 0.7366), which is sizable.

Table 3 shows the results of the nonparametric estimation of m
(z) and m’(z), the core of our study. This aims to measure non-
parametrically the effect of FOR on EM. We immediately see that
the effect is highly significant with a positive elasticity of 0.39
meaning that, when FOR increases by 10 %, EM increases by
3.9 %. It is a sizable effect, but lower than one, thus signaling low
decreasing returns of EM to FOR. The R-squared is rather high as
well, around 54 %.

Fig. 1a plots the m(z) function. The curvature of this function
shows non-linearity. We first have a decrease in the log of EM until
around 11 when the log of FOR is around 1.9; after this point, there is
a steeper increase in the log of EM until a level of 15; this part is
probably responsible for an average positive effect. The observations’
cloud is rather concentrated, thus making this result enough robust.

An advantage of running a semi-parametric model is the oppor-
tunity to analyze and visualize the distribution of the effect, i.e. the
empirical distribution ofm’(z). This distribution is visible in Fig. 1b.
We see that all observations show an elasticity smaller than one,
thus signalling decreasing returns of EM to FOR. A large mass of
observations is also concentered between 0.2 and 0.6, proving that
the relationship between these two variables is sufficiently strong.

Then, Fig. 1c shows the distribution of the prediction of m(z).
This distribution is a bit right-skewed around the mean that, as
shown in Table 3, is equal to 12.50. The range of variation is rather
large; thus, we can conclude that the predictions of EM to different
levels of FOR are rather heterogeneous.

4.2. The effect of agriculture on GHG emissions

As shown in Table 4, in this case, we use 10-fold cross-
validation over 92 variables and 1,269 observations. The optimal
Table 1
Lasso regression results: effect of FOR on EM.

ID Description lambda No. of non-zero co

1 first lambda 0.9164 1
71 lambda before 0.0014 80
72 * selected lambda 0.0013 81
73 lambda after 0.0011 80
88 last lambda 0.0003 90

Notes: * lambda selected by cross-validation.
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tuning of the model is obtained at a lambda of 0.00139 at which
82 out of 92 predictors are selected, mostly dummy variables
related to country and year fixed effects.

Table 5 sets out the results of the linear component of equation
(2), where it is evident the significant effect of the first and second
lag of the log of EM, with a negative sign, and a small size in both
cases smaller than one. Also, in this case, the role played by the
variable PO stands out, with a highly significant elasticity of 1.27.
The adjusted R-squared is 0.68 (with an RMSE = 0.7343), which
is a good size.

Table 6 aims to non-parametrically measure the effect of AGRIC
on EM: this effect is poorly significant with a negative elasticity of
�0.09: so, if AGRIC increases by 10 %, EM decreases by less than 1 %.
It is a tiny effect. The R-squared is also rather small, around 18 %.

Fig. 2a plots the m(z) function. The curvature of this function is
not linear. After the value of circa 2.5 of the log of AGRIC, we can
first observe a decrease in EM, until a value of AGRIC around 3.5;
after this point, there is a sustained increase in the log of EM.
The observations’ cloud is rather scattered, thus making this result
characterized by some degree of uncertainty.

From Fig. 2b one can notice that all observations show a nega-
tive elasticity smaller than one, thus signalling negative decreasing
returns of EM to AGRIC. A large mass of observations is also concen-
eff. Out of sample R-squared CV mean prediction error

0.1058 1.7474
0.6918 0.6023
0.6919 0.6021
0.6919 0.6021
0.6915 0.6028



Fig. 1. The effect of forest on GHG emissions. (a) The pattern of the kernel local linear estimation of m(z). (b) Distribution of the predicted partial effect m’(z). (c) Distribution
of the predicted average m(z).

Table 4
Lasso regression results: effect of AGRIC on EM.

ID Description lambda No. of non-zero coeff. Out of sample R-squared CV mean prediction error

1 first lambda 1.0286 1 0.0096 1.9354
71 lambda before 0.0015 82 0.6896 0.6065
72 * selected lambda 0.0014 82 0.6897 0.6063
73 lambda after 0.0013 79 0.6897 0.6063
79 last lambda 0.0007 86 0.6891 0.6076

Notes: * lambda selected by cross-validation.
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tered between �0.10 and �0.05, proving that the relationship
between these two variables is negative and not particularly
strong.

Fig. 2c shows the distribution of the prediction of m(z). This dis-
tribution is rightward skewed around the mean (12.50). The range
of variation is rather large, so that the predictions of EM to different
levels of AGRIC are rather heterogeneous.
4.3. The effect of a composite variable on GHG emissions

The results in Table 7 show that we use 10-fold cross-validation
over 88 variables and 1,269 observations. The optimal tuning of the
model is obtained at a lambda of 0.00258 at which 76 out of 88
10
predictors are selected, mostly dummy variables related to country
and year fixed effects.

Table 8 sets out the results of the linear component, where it is
evident the significant and positive effect of POwith an elasticity of
89.9 %. In addition, the second lag of PO has a strong effect with an
elasticity value of 24 %. The other variables have mixed-in-sign and
smaller effects. The adjusted R-squared is 0.68 (with an
RMSE = 0.7403), which is of a rather high size.

From Table 9 it emerges that the effect of COMP on EM is highly
significant with a high positive elasticity of 0.71 meaning that,
when COMP increases by 10 %, EM increases by 7.1 %. It is a remark-
able effect. The R-squared is however rather small, around 12 %.

