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Abstract: Lecanosticta acicola is one of the most damaging species affecting Pinus radiata plantations in
Spain. Favourable climatic conditions and unknown endogenous factors of the pathogen and host
led to a situation of high incidence and severity of the disease in these ecosystems. With the main aim
of understanding the factors intrinsic to this pathogenic species, a study of the population structure
in new established plantations with respect to older plantations was implemented. The genetic
diversity, population structure and the ability of the pathogen to spread was determined in Northern
Spain (Basque Country), where two thirds of the total Pinus radiata plantations of Spain are located.
From a total of 153 Lecanosticta acicola isolates analysed, two lineages were present; the southern
lineage, which was prevalent, and the northern lineage, which was scarce. A total of 22 multilocus
genotypes were detected with a balanced composition of both mating types and evidence for sexual
reproduction. In addition to the changing environmental conditions enhancing disease expression,
the complexity and diversity of the pathogen will make it difficult to control and to maintain the
wood productive system fundamentally based on this forest species.

Keywords: brown spot needle blight; SSRs; population genetics

1. Introduction

Needle blights are currently the most serious fungal needle diseases affecting pine
species worldwide. Among the main causal agents, Lecanosticta acicola (Thümen) H. Sydow,
Dothistroma pini Hulbary and Dothistroma septosporum (G. Doroguine) M. Morelet are of
particular concern due to the impact they have on Pinus ecosystems in the Basque Country,
Spain [1]. The symptoms caused by these fungi are quite similar and, therefore, difficult to
differentiate, especially when present on the same tree [1]. Severe defoliation is caused by
these pathogens that results in significant growth loss when more than 25% of the needles
are damaged [2,3]. Lecanosticta acicola is considered a regulated non-quarantine pest in the
EU since 2019 according to the Commission implementing regulation (EU) 2021/2285 [4].

The disease caused by Lecanosticta acicola, brown spot needle blight (BSNB), was well
known in Spanish Pinus radiata D. Don plantations for decades [5,6]. Until recently, BSNB
had only minor impacts on native and exotic forest trees in the north of Spain. This disease
was found mainly in valley bottoms, in plantations with high tree density and areas with
high humidity. In the past seven years, abnormal climatic conditions favourable to the
disease and potentially unknown endogenous factors made the usual silvicultural measures
inefficient in mitigating its impact and progress. This pathogen species spread widely,
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causing severe defoliation and mortality in native Pinus forests and plantations in locations
where it was not detected before [7,8].

The most characteristic natural pine forests in Spain are those of mountain pine (Pinus
uncinata Mill. ex Mirb.), Scots pine (Pinus sylvestris L.), maritime pine (Pinus pinaster Ait.),
black pine (Pinus nigra Arnold), Aleppo pine (Pinus halepensis Mill.) and stone pine (Pinus
pinea L.); all of them susceptible to L. acicola colonisation and damage, with different levels
of incidence and severity. Lecanosticta acicola was detected in planted P. sylvestris and P. nigra
and other non-native Pinus species such as P. ponderosa Dougl. ex P. and C. Laws., P. elliottii
Engelm. and P. brutia Ten. [1,9].

Pinus radiata is a fast-growing coniferous tree native to the Californian coast and Baja
California, in the United States and Mexico, respectively. It is one of the most widely
planted tree species in the world, being established in New Zealand, Australia, Chile,
South Africa and South-West Europe. In Europe, the most extended covert can be found
in the Basque Country in Northern Spain, where the consequences of L. acicola impact
are very serious for the forestry sector, since P. radiata was the basis for the recovery of
the wooded area in the region. Its production generates 81% of the total forest products
covering 32% of the wooded forest area, as well as constituting 68% of the activity of the
wood industry. In this region, this sector is made up of 40,000 people, generates more than
20,000 jobs and accounts for 1.5% of the Basque Country’s GDP, according to data from
the Basque Country Competitiveness Report of 2018 [10]. The progress of the disease was
exponential since 2010, especially during 2017 and 2019, causing serious defoliation in
33.15% (40,914 Ha) of Pinus forest and plantations in the Basque Country. The advance of
this disease mainly affects P. radiata, although it was also detected in other species. The
disease’s impact resulted in the nursery sector ceasing the production of P. radiata plants in
2019 and the massive and premature logging of pine severely affected by BSNB, causing
serious economic losses for forest owners.

