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Abstract

Continual learning is the sequential learning of different tasks by a machine learning

model. Continual learning is known to be hindered by catastrophic interference or for-

getting, i.e. rapid unlearning of earlier learned tasks when new tasks are learned. Despite

their practical success, artificial neural networks (ANNs) are prone to catastrophic in-

terference. This study analyses how gradient descent and overlapping representations

between distant input points lead to distal interference and catastrophic interference.

Distal interference refers to the phenomenon where training a model on a subset of the

domain leads to non-local changes on other subsets of the domain. This study shows

that uniformly trainable models without distal interference must be exponentially large.

A novel antisymmetric bounded exponential layer B-spline ANN architecture named

ABEL-Spline is proposed that can approximate any continuous function, is uniformly

trainable, has polynomial computational complexity, and provides some guarantees for

distal interference. Experiments are presented to demonstrate the theoretical properties

of ABEL-Splines. ABEL-Splines are also evaluated on benchmark regression problems.

It is concluded that the weaker distal interference guarantees in ABEL-Splines are insuf-

ficient for model-only continual learning. It is conjectured that continual learning with

polynomial complexity models requires augmentation of the training data or algorithm.

Keywords: continual learning, catastrophic forgetting, catastrophic interference, over-

lapping representation, sparse distributed representation, regression, spline, artificial

neural network.
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“The only source of knowledge is experience.”

Albert Einstein
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Chapter 1

Introduction

Humans can learn many tasks sequentially, unlike conventional artificial neural networks

(ANNs) trained with gradient descent optimisation [1]. Continual learning entails train-

ing a model for many tasks sequentially without forgetting knowledge obtained from the

preceding tasks, where the data in the old tasks are no longer available while training on

new ones. Continual learning is also known as incremental or life-long learning [2, 3, 4, 5].

Continual learning with ANNs is hindered by catastrophic interference. Catastrophic in-

terference is an emergent phenomenon where a machine learning model such as an ANN

learns a new task, and the subsequent parameter updates interfere with the model per-

formance on previously learned tasks [6, 7, 8]. Catastrophic interference is also called

catastrophic forgetting. If an ANN cannot effectively learn many tasks, it has limited

utility for continual learning [9, 10]. Catastrophic interference is like learning to pick up

a cup while forgetting how to drink.

The reviewed studies on catastrophic interference and mitigation techniques focus on

time or the sequential aspect of the continual learning problem [2, 4]. This study focuses

on the input space for differentiable models like ANNs. A model f can be trained with

gradient descent optimisation to create an updated f ′. Let D(f) denote the domain of f

and f ′. If f is trained at one point v ∈ D(f), then f(x) may change at some distant point

x ∈ D(f). If one is equipped with some measure of distance d(x, v) > δ or dissimilarity,

it remains to be shown if one can limit the absolute model change |f(x)− f ′(x)| < ε or

guarantee that |f(x)− f ′(x)| = 0.

1
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Chapter 1. Introduction 2

A differentiable model f trained on data points v ∈ D(f) with gradient descent

optimisation can have non-local or distal changes at points x ∈ D(f) far away from

the training data. Non-local or distal changes to the model are akin to off-target ef-

fects, called distal interference. Distal interference can cause catastrophic interference

in continual learning problems (see Chapter 3). Regression problems commonly require

training models over all the data simultaneously [11], to counteract distal interference.

Distal interference combined with large model parameter gradients can hinder the con-

vergence and training of large ANN models that are sensitive to hyperparameter and

training procedure choices [12, 13]. Distal interference can manifest as seemingly unre-

lated problems in different contexts, but the same underlying mechanisms disrupt ANN

models.

The concept of a ‘stability-plasticity’ spectrum or trade-off has been used to describe

the difference between near-perfect memory models like lookup tables and the adap-

tive, easy-to-train models such as ANNs with unstable memory [2, 4, 6]. The stability-

plasticity spectrum is not precise enough for mathematical analysis. Stable models are

immune to the proposed distal interference mechanism and can be called distal orthog-

onal models due to the geometry of their parameter space (see Section 3.6). It has

been noted that orthogonal activity patterns prevent interference, but distributed (over-

lapping, non-orthogonal) representations are theorised to promote generalisation [14].

Plasticity is related to universal expressiveness, uniform trainability and generalisation.

Universally expressive models are universal function approximators with sufficient power

to express any continuous function with arbitrarily small error (see Chapter 5). The pro-

posed property of uniform trainability (non-zero parameter gradients for any parameters

and input point) eases training with gradient descent optimisation (see Definition 5, in

Chapter 3).

Depending on the choice of distance or dissimilarity d(x, v) > δ, and model properties

(distal orthogonality, uniform trainability, and universal expressivity), different types of

models with varying computational space complexities emerge, as discussed in this study.

Using the maximum norm distance d(x, v) = maxi(|xi−vi|) yields an exponentially large

model, immune to distal and catastrophic interference, which aligns with the stability-

plasticity spectrum (see Chapter 3).
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Chapter 1. Introduction 3

In this study, a partially successful attempt is made to develop an expressive, uni-

formly trainable model with polynomial space complexity and distal orthogonality using

a weaker dissimilarity measure d(x, v) = mini(|xi − vi|). The proposed ABEL-Spline

architecture is designed with many of the mentioned properties but is insufficient for

practical model-only continual learning without augmenting the training data or train-

ing algorithms. There have been many suggestions to improve continual learning out-

comes with augmentation techniques [8, 15, 16]. It is conjectured, but not proven, that

polynomial complexity models require augmentation for effective continual learning.

1.1 Objectives

The objectives of this study include analysis of catastrophic interference, the suscep-

tibility of a model to catastrophic interference, and the development of models and

techniques to improve continual learning. Some tangential objectives are discussed to

explore avenues for future research. The objectives can be summarised as:

1. Review continual learning and catastrophic interference.

(a) Describe continual or lifelong learning.

(b) Discuss the emergence of catastrophic interference.

(c) Review the established mechanisms that cause catastrophic interference.

(d) Describe techniques in literature that are used to mitigate catastrophic inter-

ference and enable continual learning.

2. Study model susceptibility to catastrophic interference.

(a) Explain why ANNs are susceptible to catastrophic interference.

(b) Outline why lookup tables are robust to catastrophic interference.

(c) Investigate the computational complexity for model-only continual learning.

(d) Discuss the necessity of data or training augmentation to enable continual

learning.
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Chapter 1. Introduction 4

3. Determine how gradient descent mechanics contribute to catastrophic interference.

(a) Use vector calculus and distance metrics to analyse differentiable models (such

as ANNs) in general.

(b) Determine which model properties or training techniques can mitigate catas-

trophic interference.

4. Develop an efficient and expressive architecture capable of continual learning.

(a) Design the architecture from first principles to be efficient with polynomial

time complexity.

(b) Prove the architecture is a universal function approximator.

(c) Prove that the architecture is robust to catastrophic interference.

(d) Provide an implementation of the architecture in TensorFlow.

(e) Empirically investigate the function approximation ability of the developed

architecture.

(f) Empirically investigate the robustness of memory retention of the developed

architecture.
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Chapter 1. Introduction 5

1.2 Contributions

This dissertation makes five novel contributions, namely:

1. Refined understanding of the causes of catastrophic interference. It is shown that

distant and overlapping representations cause catastrophic interference. Distant

(and probably unrelated) training data points with overlapping representations are

susceptible to distal interference and catastrophic interference. Previous works did

not emphasise the importance of local versus non-local effects.

2. Mathematical proof that uniformly trainable models robust to distal interference

must have exponentially large parameter spaces. The contra-positive is that mod-

els with polynomial (which implies non-exponential) space complexity are not uni-

formly trainable or not robust to distal interference. This theoretical finding is a

substantial limitation on the continual learning ability of polynomial complexity

models.

3. The formulation of antisymmetric exponentials is provided. The analytical tech-

niques used have applicability to develop provable universal function approximators

on domains that are not subsets of Rn, like continuous signals, sets, and multi-sets.

4. The mathematical formulation of the ABEL-Spline ANN architecture with uniform

trainability, sparse- and bounded parameter gradients, and a form of min-distal

orthogonality is provided. The model is constructed for numerical stability and

convergent behaviour as the model size increases. These techniques can be adapted

to improve the training stability of other types of ANN models.

5. An efficient TensorFlow implementation of the ABEL-Spline architecture that uses

embedding-, convolutional-, and dense layers is developed. The implementation

successfully utilises sparsity to compute only non-zero components without wasting

time or memory to compute basis functions that evaluate to zero. The implemen-

tation can be found in a public GitHub repository1.

1https://github.com/hpdeventer/MSc-Project-Heinrich-van-Deventer
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Chapter 1. Introduction 6

1.3 Derived Publications

Several papers and preprints were drafted during this study over a few years. The final

paper written for this study had been submitted for review to a journal.

• KASAM: Spline Additive Models for Function Approximation:

(Preprint.) Initial attempts at extending Spline (additive) ANNs to universal func-

tion approximators used the Kolmogorov-Arnold representation theorem to cre-

ate the Kolmogorov-Arnold Spline Additive Model (KASAM) [17]. The KASAM

model did not inherit min-distal orthogonality from Spline ANNs. In contrast,

ABEL-Splines use the general Stone-Weierstrass theorem to prove universal func-

tion approximation and inherit min-distal orthogonality from Spline ANNs.

• ATLAS: Universal Function Approximator for Memory Retention:

(Preprint.) ATLAS ANNs were a precursor to the current version of ABEL-Splines.

ABEL-Splines have a more descriptive name and better implementation and com-

putational complexity [18].

• Distal Interference: Exploring the Limits of Model-Based Continual

Learning

(Under review). This paper has been submitted to The Journal of Machine Learn-

ing Research (JMLR) for publication. The paper analyses how gradient descent and

overlapping or non-orthogonal representations between distant input points lead

to distal interference and catastrophic interference. This study formally proves

that uniformly trainable models without distal interference must be exponentially

large. A novel antisymmetric bounded exponential layer B-spline ANN architecture

named ABEL-Spline is proposed that can approximate any continuous function,

is uniformly trainable, has polynomial computational complexity, and provides

some guarantees for mitigating distal interference. Experiments indicate that the

weaker distal interference guarantees in ABEL-Splines are insufficient for model-

only continual learning. It is conjectured that continual learning with polynomial

complexity models requires augmentation of the training data or algorithm [19].
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1.4 Dissertation Outline

The rest of the dissertation is organised into the following chapters and appendices:

• Chapter 2 gives an overview and history of ANNs and essential concepts in ma-

chine learning.

• Chapter 3 focuses on continual learning and catastrophic interference. Mecha-

nisms that contribute to catastrophic interference are discussed. A mathematical

proof is provided that shows the limits of polynomial complexity ANNs.

• Chapter 4 explains single-variable cardinal B-splines. Cardinal B-splines are ex-

tended to multi-variable functions that are sums of single-variable functions called

Spline ANNs. The limited expressive power of Spline ANNs is explained.

• Chapter 5 defines antisymmetric exponentials to extend Spline ANNs to univer-

sal function approximators while retaining desirable properties. Antisymmetric

exponentials are proven to be universal function approximators.

• Chapter 6 outlines the antisymmetric bounded exponential layer spline archi-

tecture called ABEL-Spline. The engineering and design choices for numerical

stability are explained, and the implementation details are provided.

• Chapter 7 presents the experiments to test theory-based predictions and to evalu-

ate the proposed ABEL-Spline architecture on a simple continual learning problem

and regression benchmarks.

• Chapter 8 summarises the conclusions of the study. An outline for future work

and research directions is discussed.

• Appendix A provides a list of relevant or newly defined acronyms.

• Appendix B lists and defines the mathematical symbols used in this work, cate-

gorised according to the relevant chapter in which they appear.

• Appendix C contains raw experimental data.
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Chapter 2

Artificial Neural Networks

This chapter gives an overview of artificial neural networks (ANNs). Biological neural

networks are discussed in Section 2.1. A history and overview of essential ANN concepts

are presented in Section 2.2. Section 2.3 discusses training techniques, loss functions

and optimisers. Section 2.4 discusses unexpected problems that emerged with ANNs.

Section 2.5 proposes some initial modifications. A summary is given in Section 2.6 that

provides an overview of this chapter.

2.1 Biological Neural Networks

Biological neural networks, such as the human brain, are complex organs composed of

specialised cells called neurons. These networks are responsible for receiving, processing,

and transmitting information in response to external stimuli. Biological neural networks’

intricate structure and function give rise to their remarkable computational abilities and

adaptability. This complexity hinders understanding and reverse-engineering biological

intelligent systems [20].

2.1.1 Structure and Function of Neurons

Neurons are eukaryotic cells with unique features that allow them to transmit information

through electrochemical signals. A typical neuron consists of a cell body (also known

as soma), dendrites, and an axon covered by a myelin sheath (Figure 2.1). Dendrites

8
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Chapter 2. Artificial Neural Networks 9

are branch-like protrusions that extend from the cell body and receive incoming signals

from other neurons. The axon is a long extension responsible for transmitting signals

away from the cell body towards other neurons or target cells [21].

Figure 2.1: Anatomy of a nerve cell. Structural features of a motor neuron include the cell

body, nerve fibres, and dendrites. Source: [22].

Electrochemical signals in biological neural networks are transmitted through action

potentials and neurotransmitters. Sensory neurons in sensory organs convert external

stimuli (e.g., light or pressure) into electrochemical impulses propagating through the

network. An impulse reaching a dendrite can cause an action potential spike that travels

from the dendrite to the cell body and down the axon. This transient activation state

allows for rapid transmission of information along an axon [21].

Neurotransmitters are chemicals that facilitate signal transmission between cells at

the junctions between neurons. The junctions between neurons are called synapses.

These chemicals are released from the axon terminal of a pre-synaptic neuron and bind

to receptors on the post-synaptic neuron’s dendrites. This process enables faster and

more efficient local communication between neurons than other chemical signals, such

as hormones that rely on slow diffusion mechanisms across greater distances [20, 23, 24].
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Chapter 2. Artificial Neural Networks 10

The combination of both modes of transmission allows rapid communication between

distant neurons throughout a biological neural network.

2.1.2 Complexity of Biological Neural Networks

One of the main challenges in modelling biological neural networks is their inherent

complexity. The human brain contains approximately 100 billion neurons, each one

connected to thousands of others through an intricate web of synapses. This vast con-

nectivity gives rise to non-linear and complex behaviour throughout the entire network

and individual neuron activity [21]. Several factors contribute to this complexity:

1. Multiscale organisation: Biological neural networks operate at multiple spatial and

temporal scales. From molecular processes within synapses to large-scale interac-

tions between brain regions, it is unclear which level of resolution is most critical

for capturing the primary computational mechanisms [25].

2. Chemical dynamics : Neurotransmitters’ release, diffusion, and reuptake at the

synapses involve complex chemical reactions that can impact signal transmission

and synaptic plasticity. Accurately modelling these processes requires accounting

for many molecular species, reaction rates, and spatial constraints [21, 26].

3. Adaptation: Neurons in biological neural networks can adapt their properties over

time based on input patterns, leading to changes in connectivity and function.

This plasticity enables learning and memory but adds another complexity layer to

modelling efforts [27]

4. Noise and variability : Intrinsic noise sources within individual neurons (e.g., stochas-

tic ion channel opening), as well as extrinsic variability across neuronal populations

(e.g., heterogeneity in cell properties), can influence network behaviour [21, 28].

5. Emergent properties : The collective behaviour of neurons in biological neural net-

works can give rise to emergent properties that are not easily predicted from the

behaviour of individual cells. Identifying these phenomena and their underlying

causes is a critical challenge in modelling efforts [29].
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Chapter 2. Artificial Neural Networks 11

Biological neural networks can learn many tasks without catastrophic interference

(see Chapter 3) in most cases. However, memory consolidation and retention in biolog-

ical neural networks is an intricate, not fully understood process. Synaptic plasticity

(i.e. changes in synaptic strength) is pivotal in memory. Synaptic plasticity manifests

as long-term potentiation (LTP) and long-term depression (LTD) in biological neural

networks [30]. The exact mechanisms underlying the transition from short-term to long-

term memories remain subjects of active research. Furthermore, the significant role of

sleep in memory consolidation, especially during phases like rapid eye movement (REM)

sleep, adds another layer of complexity [31].

2.1.3 Modeling Challenges and Outlook

Given biological neural networks’ complexity, developing accurate and comprehensive

models is a formidable task. Furthermore, determining which aspects of these networks

are most crucial for capturing their computational abilities remains an open question.

Despite these challenges, artificial intelligence (AI) research has progressed by developing

artificial neural networks (ANNs) inspired by their biological counterparts [11, 32, 33].

While ANNs are highly simplified compared to their biological counterparts, they have

demonstrated remarkable success in various machine learning tasks [34, 35, 36]. The

practical achievements of modern ANNs suggest that the efforts to understand biological

neural networks were worthwhile.

Advances in experimental techniques for probing neuronal structure and function at

multiple scales will enable better characterisation of biological neural networks. Likewise,

theoretical developments in modelling could allow researchers to capture this complexity

more accurately. Through a greater understanding of biological neural networks, we can

make significant strides towards unravelling the mysteries of these remarkable systems.

Harnessing the computational power of the human mind is the dream for advanced

artificial intelligence technologies.
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Chapter 2. Artificial Neural Networks 12

2.2 Background on Artificial Neural Networks

ANNs are computational systems inspired by biological neural networks. The develop-

ment of ANNs has a rich history, with researchers devoting substantial effort to under-

standing and reverse-engineering biological intelligence over several decades. This section

provides an overview of the evolution of ANNs, discussing their essential components and

various types and addressing some historical challenges and limitations. This research

explores novel ANN architectures that are parameter-efficient, easy to train, universally

expressive and do not suffer from catastrophic interference. It is necessary to review all

significant developments up to this point.

2.2.1 Early Developments and Limits

ANNs have a storied history, dating back to the early days of artificial intelligence re-

search when McCulloch and Pitts proposed the first mathematical model of a biological

neuron called “nerve nets” in 1943. Initial attempts aimed to map propositional logic to

neural networks [37]. This foundational work laid the groundwork for the development

of artificial neural networks. In the subsequent years, researchers like Hebb [38], Rosen-

blatt [32], and Werbos [39] contributed significantly to the understanding and refinement

of these models.

Hebb’s groundbreaking contribution has been summarised as “cells that fire together

wire together” in later years [40], providing a framework for understanding how synaptic

connections between neurons could be strengthened or weakened based on their activity

patterns, leading to learning and memory formation.