Fig. 3a plots the m(z) function: its curvature is not linear. After
the value of around 2 for COMP, we can first observe a decrease in



Table 5
Partially nonparametric regression results: Effect of AGRIC on EM.

Variable Coefficient

EMt-1 �0.0813*** (0.0278)
EMt-2 �0.0862*** (0.0294)
EMt-3 0.0239 (0.0286)
GDPt �0.0416 (0.0528)
POt 1.2664*** (0.1086)
FORt 0.2240 (0.1484)
GDPt-1 �0.1533*** (0.0497)
GDPt-2 �0.1224** (0.0543)
GDPt-3 0.0317 (0.0440)
POt-2 0.4223** (0.0773)
POt-3 0.1364 (0.1154)
AGRICt-1 �0.0618 (0.0612)
AGRICt-2 �0.0515 (0.0657)
AGRICt-3 0.0910 (0.0666)
FORt-1 �0.2788*** (0.0921)
FORt-2 �0.0674 (0.0870)

Notes: country and time coefficients are not reported for brevity. Standard Errors
are given in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Table 6
Non-parametric estimation of the effects of AGRIC on EM.

Observed estimate

Mean 12.4966*** (0.0213)
Effect �0.0879* (0.0464)

Notes: *** p < 0.01, ** p < 0.05, * p < 0.10. Bootstrap Standard Errors are reported in
parentheses. Parameter estimate using Local-linear regression. Kernel: Epanech-
nikov. Bandwidth: Cross-validation. Effect estimates are averages of derivatives.
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EM, until a value of COMP around 2.5; after this point, there is a
sustained increase in EM. The observations’ cloud is rather concen-
trated, thus making this result characterized by a good degree of
reliability.

The empirical distribution of m’(z) is given in Fig. 3b. All obser-
vations show a positive elasticity smaller than (but close to) one,
thus signalling soft decreasing returns of EM to COMP. A large mass
of observations is also concentered between 0.6 and 0.8, proving
that the relationship between these two variables is positive and
particularly strong.

Fig. 3c shows the distribution of the prediction of m(z). This
distribution shows four peaks, but the variance around the mean
– equal to 12.49 as shown in Table 9 – is not strong. So, we con-
clude that the predictions of EM to different levels of COMP are suf-
ficiently homogenous.

4.4. The effect of GHG emissions on forest

Using 10-fold cross-validation over 88 variables and 1,269
observations, the optimal tuning of the model is obtained at a
lambda of 0.00062 at which 80 out of 88 predictors are selected,
mostly dummy variables related to country and year fixed effects
(see Table 10).

Having found the best linear specification able to predict the log
of FOR, we present in Table 11 the results of the linear component
of Eq. (2): the first lag of EM is highly significant (at a 1 %); while
the effect of the second and third lag of GDP is statistically signif-
icant. The adjusted R-squared is 0.97 (with an RMSE = 0.1676),
which is definitely high.

In Table 12 we report the non-parametrically effect of EM on
FOR, which is not significant and very small, with a negative sign.
The R-squared is also small, around 20 %.

Fig. 4a plots the m(z) function. The curvature of this function is
very flat, indicating no substantial effect of EM on FOR.
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The empirical distribution of m’(z) is left-skewed; it could be
noticed that around half of the observations show a negative elas-
ticity, and the other half a positive one, although all elasticities are
rather small. This signals no effect of EM towards FOR (Fig. 4b).

Regarding the distribution of the prediction of m(z), it is right-
skewed around the mean (=2.88). The range of variation is rather
large, so the predictions of FOR to different levels of EM are rather
heterogeneous.
4.5. The effect of GHG emissions on agriculture

We use 10-fold cross-validation over 88 variables and 1,269
observations. The optimal tuning of the model is obtained at a
lambda of 0.00023 at which 86 out of 88 predictors are selected,
mostly dummy variables related to country and year fixed effects
(Table 13).

In Table 14 the results of the linear component are reported: it
clearly emerges the significant and strong effect of the auto-
regressive components of AGRIC. The effect of the other variables
is smaller and mixed in sign. The adjusted R-squared is 0.70 (with
an RMSE = 0.3180), which is of a very good size.

Table 15 shows that the non-parametric effect of EM on AGRIC is
not significant. The R-squared is also rather small, around 8 %.

Fig. 5a shows that the curvature of them(z) function is flat, indi-
cating no substantial effect of EM on AGRIC. The empirical distribu-
tion of m’(z) is visible in Fig. 5b; only a few observations exhibit a
positive elasticity, which is however very small, thus indicating
again the absence of any relevant effect of EM to AGRIC. The distri-
bution of the prediction of m(z) is rather symmetric around the
mean (=3.71). The range of variation is rather small: the predic-
tions of AGRIC to different levels of EM are rather homogenous
(Fig. 5c).
4.6. The effect of GHG emissions on a composite variable

A 10-fold cross-validation over 88 variables and 1,269 observa-
tions is used. The optimal tuning of the model is obtained at a
lambda of 0.00244 at which 55 out of 88 predictors are selected,
mostly dummy variables related to country and year fixed effects
(Table 16).

The estimates of m(z) and m’(x) in Table 17 evidence a statisti-
cally significant effect of the first lag of PO with an elasticity of
0.048, and the contemporaneous value of PO (elasticity of 0.038).
GDP and EM are also highly significant, but with ambiguous signs.
The adjusted R-squared is 0.65 (with an RMSE = 0.2110).

The nonparametric estimations of m(z) and m’(z) reported in
Table 18 show that this effect of EM on COMP is statistically signif-
icant, but very small with a positive elasticity of �0.01. The R-
squared is also rather small (around 6 %).

