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Abstract

By a result of Latimer and MacDuffee, there are a finite number of equiv-
alence classes of n × n matrices over Fq[T ] with minimum polynomial p(X),
where p is an nth degree polynomial, irreducible over Fq[T ]. In this paper, we
develop an algorithm for finding a canonical representative of each matrix class,
for p(X) = X2 − ΓX −∆ ∈ Fq[T ][X].
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1. Introduction

Let p(X) ∈ R[X] be a monic, irreducible polynomial of degree n over a
principal ideal domain R. If C ∈ Mn[R] is a matrix solution to the equation
p(X) = 0, then the solution set of this equation is exactly

{S−1CS : S ∈ GLn[R
′]} ∩Mn[R],

where R′ is the field of fractions of R. For brevity, we will refer to matrices in
this set simply as “solutions (to p(X) = 0)” if no confusion can arise.

Definition 1. We call two solutions A and B equivalent if B = S−1AS for
some S ∈ GLn[R].

Latimer and MacDuffee showed in [1] that there is a bijection between equiv-
alence classes of matrix solutions to p(X) = 0 and ideal classes of R[β], where
β is a root of p(X) in the algebraic closure of R′.
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Definition 2. Two ideals a and b of R[β] are equivalent if there exist a, b ∈ R
such that aa = bb.

In their paper, Latimer and MacDuffee make the correspondence explicit,
as follows: if A is a matrix solution to p(X) = 0, let w be an eigenvector of A
corresponding to β; associate with A the ideal of R[β] generated by the entries
of w. However, they don’t provide a method for constructing representatives in
each class. In [2], Behn and Van der Merwe give an algorithm for constructing
representatives in the case when p(X) is quadratic and R = Z. It would be
useful to have an algorithm for constructing representatives of each equivalence
class of solutions for the case where p(X) is quadratic and R = Fq[T ]: via the
Latimer-MacDuffee correspondence, these give rise to representatives of ideal
classes in a quadratic extension of Fq[T ], which may be used to improve the
results by Breuer in [3], section 3, on estimating the heights of CM-points of
certain Drinfeld modules. In Breuer’s paper, he uses the fact that ideal classes
correspond to elements in a so-called quadratic fundamental domain (Defini-
tion 3.4 in the paper), but is limited by the fact that different elements in the
quadratic fundamental domain may correspond to the same ideal class.

In this paper we develop such an algorithm for constructing representatives
of matrix solutions to p(X) = 0 when R = Fq[T ]; conversion to representatives
of ideal classes is made explicit in chapter 4 of [4]. When p(X) is reducible, the
methods in this paper break down; the neat result over the integers presented
in [2] certainly does not translate to Fq[T ], so we omit the reducible case in this
paper.

2. Preliminaries

Let the polynomial p(X) = X2 − ΓX −∆ ∈ Fq[T ][X] be irreducible. Note
that if p(X) is the minimal polynomial of a matrix A over Fq[T ] and k ∈ Fq[T ],
then the polynomial p(X + k) is the minimal polynomial of the matrix B =
A− kI2, where I2 is the 2× 2 identity matrix.

By replacing X with X + k for some k ∈ Fq[T ] if necessary, we may assume
that the degree of ∆ is minimal. Specifically, if d = min{deg(p(x)) |x ∈ Fq[T ]},
where deg(x) denotes the degree of x as a polynomial in T , and k is an element
of Fq[T ] for which this minimum is attained, we may replace p(X) with p(X+k)
(in which case deg(∆) = d). Further, by replacing X with sgn(Γ)X and dividing
the equation p(X) = 0 through by sgn(Γ)2, we may assume that Γ is monic in
T .

Remark. In odd characteristic, it is natural to transform the polynomial p(X)
by completing the square and eliminating Γ. Unfortunately, this leaves the
characteristic 2 case with non-vanishing Γ to be solved by different means. It
turns out that in even characteristic with Γ = 0, the largest odd integer d such
that T d occurs in ∆ plays a crucial role and this observation motivated the
transformation used in this paper, which works for all characteristics.

