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polymerase II largest subunit (RPB1) and RNA polymerase 
second largest subunit (RPB2) gene regions. This phytopatho-
gen is geographically widely distributed, and can be found in 
a wide range of host plants such as oleander (Nerium oleander 
L.) in Iran (Mirhosseini et al. 2014), sugar beet (Beta vulgaris 
L.) in China (Cao et al. 2018), marijuana (Cannabis sativa L.) 
in California, USA (Punja et al. 2018), and olive trees (Olea 
europaea L.) in Tunisia (Trabelsi et al. 2018). The life cycle 
of F. brachygibbosum has not been reported in detail (Ali et 
al. 2020), which makes it challenging to determine the exact 
disease cycle of this pathogen in host plants.

Trabelsi et al. (2018) identified F. brachygibbosum as a caus-
ative agent of dieback and vascular wilt of olive trees based on 
morphological and microscopic characteristics that coincided 
with those reported by Al-Mahmooli et al. (2013). Tan et al. 
(2011) associated F. brachygibbosum with the production of 
mycotoxins in legume pastures, namely Medicago polymorpha 
L. (annual medic), Trifolium subterraneum L. (subterranean 
clover), and M. sativa L. (lucerne) in Australia. According to 
the results, F. brachygibbosum produced type A trichothecene 
derivatives and fusarenon-X (type B trichothecene).

Increased reports of F. brachygibbosum occurring as a 
phytopathogen on a variety of hosts raises the concern that it 

Introduction

Fusarium brachygibbosum is a plant pathogen that was ini-
tially described by Padwick (1945) based on morphological 
characteristics. Molecular identification of F. brachygibbosum 
have been performed using the internal transcribed spacer 
(ITS) of the rDNA (Al-Sadi et al. 2012; Al-Mahmooli et al. 
2013; Mirhosseini et al. 2014; Trabelsi et al. 2018; Ali et al. 
2020), the translation elongation factor 1α (TEF-1α) (Al-Mah-
mooli et al. 2013; Trabelsi et al. 2018; Laraba et al. 2021) RNA 
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Abstract
Fusarium brachygibbosum Padwick is a phytopathogen with a widespread distribution, infecting various host plants. In 
South Africa, there is a limited number of studies on the genetic diversity of fusaria, particularly in undisturbed soils. In 
the current study, the genetic diversity of F. brachygibbosum was investigated using inter-simple sequence repeat (ISSR) 
and mating type genes. The F. brachygibbosum isolates were collected from four different geographic regions within the 
grassland biome of South Africa. A total of ten ISSR primers produced 64 distinct and reproducible amplicons, with 100% 
polymorphism. The ISSR markers revealed high levels of intraspecific variation, which is depicted by various genetic 
diversity indexes. In the analysis of mating type genes, the MAT1-1-2 gene was found among the four populations, but 
the MAT1-2-1 gene was only present in the population from the Groenkloof Nature Reserve. The data from this study will 
contribute substantially to knowledge of grassland fusaria of South Africa and their population structure in the grassland 
biome.
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has the potential to develop into a significant future pathogen. 
The current study was conducted to reveal the genetic diver-
sity of F. brachygibbosum, which F. brachygibbosum was only 
recently reported from South Africa in wheat grains (Beukes et 
al. 2017) and has been detected as one of the most predominant 
Fusarium species isolated from the South African grassland 
biome (Mojela 2017; Jacobs et al. 2018).

The aim of the current study was to determine the popula-
tion diversity of F. brachygibbosum from undisturbed soils of 
four different geographic regions within the grassland biome of 
South Africa (Mojela 2017; Jacobs et al. 2018; Mavhunga et al. 
2021). The first objective of the study was to identify inter-sim-
ple sequence repeat (ISSR) loci, which are highly polymorphic 
genetic markers that can reveal intraspecific genetic variation 
(Nayaka et al. 2011). Secondly, the molecular markers were 
used to analyze F. brachygibbosum isolates from the above-
mentioned localities in order to test for the presence of two 
closely related species. Lastly, the mating types were investi-
gated to further understand the potential sexual behaviour of 
F. brachygibbosum, since sexual recombination contributes to 
higher genetic variability.