The development of the perceptron by Rosenblatt marked a pivotal moment in ANN

history, as it established a simple yet powerful algorithm for learning linearly separable

patterns. The perceptron was one of the first ANNs [32]. The perceptron model was

significant because it demonstrated how simple artificial neurons could be combined into

a network to perform basic pattern recognition tasks [41].

However, the perceptron’s limitations were exposed by the analysis of Minsky and

Papert in 1969 [42]. It was shown that the perceptron model could not compute certain

predicates like XOR. This problem demonstrated that single-layer perceptrons were in-
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Chapter 2. Artificial Neural Networks 13

sufficient for solving more complex tasks, highlighting the need for multi-layered neural

networks with non-linear activation functions. The XOR problem became historically

significant as it led to advances in multi-layer neural networks and backpropagation

algorithms for learning in deeper networks [43].

The limitations of perceptrons caused a decline in interest in neural networks until

Rumelhart, Hinton, and Williams popularised the backpropagation algorithm in 1986 [44,

45]. This breakthrough revitalised interest in ANNs and spurred further advancements

shaping modern deep learning techniques.

2.2.2 Artificial Neurons

Modern ANNs consist of interconnected units called neurons that process and transmit

information like a directed graph. These neurons are typically organised into clusters

or layers with similar connectivity patterns. Neurons receive input from other neurons,

perform some computations, and transmit the results to other neurons in another layer.

The parameters associated with connections and neurons within modern ANNs are re-

ferred to as weights and biases. The naming convention originates from older statistical

models like logistic regression with statistical weights and subtracting bias terms for

unbiased estimates. In modern ANNs, weights represent the strength of connections be-

tween neurons, while biases are used to adjust the intercept of the hyperplane modelled

by each neuron [43]. Artificial neurons are a helpful abstraction from the unfathomable

complexity of biological neurons [46, 47].

2.2.3 Diversity of Artificial Neural Networks

Various types of ANNs with different connectivity patterns exist, including feedforward

networks, convolutional neural networks (CNNs), recurrent neural networks (RNNs) and

transformers with embedding layers [43, 35]. Different architectures were developed for

particular problems. ANNs can be applied to numerous tasks such as pattern recognition,

machine translation, and game playing [36].
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Chapter 2. Artificial Neural Networks 14

2.2.4 Feedforward Neural Networks

Feedforward neural networks (FFNNs) are a foundational concept in machine learning,

characterised by their interconnected layers of neurons and feedforward architecture.

They can be described as directed acyclic graphs in graph theory terminology, consist-

ing of input, hidden, and output layers that process and transform input data through

non-linear transformations [43, 48, 49]. The feedforward design allows for efficient com-

putation while maintaining a more straightforward structure than other architectures,

such as RNNs. Figure 2.2 shows an example of a simple FFNN.

x1

h0

h1

h2

w1,1

w1,2

y1

w0,1

w1,1

w2,1

Figure 2.2: A feedforward neural network is a directed acyclic graph.

FFNNs have been successfully applied across various domains, including computer

vision, natural language processing, bioinformatics, and finance. Their ability to extract

useful features from raw data and learn intricate representations has made them suit-

able for various applications within these fields. FFNNs remain an essential building

block in modern deep learning techniques despite their relative simplicity. FFNNs with

hidden layers are also called multi-layer perceptrons (MLPs). FFNNs are ubiquitous in

many modern architectures. This study focuses on analysing FFNNs, and new FFNNs

are developed, using convolutional layers and embedding layers to perform necessary

computations.

2.2.5 Convolutional Neural Networks

CNNs are a class of deep learning algorithms designed to process data with grid-like

topology, such as images. They have gained significant attention due to their excep-

tional performance in various computer vision tasks, including image classification, ob-

ject detection, and segmentation [50, 43]. Inspired by the human visual cortex, CNNs

automatically and adaptively learn spatial hierarchies of features from input data. The
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Chapter 2. Artificial Neural Networks 15

architecture of a typical CNN consists of an input layer, multiple hidden layers compris-

ing convolutional layers, pooling layers, MLPs, and an output layer.

The core component of a CNN is the convolutional layer that serves as a feature

extractor. Each neuron in this layer is connected to a local receptive field in the previous

layer through a set of learnable weights or filters called kernels. These kernels slide over

the input data in a process called convolution, generating feature maps representing

different aspects of the input [50]. The pooling layers perform down-sampling operations

such as max or average pooling to reduce spatial dimensions while preserving important

features. This reduces computational complexity and assists in achieving translation

invariance by providing an abstracted representation of the input [43]. An example of

such an architecture is AlexNet (see Figure 2.3), which was introduced in a 2012 NeurIPS

paper and achieved breakthrough results on image classification [50].

Figure 2.3: AlexNet CNN architecture from the 2012 NeurIPS paper [50].

One key advantage of CNNs is their ability to learn complex hierarchical feature

representations without manual feature engineering. As information propagates through

successive layers, low-level features such as edges and textures are extracted initially,

while higher-level semantic features emerge at deeper layers. This hierarchical structure

makes CNNs suitable for handling large-scale image recognition tasks where intricate

patterns are discerned from raw pixel values.

One-dimensional convolutional layers can be adapted for single-variable function ap-

proximation with cardinal cubic B-splines or Fourier series. This study implements and

uses cardinal cubic B-splines computed with convolutional layers.
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Chapter 2. Artificial Neural Networks 16

2.2.6 Embdedding Layers

Embedding layers provide a compact and efficient way of representing high-dimensional

categorical data, such as words in natural language processing or users and items in

recommendation systems. These layers map discrete input tokens (e.g., word indices) to

dense vectors of fixed size, thereby serving as a continuous representation that can be fed

into downstream neural network models. The primary purpose of embedding layers is to

preserve and learn semantic structure in sequential data to improve the generalisation

capability of deep learning models [51].

The structure of an embedding layer consists of a weight matrix with dimensions

(V,D), where V is the vocabulary size (number of unique tokens) and D denotes the

desired embedding dimension. Each row in this matrix corresponds to an individual

token’s embedding vector, and they are typically initialised randomly. Embedding vec-

tors are trained with backpropagation to capture meaningful relationships among input

tokens. It is worth noting that pre-trained embeddings, such as Word2Vec or GloVe

embeddings, can be used to initialise weights [52, 53, 54, 55].

An embedding layer needs O(V × D) storage for all the weights. However, sparse

matrix operations can reduce memory consumption since only a tiny subset of tokens is

typically active during training or inference in any given input batch. The time com-

plexity for retrieving an individual token’s embedding vector from an embedding layer is

O(1), assuming constant-time indexing into a weight matrix. Embedding layers are cru-

cial in modern deep learning, providing a computationally efficient and semantically rich

representation for categorical data [51]. Embedding layers have been used extensively

in the Transformer architecture [35]. Embedding layers are widely available in modern

machine learning libraries and are used in the models developed for this study.
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Chapter 2. Artificial Neural Networks 17

2.3 Training Techniques

One significant advantage of ANNs, compared to symbolic or rule-based AI such as ex-

pert systems, is their ability to learn from noisy data. ANNs can “learn” to perform

a task by discovering patterns in the training data that map input to output, adjust-

ing the weights and biases accordingly. Supervised training involves modifying these

weights and biases to minimise a loss function, which measures the difference between

the model-predicted output and the desired output. Typically, an optimisation or train-

ing algorithm is employed in this process.

2.3.1 Gradient Descent Algorithms

Gradient descent optimisation algorithms can be efficiently implemented with a message-

passing scheme called backpropagation, or backprop [43]. Two widely used optimisers are

stochastic gradient descent (SGD) and an adaptive moment estimate variant of stochas-

tic gradient descent called Adam [12]. Alternative training techniques such as Hebbian

learning or evolutionary computation have also been explored [38, 56]. Alternative ap-

proaches provide different ways of learning and adapting ANN weights and biases based

on other principles and criteria.

Stochastic Gradient Descent

SGD is a popular optimisation algorithm for training ANNs that estimates the gradient

of the loss function with respect to the model’s weights and biases using a random

subset, or (mini) batch, of training samples at each iteration. The estimated gradient

is then used to update the model’s parameters in the direction that minimises the loss

function [43, 57].

Formally, given a training dataset D = {(xi, yi)}Ni=1, where xi represents the input

and yi represents the corresponding desired output, SGD updates the model’s parameters

θ iteratively as follows:

θ(t+1) = θ(t) − ηĝ(t) = θ(t) − η
(

1

B

B∑
i=1

∇θL(θ(t), xi, yi)

)
, (2.1)
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Chapter 2. Artificial Neural Networks 18

where η is the learning rate that determines the step size of each update, L(·) is the

loss function that quantifies the difference between the model’s predicted output and the

desired output for a given input, ∇θ denotes the gradient with respect to θ, and B is the

batch size. The gradient estimate ĝ(t) is an average of gradients ∇θL(θ(t), xi, yi) over the

subset or batch of training data.

SGD is computationally efficient since it only requires a small subset of training

samples at each iteration. However, this can introduce high variance in estimating the

true gradient, which may lead to slow convergence or oscillation during training. To

address some of the issues with SGD, various modifications to SGD have been proposed.

Adam

Adam (from adaptive moment estimation) is an optimisation algorithm combining ideas

from momentum-based methods that ‘remember’ prior gradient updates (see the original

backprop paper by Rumelhart and Hinton) and RMSprop [44, 12, 58]. Adam aims to

provide adaptive learning rates for different parameters by estimating the gradients’

first-order moments (the mean) and second-order moments (the uncentered variance).

The update rule for Adam involves maintaining an exponentially decaying average

of past gradients (mt) and past squared gradients (vt). These averages are then used

to compute bias-corrected estimates of the first-order moment (m̂t) and second-order

moment (v̂t). Finally, the model’s parameters are updated based on these estimates.

Formally, the Adam update rule is given by:

m(t+1) ← β1m
(t) + (1− β1)ĝ(t) = β1m

(t) + (1− β1)
(

1

B

B∑
i=1

∇θL(θ(t), xi, yi)

)
(2.2)

v(t+1) ← β2v
(t) + (1− β2)(ĝ(t))2 = β2v

(t) + (1− β2)
(

1

B

B∑
i=1

∇θL(θ(t), xi, yi)

)2

(2.3)

m̂ =
m(t+1)

1− βt
1

(2.4)

v̂ =
v(t+1)

1− βt
2

(2.5)

θ(t+1) ← θ(t) − η m̂√
v̂ + ϵ

(2.6)
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Chapter 2. Artificial Neural Networks 19

where β1 and β2 are exponential decay rates for the first and second moments, respec-

tively, and ϵ is a small constant added to the denominator for numerical stability in the

Adam update rule. The gradient estimate ĝ(t) is an average of gradients ∇θL(θ(t), xi, yi)

over the subset or batch of training data.

Adam has been shown to perform well in practice and is widely used in deep learning.

It combines the advantages of momentum-based methods and adaptive learning rates.

However, it has been noted that Adam sometimes leads to poorer generalisation on

unseen data than SGD but still converges quickly on training data [59].

2.3.2 Loss Functions and Metrics

Loss functions are fundamental in various machine learning algorithms as they quantify

the discrepancy between predicted and actual or target values. Loss functions are also

called error functions in some sources [43]. These functions are crucial for optimising

model parameters by calculating how well a model fits a dataset. Three commonly

used loss functions are Mean Absolute Error (MAE), Mean Squared Error (MSE), and

R2 score. The MAE, defined in Equation (2.7), is a straightforward loss function that

calculates the average absolute difference between predicted and actual values [43, 60,

61, 62].

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.7)

where n represents the number of data points, yi denotes the actual value, and ŷi

represents the predicted value. MAE provides an intuitive interpretation of how far off

the predictions are from actual values on average without considering their (±) direction.

In contrast to MAE, MSE, defined in Equation (2.8), penalises larger errors due to its

squared term [43, 60].

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.8)

The squaring operation in MSE amplifies larger errors more than smaller ones. Conse-

quently, models optimising MSE prioritise reducing outliers or extreme errors, which may
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increase sensitivity to anomalies within the dataset. Another commonly used metric for

evaluating regression models is the R2 score, also known as the coefficient of determina-

tion. The R2 score, defined in Equation (2.9), is related to MSE. The R2 score measures

relative error by comparing model predictions with a baseline model that always pre-

dicts the mean value of the target variable. It quantifies the proportion of variance in

the dependent variable that is explained by the independent variables [63, 64, 65, 66].

The R2 score is given by:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(2.9)

where ȳ represents the mean value of the target variable. An R2 score closer to 1 indicates

that the model captures a more significant proportion of data variability. In contrast, an

R2 score equal to or less than zero implies that the model fails to explain any variability

beyond what can be achieved by predicting the mean value.

In summary, loss functions such as MAE, MSE, and R2 provide quantitative measures

of how well a model fits a given dataset. Each metric prioritises different facets of how a

model falls short in prediction. The choice of loss function depends on specific modelling

objectives and priorities.

2.3.3 Data and Training Augmentation

Data augmentation and regularisation techniques attempt to improve model performance

and generalisation. The methods are varied and often problem-specific. Manifold Mixup

regularisation encourages models to adopt smoother approximations [67, 68, 69]. Pseudo-

rehearsal is another training augmentation technique that has been used for continual

learning problems [8, 70], see Section 3.3 in Chapter 3 for more details.

2.4 Emergent Challenges with ANNs

During training with gradient descent optimisers, ANNs may face challenges such as

exploding or vanishing gradients that limit their practical use. It took many years of

research, engineering and fine-tuning to develop architectures and activation functions
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that sidestep gradient-related problems. For instance, deep learning techniques such as

dropout [71], batch normalisation [72], and modern activation functions such as rectified

linear unit (ReLU), defined in Equation (2.10), have helped mitigate these issues [73].

ReLU(x) =

0 if x < 0

x if x ≥ 0
(2.10)

Other emergent phenomena were observed experimentally. It has been noted that

ANNs have brittle memories, causing catastrophic interference when learning new tasks

sequentially. Chapter 3 discusses continual learning and catastrophic interference in

detail.

2.5 Proposed Modifications

The neurons or nodes inside modern ANNs have a ubiquitous mathematical structure.

Each neuron executes the same type of computation: multiplying its inputs xi by their

associated weights wi, adding them together, shifting the weighted sum with a bias term

b, and evaluating a non-linear activation function σ(x) on the result to obtain the neu-

ron’s output or activation [43]. The overall computation is expressed in Equation (2.11)

Neuron Output = σ

( n∑
i=1

wixi + b

)
(2.11)

In contrast, the model proposed in this study replaces the linear functions wixi

with non-linear single-variable functions ϕi(xi) and fixes the activation function σ(x) =

exp(x), as shown in Equation (2.12).

Neuron Output = exp

( n∑
i=1

ϕi(xi) + b

)
(2.12)

This modification aims to enhance the expressive power of ANNs by incorporating

non-linear single-variable functions instead of linear ones. Further details on the proposed

models will be presented in Chapter 4, Chapter 5, and Chapter 6.
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2.6 Summary

This chapter outlined the key ideas and research developments on ANNs. ANNs were

inspired by biological neural networks. ANNs are computational models that can ap-

proximate continuous functions. Section 2.1 reviewed biological neural networks. The

history of ANNs was outlined in Section 2.2. Section 2.3 discussed training techniques.

The discussed training techniques included loss functions such as MAE, MSE and R2,

optimisers like SGD and Adam, in addition to augmentation techniques. Some problems

emerged with ANNs in practice, as recounted in Section 2.4. Section 2.5 outlined some

similarities and differences between conventional ANNs and proposed architectures and

modifications in this study. The emergent phenomenon of catastrophic interference in

ANNs is further examined in Chapter 3.
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Chapter 3

Catastrophic Interference and

Continual Learning

This chapter examines catastrophic interference or catastrophic forgetting and how it

undermines continual learning. Existing explanations for catastrophic interference are

reviewed, and a deeper analysis of the underlying dynamics is provided. Section 3.1 ex-

plains how trainable models can be susceptible to catastrophic interference. Section 3.2

shows how single-variable function approximators can be vulnerable to catastrophic

interference. An augmented training technique to facilitate continual learning called

pseudo-rehearsal is described in Section 3.3. Another augmentation technique, orthogo-

nal gradient descent (OGD), is discussed in Section 3.4. Section 3.5 defines and discusses

metric spaces and distance functions. Section 3.6 explains that lookup tables are robust

to catastrophic interference due to distal orthogonality. Section 3.7 explains how distal

orthogonality leads to learning without distal interference. Section 3.8 outlines a math-

ematical proof that shows the limits of model-only continual learning. A few aims and

ideas are drafted following the initial analysis in Section 3.9. A summary of the most

important findings is given in Section 3.10.

23
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3.1 Susceptibility to Catastrophic Interference

Catastrophic interference is an emergent phenomenon where a machine learning model,

such as an ANN, learns a new task, and the subsequent parameter updates interfere

with the model’s performance on previously learned tasks [1]. Catastrophic interference

is also called catastrophic forgetting in more recent studies to highlight interference over

time or tasks [6, 7, 8]. If an ANN cannot effectively learn many tasks, it has limited

utility in continual learning [9, 10]. Catastrophic interference is like learning how to

jump while forgetting how to land. Even linear functions are susceptible to catastrophic

interference, as illustrated in Figure 3.1. A linear model’s bias and slope are adjusted

to accommodate the first task in blue. The model was modified after training on the

second task, as shown in orange. The linear model changed over its entire domain.

Figure 3.1: A linear function is susceptible to catastrophic interference.

The simple example of catastrophic interference with a linear regression model might

be due to the non-linear target function, noise, changing data distributions, or parameter

sharing across the input. Sharing parameters across the model’s domain means that a

gradient update with backpropagation at one input point potentially changes the model’s

output almost everywhere. The scale of this interference depends on the problem at hand.

One can equivalently say that input points have overlapping representations when

they share the same trainable parameters.

Linear functions are ubiquitous in ANN models, and it is well-known that ANN mod-

els are susceptible to catastrophic interference. This study will experimentally demon-

strate that ReLU ANNs are sensitive to catastrophic interference [74, 75]. Other function

approximation techniques are also susceptible to catastrophic interference.
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3.2 Global Parameters in Basis Functions

Basis functions allow one to represent or approximate single-variable functions. Basis

functions are linearly independent and constitute a basis for the vector space of continu-

ous functions, hence the name. The Fourier series is composed of an additive term c ∈ R
and sine and cosine basis functions with different frequencies for 2πk, and arbitrary co-

efficients ak, bk ∈ R for all k ∈ N. The Fourier basis for functions on the unit interval

x ∈ [0, 1] is given by:

f(x) = c+
K∑
k=1

ak sin(2πkx) + bk cos(2πkx) (3.1)

Polynomial functions constitute a set of basis functions on x ∈ R. A polynomial series is

composed of an additive term c ∈ R and different powers xk, and arbitrary coefficients

ak ∈ R for all k ∈ N:

f(x) = c+
K∑
k=1

akx
k (3.2)

Trigonometric and polynomial functions are susceptible to catastrophic interference.

