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Abstract: As a result of the new telecommunication ecosystem landscape, wireless communication
has become an interdisciplinary field whose future is shaped by several interacting dimensions. These
interacting dimensions, which form the cyber–physical convergence, closely link the technological
perspective to its social, economic, and cognitive sciences counterparts. Beyond the current opera-
tional framework of the Internet of Things (IoT), network devices will be equipped with capabilities
for learning, thinking, and understanding so that they can autonomously make decisions and take
appropriate actions. Through this autonomous operation, wireless networking will be ushered into
a paradigm that is primarily inspired by the efficient and effective use of (i) AI strategies, (ii) big
data analytics, as well as (iii) cognition. This is the Cognitive Internet of People Processes Data and
Things (CIoPPD&T), which can be defined in terms of the cyber–physical convergence. In this article,
through the discussion of how the cyber–physical convergence and the interacting dynamics of the
socio-technical ecosystem are enablers of digital twins (DTs), the network DT (NDT) is discussed in
the context of 6G networks. Then, the design and realization of edge computing-based NDTs are
discussed, which culminate with the vehicle-to-edge (V2E) use cases.

Keywords: 6G; artificial intelligence; big data; Big data analytics; cyber–physical convergence; day 3;
digital twin; edge computing; network digital twin; open RAN

1. Introduction

The introduction of fifth generation (5G) networks was a response to problems related
to the exponential growth of mobile data from the new generation of wireless services. This
enormous growth of mobile data was envisioned to overwhelm the network in terms of its
ability to provide resources to support data-generating application with high flexibility [1].
Since provisioning of resources with high flexibility requires extensive upgrades to the
technologies existing in the current network infrastructure, this presents itself as a huge
challenge to a lot of mobile network operators (MNOs) [2]. The sixth generation (6G) of
wireless communication has high expectations in terms of improved quality of service
(QoS), i.e., providing network coverage, minimum latency, cost-effective deployments,
and low energy consumption, as well as high fidelity [3]. This QoS can be further improved
by incorporating proper resource management techniques through artificial intelligence
(AI) and machine learning (ML) procedures. Resource management in 6G networks and
beyond is envisioned to require massive big data analytics for knowledge discovery in
order to achieve high-level intelligence in terms of decision making and on-demand service
provisioning. Due to this postulation, this review investigates ways of exploiting the
cyber–physical convergence to realize the digital twin (DT) technology, with specific focus
on deriving DT technologies specifically tailored for 6G networks and beyond.

The expansive and sporadic growth of mobile data applications suggests that the 6G
wireless landscape will be characterized by plug-and-play deployments driven by massive
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Internet of Things (mIoT) [4]. These deployments are all driven by the desire for better
user experience, which will be achieved through higher QoS attainment. As the surge
towards massive IoT continues to gain momentum, wireless network deployments are
beginning to manifest in the following forms: (i) the login time, (ii) the logging subscriber,
(iii) the location at which the login activity occurred, and (iv) the application that was used.
The volume of network traffic received at each wireless access point (AP) is increasing,
and in order to keep up with this increase, the computational capacity of the APs and
other related infrastructure at the network edge require urgent improvement. Bandwidth
demand is increasing daily, and it reaches an all-time high with each passing day due to
the rapid proliferation of data-intensive applications and services, which contribute to
overloading the frequency bands and the inefficiency of the current spectrum management
techniques [5]. This situation presents network designers and performance analysts with
a host of new challenges. The most pervasive problem is that the required transmission
speeds tend to be so high that the ratio of propagation delay to packet transmission may
become significantly greater than unity [6]. However, with the introduction of AI strategies
into wireless communication, solutions for most of the pervasive challenges and problems
can be attained.

1.1. Research Motivation

Through the integration of AI and big data analytics into the core of wireless devices
and infrastructure, the IoT has completely transformed from the Cognitive IoT (CIoT) to
the Cognitive Internet of People Processes Data & Things (CIoPPD&T). However, there are
still aspects that need to be addressed in terms of (i) network maturity and diversity and
(ii) network flexibility towards digital transformation.

• Network Maturity and Diversity: The on-going deployment of 5G networks is showing
that wireless communication has greatly matured from the previous two generations
in terms of coverage and offered services. Parallel to maturity is the level of network
diversity that has been reached, which comes from different perspectives.

1. From the technology perspective, millimeter wave (mmWave) communications
and the network backhaul technology are the main aspects that determine net-
work maturity in the evolution towards 6G. There are actually three significant
classes of this technological perspective, defined according to use case situa-
tions: (i) extreme/enhanced mobile broadband (eMBB), (ii) ultra-reliable low-
latency communication (URLLC), and (iii) massive machine-type communication
(mMTC). These are network augmentations, among which mixes of utilization
situations will revolve to quickly prosper 6G networks into realization in no
time [7].

2. From the element management system (EMS) and business perspectives, the
relevant aspects are business models, such as (i) ecosystem maturity, (ii) coor-
dination of industry verticals, and (iii) the regulation aspects, including those
related to spectrum management and fragmentation.

3. From the network intelligence perspective, the determination towards realizing
6G networks can be viewed as a dispersed neural system that connects (i) the
physical, (ii) the cyber, as well as (iii) the biological universes, which genuinely
introduces a period wherein all network operations will be recognized as linked
and smart [3].

These perspectives of network maturity and diversity have set a solid foundation for
all things intelligent.

• Network Flexibility Towards Digital Transformation: With the introduction of some
underlying technologies through AI, digital transformation is becoming a reality.
The whole idea of digital transformation is the orchestration of network automation
technologies to make the design and maintenance processes comprehensible and more
natural to apply [8]. Further entrenchment of big data through the increase in digi-
tally available data means that new methodologies to formulate and understand the
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transient behavior of network systems need to be developed. That is why, as network
data operations continue to soar, network data analytics need to be incorporated
into the operations of wireless networks, more especially the network components
that are pushing significantly large amounts of multimedia traffic to the internet [4].
Therefore, effective ways to improve the computational capabilities of the relevant
network infrastructure will bring the necessary capacity to meet the unprecedented
computational demands of future network users. The current network design and
control methods based on deep neural network (DNN) architectures are not enough
for 5G problems, hence they may not be adequate for the “tsunami” of use cases
and multi-platform environments brought by 6G networks. To this effect, when it
comes to network big data, network infrastructure should become a major priority
among enterprise executives. Despite the popularity of AI strategies with diverse
capabilities that have improved connectivity and network flexibility for the dynamic
virtual environments, rapid scalability is needed to handle the intermittent nature of
big data loads [9].

Towards realization of the DT technology in wireless networks, it is believed that
the incorporation of AI strategies in network infrastructure can improve their operational
efficiency [10]. Therefore, a comprehensive representation of the transition from the con-
vergence of cyber–physical systems towards opening the way to real-time monitoring and
synchronization using DT is the motivation of this research work.

1.2. Novelty and Summary of Contributions

The contributions of this review, which are to bridge the gap between AI strategies
and DTs using the concept of the cyber–physical convergence, are outlined as follows:

• Blurring of Lines and the Cyber–Physical Convergence: With the convergence of
several disciplines, research in wireless and mobile communications has become an
interdisciplinary field, shaped by several interacting dimensions. This is called the the
blurring of lines [11], i.e., the blurring of the traditional boundaries between the digital,
physical, and biological worlds, which has led to cyber–physical convergence. To this
effect, the fourth industrial revolution (4IR) is a set of technological advancements
that have exploited the convergence of these technologies. As the lines between
the different fields of research continue to blur, MNOs have already begun finding
transitions beyond the traditional services, such as voice to actually monetize the new
valuable assets such as data and multimedia content. Therefore, in this contribution, it
is shown how digital transformation is blurring the lines between all these interacting
dynamics that build up and finally converge into a behavioral psychology concept
called RL. Then, the proxies of cyber–physical convergence are discussed in terms of
(i) quantum physics and quantum computing and (ii) data science and big data.

• Adoption of Cyber–Physical Convergence Towards Realizing DTs: Since the emer-
gence of AI strategies has already begun shaping an increasing range of industry
sectors, their potential impacts in terms of sustainable development are expected to
impact the global operation of the telecommunication industry, both in the short term
and in the long term. In this way, network operators are able to profitably manage
and operate the dizzingly complex next-generation IoT networks [12]. However,
there is currently no published research on the systematic assessment of the extent to
which AI strategies will impact all the aspects of sustainable development. Regarding
the sustainable development goals agreed upon in the 2030 international agenda,
telecommunication companies are under immense pressure to properly leverage AI
for 6G networks. IoT and digital transformation require high levels of intelligence
in order to improve efficiency and increase profitability. Possible ways to address
this pressure resulted in the CIoPPD&T paradigm, which has been defined by CISCO
as a monster paradigm. In terms of digital transformation, the CIoPPD&T is an
industry-ripe paradigm for AI-driven solutions, wherein MNOs have already begun
to experiment in terms of solution deployment and deployment [13]. Their main aim
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of this contribution is on leveraging AI capabilities in terms of fast, scalable inter-
pretation, analytics, and prediction towards providing the convergence to drive the
adoption of the cyber–physical convergence towards the realization of DTs.

• Edge-Based Big Data-Inspired Digital Twin: As the IoT, intelligent networks, and social
media are increasingly becoming prevalent, data volumes are explosively increasing,
and the velocity at which the data are generated has a profound impact on society and
social interactions. This means that big data has already been woven into the fabric of
everyday operations [14]. Application-level data have quickly become the primary
source of mobile big data, and these data can escalate into terabytes [15]. Research
entities and industry experts have envisaged that through the use of network big data,
6G networking will take communication closer to 2030 vision, which is the Internet
of Everything (IoE) [9]. Therefore, as big data is hurtling towards the wireless com-
munication enterprise, data-aided models may help in finding key insights from the
network data that improve predictive analytics. Meanwhile, cyber–physical systems
are a key concept of the 4IR architecture. The physical and software components of
cyber–physical systems are deeply intertwined and are able to operate on different
spatial and temporal scales. That is, they are able to (i) exhibit multiple and distinct
behavioral modalities and (ii) interact with one another in ways that are capable of
changing with context. As the integration of the big data technology and DT continue
to cover a wide range of applications in wireless communication, the main aim of this
contribution is to discuss the application of big data computing and big data analytics
in DTs. However, big data is a double-edged sword with particular keenness on both
sides, which is to say that as it presents opportunities for enterprise development, it
simultaneously brings with it challenges. In this case, this discussion will only focus
on the application of big data in predictive analytics (the predictive DT), as well as in
day 3 edge network operations.

• Digital Twin-inspired Vehicle-to-Edge (V2E) 6G Use Case: AI has already surpassed
expectations in opening up different possibilities for machines to collaborate in dig-
ital transformation. Edge computing, as a new interdisciplinary paradigm of edge
intelligence, performs computations in order to reduce latency, improve service avail-
ability, as well as save system bandwidth [16]. As edge computing and AI carry
the promise of bringing intelligence to the edge of the network, they have since re-
ceived tremendous amounts of research interest from the vehicular communication
community. Therefore, in order to advance the DT technology at the edge, in terms
of URLLC processes, the vehicular communication use case is considered, where
a cellular vehicle-to-edge (C-V2E) DT is considered. With the assumption that the
advisory information to vehicle controls are provided using advanced driver assis-
tance systems (ADAS), this contribution elaborates on the DT concept at the edge by
systematically splitting the DT design into different aspects, such as (i) requirements,
(ii) AI agent, (iii) mapping, (iv) central controller, and (v) inter-twin communication.
Regarding current and next-generation computational intelligence, this DT concept is
discussed together with the prospective deployment strategy of an open radio access
network (Open RAN)—tailored to meet the monitoring and control required in 6G
edge computing networks.

1.3. Organization of the Article

The remainder of this article is organized as follows: Section 2 discusses the challenges
facing the digital transformation towards the realization of DTs. Section 3 brings together
a discussion on the pillars that make the cyber–physical convergence possible. Section 4
gives an extensive discussion on the different fields of study whose interactions result in
the cyber–physical convergence as well as the proxies that merge as the cornerstone of the
application of the DT in 6G networks. Section 5 gives an overview of the AI market in terms
of the global AI software forecast and the forecast on revenue generation. The current state
of the telecommunication industry is discussed, initially focusing on the emergence of over-
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the-top (OTT) services, which bring out the need to incorporate DT in wireless networks.
Section 6 introduces the application of the DT technology into wireless networks in terms
of inter-twin communication and how an end-to-end network DT is achieved. Section 7
brings out the need for edge intelligence in 6G networks and discusses the potential
application use cases of DT-assisted edge computational intelligence. Section 8 discusses
the incorporation of big data and big data analytics in edge computing towards achieving
big data-inspired edge-based DTs. Section 9 discusses the edge-based DT with respect to
the vehicular communication use case for both traditional and open RAN scenarios. Finally,
Section 10 gives the concluding remarks of this article.