The m(z) function in Fig. 6a clarifies that the curvature of this
function is flat, without any substantial effect of EM on COMP. In
Fig. 6b the empirical distribution of m’(z) is depicted. Here, all
observations show a positive elasticity but are very small, thus sig-
nalling no effect of EM on COMP. A small mass of observations is
also concentred on negative values. The distribution of the predic-
tion of m(z) is left-skewed around the mean (equal to 3.10). The
range of variation is rather large, so the predictions of COMP to dif-
ferent levels of EM are rather heterogeneous (Fig. 6c).

To sum up all our parametric findings, we have detected:

� a unidirectional link running from GHG emissions to forestry;
� a unidirectional link running from GHG emissions to
agriculture;

� a unidirectional link running from GHG emissions to a compos-
ite variable.



Fig. 2. The effect of agriculture on GHG emissions. (a) The pattern of the kernel local linear estimation of m(z). (b) Distribution of the predicted partial effect m’(z). (c)
Distribution of the predicted average m(z).

Table 7
Lasso regression results: effect of COMP on EM.

ID Description lambda No. of non-zero coeff. Out of sample R-squared CV mean prediction error

1 first lambda 0.9958 1 0.0180 1.9190
64 lambda before 0.0028 76 0.6920 0.6018
65 * selected lambda 0.0026 76 0.6921 0.6016
66 lambda after 0.0024 77 0.6919 0.6020
69 last lambda 0.0018 81 0.6913 0.6031

Notes: * lambda selected by cross-validation.

Table 8
Partially nonparametric regression results: Effect of COMP on EM.

Variable Coefficient

EMt-1 �0.0732*** (0.0273)
EMt-2 �0.0830*** (0.0291)
EMt-3 0.0483* (0.0279)
POt 0.8991*** (0.0535)
GDPt-1 �0.1147*** (0.0428)
GDPt-2 �0.1058** (0.0484)
GDPt-3 0.1004*** (0.0376)
POt-2 0.2402*** (0.0629)
COMPt-1 �0.1411 (0.0995)
COMPt-2 �0.0103 (0.1040)
COMPt-3 0.1102 (0.0975)

Notes: country and time coefficients are not reported for brevity. Standard Errors
are given in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Table 9
Non-parametric estimation of the effects of COMP on EM.

Observed estimate

Mean 12.4936*** (0.0199)
Effect 0.7110*** (0.0712)

Notes: *** p < 0.01, ** p < 0.05, * p < 0.10. Bootstrap Standard Errors are reported in
parentheses. Parameter estimate using Local-linear regression. Kernel: Epanech-
nikov. Bandwidth: Cross-validation. Effect estimates are averages of derivatives.
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Thus, it clearly emerges from the parametric estimates––empiri
cal support for the hypothesis that environmental pollution has a
non-negligible impact on land use variables. However, the non-
12
parametric approach highlights a completely different story, since
we discovered a significant effect of forestry on GHG emissions,
agriculture on GHG emissions, and a bi-directional link between
GHG emissions and a composite variable. To compare our novel
estimations to traditional causality analyses, we also present in
Table 19 the results of pairwise Granger causality tests. The results
evidence a very different scenario; in fact, they confirm that for-



Fig. 3. The effect of a composite variable on GHG emissions. (a) The pattern of the kernel local linear estimation of m(z). (b) Distribution of the predicted partial effect m’(z).
(c) Distribution of the predicted average m(z).

Table 10
Lasso regression results: effect of EM on FOR.

ID Description lambda No. of non-zero coeff. Out of sample R-squared CV mean prediction error

1 first lambda 0.3862 1 0.1013 1.0381
69 lambda before 0.0007 78 0.9789 0.0243
70 * selected lambda 0.0006 80 0.9789 0.0243
71 lambda after 0.0006 80 0.9789 0.0243
76 last lambda 0.0004 79 0.9789 0.0244

Notes: * lambda selected by cross-validation.

Table 11
Partially nonparametric regression results: Effect of EM on FOR.

Variable Coefficient

FORt-1 0.0111 (0.0312)
FORt-2 0.0218 (0.0305)
POt �0.0104 (0.0283)
GDPt-1 �0.0082 (0.0118)
GDPt-2 0.0454*** (0.0119)
GDPt-3 0.0193* (0.0102)
EMt-1 �0.0171*** (0.0062)
EMt-2 �0.0094 (0.0067)
EMt-3 �0.0114* (0.0065)

Notes: country and time coefficients are not reported for brevity. Standard Errors
are given in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Table 12
Non-parametric estimation of the effects of EM on FOR.

Observed estimate

Mean 2.8767*** (0.0049)
Effect �0.0017 (0.0052)

Notes: *** p < 0.01, ** p < 0.05, * p < 0.10. Bootstrap Standard Errors are reported in
parentheses. Parameter estimate using Local-linear regression. Kernel: Epanech-
nikov. Bandwidth: Cross-validation. Effect estimates are averages of derivatives.
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estry does not affect GHG emissions (F = 0.16). However, here the
absence of a statistically significant causal flow emerges for both
the forestry-emissions nexus and the agriculture-emissions one.
13
Moreover, a unidirectional causal link, running from the composite
variable to GHG emissions is detected (F = 4.01).
5. Discussion

The end goal of the 2015 Paris Agreement is to limit the global
temperature to 1.5 �C. Yet, recent trends in emissions, planned



Fig. 4. The effect of GHG emissions on forest. (a) The pattern of the kernel local linear estimation of m(z). (b) Distribution of the predicted partial effect m’(z). (c) Distribution
of the predicted average m(z).