Materials and methods

Fungal isolates and DNA extraction

This study was conducted on 104 isolates of F. brachygibbo-
sum obtained from the National Collection of Fungi (NCF), 
Agricultural Research Council-Plant Health and Protection 
(ARC-PHP). The isolates were used in previous studies 
(Jacobs et al. 2018; Mavhunga 2021) on fusaria biodiversity 
from undisturbed soils in four different geographical regions 
Groenkloof (GK, 30 isolates) Nature Reserve (25.7934°S 
28.2039°E), Willem Pretorius (WP, 33 isolates) Nature 
Reserve (28.306°S 27.236°E), Rietvlei (RV, 21 isolates) 
Nature Reserve (25°53′49″S 28°17′38″E), and Melville-
koppies (MK, 20 isolates) Nature Reserve (26.1674986°S 
28.0020311°E) within the grassland biome of South Africa 
(Fig.  1). The isolates were grown on full strength potato 
dextrose agar (PDA) (Biolab) in the dark at 28 °C for seven 
days. Mycelium was scraped from the surface of the growth 
medium and ground to a fine powder using liquid nitrogen. 
Total genomic DNA was extracted using a modification of 
the CTAB (cetyl trimethylammonium bromide) extraction 
method (Leslie and Summerell 2006). The extracted DNA 
was stored at -20 °C.

Fig. 1  The F. brachygibbosum 
isolates were sampled from the 
soils of the four geographic 
regions (black dots) within the 
grassland biome (gray area) of 
South Africa. These sampling 
regions are depicted by the closed 
circles
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PCR and gel electrophoresis

The first four ISSR primers in Table 1 (i.e., Primer 1, Primer 
2, Primer 3, and Primer 4) were obtained from Mishra et 
al. (2003). Amplification reactions for these primers were 
performed in 20 μl reaction volumes containing 1x Dream-
Taq reaction buffer, 0.2 mM dNTPs, 0.5 μM of each ISSR 
primer, 1 U of DreamTaq polymerase, and 20 ng/μl of 
gDNA. The PCR amplifications were performed under the 
following conditions: initial denaturation was for 2 min at 
95 °C, followed by 40 cycles of 1 min at 94 °C, 2 min at 
55 °C (primer 1 and 2), or 48 °C (primer 3 and 4) and 30 s 
at 72 °C, with a final extension of 5 min at 72 °C. The PCR 
products were separated using 6% denaturing polyacryl-
amide gel electrophoresis (PAGE). The gel was electropho-
resed in a 1x TBE (Tris-borate-EDTA) buffer (89 mM Tris, 
89 mM boric acid, and 2 mM EDTA) at 5 V/cm. The gel was 
stained with ethidium bromide and visualized using a UV 
light transilluminator.

The software program Genome-wide Microsatellite 
Analysing Tool (GMATo) (Wang et al. 2013) was used to 
mine seven additional ISSR primers. The full genome of 
the closely related species F. sambucinum strain F-4 was 
obtained from NCBI and uploaded into GMATo to obtain 
the ISSR loci. The PCR was optimized using the Taguchi 
methods as described in Cobb and Clarkson (1994). The 
PCR reactions for primers FS-03, FS-05, FS-06, FS-12 
and FS-13 contained 1x DreamTaq reaction buffer, 0.38 
mM dNTPs, 2.5 mM MgCl2, 0.5 μM of each primer, 1 U 
of DreamTaq polymerase and 20 ng/μl of gDNA. The PCR 
reactions for primers FS-08 and FS-11 contained 1x reac-
tion buffer, 0.31 mM dNTPs, 3.13 mM MgCl2, 0.5 μM of 
each ISSR primer, 1 U DreamTaq polymerase and 20 ng/μl 
gDNA. The PCR reactions were performed in 20 μl volume 

under the following conditions: initial denaturation was for 
2 min at 95 °C, followed by 40 cycles of 1 min at 94 °C, 
2 min for annealing temperature, and 30 s at 72 °C, with a 
final extension of 5 min at 72 °C. The PCR products were 
electrophoresed on 6% PAGE/Urea. The MAT gene primers 
were obtained from Montoya-Martínez et al. (2019).