2. Challenges Facing Digital Transformation

With the massive number of mobile devices that are currently in use and the plethora
of use cases and use case situations, whose heterogeneity is continuing to place stress
on the already stretched network resources [17], there is a need to transform the cur-
rent resource provisioning strategies. This transformation requires the incorporation of
emerging technologies, such as AI and big data analytics, into the solution processes. How-
ever, the fact is that the incorporation of these technologies into the intricate operation of
communication networks has been marred by several critical challenges that cannot be
overlooked. The problems related to interactive computing and algorithmic dependencies
are discussed below.

2.1. Lack of Interactive Processing

In ML, interactive processing refers to the ability of computers to learn from humans
by interacting with them using natural language as well as by observing their behavior [18].
Among the emerging technologies that need to enhance interactive processing, AI, cloud-
edge computing, big data computing, and computer vision are heavily mentioned as the
defining technologies on the road towards 6G. However, the recent bliss of technological
advancement and its acceptance, more especially in human-centered AI, has come with
huge challenges relating to the mining of multi-modal, multidimensional, and complex data.
As a response to these challenges, interdisciplinary approaches have been triggered, which
has led into cutting-edge ML-based analytical tools being developed [19]. There are already
documented successes in the use of artificial neural networks (ANNs) and other deep
architectures in working with complex data at reduced computational algorithmic costs.
Algorithm computational costs have dropped, computational power has surged, and data
storage devices have become available at reasonable prices. This has allowed for the
combination of different learning techniques to achieve even more powerful computational
tools, e.g., ANNs combining with reinforcement learning (RL) resulting in deep RL (DRL)
and other deep architectures.

To this effect, the computational capabilities of machines have been reshaped to
understand and decipher complex patterns in big data. With the rise in interdisciplinary
approaches, the analysis and the modeling of networks and dynamic networked systems
has also attracted huge interdisciplinary research interest over the past few years. This
analysis and modeling is mostly done using complex systems theory [20]. To this effect,
a new telecommunication ecosystem landscape has emerged such that research in wireless
networks has become an interdisciplinary field shaped by several interacting dimensions.
In spite of all these achievements in computational prowess, algorithms for interactive
processing are still lacking towards the attainment of comprehensive digital transformation.

2.2. Existence of Long-Range Algorithmic Dependencies

From a system analysis perspective, it can be concluded that the design of a DT is com-
plex. Due to the lack of interactive processing and the tasks that need to be accomplished,
the analysis of its operation and maintenance throughout its lifetime requires a definitively
different approach. Because of the different interacting dynamics from several knowledge
bases, a functional DT-based wireless network can be achieved in the most peculiar context.
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However, this requires a complex systems design approach. With so many interacting
dimensions in a DT, algorithmic computing has been transformed to interactive computing,
and the pervasive problem of the existence of long-range algorithmic dependencies is
critical since it is a property that degrades the performance of DTs. Thus, the discovery
of the existence of long-range algorithmic dependencies is very important. There are sev-
eral solutions attempting to address this problem in wireless communications, but they
focus on user behavior and its influence on the traffic and they are based on Markovian
approaches, while future networks require solutions that can also handle non-Markovian
network behavior [21,22]. If the network workload is characterized by aggregate packet
arrival processes, which might be resulting from a superposition of different packet streams
emanating from multiple sources, the instantaneous rates of packet arrivals can be modeled
as a function of the number of such sources in their burst states.

In this way, the network states might end up fluctuating with high variability since
this kind of traffic is usually far from a renewal process due to the positive dependence
between successive arrival times. The escalation of such a situation, which is as a result of
moderate-to-high traffic levels, can quickly lead to the degradation of the overall network
performance [23]. As a consequence of this, a catastrophe of heavy burst packet losses
may result. This may render the whole network unusable, as it might degenerate into a
chaos of packet loss scenarios. As such, this kind of network behavior makes the long-term
prediction of network behavior a serious challenge, hence newer models need to be brought
forward to describe the relevant transient analyses and probabilistic models [24].

2.3. Tentative Solutions to the Digital Transformation Challenges

The answers to the above challenges can be given from the perspective of the rise in
AI strategies over the past decade.

2.3.1. Introducing Cutting-Edge AI Algorithms

Cutting-edge AI algorithms that are capable of automating wireless network opera-
tions include, among others, (i) RL, which is useful in computer vision, and (ii) data mining,
which is a very important tool in natural language processing (NLP) as well as other large
language models (LLMs) [25]. Since smartphone evolution, AI strategies have had a wide
adoption—a move that has huge implications for every industry vertical. As a result, it
is the one that will lead to the next great technological shift, i.e., the fourth industrial
revolution (4IR). The rapid advances in AI have opened up new possibilities to unleash
new and effective solutions through improved storage and processing. Employing AI
solutions in telecommunications can help MNOs to continue accelerating their growth
and place themselves in highly competitive spaces. However, as much as AI is making
tremendous milestones in technology, it has hit a series of roadblocks in the telecommu-
nications industry. At surface value, it might seem as though AI is widespread in the
telecommunications industry, but the only familiar application of AI is the voice-activated
menu systems that respond to verbal commands. Using this, AI in the telecommunication
market is increasingly helping MNOs in managing, optimizing, as well as maintaining
infrastructure and customer support operations.

2.3.2. Introducing Big Data Computing Tools

As big data tools and their applications become more available and more sophisticated,
the future of AI in the telecommunication industry is quickly developing. With this quick
development, network optimization, predictive maintenance, virtual assistants, and other
new AI use cases in telecommunications are already making a huge difference in delivering
added value solutions to network users [26]. In order to realize DT, newer data models and
newer data structures are needed in order to represent the observations (states) and the
relations of the real-world assets (physical objects of interest). Then, these models need to
be populated with knowledge. For instance, it is the actual data from the assets that are
required in creating the actual DT instance. Therefore, the data collection process must
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be performed continuously in order to enable uninterrupted, accurate, and up-to-date
system observation. In addition, the tools to operate on the data in order to add value to
them, which are key in unlocking the DT capabilities and benefits, are required. Blockchain
and federated machine learning (FML), and other analytical tools, are arguably the most
prominent algorithmic tools and strategies for adding improved security of twinning the
real-world processes and also extracting insights from the DT. This spans from simple data
retrieval to complex algorithms and simulating different scenarios and other analytics tasks
to predict future network behavior, used in the prediction of future network behavior.

3. The Pillars of the CIoPPD&T Paradigm

The CIoPPD&T paradigm can be defined as the IoE in innumerable ways since it will
be built upon billions of connections to the internet. In the 2030s, wireless network size is
estimated to increase proportionately to the square of the amount of network users, which
will create unprecedented opportunities through the exponential power of networks in con-
necting people. In this case, IoE will represent the network of networks. CISCO theorized
that, “as the evolution of the internet continues, the IoE will also evolve into a paradigm
that brings together five pillars, i.e., cognitive, people, process, data, and things”. Even
though this is said to be a CISCO invention, it is not solely owned by them and does not
describe a specific architecture due to the continuing evolution of the internet. By turn-
ing information into useful actions that will create more opportunities than ever before,
the pillars of the CIoPPD&T will make the networked connections more relevant and even
more valuable. In summary, this is a paradigm that describes the intelligent connection of
(i) the people, (ii) their processes, (iii) the data they produce/consume, and (iv) the things
that can be viewed as a world where billions of devices will be equipped with sensors to
be able to detect, measure, and also assess their status and the status of the network [27].
These pillars are brought together to make possible the networked connections and the
harnessing of raw data to describe several processes as follows.

3.1. Cognitive Science and Cognition

Cognitive systems have recently received great research attention in spectrum man-
agement algorithms for solving complex opportunistic access decision-making through
computerized cognitive processes. Cognitive science, in its own rights, is an interdisci-
plinary scientific study whose processes deal with inputs from linguistics, psychology,
neuroscience, philosophy, as well as computer science or AI. Its task is to examine the
nature, tasks, and the function of cognition [28]. In the 6G context, the convergence of
these processes, i.e., the data and the things, will create unprecedented opportunities for
industries, businesses, and people [29]. With the emergence of the interdisciplinary field
known as cognitive choice modeling, which integrates theory from decision processes
and choice behavior [30], systems will be able to process sensory information based on
certain computational rules in order to form representations of their environments and,
subsequently, form the basis for decisions and choices [31].

3.2. The Internet and the People

People use their devices when connecting to the internet in a variety of ways, and the
most prevalent way is via social media. The people connected to the internet become nodes
and tend to produce information with trends that generate data resonating with different
social activity systems. The recent advances in wireless sensor technology have already
changed the way in which people connect to the internet, and this will proceed to enable
them to connect via wearable devices as well as their clothing [32]. For example, miniature
sensors may be placed on the surface of the skin or even sewn into clothes to provide
information to medical practitioners about the vital signs of home-based care patients [33].
In addition, as the field of molecular communications matures, people will be connected
in more relevant and valuable ways including body internal and external tele-medicine
sensors [34]. In other futuristic drug delivery use cases, patients might be able to ingest
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a pill that will be able to sense and report the condition of the whole digestive tract to a
medical practitioner over a secure internet connection [35,36].

3.3. The Processes and the Data

Processes occur when all the pillars of the CIoPPD&T cooperate with one another in
delivering value to the world, e.g., delivering valuable information to the relevant person at
the appropriate time. One example of such a process is the uniform parcel delivery system
in a smart city, which offers services to different types of consumers in the city including
individuals, departments, as well as manufacturers [37]. These processes are more vital,
and, if done correctly, the connections may become even more relevant and valuable. This
is possible when the right information is delivered to the right destination at the right
time and in the most appropriate way. Data refer to a representation of facts about these
processes, and they suitable for the communication of knowledge in a formalized manner.
Devices typically gather information produced by several processes and this information
is actually the data that will be converted into the intelligence responsible for making
better decisions [38]. When the data are combined with the relevant analytics, actionable
information can be delivered to people as well as machines to make better decisions that
will achieve better results.

3.4. The Things

In the context of the IoT, a thing can be defined as an entity that has a unique identifier,
an embedded system, as well as the ability to transfer data over the network [39]. These
entities are the physical devices that are usually or always connected to the internet in
order to assist one another in terms of intelligent decision-making. Such devices may
include sensors, which are either disposable or non-disposable, consumer devices, and en-
terprise assets that are both interconnected and also connected to the internet. For context
awareness, these devices sense and collect network data to analyze and obtain insight.
Increasing the number of devices provides more valuable information that can aid people
and machines in making better decisions. Therefore, the more expansive concept of the IoE
includes (i) machine-to-machine (M2M) communication, which is a modality of communi-
cation between machines or devices without any human interaction or intervention [40];
(ii) machine-to-people (M2P) communication, where machines exchange information with
people in order to improve their processes; as well as (iii) technology-assisted people-to-
people (P2P) interactions.

4. The Interacting Dimensions of this Complex Socio-Technical Ecosystem

The cyber–physical convergence states that the physical world, which is the network
users and their devices, and the cyber world, which consists of the internet applications
and services, are becoming more integrated and converging [41]. The IoE concept has since
evolved from its traditional definition due to the convergence of multiple technologies,
i.e., (i) real-time analytics, (ii) ML, (iii) commodity sensors, and (iv) embedded systems. This
is how the competitive dynamics of the interacting dimensions shape the cyber–physical
convergence [42]. Since the adoption of the IoT as a tentative strategy for deployment in
future generations of wireless communications [25], the concept of cyber–physical conver-
gence is no longer breaking news. What is required now are different efforts for harnessing
the network effects through the new and deeper connections that are afforded by the
cyber–physical convergence. One of the main features of the cyber–physical convergence
is that wireless network users as well as their behavior are the pinnacle of the technical
communication systems. Because of this, the users and their devices are the actors in this
complex socio-technical ecosystem that define their behavior in terms of (i) how much
bandwidth they require, (ii) the kind of content they usually consume, and (iii) in what lo-
cation of the network they are usually found. Therefore, the different interacting dynamics
that define the realization of DT in terms of the operation of future wireless communication
networks are discussed below.
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4.1. Information and Communications Technology

Information and communications technology (ICT) is actually the convergence of
several aspects including computing, telecommunications, as well as governance policies
relating to how the information must be securely accessed and processed so that it can either
be transmitted or stored [43]. ICT has always been behind every remarkable revolution
in communication technologies, and its ecosystem has had a huge role in unleashing
high-performance technologies and will soon be the biggest enabler of 6G networks [44].
Research work in ICT has already begun developing potential use cases for 6G, and each
one of these use cases ais enabled by a set of technical requirements that have formed the
basis of the technical work required for 6G. As a result, there is a wide application of ICT in
the IoT and blockchain technology, which will drive the legacy of 6G networks.

4.2. Group Dynamics and User Behavior

A group is defined as several individuals who come and/or work together with the
objective of accomplishing a particular task, while group dynamics refers to the attitudinal
and behavioral characteristics of that particular group. Group dynamics usually concerns
how groups are formed, i.e., their structure and processes, as well as how they function [45].
In the telecommunication context, group dynamics are a very common entity in the study
of user/device behavior in heterogeneous networks. Services requested by different users
in heterogeneous cellular networks tend to vary and change dynamically, either spatially
or temporarily. For example, large amounts of traffic from similar applications/services
might be requested by device users distributed over certain regions of the network. This
creates a social pattern among the users that is known as service groups. The users/devices
within those service groups might differ in terms of network usage, i.e., the user behavior
known as group dynamics. From a macrocell perspective, the number of these network
users requesting similar data or multimedia streams in a certain network location, within a
certain time window, may be quite large. This might probably be advantageous in terms
of identifying user patterns since such user patterns exhibit strong phenomena, i.e., user
behavior, which characterizes their general behavior.