Table 13
Lasso regression results: effect of EM on AGRIC.

ID Description lambda No. of non-zero coeff. Out of sample R-squared CV mean prediction error

1 first lambda 0.2467 1 0.0053 0.3918
75 lambda before 0.0003 86 0.7111 0.1138
76 * selected lambda 0.0002 86 0.7111 0.1138
77 lambda after 0.0002 86 0.7111 0.1138
87 last lambda 0.0000 86 0.7108 0.1139

Notes: * lambda selected by cross-validation.
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infrastructure, and national policy commitments jeopardize the
likelihood of realizing these ambitious targets (Höhne et al.,
2020). Although rising GHG emissions underpin accelerated global
warming and climate change, taking an appropriate inventory of
the drivers and patterns of GHG emissions continues to be a global
challenge. There are diverse drivers of GHG emissions that are
intricately intertwined and also span across several spheres of
interactions between the earth and human systems. The Intergov-
ernmental Panel on Climate Change (IPCC) Working Group III
(WG3) ascribed the major global drivers of GHG emissions to five
broad sectors, namely: energy systems, industry, buildings, trans-
port, and AFOLU (Agriculture, Forestry, and Other Land Uses). In
congruence with the scope of this study, a large number of such
drivers were designated under broader categories such as popula-
tion, economic development, forest density, and agricultural prac-
tices, amongst other anthropocentric activities. Notwithstanding,
14
each category is characterized by labyrinthian dynamics, which
pose challenges with regard to climate change mitigation. More-
over, apart from the conflicting views of scholars, lobbyists, and
policymakers regarding the relationship between respective dri-
vers and GHG emissions, we observed the lack of robust analysis
in order to accommodate the interaction of all significant drivers
argued in previous reports (Yang et al., 2023; Hong et al., 2022;
Shen et al., 2022; Daramola et al., 2021). In this regard, we
employed simultaneous assessment of interactions using novel
estimation techniques to intelligently decipher the 28-year inven-
tory of GHG (comprising CO2, CH4, N2O, and fluorinated gases)
emission occurrences in 50 countries stratified based on their
respective socioeconomic developments. To this end, Lasso and
non-parametric regression were applied successively to know the
magnitude of influence each driver has on GHG emissions, thereby
ultimately tracking the most significant emission sink. Therefore,



Table 14
Partially nonparametric regression results: Effect of EM on AGRIC.

Variable Coefficient

AGRICt-1 �0.1455*** (0.0282)
AGRICt-2 �0.1451*** (0.0288)
AGRICt-3 �0.1370*** (0.0289)
GDPt �0.0164 (0.0229)
POt 0.0463 (0.0522)
GDPt-1 �0.0269 (0.0241)
GDPt-2 0.0370 (0.0241)
GDPt-3 �0.0484** (0.0203)
POt-1 0.1531** (0.0631)
POt-2 �0.0439 (0.0670)
POt-3 �0.1297** (0.0631)
EMt-1 �0.0291** (0.0124)
EMt-2 0.0004 (0.0131)
EMt-3 0.0254** (0.0127)

Notes: country and time coefficients are not reported for brevity. Standard Errors
are given in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Table 15
Non-parametric estimation of the effects of EM on AGRIC.

Observed estimate

Mean 3.7125*** (0.0098)
Effect �0.0047 (0.0057)

Notes: *** p < 0.01, ** p < 0.05, * p < 0.10. Bootstrap Standard Errors are reported in
parentheses. Parameter estimate using Local-linear regression. Kernel: Epanech-
nikov. Bandwidth: Cross-validation. Effect estimates are averages of derivatives.
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of particular interest is the influence of forest (FOR), agriculture
(AGRIC), and land use (COMP) on total greenhouse emissions (EM)
and vice versa.
5.1. The nexus between forest and GHG emissions

Herein, we appraised the bidirectional relationship between
forest and GHG emissions. However, it was discussed from the con-
text of GDP and PO, which has not been addressed in preceding
studies. From our evaluation, FOR has a positive influence on EM,
where a 10 % increase in deforestation activities would accelerate
the occurrence of EM by 3.9 %. In a previous study, a 1 % positive
shock in forest area (deforestation) increases CO2 emissions by
42 %, whereas a 1 % negative shock (afforestation) decreases CO2

