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Simple Summary: Consumer preferences are demanding the removal of antibiotic growth promoters
from animal diets. To meet the demand of animal protein for the growing human population,
alternative feed additives, such as probiotics and essential oils, need to be investigated to increase the
overall efficiency of farm animals. The microorganisms in the rumen are important to the functioning
of the animal as they produce the majority of energy the animal uses for production. In this study,
the effect of essential oils and a probiotic was compared to the effect of monensin, an antibiotic
growth promoter, on the rumen microbiome. There were no substantial differences in the effect of
the two natural feed additives compared to monensin on the microorganisms in the rumen. These
feed additives hold potential as alternatives to the use of antibiotic growth promoters; large scale
production studies are needed to confirm growth performance.

Abstract: The rising concern of antibiotic growth promoter use in livestock has necessitated the
investigation into alternative feed additives. The effect of a probiotic and essential oils to an ionophore
on the rumen microbiome composition of Bonsmara bulls raised under feedlot conditions was
compared. Forty-eight Bonsmara weaners were allocated to four groups: a group with basal diet
(CON) and three groups supplemented with monensin (MON), probiotic (PRO), and essential oils
(EO). During the 120 days feeding period, rumen content was collected from four animals per group
within each phase via a stomach tube for 16S rRNA and internal transcribed spacer (ITS) sequencing
as well as volatile fatty acid analysis. In the starter phase, MON had a significantly lower acetate to
propionate ratio and a higher Succinivibrionaceae abundance. The abundance of Lachnospiraceae was
significantly higher in EO compared to MON. In the finisher phase, PRO had a significantly higher
bacterial diversity. The alpha diversity did not differ between the fungal populations of the groups.
The abundance of Proteobacteria was the lowest in PRO compared to the other groups. Limited
variation was observed between the rumen microbiome composition of monensin compared to the
other treatment groups, indicating that these alternatives can be considered.

Keywords: amplicon sequencing; Bonsmara; feed additives; intensive feeding

1. Introduction

The microorganisms in the rumen have been reported to influence the growth and feed
efficiency of animals [1,2]. This is due to fermentation of complex carbohydrates by rumen
microbiota, which accounts for approximately 70% of the metabolic energy the animal can
utilize for maintenance and production [3]. Modification of the rumen microbiota can be
seen as a viable strategy to optimize the performance of cattle.
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The modification of the rumen microbiome composition through feed additives has
been shown to have beneficial effects on the animal’s production and health by reducing
excess nitrogen (N) from protein degradation, controlling rumen pH and increasing fibre
digestion [4]. Monensin is commonly used in South African feedlot diets as it alters ruminal
fermentation and increases feed efficiency [5]. However, due to the development of an
antibiotic-resistant bacterium as well as the ban on the usage of antibiotics in subtherapeutic
practices by the European Union [6], alternatives that can replace the use of ionophores,
such as probiotics or essential oils, need to be investigated.

Probiotics are live microbes that are advantageous to the animal’s health when supple-
mented in adequate doses [6]. Bacillus strains have been used as probiotics and beneficial
effects include increased milk quality and growth [7,8]. The inclusion of Bacillus in the
diet in vitro resulted in the growth of beneficial microorganisms including Bifidobacterium
and Lactobacillus [9]. Bacillus bacteria produce a number of antimicrobial compounds that
inhibit Gram-positive bacteria and pathogens; however, some also display activity against
Gram-negative bacteria [10].

Essential oils (EO) favourably modify rumen fermentation by inhibiting methanogens,
and other undesirable microbes, resulting in decreased methane emissions and higher
volatile fatty acid (VFA) production [11]. The mode of action of EOs is similar to ionophores
in that they interact with the cell membrane, targeting more permeable microorganisms and
changing the VFA proportions [12]. The interaction with the cell membrane is influenced
by fermentation conditions such as rumen pH and the fermentation substrate [13]. Various
EOs can be used; however, synergistic effects have been reported when fed in combinations
or blends [12]. Due to EO blends having a similar or superior effect on the animals’
performance [14,15] compared to monensin, EOs hold potential to replace monensin in
feedlot diets.

Although there have been studies that showed that EOs can potentially replace mo-
nensin, their effect on animal performance and rumen fermentation has been inconsis-
tent [12,16]. There is also limited evidence on the use of probiotics in feedlots. This is the
first South African study on the rumen microbiome under intensive feeding making use
of feed additives. Understanding the interaction between the rumen microbiota and feed
additives can provide a basis on which to develop precision nutrition strategies for optimal
production. These strategies may also lead to a decrease in or alternatives to the use of
antibiotic growth promoters such a monensin. This study compared the effect of a probiotic
and essential oils to an ionophore on the rumen bacterial, archaeal, and fungal populations
in South African Bonsmara bulls raised under intensive feedlot conditions.