4.2.1. Describing User Behavior

In order to describe user behavior for inference purposes, the Gini coefficient can
be used. The Gini coefficient [46] is actually a concept borrowed from statistics and
economics used as a measure of statistical dispersion. Depending on the usage context,
it is sometimes referred to as the Gini index or the Gini ratio. For instance, the Gini
coefficient was used in [47] in measuring the participation inequality in treatment-focused
digital health social networks. In that usage context, it was referred to as an index. Based
on the Gini coefficient, user social patterns were studied and utilized as a method for
optimizing system performance. In communication systems, this model can be exploited
through social-aware networking protocols, as was proven in [48], and it is very efficient in
supporting communication in user-centric mobile networks. However, user behavior and
traffic characteristics are difficult to capture in wireless networks without using parametric
techniques [49]. This means that collecting enough previous data from telecommunications
service providers in order to obtain the statistics and inference of user behavior may not
help in teaching a system how to learn a sequence of network behaviors. Even if parametric
data could be abundantly available at our disposal, it might as well be more of a mere
representation of past events. It may also not be very useful in the objective of interest,
which is to obtain the current behavior for purposes of future network traffic behavior
prediction. Therefore, in order to capture the traffic patterns, one needs to first deal with
the user behavior since it has a direct influence on traffic patterns. This might help in the
prediction of future prediction purposes, and mathematical modeling is a useful tool that
can be utilized for this non-parametric traffic prediction due to the fact that it will be able
to account for user behavior in terms of their mobility patterns.
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4.2.2. Group Dynamics in Cognitive Radio Networks

The design of adaptive optimization algorithms for improving network operation
and performance requires the use of advanced data collection and analytics techniques.
For instance, secondary user (SU) behavior in a cognitive radio network (CRN) somehow
exhibits a strong analogy to human behavior, and to explain this analogy, such a behavior
is exemplary of a group of individuals living and/or shopping together [50]. On the one
hand, such a group has some characteristics that may be categorized according to either
individual behavior or group behavior. In terms of individual behavior, individuals can be
seen as being self-interested, rational, and irrational. For example, in neo-classical economic
theory, the authors in [51] studied maximization and the act of choice, whereby the author
concludes that the behavior of a rational individual is to maximize a certain objective
function over some set of appropriate choices. This is known as acting for private gain.
However, on the other hand, group behavior refers to groupings that are/were created
with the objective of achieving a common public good. Its characteristics include surviving
through the evolution of time in the midst of resource constraints and stability reasons
over time [52]. In human society, people are the ones that provide the choices as well as
alternatives to the individuals and groups. However, there are always trade-offs between
private gain and public good. Such trade-offs are usually modeled using prospect-theoretic
discrete choice experiments [53]. In wireless communications, such trade-offs are usually
measured and addressed using utility theory, where the different aspects of individuals
and of groups can be well represented as utility functions [54].

4.3. Behavioral and Cognitive Psychology, Micro- and Behavioral Economics

In the behavioral and/or cognitive psychology field, principles relating to human
learning and development are used together with their cognitive processing in overcoming
problematic behavior emanating from emotional thinking [55]. This describes, among other
things, (i) how human subjects perceive data and the way they interact with them, (ii) their
assessment of the relevance of the information obtained from the data, (iii) the way in
which they exchange this information through interactions with one another, as well as
(iv) how they extract knowledge from that information. This is where the RL theory comes
from, i.e., behavioral psychology. It is through such knowledge exchange that supermarket
psychology-based RL strategies, which account for the high density of future wireless
networks that leverage the data available with low overhead, are formulated. In the context
of gNB sharing, this entails the modeling of how network providers negotiate the use of
wireless network infrastructure and content resources in terms of trading and/or sharing
them, i.e., the modeling of how subjects make decisions under different situations. This
brings this discussion to how supermarket psychology inspires user behavior in mobile
and wireless networks.

Example 1. Suppose a customer is entering a supermarket; they generally navigate a route around
its perimeter (the macrocell), before dipping into any of the central aisles (small cells) according
to their specific needs (requirements). The perimeter design of a supermarket is in such a way
that it has a wide walkway for accommodating large amounts of footfall. This is to encourage
customer behavior due to their natural tendency of migrating towards traversing open spaces, hence
avoiding congestion and confinement. Almost all retailers know this fact, as they always ensure
that they position their key products there, i.e., fresh produce or perishables. The central isles,
however, because their walkways are less wide and less frequently visited by customers, account for
proportionately less sales for a typical supermarket. In this case, the products in the central isles
actually sell in low volumes compared to all the products in the supermarket. As a consequence of
this, the central isles are said to be lower in terms of sales density. Therefore, the majority of the
products placed here are known as the long tail of the product offering, i.e., the non-perishables. This,
however, this does not mean that this long tail of the product offering is inconsequential. As much as
there can be relatively few units of each product in the long tail that are or may be sold each day, they
actually serve the purpose of catering to every eventuality. In doing so, they also give the customers
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a sense of variety, and this variety is the one that drives them to choose certain supermarkets over
others. Therefore, it is worth mentioning that the design of small cells follows from this idea. Small
cells actually offer the users with specific needs such as video streaming, i.e., both delay-tolerant
such as video conferencing and delay-intolerant such as movie downloads.

4.4. Nature-Inspired Computational Approaches, Neurosciences, and Neural Computing

Nature-inspired computational approaches, also known as evolution strategies, are
regarded as a sub-class of direct search algorithms and optimization methods. They operate
by mutation, recombination, and selection, which they apply to a population that contains
candidate solutions. They evolve iteratively to achieve better and better solutions, hence
they are said to belong to a sub-class of evolutionary algorithms [56]. In computer science,
these strategies are used as optimization techniques belonging to a general class known
as evolutionary computation methods or as artificial evolution methods. These strategies
operate by using the natural problem-dependent representations. These are primarily
mutation and selection and search operators that are applied in an iteration loop. Each
iteration of a loop is referred to as a generation, and each sequence of generations is
continued until pre-defined criteria—termination criteria—are met. It is worth noting that
the RL theory provides a normative account of concepts deeply rooted in the psychological
as well as the neuro-scientific perspectives of animal behavior. An example of this is based
on the behavior of algorithm agents when optimizing the control of their environment.
In addition, neural computing has been identified as a perfect alternative computing
technique of the post-Moore’s Law era, even though much of the research attention has
been directed to specialized applications [57]. The RL theory, through incorporating neural
computing, gave rise to the development of the DRL strategy, as well as other AI strategies
with usefulness in situations that are approaching real-world complexity, such as in robot
navigation. In DRL, the computing agents are developed through the training DNNs in
order to tackle the difficult task of deriving efficient environmental representations using
high-dimensional sensory inputs, which they use in generalizing previous experiences to
create new ones. Some deep architectures of DRL, such as the deep Q-learning networks
(DQNs), even go to the extent of storing their past results and experience for later replay
when encountering recurring problems.

Example 2. Group behavior has had manifestations in wireless communications, with solutions
from nature-inspired algorithms, such as (i) genetic algorithms, (ii) particle-swarm optimization,
as well as (iii) DNNs, where cognitive radios (CRs) make decisions that not only control their fate
but also the fate of others. In a similar way to human society, CR society is also a hierarchical society
that has attributes that are similar to those possessed by human beings. One of their outstanding
human-like attributes is self-organization [58]. In addition, similar to the central government
of a country with specific reference to its system of law enforcement, a CR society also has basic
etiquettes that all nodes in the CRN need to comply with. In both cases, more especially in the
CRN, the main objective of having these etiquettes is to minimize unwarranted as well as excessive
interference, i.e., listen before transmitting. In addition, during channel access, these etiquettes
promote efficient channel access, e.g., one must never hold a channel unnecessarily if there are no
packets to transmit. However, some shortcomings in CRNs have been studied using micro-economic
game-theoretical analysis and have been addressed using psychological models derived directly from
human behavior, e.g., game theory and RL. Therefore, a CRN can mimic a human society since
it may behave rationally when it is competing and cooperating for resources in order to achieve
survival as well as social efficiency, the same way as in the human society [52]. However, it must be
noted that despite all these laws of behavior, irrational behavior due to Byzantine failures may also
be exhibited by SUs [59], leading to security vulnerabilities as well as loss of spectral efficiency and
instability in the CRN.
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4.5. Statistical and Discrete Mathematics

Discrete mathematics techniques such as graph theory, game theory, and queuing
theory are very useful tools for deriving models in complex network analysis. Graph theory,
which is used in studying the random phenomena in either two dimensions or higher
dimensions, is one of the richest branches of applied probability. In terms of operation,
graph theory is similar to stochastic geometry, which is also intrinsically associated with
the theory of point processes [60]. It is often used in situations involving social relations
containing compact graph descriptions that are amenable in characterizing properties of
human behavior and exploiting them in designing wireless network solutions. On the other
hand, in game theory and in queuing theory, discrete mathematics is used in describing
network economics such as the utility. Even though game theoretic techniques are leaning
towards the direction of RL strategies, it is often used to complete the list of discrete
mathematical tools used in network analysis. Therefore, problems in queuing theory can be
viewed in the light of both statistical and stochastic behaviors when faced with challenges
relating to the development of mathematical tools to describe the behavior of arrival and
departure processes of a given system [61]. Therefore, the study of point processes and the
relationship between stationary and non-stationary quantities with special and non-special
inputs can be examined using both graph and queuing mathematics. Therefore, it is in this
way that the existence and the continuity statements, as well as the relationships between
time and stationary quantities having special inputs, can be emphasized.

4.5.1. Learning and Queuing Theory in Stochastic Optimization

Learning and queuing theory actually result in the emergence of a newer class of
random processes that is connected to point processes. This new class seems to be more
suitable for describing queuing systems such that it can be used in data traffic analysis.
The analysis of data traffic is somehow synonymous with the analysis of heavy traffic,
whose queuing theory approximations can be performed on general arrival and service
time models such as the G/G/1 queue [62]. In queuing theory, a G/G/1 queue is a
representation of the queue length of a single server system with general (arbitrary) inter-
arrival time distributions and general (different) service time distributions. Several research
works, such as [63], have attempted to investigate the role that learning and regret plays in
queuing theory. However, they omitted the assessment of the impact of parameter learning
on queue performance. Regret can be defined as the difference between the aggregate
performance of a particular algorithm and the aggregate performance of the best decision
that the algorithm made. Learning deep generative models capable of representing complex
service time distributions can be an effective way of learning parameters [64]. In this case,
a better performing algorithm is the one with an aggregate approaching zero at a faster
rate, i.e., fastest convergence towards zero. There exist regret-minimizing algorithms that
are a consequence of Blackwell’s Approachability Theorem [65]. However, it must be
noted that the fundamental result of this approachability theorem is considered to have
resulted in online learning. Therefore, a single server queuing model can be considered
for sequential decision-making where a scheduler makes service decisions that affect the
service rate. If the service rates are assumed to be unknown, the aggregate performance
of the different service decisions would be predicted and then optimized using an online
learning algorithm.

4.5.2. Learning and Graph Theory for Deep Learning

Usually, the point where graph theory meets deep learning is in graph neural networks
(GNNs), where NNs are the architecture being referred to when deep learning (DL) is
mentioned [66]. The NN architecture is built upon the concept of perceptrons, which
are inspired by the interaction of neurons in the human brain. In the graph, there are
a couple of different types of traversals, i.e., directed and undirected. If the graph is
directed, the traversal follows a single direction, otherwise it is undirected. Building on
the concept of traversals, let an undirected graph G = (V , E) be representative of a set of



Appl. Sci. 2023, 13, 13262 13 of 43

vertices V = {1, 2, · · ·, V}, which represent the set of gNBs to which users can connect and
the edge set E = {1, 2, · · ·, E} represent the possible connection links between gNBs and
users. The state of a given user at a given time slot can be defined using the characteristic
parameters concerning its association with the gNB to which it is connected. In addition,
user–gNB association, which is a stochastic process, has been studied extensively in the
literature using matching theory with parallels to game theory in [67], as an optimization
problem in [68], and modeled as a stochastic game in [69].

The attractiveness of these approaches is the long-term biased received power of
the respective BS. However, 6G will comprise dense and hyper-dense deployments of
small cells and a frustratingly high number of mobile devices that want to connect to the
internet via these gNBs. Therefore, a deeper understanding of the user–gNB association
mechanisms as well as the more complex schemes that provide the best QoS is a requisite.
In this regard, future user–gNB associations need not aim only at improving system utility,
sum rate, and fairness but also how quickly and efficiently those are attained in hyper-dense
deployments. Therefore, the efficiency in addressing this as a primary objective should
be performed with the idea that due to the IoT, the scale of the network may increase in
terms of its heterogeneity [69]. In addition, the amount of information that the network
infrastructure is expected to process at each particular instant increases. Both the gNB and
the user devices need to be equipped with learning capabilities so that they can be able to
learn from their previous experiences. Learning from previous experiences and comparing
them with current information is used to achieve better resource usage performance in
the infinite horizon. In order to decide how many resources to be allocated to each cluster,
a policy of maximizing the expected gain per unit resource and an unbounded knapsack
problem can be formulated and a greedy policy utilized.