The polynomial p(X) now has the following property:
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Proposition 1. Let p(X) = X2 − ΓX − ∆ be an irreducible polynomial over
Fq[T ] such that Γ is monic in T and deg(p(x)) ≥ deg(∆) for all x ∈ Fq[T ]. If
deg(Γ) = g and deg(∆) = d, then one of the following holds:

• d > 2g and d is odd;

• d > 2g, d is even and sgn(∆) is not a square in Fq;

• d = 2g and sgn(∆) is not of the form α2 − α for some α ∈ Fq, or

• d < g.

Proof. We prove the contrapositive of the proposition by making use of the
following observation: if deg(x2 − Γx) = d and sgn(x2 − Γx) = sgn(∆), then
deg(p(x)) < d, contradicting that deg(∆) is minimal. We consider several cases:

• Suppose that d > 2g, d = 2D is even and sgn(∆) = α2 for some α ∈
F×
q . Set x = αTD. Then deg(x2) = 2D > g + D = deg(Γx) and so

deg(x2 − Γx) = 2D = d and sgn(x2 − Γx) = sgn(x)2 = α2 = sgn(∆).

• Suppose that d = 2g and sgn(∆) = α2 −α for some α ∈ Fq. Set x = αT g.
Then deg(x2) = d = deg(Γx), so deg(x2 −Γx) = d (since α2 −α ̸= 0) and
sgn(x2 − Γx) = sgn(x)2 − sgn(x) = α2 − α = sgn(∆).

• Suppose that g ≤ d < 2g and set x = − sgn(∆)T d−g. Then we have
that deg(x2) = 2d − 2g < d = deg(Γx), hence deg(x2 − Γx) = d and
sgn(x2 − Γx) = − sgn(x) = sgn(∆).

Let deg(Γ) = g and deg(∆) = d for the remainder of the article. We will
consider the 2× 2 matrices over Fq[T ] which satisfy the equation

X2 − ΓX −∆ = 0. (1)

In section 3 we’ll introduce the concept of a reduced matrix to limit the
matrix solutions of (1) that we need to consider to a finite set. However, not
all these matrices necessarily give rise to different solution classes (akin to how
different elements in the quadratic fundamental domain in [3] may correspond
to the same ideal class) and in section 4 we develop a method for grouping these
matrices into distinct equivalence classes.

3. Reduced matrices

Every matrix solution to (1) has the form
[
b −c
a Γ− b

]
with ∆ = b2−Γb−ac,

ac ̸= 0.
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Definition 3. A matrix solution A =

[
b −c
a Γ− b

]
to (1) is said to be reduced

if deg(b) < deg(a) < max{ 1
2d, g}, and is said to be almost reduced if deg(b) <

deg(a) = max{ 1
2d, g}.

In a reduced matrix, the degrees of a and b are bounded from above, and
the field of coefficients Fq is finite. Also, given a and b, c is uniquely determined
from b2 − Γb−∆ = ac, so there is only a finite number of reduced matrices.

We have the following:

Proposition 2. Every matrix solution to (1) is equivalent to a reduced matrix
or an almost reduced matrix.

Proof. We use the following algorithm to reduce a matrix A =

[
b −c
a Γ− b

]
.

Step 1. If deg(b) ≥ deg(a), write b = aq + r in the unique way such that q, r ∈
Fq[T ] and deg(r) < deg(a). Replace A with the equivalent matrix[

1 −q
0 1

]
A

[
1 q
0 1

]
=

[
r −c′

a Γ− r

]
where c′ = −aq2 + (Γ− 2r)q + c.

Step 2. If deg(a) > max{ 1
2d, g}, replace A with the equivalent matrix[

0 1
−1 0

]
A

[
0 −1
1 0

]
=

[
Γ− b −a
c b

]
,

and go back to step 1.

If this algorithm terminates, the resulting matrix will be reduced or almost
reduced, by construction. It remains to show that the algorithm always termi-
nates.