The genetic diversity and structure of the pathogen was studied on a global scale
mainly to determine the relationship between North American and European popula-
tions [11]. Despite the importance of recent disease outbreaks in Northern Spain, the
genetic diversity and population structure of L. acicola in the Basque Country is still un-
known. Both mating types of L. acicola were detected, in some cases even in the same
plantation [1], and the presence of the sexual state of this species was confirmed in the
Basque Country [12]. Sexual reproduction could result in higher pathogen diversity and
adaptation potential. Moreover, ascospore dissemination was associated with long distance
dispersal and rapid disease outbreaks in Europe [11]. A high genetic diversity of the
pathogen would make the implementation of successful control measures and breeding
programs more complicated, and it could enhance the capacity of the pathogen to adapt to
changing local conditions [11].

In this context, the importance of knowing the genetic diversity and population
structure of the pathogen and its evolutionary potential could help to adapt breeding
programs and to design prevention and management strategies against this disease.

2. Materials and Methods
2.1. Sampling

This study focused on Pinus ecosystems located in the Basque Country, Spanish
Atlantic climate region. In the Basque Country, conifers cover an area of 1504.59 km2

(20.8%) over 7234 km2, of which 1094 km2 (15.1% of the total surface) correspond to
P. radiata (Figure 1). Field observations and sampling were conducted from spring to late
autumn in 2018 and 2020.

Three sample collections were differentiated depending on the origin of the plant
material. Sample collection 1 (named BC_1) was obtained from 118 different plantations of
the Basque Country, representing the infected zones of the Pinus radiata provenance No. 6
(Figure 1).
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Sample collection 2 (named AR_2) was obtained from 35 needle samples of Pinus
species (P. brutia, P. elliottii, P. nigra, P. pinaster, P. pinea, P. ponderosa, P. sylvestris and P.
taeda) produced in a French nursery and planted in 2011 in the arboretum AR20 located in
Laukiz (Bizkaia) under the European project REINFFORCE (https://reinfforce.iefc.net/
es/arboreta/ar20/ accessed on 3 April 2023). AR20 arboretum was established in an
abandoned nursery that produced and distributed reproductive material centralising the
supply of P. radiata to the region under study. Furthermore, this place showed serious
needle blight damage. Since this nursery received and grew local (provenance No. 6) and
imported seeds (United State, Chile, New Zealand, France, etc.), it was considered to be a
potential source of pathogen diversity.
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Figure 1. Distribution of provenance regions of radiata pine in Spain. The area marked in red
represents the P. radiata region of provenance No. 6 and it covers the northern part of the Basque
Country (RD 289/2003, Art 2.f. PDF 751 KB; Adapted from https://www.boe.es/eli/es/res/2009
/07/28/(3), https://www.miteco.gob.es/es/biodiversidad/temas/recursos-geneticos/geneticos-
forestales/rgf_regiones_procedencia.aspx, accessed on 3 April 2023).

Sample collection 3 (named AR_1) was obtained from 33 symptomatic needle samples
from newly established P. radiata seedlings in this arboretum. This 2-year-old material
(411 seedlings) was established in this location as pathogen trap plants, at a distance of
1.5 m to infected trees from AR_2, to determine the capacity of natural inoculation.

Needle samples with visible symptoms of BSNB were collected randomly from infected
trees at the three sample sites (one sample consist of samples from eight to ten trees from
each sampled location) and transported in a cooler box to the laboratory. The majority of
samples were collected from P. radiata at sample site BC_1, since this was the most prevalent
tree species in the studied area.