4.6. Quantum Physics, Quantum Computing, and Quantum Machine Learning

The incorporation of quantum computing and quantum machine learning (QML)
algorithms in 6G networks is aimed at enhancing the processing capabilities of network
infrastructure compared to the traditional ML techniques [70]. The rapidly increasing wave
of data services that is pushing the boundaries of processing power of the communication
networks is not passive. The data are increasing pervasively and at an exponential rate
and the data traffic presents imminent challenges to all the aspects of wireless systems
design. This then inspired the advent of quantum computing in wireless communica-
tion. The quantum computing concept, which is aimed at fundamentally changing the
telecommunication landscape using quantum physics properties, has since inspired a
whole new generation of researchers. These properties are used by quantum computers to
store data and perform complex computations [71]. As a result, the quantum computing
community has since achieved major breakthroughs by building systems that are stretching
the limits of classical simulations to enable cloud-based research. Apart from enabling
communication technologies and bringing advantages to all the layers of the protocol stack,
quantum computing has become a catalyst in the seamless communication ecosystem for
the cyber–physical convergence. The ideas of quantum physics were applied in a spectrum
occupancy reconstruction problem often encountered in CRNs [72].

4.7. Data, Data Science, and Big Data Analytics

The data that are generated by wireless communication networks are not just any data,
they are system-level data. System-level data include cellular-level data and core network-
level data [73], which can be interpreted for the purpose of decision-making in both
spectrum and computational resource allocation (RA) [74]. Since interpreting the enormous
amounts of data, structured and unstructured, for decision-making purposes has proven to
be cumbersome in terms of computational and time complexity, data science emerged as a
solution. It was mentioned previously that it is the increase in the amount of data available
that has led to the emergence of big data analytics. Therefore, data science, as a field of big
data, was/is aimed at providing meaningful insights from the large amounts of complex
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data through the combination of the different fields of the cyber–physical convergence.
The fields of work in statistics and computation are used in the interpretation of these data
for purposes of better decision-making [75]. The continuously increasing datasets and
ease of access have since been made possible through a collaboration of companies known
as Fintech [76]. When it comes to obtaining big data networking requirements, database
applications, and processing upgrades, there is no shortage of advice. A single casual
internet search will show a plethora of options. However, neither the data themselves nor
the intelligence can be of any value if this advise cannot obtain the proper processing in
a reasonable amount of time to turn it into useful computational algorithms. In order to
achieve useful computational algorithms and have systems running on both the twin and
the physical object, one must be able to describe the characteristics into a mathematical
model then create systems that have the capability to traverse the data and come up with
useful information to enhance the processes of the DT with extremely high flexibility.

4.8. The Proxies of Cyber–Physical Convergence

In the cyber–physical convergence environment, the user devices are actually referred
to as the proxies of their users in the cyber world. This is because the user devices are used
to (i) communicate, (ii) exchange, as well as (iii) manage the network data by emulating
the way in which the users would be when they are interacting with one another in the
physical world. Therefore, in the design of effective 6G communication systems, user
behavior needs to be taken into consideration strictly as a structural paradigm instead of
just an afterthought. In doing so, network users will no longer be treated as passive internet
entities but as active role players [77]. This is because in anticipating the effects of device
behavior on their users or in order to understand the reaction of the users when they are
exposed to certain situations, a socio-technical analysis is required. In a socio-technical
analysis, users are viewed as entities of the wireless communication ecosystem with a
behavior that can be modeled and clearly predicted to a certain extent [78]. In addition,
the resources that it brings are exploited in the optimization of system operations such as in
crowd-sourcing systems where complex problems are synergistically solved with the use of
computers. However, since crowd sourcing is one of the main components of the complex
internet socio-technical system, as it is based on device-to-device (D2D), device-to-human
(D2H), as well as human-to-human (H2H), it is used as a very primitive example.

4.8.1. The Human Proxy and User Experience Proxy

The human proxy paradigm and the user experience paradigm merge as the other
two cornerstones in the design of cyber–physical convergence in mobile and wireless
communications through quality of experience (QoE). On the one hand, the human proxy
paradigm is primarily based on the communication between the user personal devices.
The user devices communicate with one another and act as the proxies to their human users.
On the other hand, the user experience proxy is defined based on the interactions that take
place between the users and their devices. Here, device behavior is designed by considering
how the users react to the network services as well as the QoE [79]. The QoE is then used
to model the interactions between the users and the services using a user-centric approach.
Here, the expectations of the users in terms of the QoS and the reactions to its variations are
considered. In this way, it can be easy for the QoE models to be integrated into the design
of wireless network systems in order to improve the level of user satisfaction. However,
an emphasis must be made that the proposed human-centric design approach is not just
another bio-inspired wave of wireless network design. Instead, it is user devices acting as
proxies of their users by embedding certain models of human behavior in the design of
wireless networking systems. In other words, it is a natural way of making user devices
behave in almost a similar fashion to their user when faced with certain situations [31].
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4.8.2. Integrating the Human Proxy with Deep Reinforcement Learning

DRL from human feedback is when systems or machines learn to behave by using
some little assistance from humans, which can actually bring out the best from both humans
and the machines [80]. Building AI systems that align with human values, i.e., human-
centered AI, in which DRL strategies can be used in the design of social mechanisms
preferred by humans, is still an open research topic [81]. What is quite remarkable from
the above discussion on human proxies is that most of the solutions to these problems
are found through the harmonious combination of RL strategies and hierarchical sensory
processing systems. An integration of choice modeling and mathematical psychology
with DRL strategies was reported [31], where a prospect theoretic DRL strategy was
realized. A graphical example of this approach will be shown later in this article, where a
human behavior model is infused into the decision-making of a data center in Figure 5b. In
addition, data-centric communications can benefit from the wealth of neural data that reveal
notable parallels between the phasic signals that are emitted by dopaminergic neurons and
temporal-difference (TD) RL algorithms. Data-centric communications, which refer to data-
centric computing as well as data-centric networking, can be described as the information
systems in which the data are stored independently of the applications. Actually, data-
centric communication systems have already started exploiting these models to efficiently
guide information diffusion among human users [82]. Through this information diffusion,
human users may be able to collaborate with one another and leverage both the storage
and the processing capabilities that are locally available to them for gNB association and
RA mechanisms—all through DRL strategies.

5. Overview of the AI Market and Current State of the Telecommunications Industry

The main functionality of AI, which is the ability to analyze large volumes of data
and extract information that gives useful insights to high-quality decision-making, is
going to be paramount in 6G. This is because the adoption of IoT devices in the global
market has grown tremendously in parallel to the data that they produce. The growth of
network big data and the increased adoption of cloud/edge-based services and applications,
as well as the escalating demand for intelligent virtual assistants, are the major driving
factors that have increased the global market share of AI. The size of the AI market is
expected to grow from USD 86.9 billion, which was recorded in 2022, to a whopping
USD 407 billion by the year 2027. This is at an estimated compound annual growth rate
(CAGR) of 36.2% during this period [83]. However, the AI market seems to be facing
some critical challenges as the key restraints to market: (i) the limited number of AI
technology experts and (ii) data privacy issues as well as the unreliability of AI algorithms.
Because of these challenges, the possible opportunities of the AI market mainly include
the improvement of the operational efficiency in wireless communications as well as AI
adoption in improving customer services. The forecast of the global AI software market is
shown in Figure 1 below.

The forecast of the global AI software market, as shown in Figure 1a, is expected to
be on a rapid growth for the next three years. It is expected to reach USD 126 billion in
revenues by the year 2025. Due to the increasing need for new use cases, the current state
of the AI market includes a wide range of applications, which, among others, include
NLP and robotic process automation, that will grow tremendously. As can be seen from
the forecast of the global AI software market in Figure 1a, an approximated 54% year-on-
year increase is expected. The growing demand to access historical datasets in order to
predict trends is expected to drive the AI market growth. Decision support, interactive
gaming, and real-time recommendation systems are expected to drive the AI market
growth. According to the Research and Market report [84], the global AI software market
in telecommunications, which was estimated to be USD 1.2 billion in 2021, is expected to
reach USD 6.3 billion in revenue by 2026. This is a CAGR of 38%. It is worth mentioning
that AI in telecommunications includes, but is not limited to, the use of big data analytics
in handling of huge volumes of data.
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Figure 1. Market forecast with respect to the AI market and Intel revenue forecast. (a) The global
AI software market forecast from 2019 to 2025 [83]. (b) Intel revenues from two different company
segments from 2018 to 2022 [84].

AI is also a huge player in coming up with solutions for problems such as (i) automatic
detection and correction of failed transmissions, (ii) automated customer services, and
(iii) complementing of the IoT. Counterpoint revenue earnings by Intel from the first quarter
of 2018 to the first quarter of 2022 are shown in Figure 1b. The desktop revenues were
standing at USD 2.6 billion, while notebook revenues stood at USD 6.0 billion, which
indicate respective declines of 5% and 14% year-on-year. However, it is worth noting that
during this period, the whole world was facing challenges in all industries due to the
COVID-19 pandemic. Therefore, these declines can be attributed to demand waning due to
the pandemic. It can also be observed that the Datacenter & AI Group has been the key
revenue growth segment for Intel with 22% year-on-year growth.

5.1. Current State of the Telecommunications Industry

The telecommunication industry has become very competitive, and in this highly
competitive landscape, very little separates telecommunication companies from one another.
However, because the communication enterprises use similar infrastructure vendors, it is
difficult to differentiate one from the other based on only their infrastructure and operations.
It is, however, possible to differentiate enterprises based on the consumer expansion into the
content arena as mobile content and video content become the most significant consumer
use cases for 5G networks.

5.1.1. Consumer Expansion into the Content Arena

Since the emergence of smart phones, traffic patterns in wireless networks have
had a dramatic change. This dramatic change is attributed mainly to the large number
of applications introduced by 5G. Therefore, expanding into the content arena can be
the simplest and most natural way for network providers that are seeking to grow in
wireless communications, more so because user behavior and their traffic patterns are
application-specific and they vary rapidly within short time intervals [4]. As a result,
network providers have begun aggregating streaming platforms in parallel with launching
their own services. The rising bandwidth requirements and the growth of the IoT means
that network providers need to make near-constant upgrades to their infrastructure in
order to keep up. Even though wireless infrastructure is quickly becoming less critical
to profitability, the congestion in the radio spectrum has actually pushed the designers
of 6G to adopt new spectrum bands to support 6G communications. Ultimately some
network providers already have their own over-the-top (OTT) services or alternatives with
favorable rates to their customers. To this effect, there has been a response from telecom
companies in Sub-Saharan Africa, such as Vodacom, MTN, Airtel, Globacom, Orange, and
Safaricom towards bolstering their OTT services. Based on market research, since 2017,
MTN has been increasing the number of subscription offers in several countries in Africa
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south of the Sahara by launching various mobile applications such as access to television
(TV) channels and streaming content. The company has been offering subscriptions that
provide users with access to content only as well as a combination of access to content and
internet data [85]. This means that algorithms for 6G communications must have higher
performance than those of the existing 5G networks to operate on those various dimensions
of 6G.

5.1.2. The Rise of Over-the-Top (OTT) Services

Suppose one has a data plan with their mobile operator to which they purchased a
smartphone with which they can make GSM calls and short message service (SMS). One
could be able to make Skype calls or any other voice-over-IP (VoIP) services for cheaper and
free voice calls and chats over the network. Here, Skype is referred to as the OTT service.
OTT services, namely voice and video services over the wireless network, have been
revolutionized by smartphones since they have multimedia and advanced communication
functions [86]. The network carrier utilized for an OTT service has (i) no control, (ii) no
rights, (iii) no responsibilities, as well as (iv) no claim on the OTT served by its network
infrastructure. What it does is only carry the internet protocol (IP) packets from source to
destination. The network carrier can be aware of the packets and their contents but cannot
do anything about it, which makes VoIP an alternative to expensive phone calls. In VoIP,
the caller does not pay for the dedicated phone line but utilizes the existing internet without
dedication. However, there have been restrictions imposed by network carriers on their
networks on VoIP services. For instance, when Apple released the iPhone, AT&T imposed
some restrictions over its user on its network. However, these restrictions were lifted due
to pressure from the FCC, and since then, carrier networks realized that they should stop
fighting and reap the benefits of offering good connectivity for users of OTT services.