If, after performing step 1, the algorithm doesn’t terminate, it means that
deg(b) < deg(a) and deg(a) > max{ 1

2d, g} and step 2 has to be performed. In
this case, since ac = b2 − Γb−∆, we have

deg(c)

= deg(b2 − Γb−∆)− deg(a)

≤ max{2 deg(b), g + deg(b), d} − deg(a)

= max{deg(b)− [deg(a)− deg(b)], g − [deg(a)− deg(b)], d− deg(a)}
< max{deg(b), g, 1

2d}
< deg(a).

Thus, performing step 2 strictly decreases the degree of a. Since step 1 leaves
the degree if a unchanged, it means that step 2 can only be performed a finite
number of times, and so the process terminates.
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Proposition 2 shows that there are only a finite number of equivalence classes
of matrix solutions to (1).

Note that if A =

[
b −c
a Γ− b

]
is reduced and d ≥ 2g (that is to say, deg(b) <

deg(a) < 1
2d), then

deg(c) = deg(b2 − Γb−∆)− deg(a)

= d− deg(a)

> 1
2d,

hence deg(a) < 1
2d < deg(c) and deg(a) + deg(c) = d.

Similarly, if d < g, then deg(b) < deg(a) < g and so

deg(c)

= deg(b2 − Γb−∆)− deg(a)

= deg(Γb)− deg(a) (since deg(b2), deg(∆) < g + deg(b) = deg(Γb))
= g − [deg(a)− deg(b)]

< g.

Hence deg(c) < g in this case, but deg(a) < deg(c) does not necessarily hold.
Also note that in this case, if deg(a), deg(b), deg(c) < g, then the matrix is

automatically reduced. Indeed, the above equations show that

deg(a) + deg(c) = deg(b2 − Γb−∆) = g + deg(b).

Hence deg(b) = deg(a) + deg(c) − g < min{deg(a), deg(c)} since both deg(a)
and deg(c) are less than g.

Example. Let’s reduce the matrix

A =

[
b −c
a Γ− b

]
=

[
T 3 + 3T 2 + 4T T 4 + 2T 3 + 3T + 4
4T 2 + 2T + 2 4T 3 + 3T 2 + T + 1

]
,

which is a solution to (1) over F5[T ], with Γ = T 2 + 1 and ∆ = 3 (hence g = 2
and d = 0). We see that deg(b) > deg(a), so we apply step 1: write

b = T 3 + 3T 2 + 4T = (4T )(4T 2 + 2T + 2) + T,

so q = 4T and r = T and hence

c′ = −(4T 2 + 2T + 2)(4T )2 + (T 2 + 1− 2T )− (T 4 + 2T 3 + 3T + 4) = T + 1.

Thus A is equivalent to

A′ =

[
r −c′

a Γ− r

]
=

[
T 4T + 4

4T 2 + 2T + 2 T 2 + 4T + 1

]
.

This matrix satisfies deg(b) < deg(a) = max{g, 1
2d} and hence is almost reduced,

terminating the algorithm.
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Note, however, that deg(c′) < deg(a) and so we can reduce deg(a) by apply-

ing step 2 of the algorithm again; we see that A′ is equivalent to
[
T 2 + 4T + 1 T 2 + 3T + 3

T + 1 T

]
and writing

T 2 + 4T + 1 = (T + 1)(T + 3) + 3

and applying step 1, this matrix reduces to
[

3 3T + 2
T + 1 T 2 + 3

]
, which is reduced.

In this case the resulting degrees of a and c are equal, so let’s see what hap-
pens if we apply step 2 again and reducing: we obtain the matrix

[
T 2 + 3 4T + 4
2T + 3 3

]
,

and applying step 1 again, with T 2 + 3 = (2T + 3)(3T + 3) + 4, we obtain[
4 2T + 2

2T + 3 T 2 + 2

]
, which is also reduced.

This illustrates that reduced and almost reduced matrices may be equivalent
to each other, which we will now investigate.