2.2. Pathogen Isolation

In order to obtain L. acicola isolates, needles were examined for typical erumpent
fruiting bodies and when possible, five acervuli located on different needles were selected
for isolations. Needle surfaces were sterilised by wiping them with a cotton swab soaked
with 70% ethanol. Each acervulus was cut from a needle under a dissecting microscope
using a scalpel and placed on a glass slide in a drop of sterile water. The presence of typical
L. acicola conidia was verified under a compound microscope. The conidial suspension was
plated on dothistroma selective medium (DSM) with streptomycin using an inoculation
loop [13,14]. After four days, germinating conidia were located microscopically on the
surface of the medium and transferred to Petri dishes containing DSM to obtain pure,
single hyphal cultures [15]. The plates were incubated at room temperature (21 ◦C). An
individual germinated conidium per conidiomata was kept for further analyses. Long
term preservation of each fungal isolate was conducted by placing two-week-old mycelium
cubes in 10% glycerol at 4 ◦C and was maintained in the research institute collection (Neiker,
Arkaute, Spain).

https://reinfforce.iefc.net/es/arboreta/ar20/
https://reinfforce.iefc.net/es/arboreta/ar20/
https://www.boe.es/eli/es/res/2009/07/28/(3
https://www.boe.es/eli/es/res/2009/07/28/(3
www.miteco.gob.es/es/biodiversidad/temas/recursos-geneticos/geneticos-forestales/rgf_regiones_procedencia.aspx
www.miteco.gob.es/es/biodiversidad/temas/recursos-geneticos/geneticos-forestales/rgf_regiones_procedencia.aspx
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2.3. Pathogen Identification

Fungal tissue was scraped from the surface of 2-week-old cultures with a sterile
scalpel blade. The mycelium was homogenised using a Qiagen Tissuelyser II with sterile
metal beads (Ø 2.5 mm). DNA was extracted from 100 mg of lysed fungal tissue with the
Plant DNA Mini Kit (Analytik Jena AG, Jena, Germany), following the manufacturer’s
instructions.

The integrity of the DNA in terms of quality and quantity was verified using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
DNA working stock solutions of 20 ng/µL were made for polymerase chain reaction (PCR)
amplifications. All DNA was stored at −20 ◦C until further use.

The identity of each isolate was confirmed by species-specific conventional PCR
targeting the elongation factor region [16]. The reaction consisted of 0.4 µM of each primer,
10× buffer (Complete II KCl Buffer, IBIAN technologies, Zaragoza, Spain), 200 µM dNTP,
0.5 U IBIAN-Taq DNA Polymerase (IBIAN technologies, Zaragoza, Spain), and 1.5 µL DNA
template in a total volume of 20 µL. The PCR conditions were as follows: 10 min at 94 ◦C,
35 cycles of 30 s at 94 ◦C, 30 s at 60 ◦C, and 45 s at 72 ◦C, and a final 10 min extension at
72 ◦C. PCR amplicons were visualised on a 1% agarose (Conda, Madrid, Spain) gel stained
with GelRed® (Biotium Inc., Fremont, CA, USA). The reactions were considered positive
for L. acicola if an amplicon size of 237 bp was obtained.

The identification of the isolates was further supported by PCR amplification and
sequencing of the internal transcribed spacer (ITS) region, and the translation elongation
factor 1-α (TEF1) using the primers ITS1 and ITS4 [17], and EF1-728F [18] and EF1-986R,
respectively, as described in van der Nest et al. [19]. PCR reactions for each region contained
20 ng DNA, 2.5µL 10× PCR reaction buffer, 2.5 mM MgCl2, 400 nM of each primer, 200µM
of each dNTP and 1 U IBIAN-Taq DNA polymerase (IBIAN Technologies, Zaragoza, Spain).
The reaction conditions included an initial denaturation step at 94 ◦C for 10 min, 35 cycles
at 94 ◦C for 30 s, a 45 s annealing step at 56 ◦C for the ITS region, 52 ◦C for the TEF1 region,
72 ◦C for 60 s and a final 10 min extension at 72 ◦C [11] PCR products were purified using the
NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Düren, Germany) and sequenced
by Eurofins (Genomics, Konstanz, Germany). Sequencing data were edited using Finch TV
software version 1.4.0 (https://finchtv.software.informer.com/1.4/, accessed on 17 January
2023) and aligned with MEGA X software version 10.0.4 (https://www.megasoftware.net/,
accessed on 17 January 2023). BLAST searches for the fungal taxa were conducted on
the NCBI database (National Center for Biotechnology Information NCBI, Bethesda, MD,
USA) and the consensus sequences deposited in GenBank. ITS and TEF1 haplotypes were
determined with TCS 1.21 software [20] and nucleotide diversity (Pi) within the Basque
Country population was calculated using DnaSP v6 [21].