2. Materials and Methods

Ethical approval was received from the University of Pretoria’s Animal Ethical Com-
mittee (NAS445/2019) according to the guidelines approved by the veterinary council
of South Africa. The trial was completed at the facilities of a commercial feedlot in
Edenville, Free State, South Africa (−27.6096553, 27.7221717). Forty-eight Bonsmara wean-
ers (228 ± 22 kg; 10–14 months old) were sourced from the same farm. Natural grazing
was used to background the animals for 40 days where after they were randomly divided
into four groups: basal diet (CON), the basal diet supplemented with either monensin
(MON, 0.3 g/animal/day), probiotic (PRO, 2.75 g/animal/day), or essential oils (EO,
1 g/animal/day). The probiotic consisted of two strains, Bacillus subtilis and Bacillus licheni-
formis (3.2 × 109 CFU/g), while the essential oils consisted of eugenol (17%), capsicum
(7%), and cinnamaldehyde (11%). All additives were mixed in the feed before being fed to
the animals.

The animals were blocked by weight and allocated three to a pen, resulting in twelve
animals per group. The animals were fed starter, grower, and finisher diets for 21, 80, and
14 days, respectively. The feed for each phase was mixed at the feed mill on farm, bagged,
and marked for the trial. The composition of the diets for each phase was reported in
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Linde et al. [17]. The animals were processed and received an ear implant (Revalor® S,
Intervet GesmbH, Vienna, Austria) as per standard feedlot procedures.

Adaptation of the animals to the starter diet was managed by decreasing the amount
of hay supplied while increasing the volume of the starter diet over five days. During the
grower and the finisher phases, adaptation of the animals to the new diet occurred over
three days by increasing the proportion till fed only the new diet. Water and feed were
supplied ad libitum to the animals. Feed intake per pen was calculated by subtracting the
refusals of the day from the amount of feed provided the previous day. Feed conversion
ratio (FCR) was calculated by dividing the daily feed intake by the average daily gain. The
animals were weighed once a week, while rumen content was collected a week before the
start of a new phase and slaughter.

From each group, four animals were selected (one per pen) at the start of the trial
for collection of rumen content within each phase from the same animal (n = 64). Studies
have indicated that four or more samples are sufficient for microbial sequencing [18,19]. A
flexible stomach tube was inserted through the animal’s mouth into the ventral sac of the
rumen by a registered veterinarian. Samples of rumen microbiome composition collected
via stomach tube have been reported to be similar to those collected via cannula if both
particles and fluid are obtained [20]. Negative pressure was applied via a dosing gun to
draw out rumen content (particles and fluid). To safeguard against saliva contamination,
the first 50 mL was removed, and the next 50 mL was instantly frozen in liquid nitrogen
and placed in a −80 ◦C fridge until DNA extraction could be performed.

Fluid from the frozen rumen samples [21] were submitted to the Nutri-lab laboratory
of the Department of Animal Science (University of Pretoria) for VFA analysis. For preser-
vation of the rumen fluid samples, orthophosphoric acid (25% H3PO4) was added and
the samples were deposited in a −20 ◦C freezer until VFA analysis could be performed.
Volatile fatty acid concentration was analysed through gas chromatography (SCION GC-
456, SCION Instruments, Livingston, Scotland) according to FAO [22] with modifications.
The gas chromatograph was fitted with a flame ionization detector, an auto-sampler and
CP-WAX 58 (FFAP) CB column with a length of 25 m and a 0.53 mm internal diameter with
a 2.0 µm acid-modified chemically bonded polyethylene glycol-film thickness. The oven
temperature (100 ◦C) was sustained for 2 min, then increased to 150 ◦C, where it was once
again sustained for 2 min and then increased to 195 ◦C. The molar proportions of the VFAs
were compared between groups [23].