4. Equivalence of (almost) reduced matrices

For this section, let[
b′ −c′

a′ Γ− b′

]
=

[
x w
y z

]−1 [
b −c
a Γ− b

] [
x w
y z

]
,

where matrices A =

[
b −c
a Γ− b

]
and A′ =

[
b′ −c′

a′ Γ− b′

]
are almost reduced, with

deg(a′) ≤ deg(a), and
[
x w
y z

]
∈ SL2[Fq[T ]]. Multiplying out the right hand

side, we get

a′ = ax2 + (Γ− 2b)xy + cy2, (2)
b′ = b− (awx+ (Γ− 2b)wy + cyz), (3)
c′ = aw2 + (Γ− 2b)wz + cz2. (4)

If α ∈ F×
q , then[

α 0
0 α−1

]−1 [
b −c
a Γ− b

] [
α 0
0 α−1

]
=

[
b −α−2c

α2a Γ− b

]
,

so for simplicity, we will consider a and a′ to be equal if they are equal mod-
ulo (F×

q )
2 (that is, we consider the matrix S =

[
x w
y z

]
to be an element of

PSL2[Fq[T ]], the projective special linear group).
If y = 0, then a′ = ax2 which forces x ∈ F×

q and deg(a′) = deg(a). Then, if
w ̸= 0, we have that deg(b′) = deg(b − awx) = deg(awx) ≥ deg(a) = deg(a′),
contradicting that A′ is reduced. Hence w = 0 and so A′ = A. In the sequel we
may assume that y ̸= 0. We will treat the four cases in Proposition 1 separately.
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4.1. Case: d is odd and d > 2g.
From the remarks following the proof of Proposition 2 it follows that in this

case, deg(b) < deg(a) ≤ 1
2d ≤ deg(c) and in fact, all three inequalities are strict

since d is odd. Note also that

deg(Γ− 2b) ≤ max{g, deg(b)} ≤ max{g, deg(a)} < 1
2d.

Since we are assuming that y ̸= 0, deg(cy2) ≥ deg(c) > deg(a) ≥ deg(a′). If
deg(x) ≤ deg(y), then deg(ax2) < deg(cy2) and

deg((Γ− 2b)xy) < 1
2d+ deg(x) + deg(y) ≤ 1

2d+ 2deg(y) < deg(cy2)

which leads to deg(a′) = deg(cy2) > deg(a), a contradiction. Thus we conclude
that deg(x) > deg(y).

To obtain equality in (2), at least two terms on the right hand side must
have equal degree. However, since d is odd and deg(a) + deg(c) = d, we have
that deg(ax2) and deg(cy2) have opposite parity. This means that we have one
of the following situations:

deg(ax2) = deg((Γ− 2b)xy) > deg(cy2) or
deg(ax2) < deg((Γ− 2b)xy) = deg(cy2).

The former leads to

deg(Γ− 2b)− deg(a) = deg(x)− deg(y) > deg(c)− deg(Γ− 2b),

which implies deg(Γ − 2b) > 1
2d (since deg(a) + deg(c) = d), a contradiction.

The latter leads to

deg(c)− deg(Γ− 2b) = deg(x)− deg(y) < deg(Γ− 2b)− deg(a),

which also implies deg(Γ − 2b) > 1
2d. We conclude that in this case, no two

reduced matrices are equivalent. Together with Proposition 2, this gives us

Theorem 1. If deg(∆) is odd and deg(∆) > 2 deg(Γ), then every matrix solu-
tion to (1) is equivalent to a unique reduced matrix.