by 2.80 % (Abbasi et al., 2021). Similarly, investigations by Raihan
(2023) and Raihan et al. (2023b) inferred that a 1 % increase in for-
est area would plummet GHG emissions by 3.46 % and 3.94 %,
respectively. Forests serve as important global carbon sinks; hence,
it is not unreasonable to predict their direct relationship with GHG
emissions. For example, an eighteen-year satellite observatory on
forest-related disturbances revealed a global gross GHG emission
of 8.1 ± 2.5 GtCO2e/yr, where CO2 and CH4 were emphatically dom-
inant (Harris et al., 2021). The distribution of observations sug-
gested a sufficiently strong relationship between EM and FOR
(Fig. 1b), where the average positive effect of FOR earlier men-
tioned was evinced through a plot showing, largely, moderate
increases in EM per advancement in forest area being encroached.
Under this condition, the positive and significant effects of POwere
observed as contributory to increasing EM quotients, albeit with
low elasticity, thereby implying that its effect might not be signif-
icant enough to prevent a steep reduction in EM when FOR is
reduced drastically. Therefore, we ratiocinate that deforestation
and its subsequent contribution to GHG emissions might not be
attributed to anthropogenic activities alone, but also to other nat-
ural causes of abiotic or biological origin, such as wildfires, bliz-
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zards and storms, the infestation of insects and parasitic
microorganisms, which is corroborated by Robinne (2020) and ref-
erences therein. For instance, during an investigation on the possi-
ble drivers of forest biomass losses, Fei et al. (2019) observed that
15 most damaged non-native invasive species – comprising 9
pathogens, 4 sap-feeders, 1 wood/phloem-borer, and 1 foliage-
feeder – caused live feedstock mortality rate of 5.53 TgC per year.
This metric was surmised to be similar in magnitude to fire-
induced biomass losses and was further estimated to pose a severe
risk to 41 % of total live forest biomass. Although deforestation has
been surmised in our study as the major contributor to GHG emis-
sions, we further explain that FOR might be a blanket variable to
represent deforestation and forest degradation that result from
natural or anthropogenic causes. This categorization gives a robust
prediction because earlier studies have identified the omission of
forest degradation, despite it being critical to GHG emissions and
socio-economic development inventories (Pearson et al., 2017).
Forest degradation simply refers to the direct human-effected
reduction of forest carbon stocks through the invasion of canopy
cover at rates insufficient to be considered as deforestation. Major
causes of this phenomenon include the biased felling of certain tree
parts or species for timber, charcoal, or for building make-shift
camps in crisis-ridden locations or areas with poor amenities and
low standards of living. This is common in East Africa, for instance,
amidst modest improvement efforts in rural electrification in
Uganda, charcoal and firewood consumption secures not less than
90 % share in the local energy utilization apportionment. The con-
sequent upsurge in deforestation has birthed the espousal of green
charcoal, in order to combat indiscriminate extraction of charcoal
feedstock from forests. We observed the weak mixed but mainly
negative effects of GDP and AGRIC, which implies the slight influ-
ence economic development and agriculture might have in reduc-
ing deforestation-implicated GHG emissions. This corroborates our
thoughts that current smart energy technology investments and
improved precision technology in agriculture and improved crop-
land management will only plateau GHG emissions until the
advent of another era of disruptive innovation that would permit
further visible decline. Although Mikayilov et al. (2017) had easier
evinced that economic growth installs tremendous carbon emis-
sions, with no latency and turning point in accordance with EKC
hypothesis. The analysis by Zhou et al. (2018), which was rational-
ized from the assessment of developing (Brazil, China, India, Mex-
ico, and South Africa) and developed (EU, USA, Canada, and Japan)
countries, supports the EKC hypothesis that environmental degra-
dation rises at the initial stages with increasing economic growth
and finally decreases when high-income levels have been attained.
In a similar vein, whilst some authors propose contrasting phe-
nomena regarding the potential contribution of cropland-
invested land use to the intensity of GHG emissions, other studies
stressed that optimal land management practices are a critical
approach to mitigating current GHG emissions (Sha et al., 2022).
Here, they further noted that grasslands and croplands have swif-
ter and more sensitive feedback from anthropogenic activities.
Conversely, when assessing the effect of EM on FOR, we observed
that it was rather not significant, with an inconsequential negative
coefficient, due to the almost equal distribution of positive and
negative elasticities amongst the observations (Fig. 4b). This was
corroborated by a flat curvature (Fig. 4a), indicating no substantive
effect of EM. However, in this scenario, the net influence of GDP is
statistically significant, with a positive elasticity. This implies that
aggressive economic development might contribute to accelerated
and experiential deforestation due to the socio-economic predilec-
tions that accompany an improved standard of living. This observa-
tion is corroborated by Sarkodie and Owusu (2022); however, they
maintained that the magnitude of deforestation due to accelerating
economic growth. Moreover, Ajanaku and Collins (2021) and



Fig. 5. The effect of GHG emissions on agriculture. (a) The pattern of the kernel local linear estimation of m(z). (b) Distribution of the predicted partial effect m’(z). (c)
Distribution of the predicted average m(z).

Table 16
Lasso regression results: effect of EM on COMP.

ID Description lambda No. of non-zero coeff. Out of sample R-squared CV mean prediction error

1 first lambda 0.1212 1 0.0162 0.1247
42 lambda before 0.0027 51 0.6161 0.0487
43 * selected lambda 0.0024 55 0.6162 0.0487
44 lambda after 0.0022 56 0.6162 0.0487
48 last lambda 0.0015 69 0.6149 0.0488

Notes: * lambda selected by cross-validation.

Table 17
Partially nonparametric regression results: Effect of EM on COMP.

Variable Coefficient

COMPt-3 �0.0389 (0.0263)
POt 0.0379*** (0.0146)
GDPt-1 0.0196** (0.0086)
GDPt-2 �0.0370*** (0.0093)
POt-1 0.0479** (0.0132)
EMt-1 �0.0173** (0.0078)
EMt-3 0.0214*** (0.0073)

Notes: country and time coefficients are not reported for brevity. Standard Errors
are given in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Table 18
Non-parametric estimation of the effects of EM on COMP.

Observed estimate

Mean 3.1000*** (0.0065)
Effect 0.0096*** (0.0035)

Notes: *** p < 0.01, ** p < 0.05, * p < 0.10. Bootstrap Standard Errors are reported in
parentheses. Parameter estimate using Local-linear regression. Kernel: Epanech-
nikov. Bandwidth: Cross-validation. Effect estimates are averages of derivatives.
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Caravaggio (2020) provided a fresh perspective on the matter,
since they identified the trade of forest products as a causal effect
of net deforestation. Trees have different carbon capture rates at
different life stages; in their early and active growth rates carbon
sequestration is more than emission; nonetheless, a balance is
maintained between sequestration and emission at maturity, till
16
the collapse stage where emissions supersede the capture rates
(Von Essen et al., 2019; Roibas et al., 2018). This might explain
the mildly negative effect of EM observed in our findings.