This susceptibility is demonstrated visually in Figure 3.2a and Figure 3.2b. From left

to right, one has trigonometric and polynomial functions. Adjusting the coefficients

of trigonometric or polynomial functions affects nearly all outputs globally and is not

localised. The exception is points where the basis functions are zero at a nodal point.

(a) Trigonometric functions

x

f(x)

f(x) = 2 sin(2πx)

f(x) = sin(2πx)

(b) Polynomial functions

x

f(x)

f(x) = x3

f(x) = 2x3

Figure 3.2: Commonly used trigonometric and polynomial basis functions are susceptible to

catastrophic interference.
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3.3 Pseudo-Rehearsal Training Augmentation

Common techniques for continual learning include reviewing previously seen data. Nu-

merous review and pseudo-rehearsal techniques exist [8, 70]. The main advantage of

pseudo-rehearsal is that one does not need to store old training data. Instead, one re-

lies on the model’s ability to “memorise” previous training data, which are re-sampled

and mixed with training data on new tasks. Some techniques like generative replay use

generative models like generative adversarial networks [70]. The expected risk R[f] of a

model f is evaluated by integrating the loss function ℓ(f(x), y) over the relevant data

distribution P (x, y), as shown in Equation (3.3) below:

R[f ] =

∫
ℓ(f(x), y)dP (x, y) (3.3)

Pseudo-rehearsal explicitly refers back to the model’s previous state and is similar to the

ideas related to generative replay, except pseudo-rehearsal assumes a uniform distribution

over the inputs x ∈ D(f) [70]. Generative replay estimates the distribution over inputs

x ∈ D(f) with a generative model. Equation (3.4) shows the discrete-time integral

equation that governs pseudo-rehearsal.

R[ft+1] = ρ

∫
ℓ(ft+1(x), y)dP (x, y) + (1− ρ)

∫
ℓ(ft+1(v), ft(v))dP(v) (3.4)

The loss on the current task is given by ℓ(ft+1(x), y), where x and y denote the input and

target values. The distribution P (x, y) represents the data distribution of the current

task. The loss ℓ(ft+1(v), ft(v)) quantifies the change of the model. The scalar mixing

coefficient ρ ∈ [0, 1] controls the trade-off between novel learning and memory retention.

The distribution P(v) = PD(f) of the input data with v ∼ PD(f) could be given by a

generative model or a uniform distribution v ∼ UD(f) over the domain of f denoted

D(f). Using a uniform distribution is less computationally demanding than training

a generative model but yields poor performance in higher dimensions. Generative re-

play was developed due to the degraded performance in high-dimensional models [70].

The integral expression
∫
ℓ(ft+1(v), ft(v))dP(v) is similar to

∫
D′ |f ′(x)− f(x)| dx in the

definition of distal interference shown in Equation (3.10).
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The key idea is to minimise the loss evaluated on new data, subject to the constraint

that the model retains its input-output mapping over the rest of its domain. A simple

version of pseudo-rehearsal is demonstrated visually in Figure 3.3.

Figure 3.3: Demonstration of pseudo-rehearsal for a one-variable function.

The initial model was trained to fit a sine function on the interval [0, 1]. The new task

is uniformly sampled on the interval [0.5, 1], and all the target values are zero. The

pseudo-rehearsal data is constructed by uniformly sampling over the entire domain [0, 1]

with target values equal to the model output before training. The mixing coefficient is

chosen as ρ = 0.5, and the loss function is chosen to be the mean absolute error. Note

that the number of data samples is kept low to make it easier to visualise the data and

understand the process used in pseudo-rehearsal.
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3.4 Orthogonal Gradient Descent

Attempts at combating catastrophic interference and enabling continual learning include

augmented training techniques. Orthogonal gradient descent (OGD) is one example [16].

The main idea behind OGD is to process parameter gradient updates to the model

so that it is orthogonal to the parameter gradients of previously observed data. The

orthogonality ensures minimal change to the model’s output at previously learned data.

The explanation follows: Consider a scalar function f(θ, v) with trainable parameters

θ evaluated on the input vector v. The local linear approximation (assuming the tangent

plane exists) is given in Equation (3.5).

f(θ, v) ≈ f(θ0, v) +∇θf(θ0, v) · (θ − θ0), (3.5)

where ∇θf(θ0, v) denotes the parameter gradient evaluated at v, and the initial param-

eters θ0. The updated parameters θ are given in terms of the initial parameters and a

gradient update at the point v where θ = θ0 − ηĝ with learning rate η.

Suppose that ĝ is not orthogonal to ∇θf(θ0, v). The model will hopefully have an

improved output value at v after the update, as shown in Equation (3.6).

f(θ, v) ≈ f(θ0, v) +∇θf(θ0, v) · (θ − θ0)

= f(θ0, v) +∇θf(θ0, v) · ((θ0 − ηĝ)− θ0)

= f(θ0, v)− η∇θf(θ0, v) · ĝ

̸= f(θ0, v)

(3.6)

This is an expected finding. The same local linear approximation can be used to

explain how OGD can prevent catastrophic interference. A similar approach can be used

to estimate how a model will not change at some other point using only the parameter

gradients of the model. This is shown in Equation (3.7).
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Suppose that x is a previously learned input whose output one seeks to preserve

despite the training at v. If ĝ is orthogonal to ∇θf(θ0, x), then the model will have a

nearly unaltered value at x after the update, as shown in Equation (3.7).

f(θ, x) ≈ f(θ0, x) +∇θf(θ0, x) · (θ − θ0)

= f(θ0, x) +∇θf(θ0, x) · ((θ0 − ηĝ)− θ0)

= f(θ0, x)− η∇θf(θ0, x) · ĝ

= f(θ0, x)

(3.7)

OGD generalises this idea to many training instances instead of just one, but the concept

remains the same. Orthogonal parameter gradients can prevent catastrophic interference.

The inner product ∇θf(θ0, x) · ĝ from Equation (3.7) is similar to |∇θf(x) · ∇θf(v)| in

the definition of distal interference shown in Equation (3.10).

3.5 Metric Spaces and Dissimilarity

A metric space is a fundamental and general mathematical concept that provides a

rigorous framework for studying the notions of distance, convergence, and continuity.

It is beneficial for work in computational geometry, pattern recognition, and machine

learning, where measuring similarity or dissimilarity between objects is essential.

A metric space consists of a set X and a real-valued function d : X ×X → R called

the metric or (general) distance function, which satisfies the following axioms:

1. Non-negativity: ∀x, y ∈ X, d(x, y) ≥ 0

2. Identity of indiscernibles: ∀x, y ∈ X, d(x, y) = 0 ⇐⇒ x = y

3. Symmetry: ∀x, y ∈ X, d(x, y) = d(y, x)

4. Triangle inequality: ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z)

A critical aspect of metric spaces is their generality. The familiar Euclidean distance

in Rn is just one example of a metric; many other possible metrics can be defined on

various sets depending on the application. For instance, consider the discrete metric on

an arbitrary set X, defined by d(x, y) = 1 if x ̸= y and d(x, y) = 0 if x = y.
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The maximum absolute difference or maximum norm distance maxi(|xi − yi|) satisfies

all the axioms for a metric. It is based on the maximum or supremum norm.

In contrast, the minimum absolute dissimilarity mini(|xi − yi|) does not satisfy the

identity of indiscernibles nor the triangle inequality. Therefore, it is not a proper metric

or distance function but a dissimilarity measure. The minimum absolute dissimilarity is

at least symmetric and non-negative.

3.6 Continual Learning with Lookup Tables

This study seeks to identify the properties that endow lookup tables with robust memory

and to transfer them to ANNs. Lookup tables in this study are universal function approx-

imators that partition the domain and map inputs from each partition to a (trainable)

value or output. Lookup tables can store output values for individual points, but the

partition or interval variant is more appropriate for this study. Lookup tables are robust

to catastrophic interference [15]. It has been noted that lookup tables and connectionist

models like ANNs are on opposite sides of a stability-plasticity spectrum. However, a

deeper explanation is needed. The notion of overlapping representations is helpful and

can be applied to any trainable model. The overlap of representations corresponds to

the inner product of the parameter gradients.

Definition 1 (overlapping representation). Two points x, v ∈ D(f) have overlapping

representation in a model f(x) with trainable parameters θ if:

∇θf(x) · ∇θf(v) ̸= 0

Remark 2. Distance is not considered in the definition of overlapping representations.

Heuristically, only points close to each other should have overlapping representations.

Definition 3 (distal orthogonal model). Let f(x) be a differentiable model. Given some

fixed δ > 0 and non-negative dissimilarity or distance measure d(x, v), a model f(x) is

called distal orthogonal w.r.t. d(x, v), if for all θ ∈ Rp and ∀x, v ∈ D(f):

d(x, v) > δ =⇒ ∇θf(x) · ∇θf(v) = 0
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Lookup tables have minimal overlap between distinct points, and this fundamental prop-

erty is best described as max-distal orthogonality.

Definition 4 (max-distal orthogonal model). Let f(x) be a differentiable model. Given

some δ > 0, a model f(x) is max-distal orthogonal if for any trainable parameters θ ∈ Rp

and ∀x, v ∈ D(f):

max
i

(|xi − vi|) > δ =⇒ ∇θf(x) · ∇θf(v) = 0

A lookup table that uniformly partitions the unit hypercube with partition number

z ≥ δ−1 can distinguish between points x, v ⊂ [0, 1]n that differ sufficiently in any one of

their coordinates and associates independent trainable parameters with no overlapping

representation. A consequence of this property is that lookup tables can sequentially

learn many input-output mappings without catastrophic interference. This property can

be easily visualised for two-dimensional points, as shown in Figure 3.4. The two points

x, v have one set of coordinates that differ by more than δ. This property holds for

higher dimensions, but two dimensions are easier to visualise.

x1

x2

x

v

δ

Figure 3.4: Two sufficiently different points to guarantee max-distal orthogonality.

Lookup tables are immune to catastrophic interference because of non-overlapping

representations. Lookup tables can continually learn without augmentation like pseudo-

rehearsal. Lookup tables have a computational complexity that scales exponentially

with the input dimension. Lookup tables generalise poorly with limited training data.

Consequently, lookup tables are not practical for high-dimensional problems. Max-distal

orthogonality does not require exponentially large models since gradients can be zero.
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3.7 Learning Without Distal Interference

Distal interference occurs when parameter updates to change a model output at a specific

point affect the model outputs far from the training data point of interest. This non-local

interference is an underlying mechanism that can cause catastrophic interference in a

continual learning context. This section shows that models with distal orthogonality can

learn without distal interference. The mathematical ideas used in this section are similar

to neural tangent kernels by Jacot et al. [76]. A model f(θt, x) with initial parameters θt

can be trained with gradient descent optimisation to create an updated model f(θt+1, x).

The local linear approximation of a d-distal orthogonal model f(θt+1, x) with explicitly

shown parameters θ is given by:

f(θt+1, x) ≈ f(θt, x) +∇θf(θt, x) · (θt+1 − θt)

Let θt+1 = θt − ηĝ be the updated parameters of the model trained at some point

v ∈ D(f), with learning rate η. Let ĝ = (∂fL)∇θf(θt, v), where ∂fL is the derivative

of the loss function w.r.t. the model f , and ∇θf(θt, v) be the parameter gradient of the

model evaluated at v. Then it follows that:

f(θt+1, x) ≈ f(θt, x) +∇θf(θt, x) · (θt − ηĝ − θt)

= f(θt, x)− η ∇θf(θt, x) · ĝ

= f(θt, x)− η (∂fL)∇θf(θt, x) · ∇θf(θt, v)

Assume that d(x, v) > δ, then for any θ it follows:

d(x, v) > δ =⇒ ∇θf(θ, x) · ∇θf(θ, v) = 0

Since ∇θft(x) · ∇θft(v) = 0, it follows that:

f(θt+1, x) ≈ f(θt, x) (3.8)

Thus, a model with distal orthogonality can learn with gradient descent at a point

v without affecting the values at a distant point x in the domain. Distal interference

can deleteriously affect a model’s ability to learn continuously. Distal interference is

most troublesome when two distant points have large overlapping representations. The

required model size for robustness to distal interference still needs to be determined. Such

insight could shed light on the computational complexity bounds for models capable of

continual learning.
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One can reformulate this idea and drop the explicit dependence on θ. A model f can

be trained with gradient descent optimisation to create an updated f ′. If f is trained

at one point v ∈ D(f), then f(x) may change at some distant point x ∈ D(f). Assume

that f ′(x) ≈ f(x) − η∇θf(x) · ĝ from Equation (3.7). One can quantify the difference

over the domain with a function norm as shown in Equation (3.9) and the local linear

approximation.

Model Perturbation := ∥f ′(x)− f(x)∥1 =

∫
D

|f ′(x)− f(x)| dx

≈
∫
D

|(f(x)− η∇θf(x) · ĝ − f(x)| dx

=

∫
D

η|∇θf(x) · ĝ| dx

=

∫
D

η |∂fL| |∇θf(x) · ∇θf(v)| dx

(3.9)

The change in a model over its domain after a parameter update depends on the learning

rate η, and the inner product between the parameter gradient ∇θf(x) of the model, and

the loss gradient ĝ that depends on the magnitude of loss function derivative |∂fL|, and

the parameter gradient ∇θf(v) of the training data. This is an expected result. Bounded

or sparse parameter gradients can potentially limit the change of the model.

If one chooses a distance or difference measure d(x, v) and some δ > 0, then one can

quantify distal interference over some subset of the domain D′ = {x | d(x, v) > δ}, as

given in Equation (3.10).

Distal Interference :=

∫
D′
|f ′(x)− f(x)| dx ≈

∫
D

η |∂fL| |∇θf(x) · ∇θf(v)| dx (3.10)

It is possible to construct models that guarantee zero distal interference. The caveat

is that one must specify some measure d(x, v) of distance or difference and a fixed δ > 0.

This study considers the difference measures maxi(|xi− vi|) and mini(|xi− vi|). In most

of the given model definitions and explanations, one can assume that z ≥ δ−1, where

z ∈ N is the partition number related to the model capacity. Since the choice of δ and

d(x, v) is arbitrary, the experimental section uses the simpler ∥f ′(x)− f(x)∥1 metric.
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3.8 Limits on Model-Based Continual Learning

Definition 5 (Uniform Trainability). A model f(x) is uniformly trainable with pa-

rameters θ if the parameter gradient of the function is a non-zero vector:

∇θf(x) ̸= 0⃗, ∀x ∈ D(f), ∀θ ∈ Rp

Uniform trainability means the model can be adjusted at any point in the domain.

This is true for a model with one adjustable parameter that outputs the same value

everywhere. It could also be true for more complicated and expressive models. It is

possible to have ANN models with zero gradients in some areas of the domain that are

not trainable with gradient descent.

Theorem 6. If a model f(x) with parameters θ is uniformly trainable and max-distal

orthogonal for some δ ≥ z−1, then it has a parameter space of at least Ω(zn) dimensions.

Proof. Consider a max-distal orthogonal model f(x) with domain D(f) = [0, 1]n, and

choose δ > 0. Let x, v ∈ [0, 1]n, by Definition 4:

max
i

(|xi − vi|) > δ =⇒ ∇θf(x) · ∇θft(v) = 0

Assume the model is uniformly trainable, then by Definition 5:

∇θf(x) ̸= 0⃗,∀x ∈ [0, 1]n, ∀θ ∈ Rp

Choose a partition number z ∈ N s.t. z ≥ δ−1. Consider a set of all Θ(zn) grid-points

u(i) ∈ [0, 1]n such that:

||u(i) − u(j)||∞ > δ ≥ z−1, ∀ i ̸= j ∈ N

From distal orthogonality, it follows that:

∇θf(u(i)) · ∇θf(u(j)) = 0,∀i ̸= j ∈ N

There are Θ(zn) non-zero parameter gradient vectors that are orthogonal to each

other. Thus, the set of vectors ∇θf(u(i)) constitute a basis for a vector space with a

dimension of Θ(zn). It follows that the model requires at least Ω(zn) parameters.
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The (logically equivalent) contra-positive of the theorem is: If a model does not

have an exponentially large parameter space, then it is not uniformly trainable or not

a max-distal orthogonal model. It is necessary to put this into a larger perspective.

Uniform trainability means that a model can be trained with gradient descent on any

input, i.e. there are no dead zones with no gradient, such as what is possible with

ReLU ANNs. A vanishing but non-zero gradient can also hinder trainability. Memory

retention guaranteed due to distal orthogonality can counteract catastrophic interference

with sequential training on different tasks. The computational complexity of a model

(space or time) limits an architecture’s scalability. It would seem one cannot have a

polynomial complexity model that is easy to train with near-perfect memory retention.

It is unsurprising since lookup tables are robust to catastrophic interference but require

exponentially many parameters as a function of the input dimension. The trade-offs and

unsatisfiability are visualised in Figure 3.5

Easy to Train Max-distal Memory Retention

Low Complexity

Models

Figure 3.5: The trade-off triangle between low computational complexity, the ease of optimi-

sation with uniform trainability, and memory retention of any machine learning model.

This analysis suggests there are limits to machine learning architectures of practical or

polynomial complexity that can be trained sequentially on many tasks without catas-

trophic interference. Designing machine learning architectures that strike an appropriate

balance and trade-offs for effective continual learning may still be possible.
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3.9 Aims and Core Ideas

The concepts discussed in previous sections can be visualised with a diagram as shown

in Figure 3.6. Topics discussed so far included ANNs, augmented training techniques,

lookup tables, memory retention, computational complexity, and ease of training. The

aim is to find a reasonable trade-off for effective continual learning, which can be visu-

alised in Figure 3.6.

Augmented

Training

Low Complexity

Models

Typical

ANNs

Easy to

Train
Lookup

Tables

Memory

Retention

Our

Aim

Figure 3.6: A Venn diagram relating key concepts in machine learning related to this study.