4.2. Case: d is even, d > 2g and sgn(∆) is not a square in Fq.
As in the previous section, we have that deg(b) < deg(a) ≤ 1

2d ≤ deg(c)
and deg(Γ − 2b) < 1

2d. We first assume that deg(a) < deg(c) (that is, the
matrix A is reduced) or that deg(x) > 0. As before, to obtain equality in (2),
at least two terms on the right hand side must have equal degree. If deg(ax2) =
deg((Γ− 2b)xy), then deg(y) = deg(a) + deg(x)− deg(Γ− 2b) and so

deg(cy2) = deg(c) + deg(y) + (deg(a) + deg(x)− deg(Γ− 2b))

= deg(x) + deg(y) + d− deg(Γ− 2b)

> deg(x) + deg(y) + deg(Γ− 2b)

= deg((Γ− 2b)xy),
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a contradiction.
Similarly, deg(cy2) = deg((Γ − 2b)xy) leads to deg(ax2) > deg((Γ− 2b)xy).

Hence we must have that deg(ax2) = deg(cy2) > deg((Γ − 2b)xy) and that
sgn(ax2)+ sgn(cy2) = 0 which is equivalent to sgn(ac) = −( sgn(ax)sgn(y) )

2. However,
from the equation ac = b2−Γb−∆ and d > 2g, we see that sgn(ac) = − sgn(∆),
which then implies that sgn(∆) = ( sgn(ax)sgn(y) )

2, contradicting that sgn(∆) is not
a square in Fq. This shows that no reduced matrix is equivalent to another
reduced matrix, or an almost reduced matrix.

The case when deg(a) = deg(c) = 1
2d (that is, A is almost reduced) and

x ∈ Fq remains. In this case y ∈ Fq is forced. Equation (4) now shows, using
a similar argument as above, that w, z ∈ Fq. From this, w and z are uniquely
determined. Indeed, equations (2) and (3) imply b′x + a′w = bx − cy and so
w = − sgn(c)y

sgn(a′) (since deg(bx− b′x) < deg(c)). Using (2), this simplifies to

w =
sgn(∆)y

(sgn(a)x)2 − sgn(∆)y2

and z = 1+wy
x = sgn(a)2x

(sgn(a)x)2−sgn(∆)y2 now follows from xz − wy = 1. (Note that
w is well-defined since (sgn(a)x)2 − sgn(∆)y2 ̸= 0 unless x = y = 0.)

Therefore, there are q2 − 1 matrices S such that S−1AS is again almost
reduced, namely

S ∈

{[
x sgn(∆)y

τ

y sgn(a)2x
τ

]
: (x, y) ∈ Fq × Fq − (0, 0), τ = (sgn(a)x)2 − sgn(∆)y2

}
.

Not all of them result in distinct matrices, however. Since we are considering
equations modulo (F2

q)
×, we may mod out the action of this set of q2−1 matrices

by the set of q − 1 matrices of the form
[
α 0
0 α−1

]
which leaves us with q2−1

q−1 =

q+1 possibilities. We now investigate when these q+1 possible matrices S−1AS
are not distinct. It suffices to find S for which S−1AS = A and y ̸= 0.

Now, if S−1AS = A, then x× (4) + w × (3) yields

(Γ− 2b)w + c(z − x) = 0.

Since deg(Γ − 2b) = g < d
2 = deg(c), we find that x = z and (Γ − 2b)w = 0.

Since we’re assuming that y ̸= 0, it follows that w ̸= 0 and Γ = 2b. Substituting
this back into (2), we find that c = 1−x2

y2 a. But then we have (noting that since
deg(∆) is even, the characteristic is necessarily odd)

∆ = b2 − Γb− ac = −1

4
Γ2 +

x2 − 1

y2
a2,

and so
Γ2 + 4∆ = (x2 − 1)

(
2a

y

)2

.
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So x2−1 must be non-square (since p(X) is irreducible), and also, since sgn(c) =

− sgn(∆)
sgn(a) , we see that x2−1

y2 = sgn(∆)
sgn(a)2 .

Thus, A is of the form
[

1
2Γ

sgn(∆)
sgn(a)2 a

a 1
2Γ

]
. Substituting back into equations

(2)-(4), we find that any almost reduced matrix equivalent to A must take the

form
[

1
2Γ

sgn(∆)
β sgn(a)2 a

βa 1
2Γ

]
, where β ∈ F×

q . Hence the only almost reduced matrices

equivalent to A are A itself and
[ 1

2Γ
a

sgn(a)2

sgn(∆)a 1
2Γ

]
4.3. Case: d = 2g and sgn(∆) is not of the form α2 − α, α ∈ Fq.