5.2. The nexus between agriculture and GHG emissions

In a world overstretched by population explosion, it is not
unreasonable to assume agriculture underpins the sustenance of
current human welfare. In the same vein, it is critical to understand



Fig. 6. The effect of GHG emissions on a composite variable. (a) The pattern of the kernel local linear estimation of m(z). (b) Distribution of the predicted partial effect m’(z).
(c) Distribution of the predicted average m(z).

Table 19
Panel pairwise causality tests.

Null Hypothesis F-Statistics

GDP;EM 1.4901 (0.2257)
EM;GDP 8.9272*** (0.0001)
PO;EM 10.0876*** (0.0000)
EM;PO 0.4191 (0.6577)
AGRIC;EM 0.0350 (0.9656)
EM;AGRIC 0.5811 (0.5594)
FOR;EM 0.1608 (0.8515)
EM;FOR 0.5208 (0.5942)
COMP;EM 4.0141*** (0.0000)
EM;COMP 2.5579 (0.3393)

Notes: *** p < 0.01, ** p < 0.05, * p < 0.10. P-
Values in parentheses.
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the role it might play in GHG emissions. Cropland expansion in the
US has been reported to cause an upsurge in carbon emissions
(Spawn et al., 2019). However, after observing the disproportionate
contributions of certain cropping practices and croplands to emis-
sions, Carlson et al. (2016) posited an antithetical view that GHG
emissions are largely dissociated from production intensity across
crops and countries. From our evaluations, AGRIC has a sparingly
significant effect with a negative elasticity (-0.09). This implies that
a 10 % increase in agricultural activity or cropland expansion
would only reduce EM by nearly 1 %, which is indeed minimal,
given the magnitude of agricultural activities undertaken at pre-
sent globally, and the diminishing returns they likely have on
deforestation. Raihan (2023) and Raihan et al. (2023a) reported a
0.20 % and 0.22 % decline in GHG emission per 1 % increase in agri-
17
cultural productivity, where they reiterated its importance in har-
vesting atmospheric CO2 for conversion into biomass or soil
carbon. After taking inventory of the effects of livestock and crop
production on CO2 emissions using both linear and non-linear
models, Zhou et al. (2022) discovered that livestock farming could
reduce CO2 in the short- and long-run. They further observed that
increased crop production could deteriorate environmental quality
in the short-run, whereas in the long-run the effect might be
insignificant or mixed, depending on the shock in productivity.
Therefore, it is not illogical to reason that forest encroachment of
cropland expansion is not a prudent initiative toward the perpetual
reduction of global emissions. This outcome is further illustrated
by a negative, yet not-so-strong relationship between EM and
AGRIC, as a result of a negative elasticity of less than 1, where
the majority of observations were between �0.10 and 0.05
(Fig. 2b). Also, Fig. 2a shows a non-linear curvature, especially from
log 2 onwards for AGRIC, where a shoulder occurred at log 2.5 and
decreased to 3.5 before a gentle and steady increase in EM.
Although this outcome might not be absolutely certain due to
heterogeneity in the observation’s cloud, we can surmise that this
phenomenon (low decreasing returns of EM to AGRIC) might attain
some constancy unless interrupted by other external factors. For
instance, population growth and urbanization have been reported
by several authors to contribute to emissions of GHGs traceable
to agriculture, such as CO2, N2O, and CH4 (Aziz and Chowdhury,
2023; Raihan, 2023; Raihan et al. 2023a; Rehman et al., 2022a).
In fact, the interaction of food production, urban, and rural popula-
tion growth exposed an adverse impact on CO2 emissions (Rehman
et al., 2022a) In this regard, we observed the influence of PO as
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emphatic, with a high elasticity of 1.27, which is sufficient to influ-
ence AGRIC contribution to EM through other channels such as
agro-industrial activities, food wastes, and losses. For instance,
after the increased expansion of croplands by 12 % in the last
50 years not less than half of global croplands have been ear-
marked for food production (Roka, 2019). However, about 30 % of
these croplands produce foods that navigate the supply chain with-
out consumption and constitute major GHG remittances, especially
cereals (31 %) and vegetables (21 %) (Unuofin et al., 2021). Besides,
GDP has a mixed but net negative influence; this is because eco-
nomic development is assumed to not only adversely impact the
AGRIC-EM nexus at the developmental stages but will also have lit-
tle to no effect or minimally reduce the likelihood of AGRIC-
implicated GHG emissions, due to our advancement towards a cir-
cular economy. For instance, biochar embodies the fruition of a cir-
cular bioeconomy and has been identified as one of the
technologies devised to convincingly curb GHG emissions in the
immediate future. This is because it epitomizes the upcycling of
agro-industrial and forest residues and other solid wastes in a pro-
cess that also involves the production of bio-oils that can be
amended into liquid transport fuel, hence, affecting carbon–neutral
energy production. Moreover, biochar can serve as carbon sinks,
nutrient vaults, and scrubbers in the soil, thereby preventing land
degradation (due to its longevity), permitting land reuse, and fore-
stalling cropland extension. Our submission is corroborated by a
US-based study, where the willingness to purchase and apply bio-
char was based on economic capacity relative to crop prices, how-
ever, the authors observed a reduction in total crop area due to
biochar-enabled high returns (Dumortier et al., 2020). However,
Rehman and Rehman (2022) and Chen et al. (2022) stated that
population growth, urbanization, and economic growth might
boost environmental degradation and GHG emissions. In particu-
lar, Chen et al. (2022) inferred a bidirectional causality between
economic growth and carbon emissions, economic growth and
urbanization, economic growth and population growth, as well as
the causation from urbanization to carbon emissions. Reversely,
we observed that the non-parametric effect of EM on AGRIC is
not significant. This was further ascertained by a flat curvature
(Fig. 5a), a reduced number of observations with small positive
elasticities (Fig. 5b), as well as a symmetric and homogenous pat-
tern of predictions (Fig. 5c), thus, emphasizing that EM has no
appreciable effect on AGRIC. We believe that this quiescent effect
might be attributable to the relativity of crop requirements, atmo-
spheric warming and its associated biotic and abiotic factors will
differ amongst vegetable and cereal plantations. For example, in
a recent study, while maize crops experienced a dip in productivity
due to atmospheric warming, wheat yield was particularly
enhanced (Jägermeyr et al., 2021). From the purview of European
agricultural systems, Carozzi et al. (2022) foreshadow a stable pro-
duction in the first half of the century, and a further decline during
the second half, especially in low-latitude regions due to the
reduced length of the growing cycle. The analysis by Rehman
et al. (2022b) showed a mixed effect of GHG emissions on some
agricultural and climate-related parameters. They observed that
while wheat, maize, sugarcane, cotton, bajra, gram sesamum crops,
and land use exhibit a positive correlation with CO2 emissions,
temperature, rainfall, rice, jowar, and barley evinced a negative
relationship with CO2 emissions. Notwithstanding, we did observe
a strong autoregressive interaction of AGRIC, however with nega-
tive elasticities. On this note, we propose that intensive farming
on cropland would lead to degradation and agricultural activity,
input or productivity will further decline in successive periods of
time under a regime impacted by GHG emissions. Cropland expan-
sions and intensification of agriculture are major influencers of
land degradation that most times lead to desertification, thus,
the soil is rendered helpless against elements of climate change.
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Regrettably, the extent of current agricultural land degradation
portends an impediment to implementing sustainable agricultural
practices, despite the unanimous and keen interest of farmers in
restoring and maintaining soil health worldwide.