Despite the limitations revealed through the analysis, there is a potential workaround

to enable continual learning with augmented training techniques like orthogonal gra-

dient descent, pseudo-rehearsal or generative replay. Training- or data augmentation

can mitigate the effect of distal interference and hopefully prevent catastrophic inter-

ference. Training and data augmentation techniques superficially resemble the replay

and memory consolidation mechanisms in human brains, which are facilitated by the

hippocampus [30, 77, 78]. It is understood that replay occurs with memory consolida-

tion in human brains. However, the exact learning mechanisms in the human brain are

only partially understood. It is conceivable that an analogous machine learning system

that is efficiently computable would require a similar form of augmentation, such as

pseudo-rehearsal [8].
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This study conjectures that: Continual learning with a polynomial complexity

model trained with gradient descent requires augmentation of data or training

procedures.

This is a problematic conjecture to prove directly. Supporting empirical evidence is

provided in Chapter 7, but it is not a rigorous and complete proof. Reflecting on all the

prior work on continual learning and catastrophic interference did indicate a few avenues

for research. There are four possible choices for practical continual learning:

1. Low-dimensional models with max-distal orthogonality and uniform trainability.

2. Retain max-distal orthogonality but sacrifice uniform trainability.

3. Retain uniform trainability and sacrifice max-distal orthogonality.

4. Training augmentation techniques like OGD or pseudo-rehearsal.

It was decided to develop an architecture that retains uniform trainability with a lesser

form of distal orthogonality that is less powerful than max-distal orthogonality. The ar-

chitecture designed for this study (see Chapter 6) also has linear computational complex-

ity and is proven to be a universal function approximator. Experiments are performed

to support or invalidate the theoretical claims:

1. Sufficiently large models of the architecture can approximate non-trivial functions.

2. Distal interference can cause catastrophic interference.

3. Distal orthogonal models are robust to distal and catastrophic interference.

4. ReLU ANN models are susceptible to distal and catastrophic interference.
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3.10 Summary

This chapter examined continual learning and catastrophic interference in the past. The

concepts of overlapping representations, distal interference, and distal orthogonality were

introduced. The most significant finding was that models with uniform trainability and

guaranteed distal orthogonality must have exponentially large parameter spaces. The

contra-positive showed that polynomial complexity models are not uniformly trainable

over their domain or do not guarantee distal orthogonality. This theoretical limitation

undermines the potential for model-only continual learning.

Given the insight from this chapter, uniformly trainable and efficient single-variable

and multi-variable models are outlined in Chapter 4. The multi-variable models are

extended to provable universal function approximators in Chapter 5. The computational

models are implemented with additional considerations and properties in Chapter 6.
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Chapter 4

Spline Artificial Neural Networks

The initial inspiration for this study was to develop new architectures with provable

memory guarantees and universal function approximation capabilities based on prior

work. The original consideration for cardinal B-splines was born from research by Nu-

menta, Hawkins and Dawkins [79] on Hierarchical temporal memory (HTM) systems

with sparse distributed representations [80, 81]. The earliest relevant descriptions of

sparse distributed representations or sparse distributed memory models were written by

Hinton et al. [14] and Kanerva [82]. Some discussions and comments on HTMs were cen-

tred on the absence of an accompanying universal function approximation theorem or

proof of it being Turing complete. However, HTM systems do exhibit excellent memory

capabilities. After reflection, it became apparent that sparse distributed representations

with linear layers are mathematically similar to cardinal B-splines.

Section 4.1 discusses the desired properties of cardinal B-splines. Sparse distributed

representations are discussed in Section 4.2. An effort is made to extend the single-

variable function approximators to multi-variable functions called z-Spline ANNs to re-

tain some desirable cardinal B-spline properties, discussed in Section 4.3. z-Spline ANNs

are defined in Section 4.4, and their analogous properties are given. Section 4.5 provides

a summary of this chapter.

39
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4.1 Motivation for B-Splines

Splines are piece-wise defined polynomial functions, often used in computer graphics,

function representation and data interpolation [83, 84, 85]. Akin to stitching together

(almost) unrelated polynomials together to make a function that is a polynomial locally,

but not globally over its domain. A common variant of splines that constitute a basis

for a vector space (closed under vector operations) are called B-splines [86, 87, 88].

Cardinal B-splines are defined on equally sized sub-intervals or partitions. The

boundaries of the partitions are called knots, and knot-insertion algorithms can be used

to re-partition into smaller sub-intervals [89]. Splines have been used in ANNs [90, 91, 92].

This study considers cardinal cubic B-splines due to their smooth derivative. Unlike

trigonometric and polynomial functions (see Section 3.2), cardinal cubic B-splines have

parameters that affect the spline locally. Any continuous single-variable function can be

approximated with a cardinal cubic B-spline f(x) with basis functions Si(x), computed

from the same activation function S(x).

Definition 7 (z-density B-spline function). A z-density B-spline function, f , is a car-

dinal cubic B-spline function of one variable with 4z + 3 basis functions with z ∈ N and

adjustable parameters θi:

f(x) =
4z+3∑
i=1

θiSi(x) =
4z+3∑
i=1

θiS(wix+ bi) =
4z+3∑
i=1

θiS((4z)x+ (4− i))

Cardinal B-splines uniformly partition the interval [0, 1] and each basis function Si(x)

has the same shape for different partition numbers, as shown in Figure 4.1 and Figure 4.2.

(a) Four basis functions. (b) Eight basis functions. (c) Sixteen basis functions.

Figure 4.1: Uniformly spaced cardinal B-splines basis functions have the same shape.
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Chapter 4. Spline Artificial Neural Networks 41

The basis functions extend outside the target interval [0, 1] due to an artefact of the

implementation and smoothness requirements. The arguments x of each basis func-

tion Si(x) is simply scaled by 4z and shifted by constants bi before applying the same

activation function S(x), which is given by:

S(x) =



1
6x

3 0 ≤ x < 1

1
6

[
−3(x− 1)3 + 3(x− 1)2 + 3(x− 1) + 1

]
1 ≤ x < 2

1
6

[
3(x− 2)3 − 6(x− 2)2 + 4

]
2 ≤ x < 3

1
6 (4− x)

3 3 ≤ x < 4

0 otherwise

(4.1)

The activation function S(x) is non-zero over the domain x ∈ [0, 4], and shown in

Figure 4.2.

Figure 4.2: Activation function S(x) used to compute cardinal cubic B-splines.

The shape of S(x) resembles a Gaussian, even though the underlying function is piece-

wise cubic. There are some similarities to using Gaussian kernels for function approxima-

tion, with one key difference: Cubic B-spline basis functions are zero almost everywhere,

and Gaussian functions are non-zero everywhere.
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Cardinal cubic B-splines can be modelled using a two-layer artificial neural network

f(x) =
∑K

i=1 θiS (wix+ bi) with an activation function S corresponding to the shape of

each basis function and a pre-defined set of constants wi and bi in the first layer. A final

trainable linear layer multiplies each basis function with its coefficient parameter θi and

sums together the results. Keep in mind that the only the coefficients θi are trainable

thus optimising f(x) =
∑K

i=1 θiS (wix+ bi) is linear. In contrast, splines that unevenly

partition the input space do not permit such a straightforward implementation.

Using cardinal B-splines instead of arbitrary and trainable sub-interval partitions and

knots makes optimisation easier [91]. Optimising partitions is non-linear, but optimising

only coefficient θi (also called control points) is linear and thus convex.

Suppose one changes one parameter θi in a cardinal cubic B-spline f(x); then the

model only changes on a small region as shown in Figure 4.3. Each parameter of a

cardinal B-spline affects a small and local region of the domain, in contrast to other

basis function methods discussed in Section 3.2

Figure 4.3: Cardinal B-spline basis functions are localised.

Cardinal B-splines were initially considered due to their connection to sparse distributed

representations discussed in Section 4.2.
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4.2 Sparse Distributed Representation

The initial impetus for B-splines followed from a revelation that sparse distributed rep-

resentations (SDRs) are zeroth-order cardinal B-splines [14]. Zeroth order splines inci-

dentally resemble single-variable lookup tables with point-wise discontinuities. It is also

known that lookup tables are very robust to catastrophic interference [15]. Zeroth-order

B-splines have a basis function B0(x):

B0(x) =

1, 0 ≤ x < 1

0, otherwise
(4.2)

SDRs are typically a pre-processing step for the input to a model. SDRs encode each

scalar variable in a way that superficially resembles a one-hot encoding. SDRs are sparse

arrays where most entries are zero. The range of each scalar variable is partitioned into

buckets, and the bucket that contains the data point is assigned a value of one. All

other entries or buckets in the SDR are zero. A multi-variable SDR is the concatenation

of single-variable SDRs. A two-dimensional SDR is shown in Figure 4.4 based on prior

explanations of SDRs [14].

v

x

0
0
0
0
0
1
0
0

0 0 0 1 0 0 0 0

Figure 4.4: SDR encoding of a two-dimensional point.

Different variants of the HTM systems use SDRs to encode information [79, 80, 81].

Applying a linear function to an SDR is equivalent to computing zeroth-order cardinal

B-splines, but it is not mentioned in the relevant literature. Cardinal cubic B-splines

can be thought of as smoothed SDRs.
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4.3 Properties of Cardinal Cubic B-splines

B-splines constitute a flexible and expressive method for function approximation. In

addition, analysing B-splines and characterising their general behaviour is simpler than

other basis functions. The support interval or domain over which a spline is defined is

partitioned into sub-intervals with boundaries called knots. The number of sub-intervals

dictates the number of B-spline basis functions. The degree of a B-spline (e.g. zeroth or

cubic) is the degree of each locally defined polynomial [86, 87, 88, 89]. Cardinal B-splines

exhibit sparse, bounded and non-zero parameter gradients and distal orthogonality.

4.3.1 Sparsity

Proposition 8 (Sparsity). Let f(x) be a z-density B-spline function, defined on the

domain [0, 1] ⊂ R, with trainable parameters θi and partition number z. Let ∥∇θf(x)∥0
denote the number of non-zero components of the gradient vector w.r.t. trainable param-

eters. For any x ∈ D(f), the number of non-zero components is bounded:

∥∇θf(x)∥0 ≤ 4

Proof. Let f(x) be a z-density B-spline function from Definition 7. Consider the com-

ponents of the vector ∇θf(x) obtained from the gradient operator, which is simply

∂

∂θi
f(x) =

∂

∂θi

4z+3∑
j=1

θjSj(x) = Si(x)

Inspecting each basis function Si(x) shows that, at most, four basis functions are non-

zero for a fixed x ∈ [0, 1], as visualised in Figure 4.5. It follows that:

∥∇θf(x)∥0 ≤ 4

Thus, the number of non-zero entries is bounded.

Remark 9. Sparse gradient vectors leave most weights unchanged and can prevent catas-

trophic interference. Sparsity also permits efficient model implementations as discussed

in Section 6.3, and Chapter 6
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Figure 4.5: Visual proof of sparse and bounded gradients for cardinal B-splines.

4.3.2 Bounded Gradients

Proposition 10 (Bounded Parameter Gradient). Let f(x) be a z-density B-spline func-

tion, defined on the domain [0, 1] ⊂ R, with trainable parameters θi and partition number

z. For any x ∈ D(f), the gradient w.r.t trainable parameters, ∇θf(x), is bounded:

∥∇θf(x)∥1 =
4z+3∑
i=1

∣∣∣∣ ∂f∂θi (x)

∣∣∣∣ < 4

Proof. Consider the components of the vector ∇θf(x) obtained from the gradient oper-

ator, which is simply:

∂

∂θi
f(x) =

∂

∂θi

4z+3∑
i=1

θiSi(x) = Si(x)

All basis functions Si(x) are bounded since for any x ∈ R, the activation function S(x)

is always less than 1. Visualised in Figure 4.2 and Figure 4.5. It follows that:

∥∇θf(x)∥1 =
4z+3∑
i=1

∣∣∣∣ ∂f∂θi (x)

∣∣∣∣ =
4z+3∑
i=1

|Si(x)| < 4

Thus, the parameter gradient is bounded.

Remark 11. Bounded gradients suggest that the model is numerically stable, and small

perturbations will not excessively affect the model’s learned values. The boundedness of

the parameter gradient does not depend on the total number of basis functions.
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4.3.3 Uniform Trainability

Proposition 12 (Trainability of Cardinal B-splines). Let f(x) be a z-density B-spline

function, defined on the domain [0, 1] ⊂ R, with trainable parameters θi and partition

number z. The gradient w.r.t trainable parameters, ∇θf(x), is non-zero:

∇θf(θ, x) ̸= 0⃗, ∀x ∈ D(f)

Proof. Consider the components of the vector ∇θf(x) obtained from the gradient oper-

ator, which is simply

∂

∂θi
f(x) =

∂

∂θi

4z+3∑
j=1

θjSj(x) = Si(x)

If x ∈ [0, 1] is inside the support interval, then at least three basis functions are non-zero.

At the boundary of the support interval, it is exactly three instead of the maximum of

four. So, at least three components of the parameter gradient are non-zero:

∇θf(θ, x) ̸= 0⃗, ∀x ∈ D(f), ∀θ ∈ Rp

Thus, z density B-splines are uniformly trainable on the unit interval.

Remark 13. Uniform trainability means a model can be optimised with gradient de-

scent anywhere in its domain. This desirable property is only sometimes guaranteed for

conventional ANNs such as ReLU ANNs with “dead” or zeroed neurons.

4.3.4 Distal Orthogonality

Proposition 14 (absolute distal orthogonality). Let f(x) be a z-density B-spline func-

tion, defined on the domain [0, 1] ⊂ R, with trainable parameters θi and partition number

z, then ∀ x, v ∈ D(f):

|x− v| > z−1 =⇒ ∇θf(x) · ∇θf(v) = 0

Proof. Let f(x) be a z-density B-spline function, defined on the domain [0, 1] ⊂ R,

with trainable parameters θi. Consider the points x, v ∈ D(f). f(x) partitions the unit

interval into 4z sub-intervals of equal length ( 1
4z

).
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A visual aid is provided in Figure 4.6. Two distant points are shown in orange. The

active or non-zero basis functions associated with each point are shown in dark blue.

The inactive or zero basis functions are shown in light blue.

Figure 4.6: Visual proof of distal orthogonality for cardinal B-splines.

If the distance between x and v is larger than four sub-intervals, then there are no basis

functions in common. Therefore, if |x − v| > 4( 1
4z

) = z−1, then the gradients must be

orthogonal with no overlapping parameters. I.e. ∇θf(x) · ∇θf(v) = 0

4.3.5 Stratification

Cardinal cubic B-splines with a large density of basis functions can exhibit what is best

described as stratification, illustrated in Figure 4.7, and mentioned in [90]. Stratification

resembles overfitting, where the data points are learned precisely, but the model is not

adjusted on any regions without training data. The models in Figure 4.7 are initialised

to zero. Areas with no training data are never modified and retain their initial value of

zero. The training data was sampled from the sine function sin(2πx) to illustrate the

effect of increasing the number of basis functions, labelled λ, as shown in Figure 4.7.
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Stratification is a consequence of intrinsic memory retention. The flat, unaltered

regions between data points are atypical when contrasted with other basis functions.

There are a few qualitative differences between stratification and conventional overfitting.

Areas with no training data have predictable values (if initialised as constants) and

do not exhibit oscillations as seen in the Runge phenomenon with other kinds of basis

functions [93, 94, 95]. However, exact interpolation of training data is ill-advised for tasks

with noisy training data. The resulting model would have severe variance and oscillate

wildly because of overfitting or interpolating with zero error between each consecutive

noisy data point on some interval.

Figure 4.7: Demonstration of stratification in the single-variable case.

Overfitting is task-specific: An over-parametrised model can be ideal if the target

function is zero almost everywhere except at a few points. Anomaly detection is a good

application for over-parametrised B-spline models. Over-parametrised models might

perform poorly on regression problems like estimating a sine function with few training

data points, as seen in Figure 4.7. Stratification could be detrimental or advantageous,

depending on the application. Manifold Mixup regularisation and data augmentation

can potentially counteract stratification when necessary [67, 68, 69].
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4.4 Spline Artificial Neural Networks

In this study, Spline ANNs (or z-Spline ANNs) are sums of single-variable z-density B-

spline functions. General additive models approximate multi-variable functions as sums

of single-variable functions and are often used in statistics [96, 97, 98]. z-Spline ANNs

can approximate sums of single-variable functions with z-density B-spline functions.

Incorporating splines into ANNs has been studied to some extent [90, 91, 92]. Lane

et al. [90] published a paper at the third NeurIPS conference that employed B-splines to

model receptive fields in MLP models. Some investigations used uniformly partitioned

splines to implement adaptive and trainable activation functions named spline activation

functions (SAFs) in ANNs [99]. Studies have also been on trainable or uneven partition

splines that allow the partitions (or knots) to be trained with gradient descent [91]. The

relevant studies used shallow ANN architectures with less than three hidden layers.

This study restricts the z-Spline ANN models to evenly spaced partitions for a simpler

and more amicable implementation. To the author’s knowledge, catastrophic forgetting

was not considered in the context of splines.

Definition 15 (z-Spline ANN). A z-Spline ANN model f(x), defined on [0, 1]n, with

trainable parameters θ ∈ Rp and partition number z ∈ N, is a sum of n ∈ N single-

variable z-density B-splines in each variable:

f(x) =
n∑

j=1

fj(xj) =
n∑

j=1

4z+3∑
i=1

θi,jSi,j(xj) =
n∑

j=1

4z+3∑
i=1

θi,jS((4z)xj + (4− i))

where θi,j corresponds to trainable parameters or coefficients, and Si,j(xj) denotes the

fixed basis functions for cardinal cubic B-splines. S(x) is the cubic spline activation func-

tion. The z-Spline ANNs are uniformly trainable and min-distal orthogonal (z ≥ δ−1)

models with sparse and bounded parameter gradients. See Section 4.3 for explanations

and proofs of the properties of cardinal cubic B-splines.

z-Spline ANNs have linear time and space complexity in the input dimension n. In

addition, z-Spline ANNs inherit properties from z-density B-splines: sparsity, bounded

gradients, uniform trainability that scale with n and min-distal orthogonality.
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4.4.1 Sparsity

Proposition 16 (Sparsity). Let f(x) be a z-Spline ANN, defined on the domain x ∈
[0, 1]n, with trainable parameters θ ∈ Rp. Let ∥∇θf(x)∥0 denote the number of non-zero

components of the gradient vector w.r.t trainable parameters is bounded:

∥∇θf(x)∥0 ≤ 4n ∀x ∈ D(f)

Proof. Let f(x) be a z-Spline ANN, defined on the domain x ∈ [0, 1]n, with trainable

parameters θ ∈ Rp. Let ∥∇θf(x)∥0 denote the number of non-zero components of the

gradient vector w.r.t trainable parameters. From definition 15:

∥∇θf(x)∥0 = ∥∇θ

n∑
j=1

fj(xj)∥0 =
n∑

j=1

∥∇θfj(xj)∥0

From proposition 10,

∥∇θf(x)∥0 <
n∑

j=1

4 = 4n

4.4.2 Bounded Gradients

Proposition 17 (Bounded Parameter Gradient). Let f(x) be a z-Spline ANN, defined

on the domain x ∈ [0, 1]n, with trainable parameters θ ∈ Rp. For any x ∈ D(f), the

gradient w.r.t trainable parameters, ∇θf(x), is bounded:

∥∇θf(x)∥1 =
n∑

j=1

4z+3∑
i=1

|Si,j(xj)| < 4n

Proof. Let f(x) be a z-Spline ANN, defined on the domain x ∈ [0, 1]n, with trainable

parameters θ ∈ Rp. From definition 15:

∥∇θf(x)∥1 = ∥∇θ

n∑
j=1

fj(xj)∥1 =
n∑

j=1

∥∇θfj(xj)∥1

From proposition 8,

∥∇θf(x)∥1 ≤
n∑

j=1

4 = 4n
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4.4.3 Uniform Trainability

Proposition 18 (Trainability of z-Spline ANNs). Let f(x) be a z-Spline ANN, defined

on the domain x ∈ [0, 1]n, with trainable parameters θ ∈ Rp:

∇θf(x) ̸= 0⃗

Proof. Let f(x) be a z-Spline ANN, defined on the domain x ∈ [0, 1]n, with trainable

parameters θ ∈ Rp. From definition 15:

∇θf(x) =
n∑

j=1

∇θfj(xj)

From proposition 12, it follows that ∇θfj(xj) are non-zero. Since fj are independent it

follows that ∇θf(x) ̸= 0⃗.