A similar argument as in the previous section shows that no two reduced
matrices are equivalent, and an almost identical argument shows that there are
q + 1 almost reduced matrices equivalent to any given almost reduced matrix,

unless the matrix is of the form
[
b sgn(∆)

sgn(a)2 a

a b+ a
sgn(a)

]
. In this case the only almost

reduced matrices equivalent to A are A itself and
[
b sgn(∆)

τ sgn(a)2 a

τa b+ a
sgn(a)

]
, where τ is

a non-square element of Fq.
The above arguments, together with Proposition 2 give us

Theorem 2. If deg(∆) is even, and either deg(∆) > 2 deg(Γ) and sgn(∆) is
not a square in Fq, or deg(∆) = 2deg(Γ) and sgn(∆) is not of the form α2−α,
α ∈ Fq, then every matrix solution to (1) is either equivalent to a unique reduced
matrix, or to a set of q+1 equivalent almost reduced matrices, except when said
solution takes one of the following forms:

•
[

1
2Γ

sgn(∆)
sgn(a)2 a

a 1
2Γ

]
if deg(∆) > 2 deg(Γ), or

•
[
b sgn(∆)

sgn(a)2 a

a b+ a
sgn(a)

]
if deg(∆) = 2deg(Γ).

4.4. Case: d < g.
First note that if A is an almost reduced matrix, then adapting the remarks

following the proof of Proposition 2 we can show that deg(c) < deg(b) < g.
Applying Step 2 of Proposition 2 to the matrix A will yield a reduced matrix
equivalent to A (as we noticed in the example following Proposition 2), so we
may disregard almost reduced matrices in this section.

To determine which reduced matrices are equivalent, we need to determine
when the expression ax2+(Γ−2b)xy+ cy2 has degree less than g. We first look
at this expression when y = 1.
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Proposition 3. If A =

[
b −c
a Γ− b

]
is a reduced matrix solution to (1), then

the expression ax2 +(Γ− 2b)x+ c has degree less than g for exactly two distinct
values of x.

Proof. Since deg(c) < g, a necessary and sufficient condition for the degree of
ax2 +(Γ− 2b)x+ c to be less than g is deg(ax2 +(Γ− 2b)x) < g. So we need to
find x such that x(ax + Γ − 2b) has degree less than g. One solution is clearly
x = 0, so suppose that x ̸= 0.

In this case, we must have that deg(ax) = deg(Γ− 2b) = g and so deg(x) =
g − deg(a). If we let r = ax + Γ − 2b, it follows that we need deg(xr) < g, i.e.
deg(r) < g − deg(x) = deg(a). But since deg(a) < g = deg(Γ− 2b), there exist
unique non-zero x and r with deg(r) < deg(a) such that Γ− 2b = −ax+ r.

We now define a mapping on the (finite) set of reduced matrices.

Define the mapping ϕ to map the reduced matrix A =

[
b −c
a Γ− b

]
to the

matrix S−1AS, where S =

[
x −1
1 0

]
and x is the unique non-zero polynomial

from Proposition 3. Using the same notation as in Proposition 3, we have

ϕ(A) =

[
Γ− b+ ax −a

ax2 + (Γ− 2b)x+ c b− ax

]
=

[
b+ r −a
rx+ c Γ− b− r

]
.