The PCR amplifications for the gene MAT1-1-2 from the 
MAT1-1 idiomorph were performed using the primer sets 
M112f1 (forward) and M112r1 (reverse) and should yield 
a fragment of 465 bp. The PCR amplifications for the gene 
MAT1-2-1 from the MAT1-2 idiomorph were performed 
using the primer sets M121f2a (forward) and M121r2 
(reverse) with an expected band size of 330 bp. The PCR 
for the MAT1-1-2 and MAT1-2-1 genes were conducted in a 
30 μl volume containing 1x DreamTaq reaction buffer, 0.2 
mM of dNTPs, 0.25 μM of each primer sets, 1 U of Dream-
Taq polymerase, and 20 ng/μl of gDNA. The PCR was con-
ducted under the following conditions: initial denaturation 
was 90 s at 94 °C, followed by 40 cycles of 30 s at 94 °C, 
40 s at 55 °C (MAT1-1-2 gene), and 61 °C (MAT1-2-1 gene) 
and 60 s at 68 °C, with a final extension of 5 min s at 68 °C. 
The PCR products were electrophoresed on a 2% agarose 
gel to confirm the presence of amplicons.

Population genetics analyses

The bands for each locus were scored manually as either 
present “1” or absent “0”, and the bands that could not be 
distinguished were denoted as missing data “n”. The gen-
erated binary data matrix was used to calculate genetic 
diversity, number of polymorphic loci, and the percentages 
of polymorphic loci within each population and within the 
combined populations were calculated using the software 
program POPGENE version 1.32 (Yeh et al. 1999). This 

Primer name Primer Sequences Repeat Type Anneal-
ing tem-
perature 
(ºC)

Primer 1 CCCGCATCC(CACACACACACACACACA) CA 55
Primer 2 CCCGATCC(GAGAGAGAGAGAGAGAGA) GA 55
Primer 3 (ACACACACACACACAC)YG AC 48
Primer 4 (AGAGAGAGAGAGAGAGAG)G AG 48
FS-03 ACC ACC ACC ACC ACC ACC ACC 50
FS-05 GAG GAG GAG GAG GAG 40
FS-06 GGA GGA GGA GGA GGA GGA 42
FS-08 AAG AAG AAG AAG AAG AAG 40
FS-11 ACCA ACCA ACCA ACCA 40
FS-12 GCGA GCGA GCGA GCGA 40
FS-13 (AAG ACA)5 AAG ACA 50
MAT1-1 F: GAAGAAGCTYCTHGTCAGATC

R: GCAGTYGACATGAADGGGAGAG
- 55

MAT1-2 F: ARYCATTTTCATTCACCGTCC
R: GGCGBCGCTCMGAAGGAC

- 61

Table 1  The primer sequences 
and annealing temperatures of 
the four ISSR markers (Mishra 
et al. 2003), seven ISSR markers 
mined using GMATo (Wang et al. 
2013), and mating type markers 
(Montoya-Martínez et al. 2019)
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Results

Genetic diversity

In the analysis of the first four ISSR primers (Table  1), 
three of the four tested markers resulted in positive ampli-
fications, while Primer 2 did not produce amplicons. The 
seven mined ISSR primers (Fig. 2; Table 1) all resulted in 
positive amplifications with the results from primer FS-08 
on selected isolates from Groenkloof nature reserve shown 
in Fig. 2. In total, the ten ISSR primers produced 64 dis-
tinct and reproducible bands, with 100% polymorphism. 
The mean percentage of polymorphic loci was 91.02% with 
a range from 68.75% (WP) to 100% (MK). The values of 
Shannon’s information index (I) and Nei’s genetic diversity 
(h) both range from 0 to 1, where the values closer to 1 
indicate high genetic diversity. In the analysis of Shannon’s 
information index (I), the mean I for GK was I = 0.459, for 
WP it was I = 0.273, for RV it was I = 0.518, and for MK it 
was I = 0. 537.The overall mean Shannon information index 
(I) within the four populations was I = 0.447. In the analy-
sis of Nei’s genetic diversity (h), the mean h for GK was 
h = 0.299, for WP it was h = 0. 171, for RV it was h = 0. 346, 
and lastly, for MK it was h = 0. 360. The mean Nei’s genetic 
diversity for the combined populations was h = 0.294. Shan-
non’s information index (I) and Nei’s genetic diversity (h) 
revealed high genetic diversity within the four populations. 
The other genetic diversity indexes (Tables  2 and 3) also 
indicated high levels of genetic diversity within the four 
populations.