Thawed rumen content samples (300 mg) were homogenized for twelve minutes
at maximum speed (400 × 10 rpm) with a BeadBug homogenizer (Benchmark Scientific,
Sayreville, NJ, USA). DNA extraction was completed using a QIAamp PowerFecalPro
extraction kit (Cat. No./ID: 51804, Qiagen, Hilden, Germany) following the manufacturer’s
guidelines. A Qubit Fluorometer (Invitrogen, Waltham, MA, USA) as well as a Nanodrop
ND-1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) were used to
determine sample quality. One sample from the probiotic group, collected during the back-
grounding phase, was discarded due to low quality. Extracted DNA was sent to Novogene
(NovogeneAIT Genomics, Singapore) for 16S rRNA (V3–V4) and ITS1 sequencing using an
Illumina NovaSeq 250 (Illumina, San Diego, CA, USA) to generate 250 bp pair-ended raw
reads. Average reads per samples generated was 200,126 ± 11,204 for 16S rRNA sequencing
and 196,787 ± 16,115 for ITS sequencing. Primers were removed in the data received from
NovogeneAIT Singapore. Data were deposited in the NCBI Sequence Read Archive under
accession number PRJNA721531.

Both forward and reverse reads were cut at 220 base pairs using DADA2 [24] to
enhance the quality of the samples. The Ribosomal Database Project [25] and the UNITE
database [26] was used for 16S rRNA and ITS annotation, respectively. Taxonomy was
assigned to family level. The data were rarefied, and amplicon sequence variants (ASVs)
detected in 5% of the samples less than 10 times were discarded. The alpha diversity of the
samples (observed number of ASVs, Shannon diversity, and Chao1 richness indices) were
determined using phyloseq [27]. The Shannon index indicates the richness and evenness
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found within the samples, while the Chao1 index indicates the expected amount of ASVs in
the community [28]. Beta diversity was determined with PERMANOVA using the adonis
function within vegan v2.5.7 [29] and with a principal coordinate analysis (PCoA) depicting
weighted UniFrac distances. One sample from the EO group in the grower phase was
identified as an outlier and removed. The Proteobacteria ratio, as an indicator for dysbiosis,
was calculated by dividing the Proteobacteria abundance with the combined abundance of
Bacteroidetes and Firmicutes [30]. Dysbiosis is indicated by values equivalent or above 0.19.

Significant differences were determined by the Kruskal-Wallis and Dunn tests as
well as ANOVA between alpha diversity, relative abundance of the microbes, and the
performance traits using statistical packages in R statistical software v4.2.1 [31]. The Holm-
Bonferroni procedure was performed for multiple test correction. Significant differences
were recognized at p < 0.05 and trends were acknowledged at 0.05 < p < 0.1.

3. Results
3.1. Performance Results and VFA Concentrations

Except for daily feed intake, the treatment groups did not differ significantly in
performance traits measured (Table 1).

Table 1. The average and standard deviation of the live weight (LW), average daily gain (ADG),
daily feed intake (DFI), and feed conversion ratio (FCR) for the four treatment groups (48 animals,
12 per group).

Performance
Traits CON MON PRO EO p-Value

LW (kg) 468 ± 26 471 ± 27 455 ± 34 460 ± 30 0.497
ADG (kg/day) 1.81 ± 0.11 1.85 ± 0.08 1.70 ± 0.71 1.68 ± 0.16 0.603
DFI (kg/day) 11.30 ± 0.38 a 11.60 ± 0.71 a 10.50 ± 0.43 b 11.60 ± 0.47 a 0.037 *

FCR 6.25 ± 0.52 6.25 ± 0.46 6.24 ± 0.66 6.91 ± 0.46 0.255

* Significance at p < 0.05. a,b superscripts indicate significant difference within rows at p < 0.05.

The VFA concentration and proportions differed significantly (p < 0.05) across the
phases as expected. There was no difference between the VFA concentration of the feed
additive groups during the backgrounding period. The acetate and propionate concentra-
tions in the starter phase did differ significantly (p < 0.05) between the various treatment
groups (Table 2) with MON differing from CON, EO, and PRO.
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Table 2. The average and standard deviation of total volatile fatty acid (tVFA; mmol/L), acetate,
propionate, and butyrate (mol/100 mol) concentrations and the acetate to propionate ratio (A:P) of
the control (CON), monensin (MON), probiotic (PRO), and essential oils (EO) groups within the
three phases.

CON MON PRO EO p-Value

Starter

tVFA 70.07 ± 23.17 84.85 ± 18.87 73.03 ± 18.03 81.65 ± 13.27 0.589
Acetate 66.33 ± 2.42 a 57.99 ± 1.54 b 65.26 ± 2.58 a 66.97 ± 2.94 a 0.033 *

Propionate 16.17 ± 4.86 a 28.87 ± 3.38 b 17.67 ± 2.44 a 16.96 ± 2.72 a 0.033 *
Butyrate 12.70 ± 2.38 9.91 ± 1.70 12.73 ± 1.58 12.44 ± 1.96 0.277