I claim that this matrix is reduced. Indeed, we have that deg(a) < g and by
construction, deg(ax2 + (Γ− 2b)x+ c) < g. The remarks following the proof of
Proposition 2, together with

deg(b+ r) ≤ max{deg(b), deg(r)} < deg(a) < g

now implies that the matrix is reduced.
We now show that the mapping is injective. Suppose that there is a matrix

B such that ϕ(B) = ϕ(A). If ϕ(B) = R−1BR with R =

[
y −1
1 0

]
, then it

follows that

B = RS−1ASR−1 =

[
b+ ay − ax −C

a Γ− b− ay + ax

]
for some C. Since B is recuced, it follows that deg(b + ay − ax) < deg(a)
which is only possible if x = y, in which case A = B. This shows that ϕ
is an injective mapping on the finite set of reduced matrices, hence bijective.
The inverse of ϕ is the mapping which sends A =

[
b −c
a Γ− b

]
to the matrix

S−1AS where S =

[
0 −1
1 x′

]
and x′ is the unique non-zero polynomial such that

deg(Γ− 2b− cx′) < deg(c).
Since ϕ is injective, it induces a permutation on the set of reduced matrices.

Writing the permutation in disjoint cycle notation, we see that all the matrices
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in each cycle are equivalent. It remains to show that all equivalent reduced
matrices lie in the same cycle.

Theorem 3. Two reduced matrix solutions to (1) are equivalent if and only if
B = ϕk(A) for some integer k.

Proof. Let A =

[
b −c
a Γ− b

]
, B =

[
b′ −c′

a′ Γ− b′

]
and let S be a matrix

[
x w
y z

]
with xz − wy = 1 such that B = S−1AS. First assume that deg(y) ≤ deg(x).
As before, y = 0 quickly leads to A = B (that is, k = 0), so we may assume
that y ̸= 0.

We wish to apply ϕ to the matrix A. Hence we need to find a non-zero
polynomial X such that deg(aX2 + (Γ− 2b)X + c) < g. Since deg(y) ≤ deg(x),
we can write x = x1y − Y1 with deg(Y1) < deg(y) and x1 non-zero. We claim
that X = x1 will suffice. Indeed,

ax2
1 + (Γ− 2b)x1 + c

= a

(
x+ Y1

y

)2

+ (Γ− 2b)

(
x+ Y1

y

)
+ c

=
1

y2
[
ax2 + (Γ− 2b)xy + cy2 + 2axY1 + (Γ− 2b)yY1 + aY 2

1

]
=

1

y2
[
a′ + 2axY1 + (Γ− 2b)yY1 + aY 2

1

]
.

Since deg(Y1) < deg(y) and deg(a) < deg(Γ− 2b) = g, we have that

deg(ax2
1 + (Γ− 2b)x1 + c)

≤ max{deg(a′), deg(aY 2
1 ), deg((Γ− 2b)yY1), deg(axY1)} − 2 deg(y)

< max{g, g + 2deg(y), g + 2deg(y), deg(ax) + deg(y)} − 2 deg(y)

= max{g, deg(a) + deg(x)− deg(y)}.

Now, since deg(y) ≤ deg(x) and deg(c) < g = deg(Γ − 2b), we have that
deg(cy2) < deg((Γ − 2b)xy). On the other hand, ax2 + (Γ − 2b)xy + cy2 has
degree less than g, so we must have that deg(ax2) = deg((Γ − 2b)xy) which
leads to deg(a)+deg(x)−deg(y) = deg(Γ−2b) = g which shows that deg(ax2

1+
(Γ− 2b)x1 + c) < g.

Applying ϕ to A, we find that B = S−1
1 ϕ(A)S1, where

S1 =

[
x1 −1
1 0

]−1 [
x w
y z

]
=

[
y z

x1y − x x1z − w

]
=

[
X1 W1

Y1 Z1

]
.

Note that deg(Y1) < deg(y) = deg(X1), so we may repeat the above process. Af-

ter a finite number of steps, we obtain B = S−1
k ϕk(A)Sk with Sk =

[
Xk Wk

0 Zk

]
,

which, as before, implies that ϕk(A) = B.
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If deg(y) > deg(x) but deg(y) ≤ deg(z), we may exchange the roles of A and
B in the above argument. If deg(y) > deg(x) and deg(y) > deg(z), then apply

ϕ−1 to A: ϕ−1(A) =

[
0 −1
1 q

]−1

A

[
0 −1
1 q

]
. This leads to

B = S−1AS =

[
x w
y z

]−1 [
0 −1
1 q

]
ϕ−1(A)

[
0 −1
1 q

]−1 [
x w
y z

]
= S−1

0 ϕ−1(A)S0

where
S0 =

[
0 −1
1 q

]−1 [
x w
y z

]
=

[
qx+ y qw + z
−x −w

]
.