5.3. The nexus between land use and GHG emissions

Previously, we addressed the individual effects of FOR and
AGRIC, however, they comprise elements whose effects might have
been overlooked due to generalization. Therefore, we considered a
fine-tuned observation where we evaluated the composite mea-
sures of land use variables, such as arable land, permanent pas-
tures, cropland, and forest. Interestingly, we observed that COMP
has a highly significant effect on EM, with a high positive elasticity
of 0.70, which suggests a 7.1 % increase in EM per every 10 %
increase in COMP. Although this outcome has a low R-squared
value (12 %), its reliability was confirmed through certain
instances. First, its curvature is not linear as it portrays a shoulder
in EM at log 2 of COMP, then a steady increase at log 2.5. Moreover,
its observation cloud is rather concentrated, which is characteristic
of desirable reliability (Fig. 3a). Second, all observations show a
positive elasticity close to 1, where a large mass of observations
are concentered between 0.6 and 0.8 (Fig. 3b), thereby suggesting
a strong and positive relationship between the two variables eval-
uated. Third, the weak variance around the mean of distribution
peaks substantiates that predictions of EM to different levels of
COMP are satisfactorily homogenous. We believe this outcome
emphasizes the concatenation of composite land use variables
and their interrelation in strengthening the GHG emissions budget.
Composite measures of land use variables emissions and removals
comprised approximately 21 % of global GHG emissions in 2018
(Lamb et al., 2021), where data fingerprinting identified major
pathways of emissions as (i) deforestation (mostly cropland exten-
sion), (ii) imbalanced wood harvesting, (iii) peat drainage and
burning, (iv) reforestation and periodic restoration of other natural
vegetation, (v) interconversion between croplands and pasture, (vi)
soil CO2 flux due to grassland and cropland management, (vii)
overgrazing and enteric fermentation from pasture animals (live-
stock), (viii) manure management, and (ix) synthetic fertilizer
application. However, these global trends tend to exhibit dispro-
portionate patterns, regionally. Typically, not less than 50 % of
CO2 emissions in developing regions (Africa, Latin America, and
Southeast Asia) are attributed to composite and used variables,
especially agricultural expansion through biomass stockpiling
and incineration and carbon leaching from laden soils (Hong
et al., 2021; Pearson et al., 2017). Although developed nations
(EU, USA, Canada, and Japan) only practiced high land clearing
rates until the 20th century, such that their land use emissions
are now negligible (Pongratz and Caldeira, 2012), recent reforesta-
tion and rejuvenation of abandoned land in Europe have accorded
them a larger remittance of N2O and CH4 emissions from compos-
ite land use compared to tropical, developing countries (Hong
et al., 2021). It was also observed that PO has a strong and positive
effect on COMP-implicated GHG emissions, with an elasticity of
89.9 %, which is phenomenally high. This implies that an increased
urban population would warrant an upsurge in the activities clas-
sified within the land-use variables and hence a further increase in
GHG emissions. Similarly, Lamb et al. (2021) noted that emissions
from 2010 to 2017 have been affected by increases in population,
especially in actively growing regions, such as Africa, the Middle
East, Southern Asia, Southeast Asia, and the Developing Pacific.
Moreover, CO2 emissions from land use elements were shown to
be consistent with a significant expansion of anthropogenic land
demand and use between 1990 and 2018 (Hurtt et al., 2020).
Indeed, the land is the sine qua non yet limiting resource for
enabling the production of food, feed, timber, and bioenergy inter
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alia, instigated by the growing human population, diverse dietary
patterns, and production efficiency (Kastner et al., 2012). To sub-
stantiate this, humans have expanded cropland areas (9.1 %), sec-
ondary forests (22.5 %), and urban land (64.3 %), thereby
simultaneously subduing primary forest area by �12.9 %, which
have been spearheaded by Africa, Latin America, and Southeast
Asia (Hurtt et al., 2020). This trend might attain constancy, until
proper land management, proper consumer behavior, and urban
and regional planning are fostered, and emission deficit technolo-
gies and regimes are enabled. On the other hand, we observed that
although EM has a statistically significant effect on COMP, it was
rather very small with a positive elasticity of 0.01 %. This claim
was substantiated by the flat curvature in Fig. 6a and the mass of
observation between 0 and 0.02 portrayed in Fig. 6b. Even so, we
surmise that EM might have a stronger, non-negligible impact on
land use variables in the long run. It is evident that emissions-
impacted climate change will have a mixed effect globally due to
regional and latitudinal differences. While atmospheric warming
would lengthen the growing season in the middle and higher lati-
tudes of the northern hemisphere and may permit crop productiv-
ity (Deryng et al., 2016; Yang et al., 2015). Crop yields are
negatively impacted by soaring seasonal rainfall variability,
drought severity, and growing season temperatures in the tropics,
sub-tropics, water-limited, and high-elevation environments, as
well as drought severity and growing season temperatures
(Müller et al., 2017; Wheeler and Von Braun, 2013). When these
effects are viewed collectively, it is not inaccurate to assume that
the current net effects of GHG emissions on the land use variables
are slightly mild. Ultimately, this would in the long-run cause fre-
quent and disorganized migratory patterns of indigenous fauna,
further driving skewed biodiversity and distortion of the food web.