Phylogenetic trees were inferred using maximum parsimony (MP) and maximum
likelihood (ML) analysis in MEGA X. Alignment gaps were set as additional characters
with equal value and confidence levels were calculated from 1000 bootstrap replicates.
The MP tree was obtained using the Tree-Bisection–Reconnection (TBR) heuristic search
option and for the construction of the ML tree, the Hasegawa–Kishino–Yano nucleotide
substitution model was used.

2.4. Mating Types Identification

Mating types were identified using specific primers: Md MAT1-1F, Md MAT1-1R, Md
MAT1-2F and Md MAT1-2R [22]. PCR conditions consisted of PCR buffer (500 mM KCl,
100 mM Tris-HCL pH 8.8, 0.1% Tween-20, 15 mM MgCl2), 200 µM dNTP, 6.4 pmol of each
specific primer, 0.5 U Taq DNA Polymerase (BIORON GmbH, Ludwigshafen am Rhein,
Germany) and 10–20 ng DNA template in a total volume of 20 µL. Reaction conditions
included 5 min denaturation at 94 ◦C, 35 cycles of 30 s at 94 ◦C, 30 s at 58 ◦C, 45 s, at 72 ◦C
and a final extension at 72 ◦C for 7 min [1].

https://finchtv.software.informer.com/1.4/
https://www.megasoftware.net/
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PCR amplicons were visualised on a 2% agarose (Conda, Madrid, Spain) gel stained
with GelRed® (Biotium Inc., Fremont, CA, USA). PCR amplicons with a size of 560 bp were
scored as MAT 1 and those of 288 bp as MAT 2 [22].

The mating type ratio in each population was calculated. This ratio was expected to
be 1:1 for randomly mating populations. A chi-square goodness of fit test for a 1:1 ratio and
associated p value were estimated to evaluate departure from the null hypothesis (ratio
proportion 1:1).

2.5. Simple Sequence Repeat (SSR) Loci Amplification and Data Analysis

Ten microsatellite markers MD1, MD2, MD4, MD5, MD6, MD7, MD9, MD10, MD11
and MD12 designed for L. acicola were used to amplify the respective regions in the
genome [22]. The PCR reaction mixture and reaction conditions with fluorescently labelled
primers were carried out as described by Janoušek et al. [11,22]. For fragment analysis,
PCR products were pooled into two panels and 1 µL of these multiplexed PCR products
was separated on an ABI Prism 3130 Genetic Analyser (Applied Biosystems, Foster City,
CA, USA). The mobility of the SSR products was compared to those of the internal size
standard, LIZ-500(-250) and allele sizes were estimated by GeneMapper 4.0 computer
software (Applied Biosystems, Foster City, CA, USA). A reference sample was run on every
gel to ensure reproducibility.

For each population defined by tree origin, the total number of alleles at each SSR
locus was estimated. A multilocus genotype (MLG) was constructed for each isolate by
combining data for each of the 10 SSR alleles obtained. The expected multilocus genotype
(eMLG) was calculated based on rarefaction using the R package poppr V.2.3.0 [23,24].
Genotypic diversity was conducted for the non-clone-corrected dataset and clone-corrected
dataset, in this last case with only one isolate of each MLG considered. Shannon-Wiener
index of MLG diversity (H) [25], Stoddart and Taylor’s diversity index (G) [26] and evenness
index E5 [27] were calculated using the same R package.