5.1.3. Content-Based Applications and Social Networking

In addition to connected television and content applications such as TikTok, further
undercutting their traditional business model has been the rise of OTT communications:
(i) applications for social media networking, such as Facebook; (ii) applications for internet
telephony, such as Skype; (iii) applcations for micro-blogging, such as Twitter, Posterous,
FriendFeed, etc.; (iv) applications for instant messaging, such as WhatsApp, Facebook
Messenger, WeChat, Viber, etc.). All these applications most predominantly consist of
real-time content, hence they exhibit different traffic patterns compared to the usual voice,
text messaging, emails, as well as web surfing [4]. These applications take up a huge share
of the communications market, such that users no longer rely on carrier networks as much
as they used to. The need to continuously invest in next-generation infrastructure and
increasing commoditization of offerings is leading the telecommunication sector to the
perfect storm. As digital players such as Google Fiber expand to infrastructure, carrier
networks are becoming more worried about their survival in the wireless marketplace [87].
In order to improve their chances of survival and remain profitable, many communication
service providers (CSPs) have begun embracing additional and sometimes unconventional
revenue streams. For instance, Verizon attempted to increase its reach through media via
its Verizon Media Group Holding in recent years to give it multiple additional revenue
channels beyond traditional telecommunications offerings [88].

5.1.4. Looking Beyond Network Connectivity—The Confluence

By bridging the gap between the physical assets and digital worlds, a DT is realized.
Due to the requirements of specialized processors that are able to process massive amounts
of structured and unstructured data from different sources, DT has become a new ap-
proach for testing and assurance for AI workloads. A DT can be defined as a virtual copy
of the physical asset of interest that provides an emulated software replica that enables
continuous prototyping, testing, and optimization [89]. The visualization module of a
DT is responsible for delivering data insights to end users, simulation, and intelligent
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operations, while the dashboards and commands rely on the visualization module for
correct functionality. Through the amalgamation of the current communication and con-
trol technologies, the computing and data analytics techniques, as well as the modular
manufacturing towards realizing the 4IR, cyber–physical convergence is promoted. This is
evidence that at the confluence of AI, big data, and the cyber–physical convergence, there
is the DT technology. Together with IoT and blockchains, they have redefined the future
vision of globalization in terms of how it has to be imagined. Through the integration
of the cyber–physical worlds via the convergence of cyber–physical systems, the ability
of DTs in terms of monitoring, optimization, and prognostics of industrial processes will
improve [90].

6. The Digital Twin Technology

A DT is actually more than a mere simulation. While a simulation is just a data-driven
prediction of the behavior of a physical asset in terms of its processes, a DT spans the full
life cycle of the asset, i.e., from design to service use cases. Defined in simple terms, in
DTs, the digital replica of a physical device is the virtual part that eventually forms the
DT. The interaction between the digital replica (digital image) and the physical device
(physical process) is enabled with the aim of simulating, analyzing, and controlling the
real-time operation of the physical process [91]. As the initiatives of the 4IR continue to
gain momentum across different industrial segments, the focus has been on the automation
of processes. The fourth industrial tevolution (4IR) is a revolution that is virtually built
upon three primary technological advancements, i.e., IoT, big data, and edge computing.
Even with the limitlessness of the potential of the IoT, designing IoT systems can be very
daunting. Designing IoT systems usually requires a complex web infrastructure as well
as multi-domain expertise [92]. In a more elaborate sense, a DT is a tool to safely test the
impact of modifications made in network parameters on the twin of the physical asset
without halting operations. For example, in testing a new version of software, it may be
used to evaluate the planned steps for deploying it in order to make sure that the available
resources are sufficient for optimal operation. If successful to the best possible operational
level, a switch to this new version may be commissioned. The rising of digital industrial
technologies that gather and analyze data across different domains has assisted in the rise
of the DT version in the 4IR.

6.1. Digital Twins as a Concept of the CIoPPD&T

The cyber–physical convergence that led to the IoT and went beyond the perimeter
of the IoT into the CIoT has now generalized the IoE by specifically addressing it as the
CIoPPD&T. The CIoPPD&T concept is a CISCO invention [93], and it is actually a monster
paradigm that has built on the foundations of the IoT by adding the likes of (i) wireless
big data, (ii) network intelligence that allows for convergence, (iii) orchestration, as well as
(iv) visibility across previously disparate systems. In this way, a monster paradigm that
can be summarized to what is referred to as the DT technology is realized as a concept
of the CIoPPD&T. A DT can be viewed as a virtual representation of a physical asset or
person, whose processes can be understood by analyzing its data. It consists of three main
components: (i) a digital definition of its counterpart, generated from computer-aided
design (CAD); (ii) operational or exponential data of its counterpart that are generated
from IoT; and (iii) the information model, such as a dashboard, that is used for presenting
the data in order to drive decision making. Therefore, the key technologies towards the
realization of DT in 4IR, where use cases and applications are defined in various dimensions,
are shown in Figure 2 below [94].
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Figure 2. Digital twin components with respect to the technical contributions of the 4IR.

What is shown in Figure 2 above is the how 4IR signifies the transformation of
legacy sites into promising autonomous network facilities driven by consistency, flexibility,
and efficiency. The DT technology is rapidly being adopted across various use cases in
industrial fields as its enhancements are consistent with the important technologies for the
4IR. The technical contributions of the 4IR that make up the DT are as follows [95]:

• IoT Platform: The incorporation of the IoT platform in the DT architecture is to enable
connection, contextualization, and interaction with the physical system as well as to
provide the virtual one with real-time data.

• Artificial Intelligence and Machine Learning: AI and ML are very critical DT compo-
nents, and as such, they are expected to play very crucial roles in the self-organization,
the self-healing, as well as the self-configuration of 6G networks. This will be made
possible and even enhanced by other cutting-edge technologies such as QML and
blockchain. Through these technologies, the digital counterpart of the real network
will be able to provide seamless monitoring, analysis, evaluation, and prediction.

• Edge Computing: Edge computing, preferably with the use of distributed computing,
allows connected physical systems to transmit large 3D twin model data files as well
as optimize resources such as (i) computing power, (ii) bandwidth, and (iii) latency
constraints.

• Augmented Reality: Augmented/virtual reality (A/VR) is applied to portray the digi-
tal representation and analytics in parallel with physical resources for more enchanting
experiences.

6.2. The Digital Transformation

Due to the personalized techniques for capturing the dynamics of the physical assets,
DT is well known as the major enabler of the digital transformation. In general terms,
digital transformation can be defined as the adoption of digital technology and integrating
into the business processes of an organization in order to fundamentally improve the
operation of the organization [96]. There are different kinds of DTs, all differing from one
another on the levels of integration. The process of digital transformation is shown in
Figure 3 below.
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(a) The process of digital transformation
towards digital twinning.

(b) Difference between digital twin (left) and
digital twin-predictive (right).

Figure 3. (a) Process of digital transformation and (b) difference between a digital twin and a
digital twin-predictive.

Figure 3a above gives a general overview of digital transformation with specific focus
towards digital twinning, while Figure 3b shows a comparative representation of a DT and
a DT-predictive.

• Digital Clone: This is an emerging technology involving deep learning (DL) algorithms
that are used in manipulation of currently existing hyper-realistic media, i.e., audios,
photos, and videos. With various establishments making digital cloning technology
available to the public, functionalities such as audio-visual, memory, personality,
as well as consumer behavior cloning can be realized [97]. A consumer behavior clone,
a DT version of user behavior, can be a user profile or a cluster of customers based
on their demographics. It must be noted, as can be seen in Figure 3a above, that
innovation is realized when DTs and digital cloning are integrated.

• Digital Thread: Since its aim is to signify the digitization and traceability of an asset
throughout its lifespan, it can be defined as the foundation behind digital transfor-
mation [98]. This is made possible through linking all the DT capabilities, such as (i)
its design, (ii) the performance data, (iii) the product data, (iv) the supply chain data,
as well as (v) the software used in the creation of the product. Therefore, a digital
thread, together with other DTs, can be used to meet certain design requirements,
records, as well as all the data to be used.

• Digital Replica: As shown in Figure 3b, a DT is referred to as a digital replica of a
physical asset that has a two-way dynamic mapping between the physical asset and
its DT. This is to say that the replica consists of a structure of connected elements
and meta-information.

• Digital Shadow: The definition of the digital shadow can be based on its purpose
and existing relationship with the corresponding DT [99]. When the design objective
is to serve a specific purpose, the digital shadow operates in isolation from the DT.
In this way, the digital shadow provides a blueprint of the required data, its sources,
the relationships between the various pieces of the data needed, as well as any data
manipulations that need to be performed. The data are either forwarded directly from
the digital shadow to the DT or the digital shadow performs some pre-processing
and/or simulations itself. Therefore, based on the data that are delivered by the
shadow, the DT integrates them into a complete digital reality for detailed processing,
simulation, and analysis.

• Digital Twin-Predictive: With reference to Figure 3b, the ultimate goal of a predictive
twin is beyond the DT, as it aims to achieve further analysis for the purpose of
predictions and individualization through the use of big data and ML in cyberspace.
Therefore, a DT-predictive is a digital replica that uses two-dimensional real-time data
communication over cyberspace.

The above analyses show why a DT has several levels of integration, relating to the
digital model and the digital shadow. These terms are most often used synonymously when
in actual fact they are different in terms of data integration towards the physical, digital,
and cyber layers [100]. With its current operational framework being the CIoT, which is
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characterized by (i) the perception–action cycle, (ii) massive data analytics, (iii) derivation
of semantics and knowledge discovery, (iv) intelligent decision making, and (v) on-demand
tasks for service provisioning, its framework is capable of bridging the physical and virtual.
With objects and resources, it has a huge capability of bridging the physical world, and with
human demand and social behavior—the social world, in addition to (i) enhancing smart
RA, (ii) automatic network operation, and (iii) intelligent service provisioning.

6.2.1. The Network Digital Twin

The functional decomposition of a DT can either be (i) horizontal, i.e., life of a packet
from the edge to the cloud, or (ii) vertical, which distributes decisions to improve overall
efficiency, i.e., DT and multi-scale AI. In addition, the architecture of the network DT
(NDT), similar to the traditional DT, essentially consists of both the physical and the digital
and includes three layers [101]:

• hardware layer, which comprises the physical components of the DT, such as routers,
actuator IoT sensors, as well as edge servers;

• middleware layer, which is all about data governance, processing, integration, visual-
ization, modeling, connectivity, and control; and

• software layer, which consists of analytics engines, ML models, data dashboards,
as well as modeling and simulation software.

The explosive growth of new use cases in (i) time-sensitive, (ii) safety critical scenarios,
and (iii) stringent requirements have created a huge demand for cost-effective verifica-
tion methods [102]. The NDT, as the DT technologies continues its rapid diffusion into
numerous industries through interdisciplinary advances in the industrial IoT, cloud and
edge computing, ML, AI, as well as through advanced analytics, is also permeating into
wireless communication space. In wireless networking, DTs are utilized to drive the current
network testing environments towards being sufficiently ready for the demands of the
future. In the NDT is where the agents perform the configuration and function changes [33].
For instance, when new configurations are applied on a new AI model or applied on a
new network software, it is of paramount importance to know its performance before it is
commissioned to the whole network. The components of a DT in wireless networks can be
defined in terms of two platforms, which are described as follows:

• Data Platform: A data platform is one of the main DT components, which ensures
secure data ingestion and processing, as well as steady performance, normalization,
management, ML, AI analytics, micro-services, and integration.

• Autonomous Network Platform: This is the digital domain of the DT framework
on wireless communication consisting of four main components, i.e., network state
prediction, expert knowledge, AI algorithm, and DT network. Therefore, in a DT exists
an autonomous platform that enables a transition to a world in which computers use
digital maps as a life-like representation of the physical network. The autonomous
platform forms a foundation for simulations and virtual reality environments that are
meant to fool the human mind and make it to believe that it is actually located where
it is not. This module is between the physical network and the DT and enables the DT
to analyze the outcome of a set of inputs and predict the outcome without affecting the
physical network. If the outcomes are what is intended, then the new configurations
can be transferred to the physical network as updates [103].

6.2.2. End-to-End Wireless Network Digital Twin

Wireless networks are designed according to the principle of end-to-end architecture in
order to guarantee certain application-specific features such as reliability and security [104].
The expectation for 6G networks is that they will be more reliable and fast and be able to
support a large number of ultra-low latency devices. For this to be possible, network agility
is very key, as network providers will need to look beyond connectivity and complexity
but towards new opportunities for growth in order to offer end-to-end solutions for both
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individual and enterprise consumers [105]. Some identified areas of interest where network
DTs have interesting use cases are shown in Figure 4 below.

Figure 4. The different areas of interest and interesting use cases for digital twins in wireless networks.

In Figure 4 above, the twins of the different network substrates are shown: (i) the
RAN, (ii) the edge network, (iii) the backhaul or transport network, and (iv) the network
core. The positioning of the network functions (NFs), i.e., baseband units (BBU), user plane
function (UPF), session management function (SMF), and application (App), is only for
illustration purposes—it does not depict any form of new radio (NR) functional split.

• Cell Site Digital Twin: Since the process of installing, inspecting, and maintaining
cellular towers is difficult and costly, the AR functionality can be enabled to visualize
the cell tower. There is a plethora of use cases where the cell site DT can support MNOs
or tower companies, i.e., (i) rollouts of new generation technology such as 6G, (ii) site
survey on existing sites, (iii) upgrades, and (iv) maintenance activities [106]. Based
on the assumption of perfect spectrum sensing in dynamic spectrum access (DSA),
the information exchange that takes place between SUs and the gNBs is according to
peer-to-peer information exchange.