Now deg(−x) < deg(qx + y), so we may apply the above argument (which
then in fact shows that deg(y) must have been at most deg(x) to begin with, or
that x = 0).

To summarize, we have

Theorem 4. If deg(∆) < deg(Γ), then every matrix solution to (1) is equivalent
to the reduced matrices in a unique orbit of ϕ.

Remark. Theorems 1 and 2 are analogous to the positive definite case in [2]
(Theorem 3.3); the extra case here is due to the fact that there is a not a unique
monic polynomial with given degree, while there is a unique positive integer
with a given absolute value (making the concept of an almost reduced matrix
unnecessary over the integers). Theorem 4 is analogous to the negative definite
case in [2] (Theorem 4.3).

As mentioned earlier, it is natural to transform the polynomial p(X) to the
form p(X) = X2 −∆, when the characteristic is odd, by completing the square
rather than minimizing the degree of ∆ as we have done here. If we rework the
results in this paper for this form of p(X), the parallels with [2] are much more
obvious. Indeed, the cases we need to consider when p(X) = X2 −∆ are:

• deg(∆) is odd,

• deg(∆) is even with non-square sgn(∆),

• deg(∆) is even with square sgn(∆),

with ∆ playing a role analogous to the discriminant ∆ in [2], the first two
cases analogous to the positive definite case and the third case analogous to the
negative definite case.

Example. Let’s return to the F5[T ] example following Proposition 2, starting

with the reduced matrix A =

[
b −c
a Γ− b

]
=

[
3 3T + 2

T + 1 T 2 + 3

]
with Γ = T 2 + 1

and ∆ = 3. We have deg(∆) < deg(Γ), so let’s compute the orbit of A under ϕ.
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To apply ϕ to A, we need to find the polynomial x from Proposition 3 such
that the degree of ax2 + (Γ− 2b)x+ c is less than g: we write

Γ−2b = T 2+1−2(3) = T 2 = (T+1)(T+4)+1 = −(T+1)(4T+1)+1 = −ax+r,

and so x = 4T + 1 and rx+ c = (1)(4T + 1) + (2T + 3) = T + 4. Hence

ϕ(A) =

[
b+ r −a
rx+ c Γ− b− r

]
=

[
4 4T + 4

T + 4 T 2 + 2

]
.

Repeating the process, we write (T 2+1)−2(4) = T 2+3 = −(T+4)(4T+4)+4

and so ϕ2(A) =

[
3 4T + 1

2T + 2 T 2 + 3

]
, and similarly

ϕ3(A) =

[
4 3T + 3

3T + 2 T 2 + 2

]
, ϕ4(A) =

[
3 2T + 3

4T + 4 T 2 + 3

]
.

Recall from the comment following equation 4 that we identify reduced ma-
trices equivalent to each other via a matrix of the form S =

[
α 0
0 α−1

]
, α ∈ F×

q ;

in this case, we identify A with ϕ4(A) via the matrix S =

[
2 0
0 3

]
.

For examples of Theorems 1 and 2, as well as a characteristic 2 example, see
chapter 5 in [4].

Remark. In [2], Behn and Van der Merwe make extensive use of the correspon-
dence between binary quadratic forms and 2×2 matrices, and the results in this
paper can be restated in terms of binary quadratic forms. Indeed, in their work
on class numbers of quadratic function fields, Gonzáles develops a theory of bi-
nary quadratic forms over Fq[T ] in [5] with results analogous to the d < g case
in this paper, and Yu uses a correspondence between binary quadratic forms
over Fq[T ] and lattices in [6] to derive a class number formula. In chapter 3 of
[4] we expand on the ideas of this paper to study the ideal class group.
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