The standardised index of association (rbarD) as an estimate of linkage disequilibrium
was calculated to investigate the mode of reproduction [24,28]. The expectation of rbarD
for a randomly mating population was zero, and significant deviation from this value
would suggest clonal reproduction. Significance was tested based on 1000 permutations
and conducted in the R package poppr using the clone-corrected data [24].

The standardised measure of genetic differentiation, G’st, described by Hedrick [29]
was calculated to estimate subdivision among populations. This index ranged from 0 to 1,
independent of the extent of population genetic variation and locus mutation rates [29].
Pairwise GST values within the clone-corrected data were calculated using the R packages
strata G V.1.0.5 [30] and mmod V.1.3.3 [31].

Hedrick’s standardised GST was estimated to assess population structure among
these populations [29]. Statistical significance was calculated based on 1000 permutations.
Hierarchical analysis of molecular variance (AMOVA) was performed to evaluate the extent
of population differentiation and structure among populations, hosts species groups, and
within these groups [32].

Discriminant analysis of principal components (DAPC) was performed to infer clusters
of populations without considering previous tree origin criteria [33]. DAPC was conducted
with the R package adegenet V. 2.0.1 [34] using the Bayesian information criterion (BIC) to
infer the optimal number of groups. Important advantages of DAPC are that it maximises
variation between the groups, minimises the within-group genetic variability and does not
require assumptions regarding evolutionary models [33].

To assess the relationships among MLGs, minimum spanning networks (MSNs) were
constructed. Bruvos’s genetic distance matrix and MSNs were generated using the R
package poppr V.2.3.0 [23,24]. The genetic distance described by Bruvo et al. [35] takes the
SSR repeat number into account, with a distance of 0.1 equivalent to one mutational step
(one repeat).
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3. Results
3.1. Isolation and Population Description

A total of 153 isolates were obtained. Taking into account the initial sampling strategy,
97 isolates were obtained from sampling site 1 (BC_1), 28 isolates were obtained from six
Pinus species from the arboretum AR20 (AR_2) and 28 isolates were obtained from sampling
site 3 (AR_1) from seedlings of P. radiata planted in late spring of 2020 in this arboretum.
These seedlings were obtained from a biosafety P2 greenhouse and the absence of the
disease was confirmed by morphological and molecular methods before their establishment
in the arboretum.

3.2. Pathogen Identification

All 153 isolates were confirmed as L. acicola by species-specific conventional PCR
targeting the elongation factor region. When analysing the ITS and TEF1 sequences,
only one ITS haplotype was represented by all the isolates, and it was 100% identical
(420 aligned nucleotides) to L. acicola ex-type KC012999; USA; CMW45427 [36]. Three TEF1
haplotypes (442 aligned nucleotides) (Figure 2) were distinguished in the Basque Country
population with a nucleotide diversity of Pi = 0.00021. Haplotype MZ065328 and haplotype
MZ065330 differed from MZ065332 in a single base pair and in two base pairs, respectively.
Representative isolates per haplotype were included in the phylogenetic analyses (Figure 2)
and deposited into GenBank. These were MZ065328 (representing two isolates: DFA1c06
and DFA5d06), MZ065330 (representing two isolates: h6a25 and h16c25) and MZ065332
(representing 149 isolates). The topologies of the ML and MP phylogenies were similar
(Figure 2), where isolates representing the haplotype of MZ065330 were clustered into the
northern lineage of L. acicola and were identical to the ex-type KC013002 [36]. Isolates of
haplotype MZ065328 and MZ065332 were clustered into the southern lineage of L. acicola.
The haplotype of MZ065332 was 100% identical to KJ938451 (south USA) [11], whereas
those of MZ065328 showed a distinctive single base polymorphism.
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longispora was used as the outgroup.
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3.3. SSR Loci Data Analysis

All primer pairs amplified the SSR loci in the L. acicola Spanish population. Three
loci (MD6, MD10, MD11) were monomorphic across all 153 isolates and were, therefore,
removed from the analysis (Minor Allele Frequency < 0.01). The Spanish population
exhibited a total of 22 MLGs. A clone-correction of the dataset was implemented to remove
the bias of resampled MLG in the analysis, resulting in a total of 33 representative isolates
(Table 1).