1. Infrastructure Digital Twin: Based on the specified kind of information exchange
between the users and the network, the programmability of the network can
allow for enhanced data management tasks (load management, compression,
and data reduction). A programmable framework for advanced IoT and data-
driven automation also allows for virtualized resource provisioning. The most
prominent resource provisioning of this kind is known as containerization. Con-
tainers are created as images and allow users to package application code, de-
pendencies, and configuration into a single object that can be deployed in any
environment. However, they are only considered containers when they are running.

2. Device Digital Twin: On the other hand, information exchange between users is
governed by transfer learning and cooperation management, which considers
source agent selection and target agent training. Information fidelity technolo-
gies such as federated learning and blockchain are incorporated with digital
twinning to provide security for targeted services and advanced testing and
facilitate deployment.

• Edge Site Digital Twin: Due to the use of higher frequencies, which are vulnerable to
absorption, 6G networks will be limited in terms of transmission range. This means
that edge platforms or sites will be a perfect solution to counteract this limitation,
and computational resources will be docked at an aggregation site and launched
on-demand to each edge site. However, it must be noted that the DT of the edge
site includes both the access network and the backhaul network (transport). In order
to meet the high computing demand of edge computing networks, new enabling
technologies such as (i) the air interface and the transmission technologies as well as
the novel network architecture, (ii) advanced multi-antenna technologies, (iii) network
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slicing, (iv) cell-free architecture, and (v) cloud/fog/edge computing are already being
developed [107].

• End-to-End Digital Twin: This kind of DT is mostly encountered in network slicing
architectures where the relationships between the different slices are monitored using
graph neural networks.

The contributions that applied the DT technology in 6G RAN problems are tabulated
in Table 1 below.

Table 1. Application of the digital twin technology in 6G networks.

Objective Technique Algorithm Considerations Reference(s)

Describe Identify Reinforcement Aligning with [106]
a network DT different learning open RAN
architecture application for implementation
focusing on use cases used for training
the RAN and and train RL-based capacity-
also align with algorithms sharing solutions
open RAN under for network slicing

different
conditions

Design a DT Combine Reinforcement Future network [108]
technique for expert learning states must be
self-optimizing knowledge predicted based on
mobile with RL which optimization
networks and DT decisions are

generated by
expert knowledge

7. Edge Computing Digital Twins—Special Use Cases

With the 5G NR already commissioned in most parts of the world and still being
commissioned in others, the era of network softwarization is already at its height. The 6G
networks, which are affectionately referred to as the era of network intelligentization, are
quickly making their way into the wireless communication space [109]. Through the digital
transformation, the current 5G networks are quickly transforming themselves towards
6G through the transformation of their access and resource provisioning strategies. Edge
computing, which is a strategy for provisioning computational resources at the edge of the
network in order to advance the requirements of latency-critical services, enables MNOs
to keep core NFs at the edge of the network. As a result, computational software in the
form of NFs is kept in tens of thousands of remote locations all running consistently and
with uniform security standards. With these NFs or network applications running close
to the end users, network latency is reduced, which also allows service providers to offer
new services that are not possible with cloud computing [110]. Most of the use cases and
applications that require lower latencies, such as vehicular communications, can benefit
from the faster, more reliable services compared to cloud computing [111]. Other benefits
of edge computing include low latency, privacy protection, context awareness, and reduced
bandwidth consumption. In a nutshell, the structure of the cloud–fog–edge continuum is
as follows:

• The Cloud Layer: The cloud layer, which is also known as the core (regional data cen-
ter) of the MNO. This layer is traditionally a non-edge tier, and it is most often owned
and operated by the public cloud provider, a CSP, or even a larger enterprise [112]. It
is responsible for processing big data, business logic, and data warehousing. Cloud
computing is the most prevalent tool for user data management in this layer.

• The Fog Layer: The fog computing layer is a computing layer lying between the edge
and the cloud. Since it is commonly owned and operated by a CSP, it is known as the
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service provider edge. In other words, it is a tier located between the core (regional data
centers) and the last mile, i.e., the access network where the network operator serves
multiple customers [113]. The fog layer is also responsible for local network access,
data analysis and data reduction, control response, as well as function virtualization.

• The Edge Layer: Also known as the end user premises edge, the edge layer is respon-
sible for the real-time processing of large volumes of data. Edge computing, which
refers to data computation that takes place at the edge of the network, is the most
prevalent tool for user data management at this layer. Along with fog computing,
edge computing has been used widely in increasing the speed and the efficiency of
data processing, as well as bringing intelligence closer to the user devices.

7.1. A Choice Modeling-Based DT for Edge Computing Platforms

Edge computing and edge platforms are two of the most confusing and misused terms
today, with edge computing platform even more confusing. Edge computing platforms are
horizontal pieces of software that are designed to enable (i) the automated deployment,
(ii) update, and (iii) management of distributed applications [114]. Many operations are
quickly turning to edge technology because of its relevant advantages over the legacy cloud
solutions. For instance, industries can make use of edge data centers to aggregate all the
data collected from their sensors for quick processing by the edge cloud and turn them into
useful edge indicators.

7.1.1. Modeling Behavioral Model for Day 3 Edge Computing Operations

Wireless networks have become complex, and the evolution from the current 5G
networks to 6G networks is going to increase the complexity, making network management
a daunting task. This requires day 3 management, which are more strategic approaches to
network operations that focus on intent-based networking. In wireless communication, day
2 operations can be viewed in terms of system operations throughout its life cycle, with its
behavior being analyzed and optimized continuously [115]. Thus, day 2 services are aimed
at improving the QoS and sharing perception and awareness information. On the other
hand, day 3 operations are intent-based operations, which means that there is an addition
of further sophistication to day 2 operations such as sharing intentions [116]. This kind
of intent-based or intent-sharing kind of operation supports negotiation and cooperation,
which opens the door to cooperative perception in wireless networking. Edge platforms
are an emerging edge computing paradigm widely recognized as a promising solution
towards meeting the diverse edge computing demands [111].

Using this emerging paradigm, the operation of the traditional edge computing will be
improved through the use of low-cost edge centers that use cognitive choice modeling. This
is an intelligent edge management strategy for day 3 operations and beyond that use the
concepts of cognitive choice modeling through prospect theory as shown in Figure 5 below.

In Figure 5a above, the operation of edge platforms in terms of day 3 and beyond
operations, where edge platforms are leveraged for traffic optimization, is shown. The for-
mulation of the edge platform for day 3 operations is aimed at (i) improving user and
gNB–server cooperation towards intelligent decision making in terms of user–gNB for
traffic offloading and (ii) improve resource provisioning through on-demand container
provisioning by the data center [31]. It must be noted that the data center hosts a number
of virtualized computational resources that account for the total computational resources
of the whole system. With this kind of on-demand provisioning of containerized computa-
tional resources, (i) QoS can be improved in terms of latency minimization, (ii) bandwidth
can be increased, and (iii) there is no under/over-provisioning of computational resources.
In terms of day 3 and beyond edge operations, system state changes dynamically, hence
the behavior of the system must be monitored continuously for proper analysis. For this
purpose, a DNN agent monitors the states of the different edge sites, i.e., edge site 1, edge
site 2, up to edge site N as follows:
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(a)

(b)

Figure 5. Container deployment at the edge based on prospect–theoretic DRL for day 3 operations.
(a) A low-cost data center that manages the on-demand deployment of containerized computational
resources to edge sites. (b) Concept of the prospect–theoretic DRL-based DT strategy for predictive
resource provisioning in edge computing platforms.

s , {s1(t), s2(t), · · ·, sN(t)}, (1)

are fed into the DNN agent as inputs, where the process of computing the behavioral model
proceeds as follows:

1. the DNN takes the states of the computational task queue, which are estimates of
congestion as well as those of incident traffic types;

2. the output of the DNN is the behavioral model for the provisioning of the compu-
tational resources, which is as φ(s(t), ϕ∗(t)), with ϕ∗(t) as the control action that
determines the provisioning of computational resources;

3. the behavioral model instructs the regional data center on the computational require-
ments of the different edge sites, which then launches containerized computational
resources based on the respective demands.

Therefore, by taking into account (i) the workload size (determined by queue lengths),
(ii) cycle uncertainties, and (iii) unpredictable emergencies, a DT for the RAN can be
designed.

7.1.2. Choice Modeling and Mathematical Psychology

Here, it is assumed that the users and the edge infrastructure are equipped with intelli-
gent modules for intent sharing and perception to aid the negotiation process. The prospect–
theoretic DRL-based DT shown in Figure 5b uses prospect theory for modeling its offloading
behavior. Under prospect theory, the underlying explanation for the behavior of the system
is that due to the nature of their choices, i.e., independent and singular, the probability of
gains and losses are assumed to be reasonably equal [117]. Hence, the α = 50% models the
gains in terms of the offloading rate, while 1− α models the losses in terms of increasing
network overheads (risks). Evidence of this can be found using choice experiments, where
choice modeling and mathematical psychology can then be used to realize a predictive DT
based on prospect theory. Using this notion, the action ad(t) is taken by the user device
when it is satisfied with the prospects from the gNB, while the action ae(t) is taken by gNB
when admitting the offloading actions from the devices. The evaluation of the prospects
towards decision making are based on subjective QoE measures in terms of task offloading
rates and overheads. These are introduced in the discrete choice formulation when choos-
ing edge sites to which traffic can be offloaded. After the actions ad(t) and ae(t) have been
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taken, the state of the edge system migrates from the present state se(t) to the next state
se(t + 1), which is defined as follows:

se(t + 1) = s′e = P(se(t), ae(t)), (2)

where the construct P(·) denotes the transition probability. This was followed by the
introduction of a resource provisioning process where the DRL strategy was designed by
incorporating Markov decision processes (MDPs) from the prospect–theoretic viewpoint.
The striking novelty of this kind of DT is in the analysis of the data collected from the edge
sites, which opens the door to the “predictive”.

7.2. Federated Deep Reinforcement Learning-Based Digital Twin

Out of all the expectations of 6G networks, such as (i) improving global network
coverage, (ii) improving spectral, energy, and cost efficiency, and (iii) enhancing network
intelligence, data security is the most important one. In order to meet these requirements,
network intelligentization is what 6G networks must rely on [118], more especially with
the issue of the age of information (AoI) becoming more critical with URLLC applications
such as vehicular technology. There is an urgent need to push the boundaries of AI and
intelligentization to the edge of the network, which has resulted in edge intelligence [119].
Due to the promises of 6G in terms of offering a wide range of varied services through its
heterogeneous devices, in the widely anticipated network intelligentization, edge comput-
ing comes into play in data fidelity and security. In data fidelity and security, data are used
to train ML models using federated ML (FML), which is a combination of edge computing
and AI strategies [120,121].

7.2.1. The Federated DRL Computational Offloading

Contrary to the traditional FML, techniques such as the federated DRL (FDRL) can be
designed into edge intelligence frameworks for enabling edge devices to remember what
they have learned together with other edge devices [122]. Therefore, edge intelligence can
be applied in cases where there are multiple edge devices that need to make decisions in
different environmental contexts. This means that in each environmental context, each edge
device can build its own learning framework based on its context with assistance from other
edge devices. Here, the basic assumption is that edge devices with limited computation
capabilities and limited storage resources, but having various compute-intensive, time-
critical, and privacy-sensitive applications, offload their data to the edge server [123]. Using
the FDRL computational offloading scheme, the privacy-sensitive data are protected from
malicious attacks by the federated intelligence shown in Figure 6 below.

(a)
(b)

Figure 6. (a) A FDRL architecture for secure computational offloading in CRNs, and (b) a FDRL-
inspired digital twin-empowered edge platform.

In Figure 6a above, a single round of FDRL in a CRN is illustrated, where edge devices
on the device layer compute their local updates w using their local data without sharing
them then upload their local updates to the edge server via the gNB in the form of a
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computed gradient. Then, the edge server in the edge layer combines all the gradient
updates from the different edge devices and performs aggregate computation of global
update ∆w. Upon computing the global update, the edge server then broadcasts it back to
the edge devices via the gNB. The processing delay of this FDRL computational offloading
scheme is usually determined using the number of iterations required for the algorithm to
converge [121]. The two-layer abstraction of the FDRL offloading architecture in Figure 6a
above is discussed as follows:

• The Device Layer: The device layer operates according to vertical FML, where each
edge device begins by partitioning a DNN model according to the current environ-
mental factors, such as channel conditions and available bandwidth [123]. Then,
an assumed set of edge devices share their local datasets with one another to coopera-
tively train their associated gNB by uploading gradients ∆w. The transmission link for
information exchange between devices is governed by device-to-device (D2D) proto-
cols. In return, the edge server computes global updates and broadcasts an aggregated
gradient as w through the gNB to globally train its associated devices [124].