The genetic identity between the populations was calcu-
lated to determine the degree of identical alleles between the 
four populations. In the analysis of Nei’s Genetic Identity, 
the highest identity (0.9339) was observed between popula-
tions RV and MK, while populations GK and WP had the 
lowest genetic identity (0.8657). Genetic distance mea-
sures the genetic divergence between the populations. The 
highest genetic distance (0.1443) was observed between 
populations WP and GK, while the lowest genetic distance 
(0.0684) occurred between the populations MK and RV. In 
the analysis of the coefficient of gene differentiation (Gst) 
among the populations, the mean Gst was 0.1779, indicating 
the presence of 17.79% of genetic variation among the four 
populations (with an estimated 82.21% variation within the 
populations). AMOVA was done for the four populations 
combined, and according to the results, most of the varia-
tion was distributed within the populations (80%) rather 
than among the two populations (20%).

software was also used to calculate Nei’s genetic diversity 
index (h), and Shannon’s Information index (I) was calcu-
lated according to the formula I=-

∑
Pilog2Pi  (Lewontin 

1972), in which Pi represents the frequency of the presence 
of bands. Nei’s (1973) gene diversity was calculated accord-
ing to the formula H = 1–Σxk

2 (xk is the frequency of the 
kth allele). The other genetic diversity parameters were also 
calculated: Ht represented total genetic diversity within the 
populations, Hs is the diversity within each population and 
Gst is the coefficient of allelic differentiation. These param-
eters were calculated using the software GenAlEx 6.501 
(Peakall and Smouse 2006, 2012). The gene flow estimates 
(Nm) were calculated according to the formula Nm = 0.5(1 
– Gst)/Gst (McDermott and McDonald 1993), where Nm is 
the number of allelic migrants per generation. The software 
program MultiLocus version 1.2.2 (Agapow and Burt 2001) 
was used to calculate the θ-values of population differen-
tiation between the populations. The θ-values were calcu-
lated using Weir and Cockerham’s (1984) modification of 
Wright’s (1949) FST for haploid data, which is given by the 
formula θ = Q2-Q3/1-Q3, where Q2 is the probability that 
two alleles within the same population are identical, and the 
probability that two alleles from different populations are 
identical is given by Q3. Moreover, the θ-values were used to 
calculate the theoretical number of migrants per generation 
(Slatkin 1995), which is given by the formula ′

M =1
2

(
1
θ
− 1

)

, where ′
M  is the number of migrants per generation. The 

additional parameters were number of alleles (Na), effective 
number of alleles (Ne) (Kimura and Crow 1964), Shannon’s 
Information index (I), Nei’s diversity (h), and unbiased 
diversity (uh). The distribution of genetic variation within 
and between the populations were determined by analysis of 
molecular variance (AMOVA) (Excoffier et al. 1992) using 
the software GenAlEx 6.501. A two-sample t-test assum-
ing unequal variances was conducted using Microsoft Excel 
Ver. 16.0 to compare differences in genetic diversity using 
Nei’s diversity (h) between populations that are encroached 
by urban development (GK and MK) and populations 
located in agriculturally intensive area (WP and RV). Den-
drograms were constructed using distance matrices gener-
ated using Nei and Li’s coefficient (Nei and Li 1979). The 
software program PAUP 4.0* (phylogenetic analysis using 
parsimony; Swofford 2002) was used to construct UPGMA 
(un-weighted pair group method using arithmetic averages) 
dendrograms. The dendrograms were constructed using the 
heuristic search protocol and bootstrap analysis with 1 000 
replicates was done using a full heuristic search protocol.
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Population differentiation