Table 1. Genetic diversity indices and linkage disequilibrium based on the standardised index of
association (rbarD) of Lecanosticta acicola populations defined by isolates geographic origin (BC_1,
AR_1 and AR_2).

Parameters Non-Clone-Corrected Dataset Clone-Corrected Dataset

Pop BC_1 AR_2 AR_1 Total BC_1 AR_2 AR_1 Total

N 97 28 28 153 18 7 8 33
MLG 18 7 8 22 18 7 8 22
eMLG 10.3 7 8 10.1 10 7 8 8.81

SE 1.55 0 0 1.6 0 0 0.90
H 2.24 1.48 1.81 2.28 2.89 1.95 2.08 2.97
G 6.4 3.21 5.03 6.71 18 7 8 17.3

E.5 0.642 0.654 0.791 0.649 1 1 1 0.88
rbarD 0.149 0.434 0.107 0.189 0.1798 0.5678 −0.0656 0.2599

p-value 0.001 0.001 0.001 0.001 0.001 0.796

Abbreviation of Statistic: Pop, population name. N, number of individuals observed. MLG, number of multilocus
genotypes observed. eMLG, the number of expected MLG at the smallest sample size ≥ 7 based on rarefaction
analysis. SE, standard error based on eMLG. H, Shannon–Wiener Index of MLG diversity [25]. G, Stoddart and
Taylor’s Index of MLG diversity [26]. E5, evenness [27,37,38], rbarD, the standardised index of association [28]
and p-value based on rbarD index.

The number of MLGs identified for each sampling site was 18 MLGs for BC_1 and 8
and 7 MLGs, for AR_1 and AR_2, respectively. This difference is related to the sampling
size and the number of isolates obtained (N = 97, for BC_1, and N = 28 for AR_1 and AR_2)
(Table 1). A more appropriate estimate for richness comparison is the eMLG value, which
is an approximation of the number of genotypes that would be expected after correction of
the unbalanced sample size based on rarefaction. Thus, genotypic richness was lower in
AR_1 and AR_2 compared with BC_1 after sample size correction (Figure 3).
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The BC_1 population showed the highest genotypic diversity (G = 18), followed by
AR_1 (G = 8) and AR_2 (G = 7) (Table 1). Shannon–Wiener diversity index (H) for the BC_1
population was higher (2.89) than the index for arboretum populations (AR_1 and AR_2).
The values of evenness (E5) were the same for the three established populations.

The BC_1 and AR_1 populations showed significant deviation in the rbarD value from
the null hypothesis of recombination, not supporting sexual reproduction (rbarD = 0.1798
and rbarD = 0.5678, respectively, with p = 0.001 in both cases). On the other hand, AR_2
showed evidence for sexual recombination (rbarD = −0.0656, p = 0.796).

An analysis of molecular variance on the clone–corrected dataset revealed no statisti-
cally significant variation among populations (p > 0.05, variation within samples p = 0.20;
variation between samples p = 0.24; variation between locations p = 0.672). There was no
structure in the populations. In BC_1, 7 out of the 22 MLGs identified were present in the
population defined by AR location, AR_1 and AR_2, these last populations also showed,
respectively, exclusive haplotypes, three in the case of AR_1 and one in the case of AR_2
(Figure 4). The discriminant analysis of principal components (DAPC) chart also showed
the lack of population structure between isolates based on location (Figure 5).
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Figure 4. Minimum spanning network from the non-clone-corrected data showing the relation-
ships among the individual multilocus genotypes (MLGs) found among the populations defined by
material of origin (BC_1, AR_1 and AR_2). Each node represents a different MLG. Distances and
thickness of the lines between nodes are proportional to Bruvo’s distance [35]. Node colours and sizes
correspond to the population studied and number of individuals, respectively. MLG1 and MGL2 are
the genotypes that show greater distance with respect to the rest, both were located in a 28-year-old
Pinus radiata plantation in Amoroto (Bizkaia), Spain.
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Figure 5. Population structure of the Lecanosticta acicola isolates from the Basque Country: (a) Scatter-
plot of the discriminant analysis of principal components for populations BC_1 (blue), AR_1 (purple)
and AR_2 (green). The first two discriminant analysis (DA) eigenvalues (highlighted in bottom right
hand corner) correspond to the horizontal and vertical axes, respectively. (b,c) Composition of the
DAPC clusters in Figure 4c. Rows correspond to sampled populations while columns correspond to
inferred clusters; size of squares in the legend above is proportional to the number of individuals
comprising the clusters.