• The Edge Layer: The edge layer consists of a gNB that is managed with a DNN model
that is partitioned according to the workload of the edge server and executes according
to device resource and intermediate data to the server. Here, features that describe
the state of the edge servers and the requirements of the edge devices are fed to learn
the DNN [125]. Through its generalization capabilities, the DNN trains the agent
towards yielding general scheduling policies, which are not just tuned states that are
encountered during the training process but are adaptive states that can be applied
even to unknown states in the processes of predicting/prescribing.

The FDRL technique, as well as federated communication, can solve issues related
to data privacy and latency in edge computing. However, a trade-off between the local
computation delay and the communication delay is very crucial in minimizing the overall
FDRL processing latency. In this context, the processing latency can be defined as a measure
of the responsiveness of the computing devices (edge devices and the edge server), while
responsiveness is used to measure the quality of the network by the number of round trips
per minute. Therefore, processing latency results from the slowness of the hardware devices
and the number of hops along the network. This can be achieved via joint transmission
and computation optimization, where the state of the system s(t) , ϕ(t) and the action
a(t) taken in each state can be given as follows:

a(t) , arg max
a

Q(ϕ(t), a(t); θ), (3)

and the local function is periodically updated as arg maxa Q(ϕj+1, a; θ), where θ represents
the network parameter. In the training process, based on (3), the local model is periodically
updated as follows:

Q(ϕj+1, arg max
a

Q(ϕj+1, a; θ); θ). (4)

Then, the experience tuple (ϕ(t), a(t), r(t), ϕ(t + 1)) is stored in the local memory as
environmental experience for later replay.

7.2.2. Realizing the FDRL-Based Digital Twin

The general assumption of federated communication depicted in Figure 6a is adopted
in order to realize the DT in Figure 6b. This is an edge-based DT that is inspired by FDRL
that can enable secure offloading and processing of real-time applications provided by 6G
networks. In the DT implementation of an FDRL architecture, a number of things can be
monitored, such as (i) the devices and infrastructure, i.e., device DT and infrastructure DT,
respectively, and (ii) the link state, i.e., link DT, defined according to the SINR γn,k. In terms
of the link DT, network data analytics may be used for visualizing network performance in
terms of key performance indicators (KPIs). Based on Figure 6b, the DT can be formulated
as follows:



Appl. Sci. 2023, 13, 13262 28 of 43

• Physical Layer: Since the value of the information that is obtained in IoE systems
depends on the AoI, the time elapsed from the time that the raw data are generated
by the applications to the time when the data are processed and delivered to the
processes must be minimized [29]. User behavior and gNB association are the most
critical processes of the physical layer (mostly the network edge), where the data
producers frequently share with other parties such as edge servers for the training of
their models [111].

• Digital Twin Layer and DT Services: The DT, found in the DT layer, is concerned
with monitoring, capturing, and processing of the data in order to deliver insights
for decision makers to act on. This means that the collection and storage of the status
data and their subsequent processing is very important. In this case, the DT layer
requires robust capacities of data storage and cloud-based ML platforms for analytics.
The analytics are the most vital component of the DT platform since it translates the
status data into analytics insights, which are then shaped into formats suitable for
human perception.

8. Big Data and Big Data Analytics—The Final Frontier

The big data from large-scale wireless networks consists of several key features,
i.e., (i) high volume, (ii) real-time velocity, as well as (iii) huge value that have led to unique
research challenges that are extremely different from the current computing systems [126].
From the huge datasets that are generated by the extremely heterogeneous 5G network
applications in diverse communication scenarios, 6G networks are expected to enable
a plethora of newer AI-assisted smart applications. Big data, through the use of big
data analytics, will also be used to completely transform the world of telecommunications,
i.e., resource management. This has the potential of improving the efficiency of provisioning
and distributing wireless resources. Due to the emergence of products such as cloud
computing and storage, the data produced by the communication infrastructure are used
to generate even more data that are also shared across other entities [73]. The data that are
generated from interactions with servers through the IoT can be used to provide useful
insights on how telecommunication businesses can manage their processes [127]. In terms
of telecommunication business solutions, uploading data to the cloud platform for analysis
can be an intensive process, and a lot of insights can be found at the edge. Real-time
edge analytics can be used to deliver reaction-based business decisions on data predicting
the future.

8.1. Big Data-Inspired, Edge-Based DT for Real-Time Network Diagnostics

In the big data and big data analytics context, a DT can be designed for the following
purposes: (i) monitoring network operations, (ii) planning predictive maintenance, (iii) im-
proving customer services, as well as (iv) resource management, i.e., optimizing RA [128].
Network operations in the current generation are already characterized by specifications
of higher demands for data rates and higher quality of experience (QoE) on the user side.
This, paralleled with the requirements for low complexity network architecture, and the
continued reduction of costs on the RAN and network core, suggests that MNOs need to
begin instantiating predictive analytics. Through the use of edge-based DT-based analytics,
which entails the automation of network operations and maintenance through data ana-
lytics, network disruptions can be avoided and better QoE can be afforded to end users.
In order to achieve this level of network automation, gNB functions and core network func-
tions can be virtualized and arranged at the edge of the network to offer problem-specific
solutions. A type of function virtualization for edge network diagnostics and prescriptive
maintenance through intelligent virtual assistants is shown in Figure 7 below.
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Figure 7. A digital twin representation of an intelligent virtual assistant for predictive and prescriptive
maintenance in 6G networks.

Illustrated in Figure 7 above is a cloud–edge computing strategy to track QoE and
service disruptions, whereby service providers can replace expensive site visits by running
their networks with NFs using virtual machines (VMs) running on standard hardware
at the network edge. MNOs might already be using the DT technology without them
knowing, such as in customer service. For instance, a DT can be used in monitoring net-
work conditions as a proxy measure of customer experience, where the origin of the issues
affecting users can be predicted and addressed. Due to the need to deliver more person-
alized, anticipatory, and consistent services across all the physical assets in all network
segments, the DT technology has a lot of potential in the customer service departments of
MNOs [129]. Predictive and prescriptive analytics can be exploited in improving customer
service. Service disruptions can be avoided by performing system diagnostics and making
important maintenance decisions through customer service. Through the use of data min-
ing techniques, DTs can enable better customer service by providing differentiated levels
of service through the data obtained from customer reviews. To shed some light on this
concept, an illustrative example is as follows:

Example 3. Suppose the performance of the network has degraded to the point of inconveniencing
network users. In this case, urgent and prompt intervention from the MNO is required. As shown
in Figure 7 above, the service degradation from the subscribers that might be in the form of (i) poor
network connectivity, (ii) high number of dropped calls, and (iii) high service termination can be
intelligently detected and addressed before the subscribers begin logging their complaints. From a
technical perspective, the kinds of complaints listed above may not differ greatly from one another,
but based on proper analytics, they might require different technical solutions. On the other hand,
from a customer service perspective, the similarities and/or differences in the complaints might not
be clear, hence the requirement for proper data analytics to extract relevant features. For instance,
if data mining techniques are used in mining the features from text and visualization techniques
used, the best possible network diagnostics can be carried out and the accurate solution can be
prescribed. Based on the complaints listed above, the corresponding problems might be (i) signal
booster failure, (ii) operating update issues, and (iii) contract data cap limits [130]. Thus, assuming
that the customer service department receives such complaints in larger volumes in real time, taking
subscriber impatience into account, the process of going through such massive data, extracting
patterns, diagnosing the problems, and assigning field technicians to the different sites might be labor
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intensive and time consuming. Therefore, the implementation of the DT-based real-time predictive
maintenance solution proceeds as follows:

• Data Mining and Information Extraction: Using data mining techniques such as clustering
algorithms, similar complaints can be grouped together for collective diagnosis. It must,
however, be noted that the grievances received from the subscribers might be in text format,
and some preliminary pre-processing might be required in order to be a dataset that is ready
for processing and analysis. For the preliminary pre-processing step, a natural language
processing and lexicon processing algorithm might be used to “mine” similar text structures.
After, there is grouping of similar textual information using classification algorithms to observe
some correlations in the text data for further processing.

• Data Analytics and Diagnostics: Using data mining techniques, a lot of information can be
extracted and classified in terms of their similarities and differences, and diagnostic techniques
can be applied in each cluster of information to diagnose problems. In the diagnostic step,
the classified data are processed in order to obtain a good diagnostic visibility of the network
problems. From the customer service side, this visibility can assist the service providers with
information such as regions of the network, gNB sites, user behavior, and applications. Using
this information, diagnosis of what the real problems might be can be performed.

• Solution Recommendation: Within a short space of time, potential solutions are evaluated
and the best one is recommended and commissioned through the use of virtualized functions.
For example, problems such as software maintenance and upgrades can be virtualized instead of
allocating a technician on site. In this case, the software agent runs a solution recommendation
module (SRM) and sends recommendations to the decision module, which proposes a network
function virtualization (NFV) to the relevant gNB site [131]. However, due to the nature
of the diagnosed problems, the recommendation processes differ from one another due to the
difference in user behavior in different network regions. As a result, the agent that handles the
recommendation process must reside at the edge server in order to dynamically launch tasks
of relevant VM instances to resolve dynamic problems. Therefore, the VM launching can be
managed using a DRL strategy as contemplated in [132].

8.2. Big Data-Inspired DT for Real-Time Predictive Maintenance

There is a paradigm shift from the reactive system maintenance to the proactive one,
which has led to the optimization of maintenance schedules [133]. This is called real-time
predictive maintenance, which, by minimizing system downtime, improves the profitability
and competitiveness of service providers. In real-time predictive maintenance, AI is used
to analyze the operating condition of different network infrastructures. On the other
hand, DT for predictive maintenance enables accurate recognition of equipment status
and proactive fault prediction, which enhances system reliability. Therefore, in this case,
real-time predictive maintenance is the competency of the system in distinguishing future
scenarios that are likely to cause system failure and scheduing repairs before the system
actually crashes [75]. In this way, the DT technology has greatly facilitated the development
of predictive maintenance through predictive modeling. Predictive modeling, which is a
predictive analytics tool, is a process that uses known results in the creation, processing,
and validation of models that can be used in forecasting certain future outcomes [134].
On the one hand, predictive analytics is a data mining technique responsible for predicting
future possibilities and prescribing future actions, hence the emergence of predictive and
prescriptive analytics. A DT model for big data-inspired predictive maintenance is shown
in Figure 8 below.



Appl. Sci. 2023, 13, 13262 31 of 43

Figure 8. A digital twin-driven edge intelligent real-time predictive maintenance technique.

Shown in Figure 8 above is a closed-loop perception and control strategy between the
physical edge server and the virtual edge server realized through the use of the big data
technology.

• The virtual edge server: The virtual edge server then realizes the data monitoring
and operation control for the physical edge server. In edge computing, edge-based
predictive analytics solutions use the DT technology to prevent server downtime as
a means of conserving and protecting QoS parameters and, subsequently, the QoE
of users.

• The data and knowledge space: Here, the data are transferred to the database where
they are stored and pre-processed. With the data and the model that are integrated
and fused, the maintenance knowledge for decision making that is generated by ML
algorithms is stored in the knowledge base [135].

• Inter-twin interaction: After establishing the knowledge base, the virtual edge server
can then obtain the required information from the knowledge.

9. Network Digital Twin for Vehicle-to-Edge Communication

The network computational intelligence now resides at the edge instead of the core,
and the most important infrastructure component is the MEC server. An efficient im-
plementation of DT at the edge requires enabling high-quality edge intelligence service
deployment.

9.1. Edge Computing-Based Digital Twin for Traditional RAN

Consider a cellular vehicle-to-edge network where a two-tier vehicular network on a
one-dimensional road segment is considered. Here, the first tier consists of the macro-cell
with a gNB, while the second tier consists of a setN = {1, 2, · · ·, N} of small cells, each one
having a single roadside unit (RSU), RSUn, as shown in Figure 9 below.
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Figure 9. A network digital twin model of a multi-link communication in a cellular vehicle-to-edge
offloading scenario.

In Figure 9 above, the gNB serves as a controller that manages the RSUs on the second
tier by controlling their resources and also establishing offloading and computing policies.
The RSUs are assumed to be connected to edge servers using the evolved common public
radio interface (eCPRI) front-haul interfaces [136] to provide delay-constrained computing
services. As it can be seen in Figure 9 above, a setK = {1, 2, · · ·, K} of vehicles are randomly
distributed on a road segment, and each one of them periodically generates computing
tasks that require results to the RSU via an offloading link characterized by γnk. Due to the
safety-critical nature of vehicular communications, this is a site-specific DT for obtaining
time-variant link behavior in terms of packet loss rates (PLR) for analyzing the reliability of
vehicular communication scenarios. In this application, the use of a real-time geometry-
based stochastic channel model, which was studied in [102], can be adopted in simulating
doubly selective channel frequency responses.

Consider a scenario whereby the best offloading decision in a vehicle-to-edge (V2E)
network needs to be found. This offloading decision that is sought must associate each
tasks that is generated by vehicles with one of the available edge servers. Assuming that
the objective goal of minimizing (i) the offloading error, (ii) processing latency, (iii) overall
energy consumption, (iv) or a combination of these objectives, the question is how a perfect
DT can be designed to solve this problem in the best possible way. One possible way is to
split the DT design into two, as discussed below.