The number of allelic migrants per generation was 
Nm = 2.3102, which suggested a significant migration rate 
among the four populations. Since Nm used allelic frequen-
cies to determine the migration rate, the population differ-
entiation (θ) was calculated to determine the true value of 
migrants per generation ( ′

M ) using genotypic frequencies. 
The population differentiation (θ) for the four populations 

Table 2  The mean of the genetic diversity parameters for the ten ISSR primers within each population and the total mean for the combined four 
populations
Population Mean and SE N Na Ne I h uh
GK Mean 29,656 1,984 1,496 0,459 0,299 0,309

SE 0,114 0,016 0,041 0,024 0,019 0,020
WP Mean 32,641 1,391 1,269 0,273 0,171 0,177

SE 0,132 0,115 0,040 0,030 0,021 0,022
RV Mean 20,063 1,938 1,591 0,518 0,346 0,365

SE 0,149 0,044 0,038 0,021 0,017 0,018
MK Mean 18,953 2,000 1,621 0,537 0,360 0,381

SE 0,192 0,000 0,037 0,019 0,016 0,017
Grand Mean and SE over Loci and Pops
Total Mean 25,328 1,828 1,494 0,447 0,294 0,308

SE 0,379 0,035 0,021 0,014 0,010 0,011
 N-number of samples, Na-number of alleles, Ne = Effective number of alleles [Kimura and Crow (1964)], I - Shannon’s Information index 
[Lewontin (1972)], h-Nei’s diversity, uh-unbiased diversity, and SE

Table 3  Nei’s genetic identity (above diagonal) and genetic distance 
(below diagonal) for the four populations
Population GK WP RV MK
GK - 0.8657 0.8846 0.8666
WP 0.1443 - 0.8823 0.8693
RV 0.1226 0.1252 - 0.9339
MK 0.1431 0.1401 0.0684 -

Fig. 2  ISSR fingerprint of F. 
brachygibbosum isolates from 
Groenkloof nature reserve visual-
ized on 6% PAGE/Urea. Primer 
FS-08 was used to produce the 
profiles in both gels. Lane M: 
2 kb ladder, Lane 1: PPRI 16,109, 
Lane 2: PPRI 16,116, Lane 3: 
PPRI 16,126, Lane 4: PPRI 
16,137, Lane 5: PPRI 16,139, 
Lane 6: PPRI 16,603, Lane 7: 
PPRI 16,621, Lane 8: PPRI 
16,124, Lane 9: PPRI 16,633, 
Lane 10: PPRI 17,527, Lane 11: 
PPRI 17,909, Lane 12: PPRI 
17,916, Lane 13: PPRI 17,921, 
Lane 14: PPRI 17,926, and Lane 
15: Non target control
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hypothesis stated that there will be no significant differ-
ence in the mean Nei’s diversity (h) between populations 
that are encroached by urban development (GK and MK) 
and populations located in agriculturally intensive area (WP 
and RV). Therefore, t-values of P≤=  0.05 indicated sig-
nificant difference in mean Nei’s diversity. According to the 
results, the significant difference in the mean Nei’s diver-
sity (h) between the two stated groups was P = 0.0004981. 
Therefore, the null hypothesis was rejected since there was 
a significant difference in Nei’s diversity.

was θ = 0.2135. The θ-value was used to calculate the num-
ber of migrants per generation ( ′

M ) among the four popu-
lations. The number of migrants per generation was ′

M  = 
1.8419. The value for ′

M  indicated that the estimated migra-
tion rate among the four populations was low.

Two-sample t-tests

The two-sample t-tests assuming unequal variances were 
calculated on the mean Nei’s diversity (h) to determine the 
significance of differences in genetic diversity. The null 

Fig. 3  UPGMA based on Nei and 
Li’s coefficients of similarity for 
the F. brachygibbosum isolates 
from this study. Bootstrap sup-
port values are indicated by the 
numbers on the branches. Tree 
statistics include length = 889, the 
consistency index (CI) = 0.0719, 
and the retention index 
(RI) = 0.4691
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Discussion