Unsurprisingly, z-Spline ANNs inherit sparsity, bounded parameter gradients and

uniform trainability. The overall model is convex since the model is linear w.r.t. trainable

parameters. This makes global optimisation easy with gradient descent algorithms.

4.4.4 Min-Distal Orthogonality

Min-distal orthogonality is similar to the single-variable case. However, each coordinate

must sufficiently differ as shown in Figure 4.8, unlike lookup tables that are discussed in

Section 3.6, and shown in Figure 3.4.

Proposition 19 (min-distal orthogonality). Let f(x) be a z-Spline ANN, defined on the

domain x ∈ [0, 1]n, with trainable parameters θ ∈ Rp. For any x, v ∈ D(f):

min
i

(|xi − vi|) > z−1 =⇒ ∇θf(x) · ∇θf(v) = 0

Remark 20. Min-distal orthogonality is similar to max-distal orthogonality (see Defini-

tion 4). If a model is a max-distal orthogonal model, then it is a min-distal orthogonal

model. However, not all min-distal orthogonal models are max-distal orthogonal models.
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Proof. Let f(x) be a z-Spline ANN, defined on the domain x ∈ [0, 1]n, with trainable

parameters θ ∈ Rp. Choose x, v ∈ D(f). From definition 15, it follows that:

∇θf(x) · ∇θf(v) =

( n∑
j=1

∇θfj(xj)

)
·
( n∑

j=1

∇θfj(vj)

)
Since each function fj is independent for each input dimension,

( n∑
j=1

∇θfj(xj)

)
·
( n∑

j=1

∇θfj(vj)

)
=

n∑
j=1

∇θfj(xj) · ∇θfj(vj)

Assume that mini(|xi − vi|) > 1
z
, then from proposition 14 it follows that each inner

product is zero. Finally, ∇θf(x) · ∇θf(v) = 0

x1

x2

x

v

δ

δ

Figure 4.8: Two sufficiently different points to guarantee min-distal orthogonality.

Note that z-Spline ANNs can be helpful for specific applications. Optimising their

parameters with a convex loss function yields a convex optimisation problem with a

global optimum that can be reached with gradient descent optimisation methods. z-

Spline ANNs have some guarantees regarding non-overlapping representations due to

lesser orthogonality, but it is unclear how useful min-distal orthogonality is for continual

learning. A major theoretical problem with z-Spline ANNs is their limited expressivity:

z-Spline ANNs cannot approximate any multi-variable continuous function. If the target

function is a sum of single-variable functions, then z-Spline ANNs would be ideal, but

many problems have more complicated target functions.
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One of the goals of this study is to extend z-Spline ANNs to an architecture ex-

pressive enough to approximate any multi-variable continuous function while retaining

the desirable properties of sparsity, bounded gradients, uniform trainability, min-distal

orthogonality and polynomial computational complexity.

4.5 Summary

This chapter introduced cardinal B-splines and their desirable properties for single-

variable function approximation. Cardinal B-splines were extended to multi-variable

functions called z-Spline ANNs. It was shown that z-Spline ANNs are linear w.r.t. model

parameters and are easy to train. z-Spline ANNs have limited expressive power and are

not universal function approximators. Functions called antisymmetric exponentials are

introduced in Chapter 5 to extend z-Spline ANNs to universal function approximators.
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Chapter 5

Antisymmetric Exponentials

This chapter outlines a set of continuous functions called antisymmetric exponentials.

This study aims to extend z-spline ANNs to universal function approximators while

retaining min-distal orthogonality and other properties discussed in Chapter 4. Initial

attempts in this study to extend z-Spline ANN using the Kolmogorov-Arnold represen-

tation theorem did not transfer their properties, in contrast to the Stone-Weierstrass

theorem and exponentials. Antisymmetric exponentials guarantee universal function

approximation for the model proposed in Chapter 6. Antisymmetric exponentials are

named for a sign-swap property:

−
(

exp(x)− exp(y)

)
= exp(y)− exp(x)

Developing antisymmetric exponentials can reveal new function approximation meth-

ods. Functions on domains different than [0, 1]n or Rn are notoriously unwieldy and

difficult to approximate in practice. Functions defined on continuous signals, sets, se-

quences, graphs and point clouds are challenging to model and approximate from data

alone [100, 101, 102]. ANNs that can distinguish (see Definition 24) between any two

potential inputs are necessary for universal function approximation.

Section 5.1 provides necessary background definitions and theorems. Antisymmetric

exponentials are defined in Section 5.2. Section 5.3 and Section 5.4 prove that antisym-

metric exponentials constitute a unital sub-algebra. Section 5.5 proves that antisymmet-

ric exponentials can separate points. Section 5.6 proves that antisymmetric exponentials

are universal function approximators. A summary is given in Section 5.7.

54
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5.1 Preliminary Definitions and Theorems

This section gives standard definitions and theorems necessary to prove universal func-

tion approximation that can be found in analysis courses and textbooks [103]. The

general and abstract formulation can help to evaluate or develop function approxima-

tion methods on different domains. However, this project is restricted to the domain

[0, 1]n.

Definition 21. Let (X, d) be a metric space. Then Cb(X) is the normed subspace of

B(X) comprising all continuous, bounded functions f : X → R.

Definition 22. A subset S ⊆ Cb(X) is called an algebra if

1. it is a linear subspace of S, i.e. it is closed under addition and scalar multiplication

(by arbitrary scalars α ∈ R); and

2. it is closed under point-wise multiplication, i.e. for all f, g ∈ S, we have fg ∈ S.

Remark 23. A unital sub-algebra is an algebra of a subset S ⊆ Cb(X) that contains the

multiplicative identity or unity like the constant function x 7→ 1

Definition 24. We say that a set S ⊆ Cb(X) separates points in X if for all x, y ∈ X
with x ̸= y, there exists f ∈ S such that f(x) ̸= f(y).

Definition 25. Let (X, d) be a metric space. A set Y ⊆ X is called dense in X if for

every x ∈ X and every ε > 0, there exists y ∈ Y such that d(x, y) < ε.

Remark 26. Assume the supremum norm ∥f∥sup = supx∈X |f(x)| for function spaces,

and d(f, g) = supx∈X |f(x)− g(x)|.

Theorem 27 (Stone–Weierstrass). Let (X, d) be a compact metric space. Suppose that

S ⊆ Cb(X) is an algebra that separates points in X. Furthermore, suppose that the

constant function x 7→ 1 belongs to S. Then S is dense in Cb(X).
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5.2 Definition of Antisymmetric Exponentials

Definition 28. Let (X, d) ⊆ Rn be a compact metric space. For all ψ in the set of an-

tisymmetric exponentials Ψ ⊆ Cb(X), there exists M ∈ N, and gk,j(xj), hk,j(xj) ∈
C(R) such that:

ψ(x) =
M∑
k=1

(
exp

(
Σn

j=1gk,j(xj)

)
− exp

(
Σn

j=1hk,j(xj)

))

It can be shown that the set of antisymmetric exponentials is closed under scalar

multiplication, addition, and point-wise multiplication. If one multiplies an antisym-

metric exponential with a scalar, the result is still an antisymmetric exponential. If one

adds two antisymmetric exponentials, the result is also an antisymmetric exponential.

If one multiplies two antisymmetric exponentials, the result is still an antisymmetric

exponential. This is one of the reasons the number of positive and negative functions is

chosen to be the same.

5.3 Antisymmetric Exponentials are an Algebra

Lemma 29. Suppose that Ψ ⊆ Cb(X) is the set of antisymmetric exponentials, then Ψ

is closed under scalar multiplication for any ρ ∈ R.

Proof. Let (X, d) ⊆ Rn be a compact metric space, with x ∈ (X, d), and components

x = (x1, .., xn). Let ψ, ψ′ ∈ Ψ be antisymmetric exponentials. From Definition 28:

ψ =
M∑
k=1

(
exp

(
Σn

j=1gk,j(xj)

)
− exp

(
Σn

j=1hk,j(xj)

))

ψ′ =
M ′∑
k=1

(
exp

(
Σn

j=1g
′
k,j(xj)

)
− exp

(
Σn

j=1h
′
k,j(xj)

))

where gk,j(xj), hk,j(xj), g
′
k,j(xj), h

′
k,j(xj) ∈ C(R) are continuous single-variable func-

tions.
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Let 0 < α ∈ R+. Any real number ρ ∈ R can be expressed as α,−α, or zero. This is

necessary since logarithms are not real or undefined for non-positive numbers. The three

cases are considered:

1. Choose the interior functions for ψ′ such that g′k,1(x1) = gk,1(x1) + log(α), and

h′k,1(x1) = hk,1(x1) + log(α). Choose g′k,j(xj) = gk,j(xj), and h′k,j(xj) = hk,j(xj) for

all indices j > 1 ∈ N :

αψ =
M∑
k=1

(
exp

(
log(α) + Σn

j=1gk,j(xj)

)
− exp

(
log(α) + Σn

j=1hk,j(xj)

))
= ψ′

2. Choose the interior functions for ψ′ such that g′k,1(x1) = hk,1(x1) + log(α), and

h′k,1(x1) = gk,1(x1) + log(α). Choose g′k,j(xj) = hk,j(xj), and h′k,j(xj) = gk,j(xj) for

all indices j > 1 ∈ N :

−αψ =
M∑
k=1

(
exp

(
log(α) + Σn

j=1hk,j(xj)

)
− exp

(
log(α) + Σn

j=1gk,j(xj)

))
= ψ′

3. Choose the interior functions for ψ′ such that g′k,j(xj) = 0, and h′k,j(xj) = 0 for all

indices j, k ∈ N :

0ψ = 0 =
M ′∑
k=1

(
exp(0)− exp(0)

)
= ψ′

One must simply define single-variable interior functions as zero or absorb a constant.

Since this is true for any ρ ∈ R, it follows that Ψ is closed under scalar multiplication.

The following requirement is to show that the set of antisymmetric exponentials is closed

under addition. I.e. adding togther two antisymmetric exponentials yields a third anti-

symmetric exponential. Sets of functions closed under scalar multiplication and addition

satisfy the axioms for a vector space.
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Lemma 30. Suppose that Ψ ⊆ Cb(X) is the set of antisymmetric exponentials, then Ψ

is closed under addition.

Proof. Let (X, d) ⊆ Rn be a compact metric space, with x ∈ (X, d), and components

x = (x1, .., xn). Let ψ, ψ′, ψ′′ ∈ Ψ be antisymmetric exponentials. From Definition 28:

ψ =
M∑
k=1

(
exp

(
Σn

j=1gk,j(xj)

)
− exp

(
Σn

j=1hk,j(xj)

))

ψ′ =
M ′∑
k=1

(
exp

(
Σn

j=1g
′
k,j(xj)

)
− exp

(
Σn

j=1h
′
k,j(xj)

))

ψ′′ =
M ′′∑
k=1

(
exp

(
Σn

j=1g
′′
k,j(xj)

)
− exp

(
Σn

j=1h
′′
k,j(xj)

))

A more compact notation that fits on the page for the sums of single-variable functions

is G′
k := Σn

j=1g
′
k,j(xj), H

′
k := Σn

j=1h
′
k,j(xj), similarly for Gk, Hk and G′′

k, H
′′
k . Choose

the interior functions for ψ′′ such that G′′
k = Gk, H

′′
k = Hk for all indices k ≤ M .

Choose G′′
k = G′

k−M , H
′′
k = H ′

k−M , ∀k > M such that the indices are in range. With

M ′′ = M +M ′, it follows that:

ψ + ψ′ =

( M∑
k=1

(
expGk − expHk

))
+

( M ′∑
k=1

(
expG′

k − expH ′
k

))

ψ + ψ′ =
M+M ′∑
k=1

(
expG′′

k − expH ′′
k

)
=

M ′′∑
k=1

(
expG′′

k − expH ′′
k

)
= ψ′′

One can ‘find’ a ψ′′ ∈ Ψ such that ψ′′ = ψ+ψ′ by choosing appropriate interior functions

in ψ′′. Since this is true for any ψ, ψ′ ∈ Ψ it follows that Ψ is closed under addition.

Antisymmetric exponentials do constitute a vector space. What distinguishes an algebra

from a vector space is some way to ‘multiply’ vectors from the space such that the result

is also an element of the vector space. This is not true in general for the inner product

that maps vectors to scalars. The following requirement is to show that antisymmetric

exponentials are closed under point-wise multiplication.
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Lemma 31. Suppose that Ψ ⊆ Cb(X) is the set of antisymmetric exponentials, then Ψ

is closed under point-wise multiplication.

Proof. Let (X, d) ⊆ Rn be a compact metric space, with x ∈ (X, d), and components

x = (x1, .., xn). Let ψ, ψ′, ψ′′ ∈ Ψ be antisymmetric exponentials. From Definition 28:

ψ =
M∑
p=1

(
exp

(
Σn

j=1gp,j(xj)

)
− exp

(
Σn

j=1hp,j(xj)

))

ψ′ =
M ′∑
q=1

(
exp

(
Σn

j=1g
′
q,j(xj)

)
− exp

(
Σn

j=1h
′
q,j(xj)

))

ψ′′ =
M ′′∑
k=1

(
exp

(
Σn

j=1g
′′
k,j(xj)

)
− exp

(
Σn

j=1h
′′
k,j(xj)

))

A more compact notation that fits on the page for the sums of single-variable functions

is G′
k := Σn

j=1g
′
k,j(xj), H

′
k := Σn

j=1h
′
k,j(xj), similarly for Gk, Hk and G′′

k, H
′′
k . Multiplying

out the expressions yields 4MM ′ terms in total, with 2MM ′ positive and 2MM ′ negative

exponential functions, such that M ′′ = 2MM ′. The key is that the result has equal

numbers of positive and negative exponentials. The choice of indexing is arbitrary, and

k, p, q are used to distinguish different functions, with k being dependent on (p, q). The

interior functions are closed under addition and G′′
k = Gp + G′

q or G′′
k = Hp + H ′

q for

positive terms. For negative terms one has H ′′
k = Hp +G′

q or H ′′
k = Gp +H ′

q such that:

ψψ′ =

( M∑
p=1

(
expGp − expHp

))( M ′∑
q=1

(
expG′

q − expH ′
q

))

=

M∑
p=1

M ′∑
q=1

(
expGp − expHp

)(
expG′

q − expH ′
q

)

=

M∑
p=1

M ′∑
q=1

(
exp

(
Gp +G′

q

)
− exp

(
Hp +G′

q

)
− exp

(
Gp +H ′

q

)
+ exp

(
Hp +H ′

q

))

=
M ′′∑
k=1

(
expG′′

k − expH ′′
k

)
= ψ′′

There exists a ψ′′ ∈ Ψ such that ψ′′ = ψψ′ since interior functions are closed under

addition. This is true for any ψ, ψ′ ∈ Ψ. Therefore, Ψ is closed under multiplication.
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Lemma 32. Suppose that Ψ ⊆ Cb(X) is the set of antisymmetric exponentials, then Ψ

is an algebra.

Proof. Antisymmetric exponentials Ψ ⊆ Cb(X) are closed under scalar multiplication

(by lemma 29), addition (by lemma 30), and point-wise multiplication (by lemma 31).

The set of antisymmetric exponentials Ψ ⊆ Cb(X) is an algebra by definition.

5.4 Antisymmetric Exponentials Contain Unity

Containing a constant function is necessary so that the set of functions can represent

a constant function. Regardless of the tautology, universal function approximation of

continuous functions also includes constant functions.

Lemma 33. Let (X, d) be a compact metric space with x ∈ X. Suppose that Ψ ⊆ Cb(X)

is the set of antisymmetric exponentials, then the constant function x 7→ 1 is an element

of Ψ

Proof. Let (X, d) ⊆ Rn be a compact metric space, with x ∈ (X, d), and components

x = (x1, .., xn). Let ψ, ψ′ ∈ Ψ be antisymmetric exponentials. From Definition 28:

ψ =
M∑
k=1

(
exp

(
Σn

j=1gk,j(xj)

)
− exp

(
Σn

j=1hk,j(xj)

))

Choose g1,1(x1) = log(2), and all other functions gk,j(xj), hk,j(xj) = 0, by substitution

it follows that:

ψ = exp(log 2)− exp(0) +
M∑
k=2

(
exp

(
Σn

j=1gk,j(xj)

)
− exp

(
Σn

j=1hk,j(xj)

))

ψ = exp(log 2)− exp(0) +
M∑
k=2

(
exp(0)− exp(0)

)

ψ = 2− 1 +
M∑
k=2

(
1− 1

)
ψ = 1

The constant function x 7→ 1 is in the set of antisymmetric exponentials Ψ.
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5.5 Antisymmetric Exponentials Separate Points

For any two distinct elements from the domain, an antisymmetric exponential exists that

maps to two different output values. This is necessary to show that the set of functions is

not limited to constant functions and has enough expressive power to distinguish between

different points from the domain.