J. Fungi 2023, 9, 651 10 of 14

Estimated Global Hedrick’s standardised GST per locus (GST = 0.15), DAPC and
AMOVA indicate that there was no population subdivision or population structure defined
by locations and sources of samplings.

3.4. Mating Identification

Mating type idiomorphs were successfully identified for 151 of the 153 isolates
(Table 2). A chi-square test of independence indicated that there was no significant differ-
ence (p ≤ 0.05) between the mating type ratios observed in the three populations. Both
mating types were found in more or less equal proportions except in the AR_1 population,
in which Mat 2 was more frequent (Mat-1:Mat-2 = 10:18) (Table 2).

Table 2. Mating type ratios in the three populations of Lecanosticta acicola.

Population N Mating-Type Ratio
(Mat-1:Mat-2) X2 p

BC_1 97 * 55:40 2.36 0.124
AR_1 28 10:18 2.28 0.131
AR_2 28 14:14 0.00 1

Total 153 79:72 0.33 0.569
* The mating type could not be determined for two of the isolates.

4. Discussion

In this study, an intensive sampling of pines in the Basque Country was implemented
and L. acicola was exclusively detected out of the nine species described in this genus [8].
Only L. acicola was reported in Europe within the genus Lecanosticta [39] and it was the only
species known to cause BSNB until 2022, when L. pharomachri was detected in plantations
in Colombia causing a severe outbreak of the disease [40].

Lecanosticta acicola is currently by far the most damaging and abundant fungal pathogen
present in Pinus radiata stands in the Spanish provenance region No. 6 together with Diplo-
dia sapinea (Fr.) Fuckel 1870 [41]. The reports of L. acicola expansion in the Northern
Hemisphere increased in the last 15 years, not only in a geographical dimension, but also
increasing in the number of host species, and the climatic conditions in which this pathogen
is detected [8,39,42]. This emerging disease escalated in incidence and severity in the last
decade, affecting the sustainability of Pinus radiata ecosystems. In the Basque country,
the damage caused by this pathogen accelerated a change in the forest model due to the
logging of a thousand hectares a year and the mistrust concerning P. radiata sustainability
under these circumstances [1].

In the studied area, three TEF1 haplotypes were identified; one clustered into L. acicola
northern lineage, identical to the ex-type KC013002 [36] and two clustered into L. acicola
southern lineage. The northern haplotype represented two isolates and were isolated from
seven-year-old P. sylvestris and P. nigra located in Irisasi (Gipuzkoa). The two haplotypes
in the southern lineages included 151 isolates, from which 149 isolates were isolated from
P. radiata, P. ponderosa, P. nigra, P. sylvestris and P. brutia. Two isolates showed a unique base-
pair mutation at bp site 101, these were obtained from a P. radiata stand located in Amurrio
(Araba). In Europe, the southern lineage of L. acicola is found in Spain and France and
the northern lineage in central and northern Europe [8]. Two isolates out of 153 were part
of the northern lineage; however, there are no previous records in Spain of southern and
northern lineages coexisting in the same geographical area. Previously, this phenomenon
had only been in France [11,39].