A:P 4.52 ± 1.44 a 2.04 ± 0.28 b 3.77 ± 0.61 a 4.08 ± 0.81 a 0.034 *

Grower

tVFA 105.19 ± 26.02 110.48 ± 13.57 100.01 ± 15.74 91.20 ± 15.15 0.657
Acetate 58.63 ± 0.81 58.46 ± 2.57 57.75 ± 2.41 59.56 ± 2.43 0.724

Propionate 28.19 ± 2.30 26.84 ± 2.57 28.94 ± 3.12 22.43 ± 5.36 0.235
Butyrate 8.19 ± 1.32 9.73 ± 0.29 9.41 ± 0.31 13.16 ± 5.13 0.134

A:P 2.09 ± 0.17 2.21 ± 0.29 2.03 ± 0.31 2.84 ± 0.79 0.474

Finisher

tVFA 110.59 ± 13.10 94.41 ± 11.23 115.10 ± 18.52 95.03 ± 18.72 0.231
Acetate 56.16 ± 1.07 59.65 ± 3.26 56.23 ± 1.53 55.96 ± 1.56 0.382

Propionate 29.59 ± 1.89 22.52 ± 6.37 29.51 ± 2.11 29.62 ± 1.91 0.531
Butyrate 8.95 ± 1.33 10.96 ± 2.29 9.29 ± 0.99 9.29 ± 1.43 0.562

A:P 1.91 ± 0.15 2.89 ± 0.86 1.92 ± 0.18 1.90 ± 0.16 0.171

* Significance at p < 0.05. a,b superscripts indicate significant difference within rows at p < 0.05.

3.2. Alpha and Beta Diversity of the Rumen Microbial Composition

An average count of 116,127 ± 19,264 and 150,668 ± 13,495 reads remained after
quality control and chimera removal for the 16S rRNA and ITS sequencing, respectively.
From the reads, 41,300 bacterial and archaeal and 35,442 fungal ASVs were identified.

Samples taken during backgrounding, before the feed additives were added to the
diets, indicated no significant differences in terms of alpha and beta diversity of the bacterial
population. Bacteroidetes was the most abundant phylum during the backgrounding
period in the rumen, followed by Firmicutes. Prevotellaceae was the most predominant
family, followed by Ruminococcaceae and Porphyromonadaceae.

No significant differences in the bacterial alpha diversity between the feed additive
groups were observed in the starter phase (Table 3). The observed number of ASVs and
the Chao1 richness index of the bacterial/archaeal population were significantly lower in
PRO compared to MON in the grower phase. In the finisher phase, the bacterial/archaeal
diversity (Shannon index) between the treatment groups did differ significantly with a
higher diversity within PRO compared to CON. The PRO group also had a significantly
higher richness (Chao1 index and observed number of ASVs) compared to MON and CON
in the finisher phase.
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Table 3. The alpha diversity indices average and standard deviation (observed number of ASVs,
Shannon and Chao1 indices) of the bacterial and archaeal population of the control (CON), monensin
(MON), essential oils (EO), and probiotic (PRO) treatment groups within the various phases of the
feedlot period.

Alpha Diversity Indices CON MON EO PRO p-Value

Starter

Observed number of ASVs 1398 ± 48 1213 ± 56 1277 ± 70 1186 ± 105 0.461
Chao1 Index 1402 ± 49 1222 ± 55 1281 ± 70 1196 ± 106 0.492

Shannon Index 6.03 ± 0.15 5.74 ± 0.09 5.88 ± 0.21 5.65 ± 0.21 0.576

Grower

Observed number of ASVs 805 ± 53 ab 969 ± 37 a 808 ± 47 ab 701 ± 33 b 0.046 *
Chao1 Index 816 ± 54 ab 980 ± 39 a 819 ± 48 ab 708 ± 32 b 0.046 *

Shannon Index 3.92 ± 0.20 4.33 ± 0.12 4.39 ± 0.13 3.95 ± 0.19 0.306

Finisher

Observed number of ASVs 626 ± 12 608 ± 17 641 ± 66 737 ± 20 0.100
Chao1 Index 629 ± 13 612 ± 17 649 ± 66 742 ± 20 0.108

Shannon Index 2.98 ± 0.13 a 3.63 ± 0.21 ab 3.43 ± 0.24 ab 4.13 ± 0.11 b 0.044 *

* Significance at p < 0.05. a,b superscripts indicate significant difference within rows at p < 0.05.

No differences were observed in the fungal population of the rumen of animals in
the starter and finisher phases between the feed additive groups (Table 4). In the grower
phase, there was a tendency to differ in the richness of the fungal population between CON
and PRO.