Lemma 34. Let (X, d) be a compact metric space. Suppose that Ψ ⊆ Cb(X) is the set

of antisymmetric exponentials. Ψ separates points in X such that or all x, y ∈ X with

x ̸= y, there exists a f ∈ Ψ such that f(x) ̸= f(y).

Proof. Ψ separates points x, y in X. Suppose x ̸= y, without loss of generality, that the

qth components differ: xq ̸= yq. Let ψ ∈ Ψ such that:

ψ(x) =
M∑
k=1

(
exp

(
Σn

j=1gk,j(xj)

)
− exp

(
Σn

j=1hk,j(xj)

))
Choose g1,q(xq) = xq, and all other single-variable functions gk,j(xj), hk,j(xj) = 0. It

follows that: ψ(x) = exp(xq)−1. Similarly ψ(y) = exp(yq)−1. The exponential function

is strictly monotone, so it follows: ψ(x) ̸= ψ(y).

5.6 Antisymmetric Exponentials are Universal

Function Approximators

Theorem 35. Let (X, d) be a compact metric space. Suppose that Ψ ⊆ Cb(X) is the set

of antisymmetric exponentials, then Ψ is dense in Cb(X)

Proof. Let (X, d) ⊂ Rn be a compact metric space. Suppose that Ψ ⊆ Cb(X) is the

set of antisymmetric exponentials. By lemma 32, Ψ is an algebra. By lemma 33,Ψ

contains the constant function x 7→ 1, and by lemma 34, Ψ separates points in X. By

the Stone-Weierstrass theorem 27, Ψ is dense in Cb(X).

Ψ is dense in the metric space of continuous bounded functions (Cb(X), d). It follows

from the definition that for any function f ∈ Cb(X) and every ε > 0, there exists an

antisymmetric exponential function ψ ∈ Ψ such that d(f, ψ) < ε.
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5.7 Summary

This chapter introduced antisymmetric exponentials, and proved that antisymmetric

exponentials are universal function approximators. The construction and definition of

antisymmetric exponentials were chosen to simplify the required proofs. In Chapter 6,

antisymmetric exponentials are modified and implemented so that many of the desirable

properties of Spline ANNs are transferred to universal function approximators.
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Chapter 6

ABEL-Splines: Antisymmetric

Bounded Exponential Layer Splines

The ABEL-Spline architecture is designed for efficient, expressive, robust and numeri-

cally stable function approximation models. ABEL-Splines stands for “Antisymmetric

Bounded Exponential Layer Splines.” ABEL-Splines combine Spline ANNs, antisym-

metric exponentials, and absolutely convergent series to yield models with desirable

properties aimed at being practical and useful. Section 6.1 gives a mathematical defi-

nition of ABEL-Splines. Section 6.2 details the desirable properties of the architecture.

Section 6.3 explains the implementation of ABEL-Splines in TensorFlow. A summary of

this chapter is presented in Section 6.4.

6.1 Definition of ABEL-Splines

Definition 36 (ABEL-Spline). Let A(x) be an ABEL-Spline function, defined on the

domain x ∈ [0, 1]n, with trainable parameters θ ∈ Rp and partition number z ∈ N. Then,
∃ K ∈ N, and multi-variable z-Spline ANN functions F (x), Gk(x), Hk(x) such that:

A(x) := F (x) +
K∑

k=1

1

k2

(
exp(Gk(x))− exp(Hk(x))

)

63
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Chapter 6. ABEL-Splines: Antisymmetric Bounded Exponential Layer Splines 64

ABEL-Splines can equivalently be given in terms of single-variable z-density B-spline

functions fj(xj), gk,j(xj), and hk,j(xj) such that:

A(x) =
n∑

j=1

fj(xj) +
K∑

k=1

1

k2

(
exp(Σn

j=1gk,j(xj))− exp(Σn
j=1hk,j(xj))

)
Remark 37. Note that multi-dimensional outputs are treated as separate scalar func-

tions, approximated with the outlined schema, and are independent of each other. The

absolutely convergent series of scale factors k−2 was chosen for numerical stability and

to ensure the model is absolutely convergent, as K → ∞. A series
∑

i ai is absolutely

convergent if
∑

i |ai| converges to a well-defined limit [104]. Another feature is that the

series of scale factors also breaks the symmetry that would otherwise exist between terms.

6.2 Properties of ABEL-Splines

ABEL-Splines are universal function approximators with some inherent memory re-

tention. Universal function approximation follows from antisymmetric exponentials1.

ABEL-Splines possess properties atypical of most universal function approximators:

1. Sparse activity – most neural units are zero and inactive.

2. Bounded parameter gradients regardless of model size.

3. Uniformly trainable anywhere in the domain

4. Min-distal orthogonality

6.2.1 Sparsity

Proposition 38 (Sparsity). Let A(x) be an ABEL-Spline function, defined on the do-

main x ∈ [0, 1]n, with trainable parameters θ ∈ Rp and partition number z ∈ N. Let

∥∇θA(x)∥0 denote the number of non-zero components of the gradient vector w.r.t. train-

able parameters, then for any x ∈ D(f), the number of non-zero components is bounded:

∥∇θA(x)∥0 ≤ 4n(2K + 1)

1ABEL-Splines are very able.
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Proof. Let A(x) be a z-ABEL-Spline from Definition 36. From the triangle inequality

and the pseudo-norm property: ∥αx∥0 = ∥x∥0, ∀ x ∈ [0, 1]n , ∀ α ̸= 0 ∈ R, it follows

that:

∥∇θA(x)∥0 ≤∥∇θF (x)∥0 +
K∑

k=1

∥∥∥∥ 1

k2

(
exp(Gk(x))∇θGk(x)− exp(Hk(x))∇θHk(x)

)∥∥∥∥
0

∥∇θA(x)∥0 ≤∥∇θF (x)∥0 +
K∑

k=1

(
∥∇θGk(x)∥0 − ∥∇θHk(x)∥0

)
From Proposition 16 it follows: ∥∇θF (x)∥0 = ∥∇θGk(x)∥0 = ∥∇θHk(x)∥0 = 4n, so

∥∇θA(x)∥0 ≤4n+
K∑

k=1

(
4n+ 4n

)
= 4n(2K + 1)

The model has a total of n(4z + 3)(2K + 1) trainable parameters. The gradient vector

has a maximum of 4n(2K+ 1) non-zero entries, independent of z. At most, the fraction

of active basis functions is 4
4z+3

.

6.2.2 Bounded Gradients

Proposition 39 (Bounded gradient). Let A(x) be an ABEL-Spline function, defined on

the domain x ∈ [0, 1]n, with partition number z ∈ N and bounded trainable parameters

|θi| < µ, ∀θ ∈ Rp. Then the parameter gradient ∇θA(x) is bounded ∀x ∈ D(f):

∥∇θA(x)∥1 < 4n+
(
8n exp(4µn)

)π2

6

Proof. Let A(x) be a z-ABEL-Spline. From Definition 36 and the triangle inequality:

∥∇θA(x)∥1 ≤∥∇θF (x)∥1 +
K∑

k=1

1

k2

(
exp(Gk(x))∥∇θGk(x)∥1 + exp(Hk(x))∥∇θHk(x)∥1

)
From Proposition 17 it follows: ∥∇θF (x)∥1 , ∥∇θGk(x)∥1 , ∥∇θHk(x)∥1 < 4n, so

∥∇θA(x)∥1 <4n+
K∑

k=1

1

k2

(
exp(Gk(x))4n+ exp(Hk(x))4n

)
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Since |θi| < µ, ∀θ ∈ Rp, it follows that |Gk|, |Hk| < 4µn. Consequently:

∥∇θA(x)∥1 <4n+
K∑

k=1

1

k2
4n

(
exp(4µn) + exp(4µn)

)
= 4n+

(
8n exp(4µn)

) K∑
k=1

1

k2

By substitution, the absolutely convergent series
∑

k k
−2 gives:

∥∇θA(x)∥1 <4n+
(
8n exp(4µn)

) ∞∑
k=1

1

k2
= 4n+

(
8n exp(4µn)

)π2

6

Thus, ∥∇θA(x)∥1 is bounded ∀x ∈ [0, 1]n and bounded parameters |θi| < µ, ∀θ ∈ Rp

Remark 40. The factor of k−2 inside the expression for ABEL-Spline is necessary to

ensure the sum converges in the limit of infinitely many exponential terms K →∞. This

technique could be used on other ANN models to stabilise training.

6.2.3 Uniform Trainability

Proposition 41 (Trainability of ABEL-Spline). Let A(x) be an ABEL-Spline function,

defined on the domain x ∈ [0, 1]n, with trainable parameters θ ∈ Rp and partition number

z ∈ N. For any x ∈ D(A), the gradient w.r.t. trainable parameters, ∇θA(x), is non-zero:

∇θA(θ, x) ̸= 0⃗

Proof. Let A(x) be a z-ABEL-Spline function. From the Definition 36, it follows that:

∇θA(x) = ∇θ

(
F (x) +

K∑
k=1

1

k2

(
exp(Gk(x))− exp(Hk(x))

))

∇θA(x) = ∇θF (x) +
K∑

k=1

1

k2

(
exp(Gk(x))∇θGk(x)− exp(Hk(x))∇θHk(x)

)
From Proposition 18 it follows that:

∇θF (x) ̸= 0⃗ , ∇θGk(x) ̸= 0⃗ , ∇θHk(x) ̸= 0⃗

The functions F,Gk, Hk are independently parameterised, so ∇θF,∇θGk,∇θHk must

be linearly independent. Any linear combination of linearly independent vectors with

non-zero coefficients (exp(z) ̸= 0, ∀z ∈ R) must be non-zero.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 6. ABEL-Splines: Antisymmetric Bounded Exponential Layer Splines 67

Remark 42. The ABEL-Spline architecture can be adjusted with gradient descent on

any part of the domain. This, in combination with bounded gradients, can aid training

in practice.

6.2.4 Min-Distal Orthogonality

Proposition 43 (min-distal orthogonal ABEL-Spline). Let A(x) be an ABEL-Spline

function, defined on the domain x ∈ [0, 1]n, with trainable parameters θ ∈ Rp and parti-

tion number z ∈ N. then for any x, v ∈ D(A):

min
i

(|xi − vi|) > z−1 =⇒ ∇θA(x) · ∇θA(v) = 0

Proof. Let A(x) be a z-ABEL-Spline function. From the Definition 36, it follows that:

∇θA(x) = ∇θF (x) +
K∑

k=1

1

k2

(
exp(Gk(x))∇θGk(x)− exp(Hk(x))∇θHk(x)

)
Assume that mini(|xi − vi|) > z−1. It follows from proposition 19:

∇θΦ(x) · ∇θΦ(v) = 0, ∀ Φ ∈ {F,G1, .., Gk, H1, .., Hk}

The functions are independently parameterised, so ∀x, v ∈ [0, 1]n the cross terms are:

∇θΨ(x) · ∇θΦ(v) = 0, ∀ Ψ ̸= Φ ∈ {F,G1, .., Gk, H1, .., Hk}

Substituting ∇θΦ(x) · ∇θΦ(v) = 0, and not counting zeroed cross-terms it follows:

∇θA(x) · ∇θA(v) = 0 +
K∑

k=1

1

k4

(
exp(Gk(x) +Gk(v)) 0− exp(Hk(x) +Hk(v)) 0

)
Finally, ∇θA(x)·∇θA(v) = 0, so ABEL-Splines are min-distal orthogonal models.

Remark 44. Two sufficiently different points in each input variable have orthogonal

parameter gradients. Min-distal orthogonality means ABEL-Splines can be robust to

catastrophic interference without other regularisation and training techniques depending

on the data distribution, i.e. if min-distal orthogonality holds over sequential tasks.

However, memory retention can still be improved in conjunction with other methods.
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Chapter 6. ABEL-Splines: Antisymmetric Bounded Exponential Layer Splines 68

6.3 Computational Complexity of ABEL-Splines

Implementation details for TensorFlow can be found in the public GitHub repository2.

Some minor changes in the order of operations to avoid multiplication during training

and inference can be seen in Equation (6.1). The k−2 factors are absorbed into the

exponentials using logarithms. The logarithm values are computed and stored as bias

values in the relevant layers upon creation with exponential activation functions.

A(x) := F (x) +

( K∑
k=1

exp(Gk(x)− 2 log k)

)
−
( K∑

k=1

exp(Hk(x)− 2 log k)

)
(6.1)

The interior z-Spline ANN functions F (x), Gk(x), Hk(x) are sums of single-variable

cubic spline functions. z denotes the partition number or density of cardinal B-spline

intervals, K denotes the number of (positive and negative) exponentials, and n de-

notes the input dimension of the model. Each single-variable function has space and

time complexity O(z) and O(1), respectively. This means the z-Spline ANN functions

F (x), Gk(x), Hk(x) have space and time complexity of O(nz) and O(n), respectively.

Consequently, ABEL-Splines with a one-dimensional output must have a space and time

complexity of O(nzK) and O(nK), respectively. Finally, for a multi-dimensional z-

ABEL-Spline model that maps [0, 1]n to Rm one has the computational complexities:

Space: Θ(nzKm), and Time: Θ(nKm)

ABEL-Spline can be implemented with 1D convolution, reshaping, embedding, mul-

tiplication and dense layers in TensorFlow. The same basis functions must be computed

for each input variable, hence 1D convolutions. One can compute only the non-zero basis

functions with embedding layers by correctly scaling, shifting, and rounding inputs. The

implementation was improved throughout the study towards the current version. The

ABEL-Spline architecture has exactly n(4z + 3)(2K + 1)m trainable parameters.

2https://github.com/hpdeventer/MSc-Project-Heinrich-van-Deventer
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6.4 Summary

This chapter defined the antisymmetric bounded exponential layer spline (ABEL-Spline)

ANN architecture. ABEL-Splines combine z-Spline ANNs, antisymmetric exponentials,

and absolutely convergent series to yield models with the desired properties. Section 6.1

provided the mathematical definition of ABEL-Splines. Section 6.2 listed and proved

properties of ABEL-Splines. Properties include sparsity, bounded parameter gradients,

uniform trainability, universal function approximation, and min-distal orthogonality.

Section 6.3 discussed the computational complexity and implementation of ABEL-Splines

in TensorFlow. ABEL-Splines are evaluated against more traditional ReLU ANNs in

Chapter 7 with a few experiments.
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Chapter 7

Experimentation

This chapter presents the experiments conducted to verify the theoretical claims made in

Chapter 6 and evaluate the function approximation power of the proposed spline-based

models. Section 7.1 describes the perturbation experiments, which test the theoretical

predictions for distal interference and orthogonality with standard and proposed models.

The two-dimensional experiment in Section 7.2 allows one to observe the performance of

spline and standard ANN models and the effect of pseudo-rehearsal in a visual setting.

Section 7.3 presents benchmark experiments that estimate the expressive power of the

spline-based ANN architectures and function approximation capabilities. Section 7.4

concludes the chapter.

7.1 Perturbation Experiments

This experimental section aims to answer the question: How does a model change over its

domain if one modifies or ‘perturbs’ the model parameters at one point with a gradient

descent optimiser? This is a smaller and more tractable problem compared with the

more general problem of evaluating how any model changes over its domain during

training on any problem and any input dimension using any optimiser. Studying the

general case with experimentation is not feasible. Instead, a smaller, more tractable set

of experiments are performed.

70
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Chapter 7. Experimentation 71

Consider a trainable model f(x) prior to training. One training data point denoted

v ∈ D(f) is randomly sampled from a uniform distribution over D(f). The target value

τ (for v ∈ D(f)) is sampled from a normal distribution. The model is trained on the

randomly sampled data with input v ∈ D(f) and target value τ . The model is evaluated

for changes after training. The metric from Equation (3.9) in Chapter 3 is used to

quantify how much a model output changed over its domain:

Model Perturbation := ∥f ′ − f∥1 =

∫
D

|f ′(x)− f(x)| dx

The integral is estimated using random sampling Monte Carlo integration [105, 106]

with points xj ∈ D(f) randomly sampled from a uniform distribution over the domain

D(f). Since D(f) = [0, 1]n, the volume of the domain of integration is exactly 1, so the

Monte Carlo estimate reduces to calculating the mean absolute difference. The estimates

of the integral are insufficient to show if distal orthogonality prevents distal interference.

One also needs to calculate the difference measures between the points xj ∈ D(f) used

to estimate the integral and the single training data point v ∈ D(f), and inspect if

|f(xj)− f ′(xj)| = 0 whenever d(xj, v) > z−1 for any xj ∈ D(f).

For the sake of clarity, let AP (x) := |f(x) − f ′(x)| for any x ∈ D(f) denote the

absolute perturbation (at one point). Let Dmax(x) := maxi(|x(j)i − vi|) denoted the

maximum absolute difference and similarly define the measureDmin(x) := mini(|x(j)i −vi|)
to be the minimum absolute difference. The functions Dmax(x) and Dmin(x) measure the

dissimilarity between any point x ∈ D(f) and the single training data point v ∈ D(f).

One can calculate AP (xj), and the dissimilarity measures Dmin(xj) and Dmax(x
j)

for all the randomly sampled points sampled from a uniform distribution over D(f).

One can use the pair of values to make scatter plots to visualise the distribution. If

Dmin(xj) > z−1, then AP (xj) = 0 for min-distal orthogonal models. If Dmax(x
j) > z−1,

then AP (xj) = 0 for max-distal orthogonal models.
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The rest of the section is organised as follows: Section 7.1.1 outlines the models chosen

for the perturbation experiment. Section 7.1.2 outlines the procedure and methods used

to obtain the results. Section 7.1.3 shows that ABEL-Splines and lookup tables are min-

distal orthogonal models, but deep and wide ReLU ANNs are not min-distal orthogonal

models. Section 7.1.4 demonstrates that lookup tables are max-distal orthogonal models,

but ABEL-Splines are not max-distal orthogonal models under the maximum norm,

as expected. Section 7.1.5 shows that an increased partition number does decrease

absolute model perturbations. Section 7.1.6 outlines the interaction between partition

number and input dimension and their combined effect on absolute model perturbation.

Section 7.1.7 demonstrates the effect of optimisers (Adam and SGD) on absolute model

perturbation. Section 7.1.8 inspects the effect of pseudo-rehearsal on absolute model

perturbation. Section 7.1.9 discusses the interaction between using Adam and pseudo-

rehearsal combined. Section 7.1.10 presents a summary of the perturbation experiments.

Mean absolute perturbations and standard deviations for the experiments can be viewed

in Table C.1 found in Appendix C.

7.1.1 Considered Models

This study investigates six different types of machine learning models. These models

can be broadly categorised into two groups: (1) linear and conventional ReLU ANN

models and (2) spline-based and lookup table models. The experiments are performed

for different input dimensions n and models with partition numbers z ∈ [1, 2, 4, 8, 10].