The predominance of the southern lineage in the studied area might be due to the
northern lineage being a relatively recent introduction. The trees from which the iso-
lates were obtained were produced in two French nurseries located in the Alps of Upper
Provence (France) during 2011 and 2012, and in a nursery located in Guémené (France) in
2013, and planted in one of the arboreta established under the European project REINF-
FORCE. Despite the fact that the material was subjected to phytosanitary controls prior
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to introduction, it is possible that the pathogen was not detected. Predominance of the
southern lineage might also be related to differences in life history traits. For example,
southern isolates were reported more virulent to Pinus spp. than northern ones with the
exception of P. sylvestris [43]. Spore germination capacity at 32 ◦C for the southern isolates
was successful, whereas it failed for the northern strains [44] and these differences might
contribute to a lack of adaptation to higher temperatures.

Genetic diversity in the BC_1 population obtained from different plantations of the
Basque Country was higher compared with the diversity in the arboretum AR20 (location of
population AR_1 and AR_2). This arboretum was established in a nursery that centralised
the supply of P. radiata seedlings of the region under study. This nursery was created to
produce and distribute reproductive material to the forest sector. Furthermore, this place
showed serious needle blight damage. Since this nursery received and grew local and
imported seeds in the past, it was considered to be a potential source of pathogen diver-
sity and dispersal through the seedlings to the entire region. Anthropogenic movement
of infected plant material and seedlings is considered the main source of long-distance
dispersal of L. acicola [8]. The 28 isolates from population AR_2 with eight haplotypes
from pine species established twelve years ago, and AR_1 with 7 haplotypes obtained
from newly established seedlings in the arboretum, support the hypothesis of their high
and fast colonisation capacity of different hosts but mainly P. radiata, which shows a high
susceptibility to disease in the region [1].

Indication of sexual recombination in the sampled region was supported by the fact
that both mating types were identified in more or less equal proportions in the populations
of L. acicola, the high levels of observed genetic diversity, and by many of the isolates with
the same multilocus haplotypes having different mating types in the same populations.
Direct evidence for the sexual state of the pathogen already exists in a location 0.53 km
far away from the arboretum [12] and it may also be present in these areas. Population
structure analysis showed no evidence of population subdivision. It is likely that there is
only one panmictic population present throughout all locations. However, a more intensive
sampling of these areas may reveal new hypotheses about population structure, as was
observed in other fungal species in the region [41].

The seeds and plants used in Northern Spain come from distributors in the United
States, France, Denmark, New Zealand, Chile, etc., which makes it difficult to generate
hypotheses about the potential origin of the pathogen’s introduction [45]. Nevertheless,
considering that the main pine species in the studied region is Pinus radiata and that the
pathogen is absent in Chile and New Zealand, either the United States and/or France could
be the main candidates for the pathogen introduction into Spain. Previous population
analysis established that the origin of the northern and southern lineages present in Europe
were from North America [11,46,47]. The Basque Country was the first location in Europe
where the presence of L. acicola was confirmed, and where North America was potentially
considered the source of the infected host plants [39]. The presence of the isolates from
the northern lineage in our area could be a relatively newer introduction from other
European countries caused by the northern lineage spreading within Europe through
separate introductions, and thus defining characteristic populations [46,47].

The knowledge of the origin, diversity and genetic structure of pathogen populations
at a global and local scale can have a remarkable impact on landscape-level planning
models and other decision support systems that enable forest managers to generate optimal
disease management strategies. The high levels of genetic diversity of the pathogens would
complicate the implementation of successful control measures and breeding programs, and
could enhance the capacity of adaptation of the pathogen to stressful conditions. In this
context, preventative methods should be directed to reduce the movement of plants among
countries and regions to avoid the introduction of new genetic sources of diversity into
existing populations. This is even more important now in Spain, seeing that a possible
recent introduction of a northern lineage was discovered in this study and that adaptation
of isolates in each lineage to local climatic conditions could contribute to the success of the
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pathogen [8]. Some areas are so devastated by the disease that restrictions in the use of
highly susceptible pine species might need to be restricted in plantations to help reduce
inoculum pressure and the species becoming reservoirs of the pathogen.
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