The principal coordinate analysis (PCoA) (Figure 1) showed that MON did cluster
apart from the rest of the treatment groups in both the starter and grower phases, indicating
different bacterial compositions. The bacterial composition between the feed additive
groups differed significantly in the starter (PERMANOVA, p = 0.001) and grower phases
(PERMANOVA, p = 0.022) as indicated by beta diversity analysis. In the finisher phase, no
separate clusters were observed. Although PERMANOVA showed significant differences in
terms of the bacterial beta diversity (p = 0.006), there was only a tendency to differ between
CON and MON (p = 0.087) in the finisher phase. The two axes of the PCoA explained
34.3%, 34.7%, and 50.5% of the variance in the bacterial/archaeal composition of the starter,
grower, and finisher phases, respectively.

Table 4. The alpha diversity indices average and standard deviation (observed number of ASVs,
Chao1 index, Shannon index) of the fungal population in the control (CON), monensin (MON),
essential oils (EO), and probiotic (PRO) treatment groups within the various phases.

Alpha Diversity Indices CON MON EO PRO p-Value

Starter

Observed number of ASVs 263 ± 12 275 ± 15 275 ± 10 284 ± 12 0.814
Chao1 Index 264 ± 12 276 ± 15 276 ± 10 285 ± 12 0.782

Shannon Index 3.52 ± 0.17 3.65 ± 0.07 3.69 ± 0.18 3.86 ± 0.12 0.405

Grower

Observed number of ASVs 304 ± 12 a 287 ± 14 ab 293 ± 10 ab 249 ± 5 b 0.055 **
Chao1 Index 304 ± 12 a 287 ± 13 ab 294 ± 10 ab 250 ± 5 b 0.063 **

Shannon Index 4.10 ± 0.15 3.77 ± 0.31 4.27 ± 0.02 4.17 ± 0.02 0.362

Finisher

Observed number of ASVs 175 ± 4 151 ± 8 149 ± 5 153 ± 10 0.186
Chao1 Index 175 ± 4 152 ± 9 149 ± 5 153 ± 10 0.183

Shannon Index 3.30 ± 0.05 3.17 ± 0.09 3.21 ± 0.06 3.15 ± 0.08 0.618

** Tendency towards significance at p < 0.10. a,b superscripts indicate significant difference within rows at p < 0.05.
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Figure 1. A principal coordinate analysis (PCoA) based on weighted UniFrac distances of the
treatment groups in the starter, grower, and finisher phases for the 16S rRNA microbial population.
Red depicts the control (CON), blue depicts the essential oils (EO), green the monensin (MON), and
purple the probiotic group (PRO).

There was no clustering of the treatment groups in terms of the fungal composition
within the PCoA (Figure 2) for the starter (PERMANOVA, p = 0.125) and grower phases
(PERMANOVA, p = 0.084). In the finisher phase, the EO group clustered separate from
the other treatment groups in the PCoA plot with the beta diversity analysis showing a
significant difference in the fungal composition (PERMANOVA, p = 0.002). The two axes in
the PCoA explained approximately 41.4%, 63.8%, and 61.0% of the microbial composition
variation of the treatment groups in the starter, grower, and finisher phases, respectively.
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3.3. Rumen Microorganism Abundances

Within the starter phase across the treatment groups, the predominant phyla were
Bacteroidetes and Firmicutes (Figure 3). The compositional relative abundance and the
p-values for the bacterial and archaeal phyla and families were reported in Supplementary
Table S1. Fibrobacteres differed significantly (p = 0.01) across the treatment groups in the
starter phase with a lower abundance in MON compared to CON. Within the grower phase,
Bacteroidetes was significantly (p = 0.045) higher and there was a tendency towards a
higher abundance of Euryarchaeota (p = 0.069) in MON compared to CON. Prevotellaceae
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and Succinivibrionaceae were more abundant within MON compared to CON throughout
the whole feedlot period, while Veillonellaceae was more abundant within the finisher phase.

In the starter phase, Actinobacteria had a higher abundance (p = 0.058), while in the
grower phase, Firmicutes had a higher abundance (p = 0.045) in MON in comparison with
EO. Succinivibrionaceae and Veillonellaceae were lower in abundance, while Lachnospiraceae
was higher in abundance in EO compared to MON. There was no difference between MON
and EO in the finisher phase.