Altogether, we detected the unidirectional flow from GHG emis-
sions to forestry, agriculture, and land use through parametric
tests, thereby supporting the premise that environmental pollu-
tion’s effect on land use variables is not too negligible to be over-
looked. From a non-parametric approach, the significant effect
that forests and agriculture have on GHG emissions was observed,
whereas a bi-directional link was established between GHG emis-
sions and land use. When our novel approach was compared with
traditional causality analyses (Table 19), they confirmed the non-
existent influence of forestry on GHG emissions. However, we also
observed the absence of a statistical causal flow for the forestry
emissions and agriculture-emissions nexuses. Interestingly, we
detected a unidirectional causal link from land use (F = 4.01) and
urban population (F = 10.09) to GHG emissions, respectively, thus
emphasizing the direct link between these two and GHG
emissions.
6. Conclusions and policy recommendations

Global warming might continue to be a pressing issue, even
after the set ultimatum for achieving carbon neutrality and the
1.5 �C warming limit. This is partly because scientists and policy-
makers at large have not been able to accurately capture the
dynamics of GHG emissions with regard to their pathways, despite
being knowledgeable of the prominent GHGs. In this regard, we
identified gaps in the literature regarding the analysis of the inter-
actions of forest density, cropland, and land use (composite vari-
able) with GHG emissions. Thus, this study employed a robust
statistical approach in evaluating the present relationships
between forest, cropland, land use, and GHG emissions, with
regard to economic growth and urban population. Here, we were
able to evidently demonstrate that population does influence all
land use variables and their consequent contribution to the GHG
emissions budget. We also observed that economic development
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could mitigate GHG emissions through technology and innovation,
however, it might be subject to consumer behaviour and produc-
tivity––as we observed both positive elasticities for GDP with
regard to its influence on forests––which might augur further con-
tributions of forests to emissions. Forest density has a strong effect
on global anthropogenic GHG emissions because it is regarded as a
carbon sink and a major determinant in atmospheric warming or
cooling. Therefore, efforts could be made to reduce forest thinning,
through the search for sustainable alternatives to their products
usually adopted as feedstock for energy or as structural materials.
Governments worldwide should strengthen their policies regard-
ing land use, forest management, urbanization, and agriculture in
order to further mitigate GHG emissions. They could revise their
international trade policies into more transparent modules in order
to effectively track the shortfalls in policy adherence. Certain poli-
cies could include the preservation of woody biomass that has an
immense capacity for carbon storage, while the old live biomass
with low storage capacity could be used for timber. Moreover,
the rate of reforestation should supersede the rate of such defor-
estation. Due to the rapid rate of urbanization and industrialization
of once-natural environments, concerned stakeholders and inves-
tors could be mandated, also incentivized by governments to
include environmental sustainability in their respective blueprints
for real estate and industrial layouts. Sustainable agricultural prac-
tices that will prevent the loss of fertile soil and will ensure the
restocking of soil carbon sinks from atmospheric CO2 must be pur-
sued. The results of this study, although robust, further exposed
the existence of uncertainties and unknowns, whose seemingly tri-
fling quotients might be strong determinants for long-term envi-
ronmental degradation and GHG emissions. In this regard, certain
themes such as demography, seasonality, population diet prefer-
ences, crop type, and mode of farming, inter alia, should be ana-
lyzed in future studies, especially in the context of the themes
here discussed.
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