Table 7.1 and Table 7.2 show the models and number of parameters.

Table 7.1: Trainable parameters of the considered models.

Model Number of Parameters

Linear model n+ 1

Wide ReLU ANN 1000n+ 2001

Deep ReLU ANN 16n+ 1937

ABEL-Splines 13n(4z + 3)

z-Spline ANNs n(4z + 3)

Lookup Tables zn
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Table 7.2: Maximum number of model parameters for different input dimensions.

Model 1D 2D 3D 4D 5D 6D

Linear model 2 3 4 5 6 7

Wide ReLU ANN 3 001 4 001 5 001 6 000 7 001 8 001

Deep ReLU ANN 1 953 1 969 1 985 2 001 2 017 2 033

ABEL-Spline (z = 10) 559 1 118 1 677 2 236 2 795 3 354

z-Spline ANN (z = 10) 43 86 129 172 215 258

Lookup Table (z = 10) 10 100 1 000 10 000 100 000 1000 000

The critical features of these models are as follows:

Linear, Wide- and Deep ReLU ANNs

The linear model f(x) = wixi + b provides a simple baseline for comparison with more

complex ANNs. The wide ReLU ANN consists of a single hidden layer with 1000 rec-

tified linear unit (ReLU) neurons connecting to the output layer. In contrast, the deep

ReLU ANN has eight hidden layers with 16 ReLU neurons each. Both ANN models

include a shift and scaling input layer to map values from [0, 1] to [−1,+1]. All trainable

parameters are initialised with the uniform Glorot weight initialisation technique [13].

Lookup Tables and Spline-Based ANNs

The lookup table model partitions the input space into zn cubes with length z−1 and

trainable parameters and output values for each cube. The lookup table model is a

max-distal orthogonal model used for comparison. The z-Spline ANN and ABEL-Spline

models are more sophisticated approaches that incorporate spline functions, as discussed

in Chapter 4 and Chapter 6. Trainable parameters are initialised with random values

sampled from a uniform distribution over [−1,+1]. Different versions of each model

are considered with partition numbers z ∈ [1, 2, 4, 8, 10]. Additionally, the ABEL-Spline

models has K = 6 positive and negative exponentials. The ABEL-Splines have exactly

n(4z + 3)(2K + 1) trainable parameters for n input dimensions.
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7.1.2 Methodology

This section describes the procedures for perturbation experiments in detail, including

data generation, model training, evaluation, and experimental configuration.

Training Data Generation (with No Pseudo-Rehearsal)

One training data point denoted v ∈ D(f) is randomly sampled from a uniform distri-

bution over D(f) = [0, 1]n. The target value τ (for v ∈ D(f)) is sampled from a normal

distribution.

Training Data Generation with Pseudo-Rehearsal

One training data point denoted v ∈ D(f) is randomly sampled from a uniform distri-

bution over D(f) = [0, 1]n. The target value τ (for v ∈ D(f)) is sampled from a normal

distribution. The training data is augmented with 3500 points uq ∈ D(f) sampled from

a uniform distribution over D(f), and target values f(uq) are sampled from the model

itself. The mixing coefficient ρ from Equation (3.4) is chosen to be ρ = 7
17
< 0.5.1

Procedure

Each model f is trained on the randomly sampled training data for each experiment

configuration to yield an updated model f ′. For each model f before and f ′ after

training (on the point v ∈ D(f)), and for each of the 5000 points xj ∈ D(f) sampled

from a uniform distribution over D(f). The following are calculated:

1. Absolute point-wise perturbation AP (xj) := |f(xj)− f ′(xj)|

2. Model perturbation
∫
D
|f ′(x)− f(x)| dx ≈ 1

5000

∑
j AP (xj)

3. Maximum absolute difference Dmax(x
(j)) := maxi(|x(j)i − vi|)

4. Minimum absolute difference Dmin(x(j)) := mini(|x(j)i − vi|)

The procedure is repeated for 30 independent trials.

1Instead of applying statistical weighting to training data, the point v ∈ D(f) is duplicated such

that the ratio of instances is 10
17 > 0.5 of the entire training data set.
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Model Training

All models are trained with mean squared error (MSE), and batch sizes of 128 are used

for all 20 training epochs. The optimisers are either SGD or Adam, depending on the

experiment configuration.

Experiment Configurations

For each experiment configuration, all models are evaluated in 30 separate trials with

different points v ∈ [0, 1]n sampled for training in each trial. The following hyperparam-

eters were varied, yielding a total of 24 experimental configurations:

• Input dimensions: One to six

• Optimisers: Adam or SGD

• Pseudo-rehearsal: True or False

7.1.3 Min-Distal Orthogonal Models

The effect of min-distal orthogonality is demonstrated with absolute point-wise pertur-

bations AP (xj) := |f(xj) − f ′(xj)|, in addition to the minimum absolute differences

Dmin(x(j)) := mini(|x(j)i − vi|). The data are shown in scatter plots. The horizontal axes

correspond to the minimum absolute difference between input points. The vertical axes

represent absolute point-wise perturbations.
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ABEL-Splines and Lookup Tables

In Figure 7.1, one can see the absolute point-wise perturbation AP (xj) := |f(xj)−f ′(xj)|
for the three-dimensional ABEL-Spline and lookup table models on the vertical axis. The

minimum absolute difference Dmin(x(j)) := mini(|x(j)i − vi|) is shown on the horisontal

axis. The ABEL-Spline and lookup table have the same partition number z = 2. One

can see that the distributions drop to zero before z−1, which corresponds to 0.5 on the

horizontal axis.

Figure 7.1: Lookup tables and ABEL-Splines are min-distal orthogonal models.

The distributions that drop to zero mean that ABEL-Splines and lookup tables have

zero distal interference when measuring dissimilarity with mini(|x(j)i − vi|). The lookup

table and ABEL-Spline models exhibit min-distal orthogonality, as expected from the

mathematical analysis and proofs of this study.
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Deep- and Wide ReLU ANNs

In Figure 7.2, one can see the absolute point-wise perturbation AP (xj) := |f(xj)−f ′(xj)|
for the three-dimensional deep and wide ReLU ANN models on the vertical axis. The

minimum absolute difference Dmin(x(j)) := mini(|x(j)i − vi|) is shown on the horisontal

axis. One can see that the distributions do not drop to zero in contrast to the ABEL-

Spline and lookup table models in Figure 7.1.

Figure 7.2: ReLU ANNs are not min-distal orthogonal models.

The distributions that do not drop to zero mean that ReLU ANNs have non-zero dis-

tal interference when measuring dissimilarity with mini(|x(j)i −vi|). Consequently, ReLU

ANNs are not min-distal orthogonal models, which logically implies that ReLU ANNs

are also not max-distal orthogonal models. This is an expected result since conventional

ReLU ANNs have no mathematically provable guarantees regarding distal orthogonality

and distal interference.
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7.1.4 Max-Distal Orthogonal Models

In Figure 7.3, one can see the absolute point-wise perturbation AP (xj) := |f(xj)−f ′(xj)|
for the three-dimensional ABEL-Spline and lookup table models on the vertical axis. The

maximum absolute difference Dmax(x
(j)) := maxi(|x(j)i − vi|) is shown on the horisontal

axis. The ABEL-Spline and lookup table have the same partition number z = 2.

Figure 7.3: Lookup tables are max-distal orthogonal models, but ABEL-Splines are not.

One can see in Figure 7.3 that the lookup table’s distribution drops to zero before

Dmax(x
(j)) = z−1, which corresponds to 0.5 on the horisontal axis. From the definition

of distal interference in Equation (3.10), consider the set of points D′ = {x | d(x, v) > δ}
that sufficiently differ from the training data v. This supports the analysis in this study:

For any δ > 0 and difference measure d(x, v) = maxi(|xi − vi|) one can find a lookup

table f with partition number z > δ−1 that exhibits no distal interference:

Distal Interference :=

∫
D′
|f ′(x)− f(x)| dx = 0

The ABEL-Spline model perturbation does not fall to zero and thus suffers max-distal

interference. One can infer that ABEL-Splines are not max-distal orthogonal models.

Inspecting deep- and wide ReLU ANN models is unnecessary since ReLU ANNs already

failed to exhibit min-distal orthogonality, which logically implies that the ReLU ANNs

are also not max-distal orthogonal models.
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7.1.5 Influence of Partition Number

In Figure 7.4, one can see the absolute point-wise perturbation AP (xj) := |f(xj)−f ′(xj)|
for the three-dimensional ABEL-Splines for different partition numbers z ∈ [1, 2, 4, 8, 10]

on the vertical axis. The minimum absolute difference Dmin(x(j)) := mini(|x(j)i − vi|) is

shown on the horisontal axis. The ABEL-Splines are colour-coded and labelled according

to partition numbers.

Figure 7.4: Perturbation distributions of ABEL-Splines with different partition numbers.

The distributions in Figure 7.4 drop to zero before z−1, which corresponds to the

numbers 1, 0.5, 0.25, 0.125, and 0.1 on the horizontal axis. Referring to the definition of

distal interference in Equation (3.10), consider the set of points D′ = {x | d(x, v) > δ}
that sufficiently differ from the training data v. This supports the analysis in this study:

For any δ > 0 and difference measure d(x, v) = mini(|xi − vi|) one can find an ABEL-

Spline model A with partition number z > δ−1 that exhibits no distal interference:

Distal Interference :=

∫
D′
|A′(x)− A(x)| dx ≈

∫
D′
η |∂AL| |∇θA(x) · ∇θA(y)| dx = 0

ABEL-Splines exhibit min-distal orthogonality in a very predictable fashion.
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The following results inspect the distributions of absolute point-wise perturbation

AP (xj) := |f(xj) − f ′(xj)| for the three-dimensional ABEL-Splines. A box plot (or

whisker plot) of the distributions for different partition numbers is presented in Fig-

ure 7.5. The bulk of the distribution mass tends toward zero for a larger partition num-

ber. There are outliers at the tail ends of the distribution that remain as the partition

number increases due to points where min-distal orthogonality does not hold.

Figure 7.5: Box plot of perturbations for ABEL-Splines with different partition numbers in

three dimensions.

The mean model perturbation
∫
D
|f ′(x) − f(x)| dx ≈ 1

5000

∑
j AP (xj) for ABEL-

Splines is shown in Figure 7.6, with different input dimensions as a function of partition

number averaged over 30 trials. The mean model perturbation tends to decrease as

the partition number increases. This is an expected result, since increased partition

number should limit distal interference. What is curious is the lack of an evident trend

for increased input dimension, which warrants further scrutiny in Section 7.1.6. For

comparison, in Figure 7.7, one can see the line plot and scatter plot of mean model

perturbation for lookup tables. There is a clear and consistent trend in Figure 7.7

of smaller mean model perturbation for increased partition number z ≥ 2 and input
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dimensions. Lookup tables with z = 1 have one parameter regardless of dimension.

Figure 7.6: Line and scatter plot of mean ABEL-Spline perturbations for different partition

numbers and input dimensions.

Figure 7.7: Line and scatter plot of mean lookup table perturbations for different partition

numbers and input dimensions.
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7.1.6 Distal Orthogonality for Different Dimensions

In Figure 7.8, one can see the absolute point-wise perturbation AP (xj) := |f(xj)−f ′(xj)|
on the vertical axis for the (z = 2) ABEL-Splines for different input dimensions n ∈
[1, 2, 3, 4, 5, 6]. The minimum absolute difference Dmin(x(j)) := mini(|x(j)i − vi|) is shown

on the horisontal axis. The ABEL-Splines are colour-coded and labelled according to

input dimension. As expected, min-distal orthogonality persists over different dimensions

for a specific partition number, z = 2. The min-distal orthogonality of ABEL-Splines

was proven mathematically in Chapter 6 for any dimension and partition number z ∈ N,

and the perturbation experiment demonstrates empirically that this property holds.

Figure 7.8: Perturbation distributions of ABEL-Splines with different input dimensions.

The mean model perturbation
∫
D
|f ′(x) − f(x)| dx ≈ 1

5000

∑
j AP (xj) for ABEL-

Splines is shown in Figure 7.9, with different partition numbers as a function of input

dimension averaged over 30 trials. Figure 7.9 is notable for the absence of a clear trend for

increased input dimension. The oscillations seen in Figure 7.9 are a spurious result. All

the models are trained and evaluated on the same data for each trial and input dimension.

Therefore, if the 2D ABEL-Spline model with z = 2 has a larger mean perturbation value,

then the 2D ABEL-Spline model with z = 4 probably has a larger mean perturbation

value. For comparison, in Figure 7.10, one can see the mean model perturbation for

lookup tables as a function of input dimension. There is a clear and consistent trend in
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Figure 7.10 of smaller mean model perturbation for increased partition number z ≥ 2 and

input dimensions. Lookup tables with z = 1 have one parameter regardless of dimension

and are more susceptible to distal interference.

Figure 7.9: Mean perturbation of ABEL-Splines as a function of dimension for different

partition numbers.

Figure 7.10: Mean perturbation of lookup table models as a function of dimension for different

partition numbers.
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7.1.7 Optimiser Effect on Model Perturbation

Figure 7.11 shows the absolute point-wise perturbation AP (xj) := |f(xj) − f ′(xj)| on

the vertical axis for the three-dimensional ABEL-Splines trained using stochastic gradi-

ent descent (SGD) or the Adam optimiser. The horisontal axis denotes the minimum

absolute difference Dmin(x(j)) := mini(|x(j)i −vi|). The ABEL-Splines have the same par-

tition number z = 2. One can see that the distributions drop to zero before z−1, which

corresponds to 0.5 on the horizontal axis. ABEL-Splines are still min-distal orthogonal

models if trained with Adam.

Figure 7.11: Perturbation distributions of ABEL-Splines with Adam and SGD optimisers.

The distribution generated with Adam is more heavy-tailed than SGD, but still

reaches zero at z−1. A potential explanation follows: Consider the basis functions shown

in Figure 4.5 and Proposition 10. Some of the active and non-zero basis functions further

away from an input point have small values close to zero. Thus, the gradient w.r.t. the

basis functions are small and close to zero. The rules for the Adam optimiser (see

Section 2.3.1) are complicated. One aspect of the Adam optimiser is the tendency to

increase the magnitude of extremely small gradients to avoid slow convergence. Adam

may scale up small gradients of basis functions with a small amount of overlap, leading

to larger absolute changes in ABEL-Splines outputs at points slightly further away. This

could explain the heavier tail.
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It is necessary to analyse the distribution shift between SGD and Adam. Figure 7.12

shows a whisker plot comparing the distribution of model perturbation
∫
D
|f ′(x) −

f(x)| dx ≈ 1
5000

∑
j AP (xj) of all the models. The data includes all models and input

dimensions. The models are trained without pseudo-rehearsal.

Figure 7.12: Mean model perturbation distributions of all models for different dimensions

trained with Adam compared to SGD.

Figure 7.12 shows that the distribution generated with Adam is more evenly balanced

than SGD. I.e. the range of values in each quartile is closer to each other in size. The

second observation is that SGD produces many mean model perturbation values smaller

than Adam and yields larger mean model perturbation values with a larger spread of

values. The null hypothesis that the data are normally distributed is rejected with the

Shapiro-Wilk test, so the distributions are not normally distributed (p < 0.01). It has

been shown that specific models exhibit markedly different perturbation distributions,

as shown in Figure 7.11.
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7.1.8 Pseudo-Rehearsal Effect on Model Perturbation

Pseudo-rehearsal has been used to counteract catastrophic interference [8]. Figure 7.13

and Figure 7.14 show the absolute point-wise perturbation AP (xj) := |f(xj)−f ′(xj)| on

the vertical axis for wide and deep ReLU ANN models trained with and without pseudo-

rehearsal using SGD. The minimum absolute difference Dmin(x(j)) := mini(|x(j)i − vi|) is

shown on the horisontal axis.

Figure 7.13: Perturbation distributions of wide ReLU ANNs with pseudo-rehearsal and with

no pseudo-rehearsal.

Figure 7.14: Perturbation distributions of deep ReLU ANNs with pseudo-rehearsal and with

no pseudo-rehearsal.
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Figure 7.13 and Figure 7.14 shows that pseudo-rehearsal decreases the absolute point-

wise perturbation of ReLU ANN models, which is expected from the discussion in Sec-

tion 3.3 and Section 3.7 in Chapter 3. ABEL-Splines trained with SGD exhibit more

complicated perturbation distributions if pseudo-rehearsal is applied, as shown in Fig-

ure 7.15. The oscillating perturbation distribution is unexpected. Pseudo-rehearsal can

perturb models in unforeseen ways that are difficult to predict. The distribution does

not drop to zero if pseudo-rehearsal is applied since min-distal orthogonality does not

apply to training data sampled from a uniform distribution over the domain.

Figure 7.15: Perturbation distributions of an ABEL-Splines with pseudo-rehearsal and with

no pseudo-rehearsal.

7.1.9 Model Perturbations with Pseudo-Rehearsal and Adam

Combined

The perturbation distributions in Figure 7.16 show three-dimensional (z = 2) ABEL-

Spline models trained with Adam and compare the application of pseudo-rehearsal with

no pseudo-rehearsal. Figure 7.17 shows the same ABEL-Spline models trained with

pseudo-rehearsal and compares SGD and Adam. The differences between SGD and

Adam diminish if pseudo-rehearsal is used. The unanticipated oscillations seen in Fig-

ure 7.15 are present for SGD and Adam optimisers.

In contrast, in the cases where no pseudo-rehearsal is used, as seen in Figure 7.11,

Adam and SGD yield strikingly different perturbation distributions. Figure 7.16 and
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Figure 7.17 suggest that (larger) datasets, training procedures and regularisation have a

more substantial influence on absolute perturbation than the choice of optimiser. Pseudo-

rehearsal augments the training set and regularises the model not to change a lot over

its domain.

Figure 7.16: Perturbation distributions of ABEL-Splines trained using Adam with pseudo-

rehearsal and with no pseudo-rehearsal.

Figure 7.17: Perturbation distributions of ABEL-Splines trained with pseudo-rehearsal using

Adam and SGD.

Figure 7.18 shows a whisker plot comparing the distribution of model perturbation∫
D
|f ′(x)−f(x)| dx ≈ 1

5000

∑
j AP (xj) of all the models. The data includes all models and
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input dimensions. The two box plots on the left correspond to the mean absolute model

perturbation distribution using Adam and SGD without applying pseudo-rehearsal. The

two leftmost box plots in Figure 7.18 correspond to the same data also shown in Fig-

ure 7.12, to make the effect of pseudo-rehearsal compared to no pseudo-rehearsal easier

to visualise. The two box plots on the right half of Figure 7.18 correspond to the distri-

butions with pseudo-rehearsal being applied.