A difference in the abundance of Actinobacteria (p = 0.045) and Fibrobacteres
(p = 0.005) was observed between MON and PRO within the starter phase with a higher
and lower abundance in MON compared to PRO, respectively. Spirochaetes had a tendency
towards a difference (p = 0.097) with a higher abundance in PRO compared to MON in
the starter phase. Veillonellaceae and Succinivibrionaceae were higher in abundance within
MON compared to PRO in the starter phase. Within the grower phase, Fibrobacteres had a
significantly higher (p = 0.036) abundance in MON compared to PRO. The families Lach-
nospiraceae, Clostridiales_XI, Clostridiales_XIII, and Elusimicrobiaceae were more abundant
within PRO compared to CON in the finisher phase.

During the finisher phase, a higher abundance of Proteobacteria was observed in
CON, while MON and PRO had a lower abundance (p = 0.058). All treatment groups had
a Proteobacteria ratio above 0.19, indicating dysbiosis. The Proteobacteria ratio of PRO
(0.84 ± 0.14) was significantly lower compared to CON (2.06 ± 0.49) and numerically lower
compared to MON (1.21 ± 0.62) and EO (1.59 ± 0.59) in the finisher phase.

Ascomycota was the fungal phylum with the highest abundance across the treatment
groups (Figure 4), followed by Neocallimastigomycota. The compositional abundance of
the fungal phyla and families can be found in Supplementary Table S2. In the grower phase,
CON had a tendency towards a lower abundance of Basidiomycota (p = 0.056) compared
to MON. The abundance of individual phyla did not differ between MON and EO in any
of the phases.
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Figure 4. The averaged relative abundance of the fungal phyla compared between monensin (MON)
and control (CON), MON and essential oils (EO), and MON and probiotic (PRO). The x-axis depicts
the different samples averaged per treatment group and separated by phase, while the y-axis the
relative abundance. Each colour represents a specific phylum as indicated by the legend on the right
side of the plot.

A slight difference was observed in the Neocallimastigomycota phylum (p = 0.084)
between the treatment groups in the starter phase, with the highest abundance in PRO.
Ascomycota had a significantly (p = 0.029) lower abundance in PRO compared to MON in
the grower phase, while a tendency towards a difference in the abundance of Ascomycota
(p = 0.056) and Basidiomycota (p = 0.092) between the treatment groups was observed in
the finisher phase.
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4. Discussion

Studies on natural feed additive alternatives have been inconsistent, with varying
results on the production of the animals; an increase, a decrease, or no effect [14]. In this
study, the emphasis was on the microbiome composition [18] and a significant difference in
production was not expected due to the small sample size. The MON group, however, had
a numerically higher LW and ADG compared to the other feed additive groups. In a meta-
analysis, monensin decreased feed intake by 3% and increased the feed efficiency by 1% [5].
Other studies have also reported no significant difference in production between MON
and EO [14,32]. In the finisher phase, EO had a numerically lower acetate to propionate
ratio compared to MON. The inclusion of EOs, such as eugenol [13], in a diet fed more
than 91 days resulted in a reduction in acetate concentration [33]. The feed intake of
PRO was lower compared to the other treatment groups, which is in contrast to previous
studies performed with probiotics, such as Enterococcus faecium and Bacillus, where DMI
was increased [7,34]. Lower intakes can result in slower passage rates that can influence
the rumen microbiota [2].

This study compared the effect of essential oils and a probiotic to the effect of an
ionophore on the rumen microbiome of Bonsmara cattle under intensive feeding conditions.
The rumen microbiota did differ significantly between the phases and was reported in
Linde et al. [17]. The bacterial and archaeal microbial composition did exhibit significant
differences between the treatment groups within the different phases based on beta diversity
(microbiota composition). For the fungal population, the treatment groups tended to differ
in the grower phase and differed significantly in the finisher phase. Different growth rates
of the various rumen microbes have been reported [35], with anaerobic fungi having a
slower growth rate compared to rumen bacteria [36]. Fungal organisms might take longer
to adapt or to respond to feed additives.

4.1. Monensin vs. Control

Although, numerically, CON had a higher richness and diversity compared to MON, the
alpha diversity showed no significant differences. Weimer et al. [37] and Schären et al. [16]
observed that monensin supplementation decreased bacterial diversity in the rumen, which
has been linked with increased efficiency [38].

Succinate-producing microbes, such as Succinivibrionaceae and Veillonellaceae, were
significantly higher in abundance within MON; both are associated with higher weight
gain [1]. The supplementation of monensin is known to impact the fermentation character-
istics by decreasing the acetate and butyrate concentration while increasing the propionate
concentration [5], resulting in more energy being accessible to the animal. In this study,
the MON group had the lowest acetate to propionate ratio within the starter phase in
comparison with the other groups. However, in the finisher phase, MON had the highest
acetate to propionate ratio. Over the past forty years, research has indicated a decrease
in the efficacy of monensin on feed efficiency, which can be partially explained by an
increase in dietary energy in feedlots [5] or the adaptation of the rumen microorganisms to
monensin [39]. The reduction in the acetate to propionate ratio when using monensin [37]
is due to the decrease in the Gram-positive microbes, which are primarily acetate producers,
and the likely growth of Gram-negative bacteria, such as succinate producer Fibrobacter
succinogenes, and Selenomonas ruminantium, which converts succinate to propionate.