In the current study, the application of ten ISSR markers 
have demonstrated a high level of genetic diversity among 
isolates from four populations of F. brachygibbosum. The 
ISSR markers showed that isolates from the Rietvlei and 
Melvillekoppies nature reserves have a higher genetic diver-
sity compared to those from the Groenkloof and Willem 
Pretorius nature reserves. This is interesting since the Mel-
villekoppies nature reserve is encroached by urban develop-
ment, while the Willem Pretorius nature reserve is located in 
open grasslands, surrounded by farms. Van Rensburg (2010) 
conducted a survey on the biodiversity and distribution of 
microorganisms collected from soils in the grasslands 
encroached by urban development and concluded that the 
biodiversity of fungal populations was higher in rural areas. 
This suggests that increased human activity in urban areas 
have an influence on the biodiversity of fungal populations. 
Recently, Laraba et al. (2021) performed a phylogenetic 
analysis of the Fusarium sambucinum species complex 
(FSamSC). Included in this analysis was 50 of the 171 iso-
lates designated as closely related to F. brachygibbosum. The 
phylogenetic analyses revealed that within the F. brachy-
gibbosum clade, there were two described species (i.e., F. 
brachygibbosum and F. transvaalense) and 11 novel phylo-
genetically distinct species. This high level of closely related 
potential novel species within this complex sheds light on 
the observation of higher population diversity levels in this 
study. Thus, our analysis supports the finding that multiple 
novel species may be found within the F. brachygibbosum 

Clustering analysis

Cluster analysis was done using UPGMA based on Nei and 
Li’s coefficients of similarity (Nei and Li 1979) from 64 loci 
for the ten ISSR markers. Overall, the clustering analysis 
produced two major clades comprising of isolates from the 
four nature reserves (Fig. 3). Therefore, this indicated that 
the geographic origins of the isolates did not have a major 
impact on the clustering of the isolates. The two major 
clades for the dendrogram wase significantly supported with 
a bootstrap value of 100%. The isolate PPRI 14,375 from 
the GK nature reserve formed an outgroup (OG) in the den-
drograms. The tree length was 889, the consistency index 
(CI) = 0.0719, and the retention index (RI) = 0.4691.

Mating type genes

Both the MAT1-1-2 and the MAT1-2-1 genes were amplified 
for the four nature reserves (Fig. 4). In the population from 
the GK nature reserve, both genes were present with only 
one isolate (PPRI16109) amplifying the MAT1-2-1 allele. In 
the populations from the WP, RV and MK nature reserves, 
only the MAT1-1-2 genes amplified, and the MAT1-2-1 gene 
did not produce amplicons.

Fig. 4  PCR products for the primer sets M112f1 and M112r1 (MAT1-
1-2 gene) for F. brachygibbosum isolates from Willem Pretorius nature 
reserve visualized on a 2% agarose gel., Lane 1: PPRI 19,118, Lane 
2: PPRI 19,125, Lane 3: PPRI 19,133, Lane 4: PPRI 19,139, Lane 
5: PPRI 19,150, Lane 6: PPRI 19,166, Lane 7: PPRI 19,169, Lane 
8: PPRI 19,170, Lane 9: PPRI 19,175, Lane 10: PPRI 19,232, Lane 
11: PPRI 19,236, Lane 12: PPRI 20,527, Lane 13: PPRI 20,720, Lane 
14: PPRI 20,729, Lane 15: PPRI 20,734, Lane 16: PPRI 20,745, Lane 

17: NTC, Lane 18: PPRI 20,755, Lane 18: PPRI 21,041, Lane 19: 
PPRI 21,042, Lane 20: PPRI 21,049, Lane 21: PPRI 21,050, Lane 22: 
PPRI 21,050, Lane 23: PPRI 21,052, Lane 24: PPRI 21,058, Lane 25: 
PPRI 21,061, Lane 26: PPRI 21,063, Lane 27: PPRI 21,082, Lane 28: 
PPRI 21,084, Lane 29: PPRI 21,086, Lane 30: PPRI 21,087, Lane 31: 
PPRI 21,088, Lane 32: PPRI 21,093, Lane 33: 21,094, Lane 34: PPRI 
21,100, and Lane 35: Non template control
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Open Access   This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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