• Device/vehicle DT: The vehicle DT (vDT) can be thought of as the profile of the device,
which may include (i) the travelling speed, (ii) the trajectory and real-time vehicle
location, as well as (iii) the resource requirements.

1. The requirements: The requirements may include (i) the size of the task (payload
size), (ii) the required processing cycles, as well as (iii) the dependency and the
priority among tasks.

2. The AI agent: The AI agent then iteratively associates the device tasks with
the servers and takes note of the reduction of the objective, i.e., records the
resulting reward. The features that describe the status of the server as well as the
device requirements are then fed to learn the DNN, which uses its generalization
capabilities to yield general scheduling policies.

In relation to the other DTs, the vehicle DT monitors the vehicle trajectory and ve-
hicle speed optimization—to name a few. Other additional parameters that can be
monitored are blind-spot and accident detection.

• Infrastructure DT: In edge computing, the infrastructure consists of (i) the RSUs, (ii) the
edge server, and (iii) the vehicles themselves. The responsibility of the infrastructure
DT (iDT) is monitoring and optimization of service provisioning to the devices. This
means that the infrastructure DT manages device behavior in terms of their real-
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time location and network behavior. Then, the state of each edge server can be
described using its resources, i.e., (i) its computing speed and (ii) the quality of the
communication channel. For an efficient infrastructure DT establishment, effective
mapping between RSUs and vehicles must be established.

1. Mapping: The mapping between the physical twin and the virtual twin has three
components: (i) data storage, which collects data from the physical network,
such as vehicle state, RSU state, and wireless channel state, (ii) virtual model
mapping, and (iii) inter-twin management.

2. The Central Controller: The central controller at the edge server can model
the offloaded tasks and determines their resource demand status using the
aggregated data in the device DT. It is this controller that assigns tasks through
the computing task model.

3. Inter-Twin Communication: The knowledge transfer process between the two
twins can be secured using blockchain in order to preserve knowledge integrity
for the immutable and trackable contributions of each device. Blockchain is
a comparatively newer technology that simplifies network management and
enhances its performance by offering a variety of applications that considerably
improve the security of authentication.

• Link DT: Due to these channel imperfections, more especially in urban environments,
the concept of DT can be enabled as a city-aware DT model. The simulations of the
city-aware DT model should allow for accurate modeling of ray reflections and signal
attenuations [137].

9.2. Edge Computing-Based Digital Twin for Open RAN

The disaggregated and open architecture of open RAN is aimed at meeting the high
demands for 6G wireless communications. The most important services in a multi-vendor
disaggregated network environment require continuous measurements and testing for
continuous assurance [138]. How these measurements and tests will be conducted from
different vendor infrastructures as well as how they will proceed in tandem with 6G
networks is a very important and challenging question. Having some parity between the
virtualized network environment and a DT of the network would be crucial. Therefore,
building accurate DTs for open RAN environments will be key for network testing to be
performed without taking the network offline. MNOs will be called upon to (i) improve
computational capability for serving latency-critical applications and (ii) extend coverage
to under-served locations and communities. The major challenge here is that a software
push from one vendor might potentially cause some disruptions in the mechanizations of
other vendors in the radio system [26], since the inter-dependencies among the network
equipment from different vendors could be very complex and add too much risk in the
operation of the different software.

9.2.1. Edge-Based Vehicular Communications—A Primer for Open RAN DT

Improving computational capabilities to serve latency-intolerant services will present
new opportunities for those service providers who will be prepared to embrace it [139].
For instance, most of the existing research contributions in vehicular-to-anything (V2X)
communications assume either deterministic or static channel models, which might be
unrealistic. Vehicular channels in urban environments are highly dynamic, owing to the
influence of high-speed motion and intermittent connections. In line with the enterprise
digitization enabled by 5G/6G networks [140], an edge intelligence system that allows a
customized functional split to cater for 6G mission-critical services is shown in Figure 10 below.
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Figure 10. Edge intelligence on an open edge platform capable of handling vehicular communications.

Shown in Figure 10 above is a vehicular network with the support of the transportation
infrastructure. Here, it is assumed that communication between the RSU and vehicles is
based on 6G communications, and the coverage of the RSU determines the service zone.
The edge intelligence system on the edge site is based on functional split, which is defined
as follows [141]:

Definition 1. In the context of open RAN, the functional split determines the number of gNB
functions that can be left locally, i.e., closer to the user, in order to relax the bit rate and delay
requirements of the fronthaul network. It also determines the number of gNB functions that can be
centralized in order to achieve greater processing capabilities.

According to the open RAN split architecture, the edge computing system consists of
(i) a fixed RSU, (ii) a distributed unit (DU), and (iii) a centralized unit (CU), which complete
the open architecture defined for edge computing.

• Distributed Unit: The DU is the lower-layer split of the open RAN protocol stack,
while the fixed RSU together with the DU are considered as the edge cloud. According
to the logical split 7.2x, the DU can be defined as the logical node that includes a
portion of the gNB functions. It is tasked with controlling the operation of a number
of RSUs.

• Centralized Unit: The CU is the upper-layer split of the open RAN protocol stack,
and it is considered as the central data center. It is the logical node that includes a
portion of the gNB functions, i.e., packet data convergence protocol (PDCP) and the
radio link controller (RLC) layers of the protocol stack, as defined by logical split
2. The CU can also support a number of DUs. Therefore, by taking advantage of
network function virtualization (NFV) techniques and running them at CUs, part of
the network functions can be transferred into data centers instead of running them at
the RSU.

In Figure 10 above, it is assumed that the open and flexible edge platform consists
of node software that runs on devices at the edge, as well as a management system that
runs on the edge–cloud continuum. Since the infrastructure nodes are wire connected via
high-speed fronthaul connections, all the infrastructure nodes can be regarded as one giant
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node together. Both resource availability and resource requirements are quantified with
resource units.

9.2.2. Open RAN-Inspired Edge Digital Twin—A Vehicular Communication Use Case

Even though the DT technology is specifically aimed for the simulation of future
experiences, the calculation of context, and the development of a chain of outcomes, it can
also be used in the real-time optimization of edge computing algorithms [142]. In safety-
critical applications, such as autonomous driving, it can be used to create a progressively
safer environment through V2E communication. For instance, for some of the challenges
faced in autonomous driving such as drastic weather changes that may require a change
in the route course, the edge can assist the DT to quickly compute the necessary changes
that need to be made. Developing a DT of the terrain (infrastructure DT) and of the vehicle
(device/vehicle DT) can help the edge computing technology in predicting and successfully
executing a safe and successful journey. Therefore, in order to realize the full potential of
open RAN at the edge, an edge DT (EDT) can be designed for real-time network modeling
and optimization. To this effect, an EDT can be designed as a section of the NDT that is
described for both pre- and post-deployment for supporting vehicular communications,
designed as shown in Figure 11 below.

Figure 11. Digital twin implementation of a computation offloading scenario in an open edge
platform capable of handling vehicular communications.

As shown in Figure 11 above, a DT-enabled V2E network is realized through two
closed loops between physical V2E networks and the DTs. In the computation offloading
scenario, the digital models of the vehicles and of the infrastructure interact via inter-
twin communication managed through the blockchain technology. Based on the current
contributions in the DT technology for edge computing problems, the research designs are
conducted based on the tabulation shown in Table 2 below.
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Table 2. Application of the digital twin technology in edge computing.

Objective Technique Algorithm Considerations Refs

Enabling new Formulate Deep Use of [143]
functionalities, an edge reinforcement transfer
e.g., hyper- association learning learning
connected product w.r.t. to solve DT
experience network states migration
and low latency and varying problem

topology

Incorporate Blockchain- Multi-agent Improve [144]
DT into empowered reinforcement system
wireless FML learning reliability,
networks to framework security,
migrate to run in the balance,
real-time data DT for learning,
processing collaborative accuracy,
and learning computing and time cost

Ensure Real-time C-Deep Interplay [145]
seamless data deterministic between local
handover collection policy DT edge
among MEC and gradient computing
servers and model on local MEC
to avoid training and the global
intermittent one on cloud
metaverse due to the
services nature of

network states

Develop RA Design a Whale Demonstrate [146]
model and greedy optimization that RA and
establish a initialization algorithm allocation
joint power strategy that objective
optimization will improve function value,
function, convergence power
delay, and speed of DT consumption,
unbalanced and reduce RA
RA rate imbalance rates

Address DT Federated Deep Low-latency [147]
construction machine Q-learning accurate, and
challenges learning network secure DT to
and assisted jointly optimize
resource total iteration
scheduling, e.g., delay and loss
low accuracy and function, and
large iteration leverage model
delay recognition

Blockchain Combine a Blockchain Enhance the [148]
proof of blockchain- and authority of
authority trust based deterministic decentralized
mechanism to distributed pseudo- DT combined
provide quality network random blockchain
services, e.g., data with DT for generation networks
security and privacy IIoT (DPRG)
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10. Conclusions

This objective of this article was to highlight the different interdisciplinary research
fields that interact to shape the cyber–physical convergence towards realizing the DT tech-
nology. By shaping a new telecommunication ecosystem landscape beyond the operational
framework of the CIoT, a new kind of resource management to improve radio utilization in
6G networks was realized. This permitted the development and use of the DT technology
as a virtual representation of physical assets. Therefore, towards the discussion of DT use
case designs for edge computing, the challenges facing digital transformation were dis-
cussed together with prospective solution recommendations. The pillars of the CIoPPD&T
were discussed with the aim of highlighting how they interact to form the complex socio-
technical ecosystem defined according to the different fields of research. Then, the current
state of the telecommunication landscape and the overview of the AI market were discussed
with the aim of highlighting the need for an NDT. In bringing the autonomous network
operations, the DT was introduced as a concept of the CIoPPD&T, and the digital transfor-
mation towards realizing the DT technology was highlighted. Through this introductory
discussion of the DT, an NDT was introduced in the context of 6G networks.

10.1. Elucidation of Contributions

Regarding the edge computing use case designs, the contributions are as follows:

• Edge-Based DT for Day 3 Operations: The principles of choice modeling and mathe-
matical psychology were brought from prospect theory, and discrete choice experi-
ments were brought to model day 3 edge operations. To address the complexity of
6G networks, the traditional edge computing (as currently known in the 5G context)
could be improved through the use of low-cost data centers (i.e., CU) that operate
according to cognitive choice modeling.

• Big Data-Inspired Edge DT: Since 6G networks are expected to enable a plethora of
newer AI-assisted smart applications, big data analytics could be utilized to completely
transform the world of communication. In this way, the status of the edge systems in
terms of an edge-resource device model can be realized through the deployment of
big data-based DT models deployed at the edge server. With this modeling approach,
parameter calibration between physical assets and DTs can be performed at regular
intervals. In this way, the physical components can exchange real-time information
with the DT, thus opening the door for predictive maintenance.

• Vehicle-to-Edge Use Case Design: The design and realization of the C-V2E offloading
scheme was realized with the suggestion of splitting the NDT design to specifically
focus on the vDT and the iDT that will monitor different network profiles. This kind
of design is more suitable for vehicular services since it allows for the creation of a
specific DT—tailored for monitoring a specific troublesome feature of the network,
such as the connection link in urban environments. This is a performance-related
and real-time constraint violation challenge, which is very critical in ensuring the
dependability of the DT. The DT cannot entirely and accurately simulate the physical
entity, as there will be specific errors, and the cumulative error will increase with time.

• Open RAN-Based Vehicle-to-Edge Use Case Design: With the vital role played by open
RAN in improving the computational capabilities of the edge, vehicular applications
could benefit from greatly reduced latency. To that effect, an EDT was designed
based on the dis-aggregated RAN architecture, specifically for C-V2E applications.
Here, a customized functional split of the edge was realized according to open RAN
principles, such that the edge server was dis-aggregated into (i) edge cloud and
(ii) central data center. This design architecture achieves reduced latency compared to
the non-split architecture by orders of magnitude.

10.2. Recommendations for Future Research

With the recent rise of chat generative pre-trained transformer (ChatGPT), it has been
postulated that 6G RAN will support GPT-based applications. OpenAI’s ChatGPT is an
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AI-powered language model capable of understanding and responding to natural language
inputs [149]. This means that RAN will be redesigned for the emerging 6G GPT-based
systems. However, for GPT models to function properly, a sizable amount of computing
power and data storage are required. Since 6G networks are supposed to provide lower
latencies than the current 5G networks, the time required for communication between the
GPT and other devices must be as minimal as possible. Therefore, the open RAN principle
of splitting the RAN (i.e., DU-CU) and rearranging the NFs to meet different computing
and storage requirements may be adopted to partition the ultra-large GPT-based computing
into a distributed computing and distributed networking architecture. This partitioning
technique must be adopted to achieve the objective of optimizing the computing resources
and connectivity resources in order to increase the network capacity when delivering the
GPT-type services. In this way, a novel communication model between the GPT-based
applications and the DT in the context of joint sensing and communication—depicted as a
virtual reality showing multi-modal brain-computer interface—can be designed.
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