The abundance of Fibrobacteres was significantly reduced in MON in the starter phase.
Fibrobacteres are Gram-negative, obligate anaerobes that are cellulolytic colonisers that
produce succinate and acetate [40]. It is, therefore, unexpected that Fibrobacter would
have a lower abundance within MON compared to CON. Monensin is known to affect
Gram-positive bacteria more compared to Gram-negative bacteria [37]. However, recently,
a study has observed that monensin can inhibit Gram-negative bacteria as well [41], as
observed in this study. Other factors, besides the outer membrane and its presence or
absence, determine the vulnerability of bacteria to monensin [37]. The abundance of
Fibrobacteres was significantly higher in MON within the grower phase; however, no
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significant difference between MON and CON was observed in the finisher phase. This
may indicate an interaction between the roughage to concentrate ratio, monensin, and
Fibrobacteres.

A higher abundance of Euryarchaeota in MON compared to CON was observed
throughout the feeding period, with a significant difference in the grower phase. The
Euryarchaeota phylum consists mainly of methanogenic archaea, such as Methanomassilic-
occaceae and Methanobacteriaceae, which were observed to be abundant in the MON group.
Monensin has been reported to decrease methane emissions by inhibiting bacteria that
produce hydrogen resulting in a decrease in the substrates needed for methanogenesis [42],
instead of affecting methanogen abundance [16].

Within the grower phase, the Basidiomycota abundance was significantly higher in
MON compared to CON. The role of aerobic fungi, such as Basidiomycota, in the rumen is
unclear; however, they scavenge for free oxygen within the rumen to ensure an anaerobic
environment with Ascomycota [43]. Monensin has been indicated to inhibit anaerobic
fungi in the rumen of sheep [44]; as a consequence, the abundance of aerobic fungi might
increase. Basidiomycota had a higher abundance within MON in the grower phase, with a
higher abundance in CON in the finisher phase. This could be attributed to the interaction
between the microbes, the feed additive, and the roughage to concentrate component of
the diet.

4.2. Monensin vs. Essential Oils

No significant difference between EO and MON was observed in alpha diversity,
similar to results reported in dairy [16] and beef [32] cattle, where EO did not alter the
diversity in the rumen microbiome. However, Patra and Yu [11] indicated that EO decreased
the rumen microbiota diversity. Factors such as ruminant species and age, active component
in EO, extraction methods, supplementation period, and dose administered are possible
sources of variation on the effect of EOs [33].

Compared to MON, EO was characterised by a low abundance of Succinivibrionacea
and within the grower phase, a higher abundance of Lachnospiraceae. Lachnospiraceae is
a Gram-positive bacterium and could be an indication of being inhibited by both mon-
ensin and EO as they affect more permeable bacteria. The variety of functions executed
by Lachnospiraceae may affect their relative abundance in digestive tract communities of
different hosts [45]. A number of species belonging to the Lachnospiraceae family have
cellulose-degrading activities and are associated with other cellulolytic microbes. The
abundance of Lachnospiraceae has been positively correlated with feed efficiency [38] and
fermentation in beef cattle [46,47]. In contrast, strains belonging to the family have been
found in higher abundance in less efficient animals [48–50]. Species of the Lachnospiraceae
family produce butyrate [51] and a higher butyrate concentration has been reported in more
efficient animals [52]. In the finisher phase, a higher butyrate concentration was observed in
MON compared to EO; however, EO had a higher butyrate concentration in the starter and
grower phases. Various studies [14,32] observed a higher butyrate concentration when the
diet was supplemented with EO. Not all species of this family are butyrate producers [51]
and further research is required to investigate the correlation between butyrate-producing
microorganisms and feed efficiency.

Within the feedlot period, the starter and grower phase had a more observable differ-
ence between MON and EO, while there was no significant variation in phylum abundance
between MON and EO in the finisher phase. Adaptation of microbes to EOs can occur,
which may elucidate the diminishing effects of EO in a feedlot environment over time [53].
The effect of EO on microbial fermentation decreased after six to seven days in a dual
flow continuous-culture system [11]. Longer exposure of EO to microbes may result in
alterations in the microbiome composition, and the possibility exists that some EOs can be
degraded by rumen microbes [54].

In a meta-analysis of the influence of EOs on the rumen microbiome composition, it
was observed that the addition of EOs to a diet could lead to a decrease in the eukaryote
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population [33]. In contrast, this study did not observe any variation in the fungal diversity
or phyla abundance between MON and EO in the starter, grower, and finisher phases; this
might be due to the similar mode of action between monensin and EO.

4.3. Monensin vs. Probiotic

Although the Proteobacteria ratio indicated dysbiosis in all treatment groups within
the finisher phase, PRO had a significantly lower Proteobacteria ratio and higher diversity
compared to CON. Compared to MON, PRO had a numerically lower Proteobacteria ratio
and higher diversity. Cattle are at risk within the finisher phase of a feedlot period as
they are fed a diet consisting predominantly of concentrate that can lead to a reduction
in pH resulting in dysbiosis in the rumen microbiome [55]. Dysbiosis is characterized
by a low diversity in the rumen microbiome [55] and a high Proteobacteria ratio [30].
Probiotics are known to have a stabilizing effect on the rumen microbiome composition and
are more effective in stressed animals [56]. Proteobacteria are mostly amylolytic bacteria;
however, this phylum does contain many pathogenic bacteria [30]. As dysbiosis interferes
with the stability of the microbial community, pathogenic bacteria subsequently take the
opportunity to proliferate, resulting in a negative effect on the animal. Such a dysbiosis
is well documented in metabolism disorders [55,57]. The supplementation of probiotics
is known to influence the diversity, richness, and abundance of microbes, resulting in
improved immunity, lower occurrence of metabolic disorders, and increased nutrient
digestion and absorption [7].

While Proteobacteria was significantly different between PRO and CON, one of its
families, Succinivibrionaceae, did not differ between the treatment groups. This family is as-
sociated with feed efficiency, as it produces succinate that can be converted to propionate [1].
Spirochaetes was higher in abundance within PRO compared to MON. This is in line with
a study where calves were supplemented with Bacillus subtilis and B. amyloliquefaciens [7].
The families Lachnospiraceae, Clostridiales_XIII, Clostridiales_XI and Elusimicrobiaceae were
more abundant in PRO compared to MON. Hyper-ammonia producing microbes, including
Clostridium sticklandii, C. aminophilum, and Prevotella ruminicola, are highly sensitive towards
ionophores [58] due in part to their Gram-positive nature.

No Bacillus ASVs were identified in this study. This may be due to Bacillus not being
characterized within the database used or being in such a low abundance that it was not
detected by amplicon sequencing. Previous amplicon sequencing-based studies did not
detect Bacillus species as well [59,60].

Limited literature could be found on the influence of probiotics on the rumen fungal
composition. In this study, Neocallimastigomycota tended towards a higher abundance in
PRO compared to MON. The Neocallimastigomycota phylum, which consists of anaerobic
fungi, has been indicated to be the primary fungal phylum within the rumen [61]; however,
Ascomycota was perceived to be the predominant fungal phylum in this study. Ascomycota
and Basidiomycota were also indicated to be the predominant phyla in another study that
also utilized ITS sequencing [62].

This study investigated the individual effects of essential oils and probiotics in com-
parison to the effect of monensin on the rumen microbiome. Future studies should consider
including a combination of essential oils and probiotics that could work synergistically.
A large-scale production trial on the effect of these additives on performance parameters
should also be conducted.

5. Conclusions

Limited differences were noted in the bacterial, archaeal, and fungal rumen population
between the MON group and the other treatment groups, CON, EO, and PRO. The natural
feed additives, EO, and PRO, might, therefore, be considered as possible alternatives to the
use of MON. However, large-scale production studies will be required for more conclusive
evidence. It was also shown that the probiotic group had a higher alpha diversity within
the finisher phase, which holds potential as this phase is known to have an increased risk
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for dysbiosis. A higher diversity is known to be a characteristic of a healthy and resilient
rumen microbiome. The effect of MON and EO on the bacterial composition seemed to
decrease, whereas the effect of the additives on the fungal population seemed to increase
as the feedlot period progressed. Further studies on the adaptation of rumen microbes to
diets and dietary components are needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13182927/s1, Table S1: The relative abundance (in percentage)
of the rumen bacteria/archaeal phyla and families of the control, essential oil, monensin, and probiotic
groups in the starter, grower, and finisher phases, Table S2: The relative abundance (in percentage) of
the rumen fungal phyla and families in the control, essential oils, monensin, and probiotic groups in
the starter, grower, and finisher phases.
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