Figure 7.18: Mean model perturbation distributions of all models for different dimensions

trained with Adam compared to SGD using pseudo-rehearsal or no pseudo-rehearsal.

The effect of pseudo-rehearsal in Figure 7.18 is potent. If pseudo-rehearsal is applied,

then the distribution of model perturbations is shifted towards zero, which is an expected

result since pseudo-rehearsal regularises a model not to change too much over its domain

(see Section 3.3). The difference between Adam and SGD diminishes when pseudo-

rehearsal is applied. This may be due to the distributions shifting towards zero. The

Kolmogorov-Smirnov test revealed a significant (p < 0.01) difference between using and

not using pseudo-rehearsal. However, no significant difference is found between SGD

and Adam with applied pseudo-rehearsal.2

2The data are not normally distributed, so the Kolmogorov-Smirnov test is appropriate.
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7.1.10 Summary of Perturbation Experiments

One can calculate the mean absolute perturbation of each model for each experiment

for different dimensions, optimisers, and use of pseudo-rehearsal. The mean model per-

turbation values and standard deviations can be seen in the appended Table C.1. A

visual summary of the data using a colour scale to represent different values is shown in

Figure 7.19.

Figure 7.19: Mean absolute perturbation of models over different input dimensions.

The colour bar in Figure 7.19 indicates the mean absolute model perturbation or

change. Each row corresponds to the different (labelled) models. Each column cor-

responds to a different experimental configuration. From left to right, the columns

correspond to input dimensions one, two, three, etc. The columns are grouped according

to the optimiser (Adam or SGD) and whether pseudo-rehearsal was used.
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Some of the trends mentioned in prior sections are visible in Figure 7.19. Increased

partition numbers for the ABEL-Spline, z-Spline ANN, and lookup table models evi-

dently lead to smaller mean absolute perturbation values. The effect of partition num-

ber was also discussed in Section 7.1.5. The trend for mean absolute perturbation as

a function of input dimension was discussed in Section 7.1.6. For lookup table models

with partition numbers z > 1, the mean perturbation rapidly drops to zero for increasing

dimension or partition number. Lookup table models with z = 1 are just one-parameter

models, hence the consistently large mean perturbation value. There is no consistent

trend for changing the input dimension for ABEL-Spline and z-Spline ANN models.

Less pertinent trends can also be seen in Figure 7.19. The choice of optimiser can

influence model perturbation, as discussed in Section 7.1.7. The difference between

Adam and SGD is most evident in the cases with no pseudo-rehearsal: Adam yields

smaller mean perturbation values for ReLU ANNs, linear models and z = 1 lookup

tables compared with SGD. Adam produces larger mean perturbation values for ABEL-

Splines and z-Spline ANNs in the cases without pseudo-rehearsal. The overall effect is

that Adam yields less variation in mean model perturbation, decreasing it for specific

models and increasing it for others. It may be related to the observation that Adam

converges quickly during training of ReLU ANNs, but further investigation is needed.

On the other hand, SGD yields lower mean perturbation values for Spline models and

larger mean perturbation values for ReLU ANNs. This may explain why SGD converges

more slowly than Adam for ReLU ANNs during training [12, 58, 59]. However, further

study is warranted.

The last notable trend is the cases where pseudo-rehearsal is applied. As discussed

in Section 7.1.8, pseudo rehearsal can reduce mean perturbation values. The reduction

is striking for the deep ReLU ANN models. Pseudo-rehearsal does alter the mean per-

turbation values for Spline models, but the effect is complex and difficult to describe

succinctly. It has been noted in Section 7.1.9 that the differences between Adam and

SGD are diminished if pseudo-rehearsal is applied. This trend can also be seen in Fig-

ure 7.19 while comparing the left and right halves of the visualisation.
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Many theoretical predictions based on analysis and ideas presented in prior chapters

hold up to initial experimentation and scrutiny. It remains to be seen if the theoretical

concepts that have been explored translate to better continual learning and a reduction

in catastrophic interference. The experiment in Section 7.2 tests the ABEL-Spline model

on a two-dimensional continual learning problem.

7.2 Two-Dimensional Demonstration

This section discusses the experiments on a two-dimensional regression task, designed

to illustrate universal function approximation and continual learning capabilities of the

ABEL-Spline architecture. The models are defined in Section 7.2.1. Section 7.2.2 outlines

the 2D regression problem. A synthetic 2D continual learning problem is discussed in

Section 7.2.3. Section 7.2.4 demonstrates the effect of pseudo-rehearsal in a 2D setting.

7.2.1 Considered Models

The models considered for this experiment are the same as the models discussed in

Section 7.1.1 for input dimension n = 2, but z = 20. The choice of a larger partition

number z = 20 is for visual inspection of the lookup table model. Smaller partition

numbers make it difficult to discern visually if the lookup table can learn the target

function. The spline-based ANN models have the same partition number z = 20 for

consistency in this experiment. The goal is to inspect the best-case scenario for continual

learning. Hence, smaller partition numbers are not considered.

1. Wide ReLU ANN

2. Deep ReLU ANN

3. ABEL-Spline (z = 20)

4. z-Spline ANN (z = 20)

5. Lookup Table (z = 20)
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7.2.2 Regression Task

A two-dimensional regression problem on [0, 1]2 ⊂ R2 where the target function is a

product of two oscillating single-variable functions:

y(x) = sin(4πx1) · sin(4πx2) (7.1)

In this experiment, the target function is specified and known to demonstrate and

visualise essential qualities. The target function is shown in Figure 7.20 as an image

with a colour bar ranging from −1 to +1. The target function resembles a smoothed

checkered pattern similar to the XOR problem.

Figure 7.20: The 2D target function.

The 16000 training points are sampled from a uniform distribution over [0, 1]2 ⊂ R2,

and the target values are calculated from the target function as defined in Equation (7.1).

Each model is trained with Adam for 100 epochs with a batch size of 100 using MAE as

a loss function.
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The models are trained on data uniformly sampled over the domain. The model

predictions after training are visualised in Figure 7.21. All the models except the z-

Spline ANN model could learn the target function. The piece-wise defined lookup table

model has discontinuities between ‘flat’ regions associated with one parameter, leading

to a pixel-like effect. The deep and wide ReLU ANNs and the ABEL-Spline models learn

the target function without aberration. This result demonstrates the limited expressive

power of z-Spline ANNs and the benefits of developing ABEL-Splines, as discussed in

Chapter 4, Chapter 5 and Chapter 6. ABEL-Splines have similar performance to ReLU

ANNs in this specific regression problem.

Figure 7.21: Model outputs after training on a 2D regression problem.

7.2.3 Sequential Learning and Catastrophic Interference

This experiment simulates a sequential or continual learning problem that allows visu-

alising the model outputs. The target function is the same as in Equation (7.1) and

Figure 7.20. The difference is that the data are not sampled uniformly over the en-

tire domain. Instead, the domain is partitioned into 16 equal-sized regions, shown in

Figure 7.22.

The models are trained on 1000 data points sampled inside each partition. After

training for 100 epochs on one partition using Adam and batch size of 100, all the

models are trained on the second partition and so forth. There are 16000 data points

sampled from the target function over all partitions combined.
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Figure 7.22 shows the different partitions and the order in which the partitions are

sequentially learned. Figure 7.23 shows the model outputs after training on all partitions

in the shown (randomly sampled) order. The deleterious effect of distal interference and

catastrophic interference is evident.

Figure 7.22: Partitions and order for sequential continual learning problem.

Figure 7.23: Model outputs after training on a 2D continual learning problem.

Only the lookup table model has a nearly identical output, comparing Figure 7.23

and Figure 7.21 against one another, since the lookup table is a max-distal orthogonal

model. All other models exhibit catastrophic interference. The ReLU and ABEL-Spline

models captured the target values of the last two or so partitions. Surprisingly, the

wide and deep ReLU ANN models seem to exhibit slightly better performance regarding

memory retention than the ABEL-Spline model. This is due to the order of this specific

sequence of partitions since partitions 15 and 16 do not overlap but do overlap with

partitions 13 and 12 if one uses the mini(|xi − vi|) difference between the data.
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7.2.4 Sequential Learning and Pseudo-Rehearsal

This experiment extends the experiment discussed in Section 7.2.3. The critical difference

is that the training data for each model is augmented with pseudo-rehearsal.

The models f 0 are initialised randomly before training on the first task. The 1000

training data points (x, y(x)) for each subsequent partition P from the true target func-

tion y(x) is combined with 1000 pseudo-rehearsal input points u that are sampled from

a uniform distribution over [0, 1]2 ⊂ R2 and target values fP−1(u) calculated from the

model after it was trained on the previous task P − 1. The augmented training dataset

consists of 2000 points in total from the target function (x, y(x)) and the model itself

(u, fP−1(u)). This training augmentation allows the (capable) models to learn the target

function values inside each partition, while retaining past values on other regions.

The outputs of the models after training with pseudo-rehearsal are shown in Fig-

ure 7.24. The ReLU ANNs and ABEL-Spline models can learn the target function se-

quentially with pseudo-rehearsal. The z-Spline ANN model is still incapable of learning

the target function.

Figure 7.24: Outputs after training on 2D continual learning problem with pseudo-rehearsal.

A potential future improvement to rehearsal techniques might be to remove or filter

out rehearsal data that are too close to the training data of interest. Pseudo-rehearsal

is adequate for continual learning in a low-dimensional setting.

ABEL-Spline models are insufficient for model-only continual learning on a simple 2D

problem without augmentation. Thus, ABEL-Splines cannot learn new tasks continually

for arbitrary sequences of tasks without augmentation, such as pseudo-rehearsal. Show-

ing how ABEL-Splines fail in higher dimensions would be redundant. In cases where

min-distal orthogonality fails, one must use augmentation techniques.
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7.3 PMLB Regression Benchmarks

This section presents the results of a 10-fold cross-validation benchmarking on a set of

real-world regression problems. Penn Machine Learning Benchmarks (PMLB) datasets

were used [107, 108].

The selection, development, or comparison of machine learning algorithms is com-

plicated since the formats and standards for data storage and organisation are often

based on a specific study. PMLB is a collection of curated benchmark datasets for eval-

uating and comparing supervised machine learning algorithms on many different prob-

lems [107, 108]. The datasets cover various applications, including binary/multi-class

classification and regression problems, as well as combinations of categorical, ordinal,

and continuous features. This study explicitly focuses on all the low-dimensional regres-

sion tasks with n = 6 or fewer continuous input features due to the exponential zn size

of lookup table models.

The detailed results for mean test and training errors with standard deviations for

the mean absolute error (MAE), mean squared error (MSE), and R-squared (R2) score

can be found in Table C.2 in Appendix C.

7.3.1 Considered Models

The models used in this experiment are the same as the models discussed in Section 7.1.1

and shown in Table 7.1. The models are listed again for convenience:

1. Linear model

2. Wide ReLU ANN

3. Deep ReLU ANN

4. ABEL-Splines with partition numbers z ∈ [1, 2, 4, 8, 10]

5. z-Spline ANNs with partition numbers z ∈ [1, 2, 4, 8, 10]

6. Lookup Tables with partition numbers z ∈ [1, 2, 4, 8, 10]
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7.3.2 Methodology

The datasets were partitioned using 10-fold cross-validation, creating ten training and

testing sets. The input data was preprocessed by standardising it with zero-centering

and scaling to unit variance based on the training data. The ABEL-Spline, z-Spline

ANN and lookup table models are defined on [0, 1]n, and some of the zero-centred data

are outside the domains for which the model implementations are defined. A sigmoid

transformation was applied to map all inputs to [0, 1]n, ensuring that the lookup table

and ABEL-Spline models were well-posed. For the sake of consistency, all the training

data for all the models were transformed with the same procedure. However, this sigmoid

procedure is technically unnecessary for ReLU and linear ANNs. The target values were

also zero-centred and scaled to unit variance using the training data. The transformations

computed using the training data were applied to both the training and test data.

No hyperparameter optimisation or tuning is performed. This experiment is designed

to gauge the performance of ABEL-Splines compared to z-Spline ANNs and more con-

ventional ReLU ANNs. The default TensorFlow parameters are used for all training

procedures, and the Adam optimiser is used to gauge out-of-the-box performance. The

MAE loss function is used for training due to its robustness to outlier target values and

non-Gaussian noise compared to the MSE loss function.

All the models were trained for 100 epochs with a default batch size of 32 using

the MAE loss function and Adam as an optimiser across all 38 datasets for ten cross-

validation folds. After training each model, their respective training MAE, test MAE,

test MSE, and test R2 scores were computed.

7.3.3 Evaluation Results

This section presents visual summaries of the mean test and training errors. The detailed

results are in Table C.2 in Appendix C.
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Mean Absolute Error

Figure 7.25 shows summary plots of mean training MAE and test MAE from top to

bottom. All the models and datasets are shown. Each row corresponds to a model, and

columns correspond to datasets.

Figure 7.25: Visualisation of averaged training and test MAE on PMLB.
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Mean Squared Error and R-Squared

Figure 7.25 shows summary plots of mean MSE and R2 score on test data from top to

bottom. All the models and datasets are shown. Each row corresponds to a model, and

columns correspond to datasets.

Figure 7.26: Visualisation of averaged test MSE and R2 score on PMLB.
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Figure 7.25 shows summary plots of mean training MAE and test MAE. There is a

notable change between ABEL-Splines and z-Spline ANNs, with lower training and test

MAE if one uses ABEL-Splines instead of z-Spline ANNs. This highlights the difference

in expressive power between z-Spline ANNs and ABEL-Splines, verifying the need to

develop ABEL-Splines. Comparing the training error with the test MAE in Figure 7.25

does suggest that the Generalisation gap (difference between training and test error)

is relatively small for most models and datasets with some exceptions. ABEL-Splines

with large partition numbers z ≥ 8 tend to have very low training error but larger test

MAE on the 5D datasets. This may be due to overfitting or stratification as discussed

in Section 4.3.5 and mentioned by Lane et al. [90].

The test MAE in Figure 7.25 show z-Spline ANN, linear and lookup table models tend

to have worse test MAE than ABEL-Splines and ReLU ANNs (wide or deep). ABEL-

Splines have comparable performance with deep and wide ReLU ANNs for most datasets.

The ABEL-Splines performed reasonably well without hyperparameter optimisation and

data augmentation techniques to avoid overfitting or stratification.

Figure 7.26 shows summary plots of mean MSE and R2 score. The results are similar

to the test MAE results in Figure 7.25, with small MAE values tending towards smaller

MSE and visa versa. Figure 7.26 shows that the MSE and R2 yield similar results,

which is expected since R2 and MSE are related (see Section 2.3.2). ABEL-Splines in

Figure 7.26 have comparable performance with deep and wide ReLU ANNs.

The R2 score in Figure 7.26 estimates the percentage of the variance in the test sets

that are accounted for by a model. Values close to one indicate better performance. A

zero (or negative) R2 score indicates poor performance. In the case of noisy data, it is

possible to have an appropriate model that captures the underlying behaviour with a

poor R2 score. The noise in the test set could lead to unexplained variance that the model

(rightly) does not embody. R2 scores cannot be used in isolation, requiring context and

analysis of the specific problem to draw valid conclusions. All the models struggled with

the ‘192 vineyard (52)’ dataset, with negative R2 scores for all models. This is hardly

surprising since the dataset has 52 data points in total, with 10-fold cross-validation

and no data augmentation. None of the models have enough information to learn the

underlying problem accurately.
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7.4 Summary of All Experiments

Three different types of experiments were performed. The first experiment tested the

sensitivity of model outputs to perturbations and verified the mathematically proven

properties of ABEL-Splines and z-Spline ANNs. The experiments also showed that

ReLU ANNs are not min-distal orthogonal models.

The second experiment demonstrated the importance of universal function approx-

imation and the limits of z-Spline ANNs compared to ABEL-Splines. ABEL-Splines

still suffer from catastrophic interference, even though pains were taken to develop a

reasonable trade-off between model complexity and designs that prevent distal interfer-

ence. It is concluded that min-distal orthogonality is insufficient to avoid catastrophic

interference. Data augmentation and modified training techniques are probably critical

for continual learning with polynomial complexity models.

The final experiment evaluated ABEL-Splines, z-Spline ANNs, lookup table models

and ReLU ANNs on regression benchmarks. The benchmarks revealed that ABEL-

Splines performed similarly to ReLU ANNs, and ABEL-Splines may perform slightly

better on specific problems, depending on the amount of data and underlying problem.

The conclusions of the study are presented in Chapter 8.
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Chapter 8

Conclusions

This chapter summarises the overarching conclusions of this study. The theoretical and

experimental findings are discussed in the context of the research objectives. Potential

avenues for future research are also presented. Section 8.1 summarises the most pertinent

findings. Future research is discussed in Section 8.2.

8.1 Summary of Conclusions

The first objective was to analyse continual learning and catastrophic interference. Con-

tinual learning was explained, and the emergence of catastrophic interference was re-

counted. The known mechanisms that cause catastrophic interference, such as overlap-

ping representations, were described. This study contributes with an additional refine-

ment: Distant (and unrelated) training inputs with overlapping representations lead to

distal interference and catastrophic interference. The importance of distance was not

thoroughly considered in the existing literature on catastrophic interference. Techniques

to mitigate catastrophic interference from existing literature were reviewed in Chapter 3.

Localised representations introduced in this study overlap if and only if the input

points are close enough to each other, as measured by some distance or dissimilar-

ity function. Local representations are orthogonal for sufficiently different inputs, in

contrast to distributed or delocalised representations in ANNs. However, overlapping

(non-orthogonal) representations are theorised to promote generalisation [14].

103
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The second objective was to study model susceptibility to catastrophic interference.

The first stage was to investigate specific modes of catastrophic interference in linear

regression models and ANN models. The second stage generalised the insights to any

differentiable model. A thorough explanation of the properties that make ANNs suscep-

tible to catastrophic interference was given in Chapter 3. A detailed analysis showed why

lookup tables are robust to catastrophic interference: Lookup tables have localised rep-

resentations that are immune to distal interference. This immunity to distal interference

is termed distal orthogonality. The first significant contribution of this research showed

that max-distal orthogonality and uniform trainability over a differentiable model’s do-

main lead to exponentially large parameter spaces. The contra-positive is that non-

exponentially large models do not possess max-distal orthogonality or are not trainable

over their entire domain. This finding undermines the potential for polynomial complex-

ity models to learn sequentially without catastrophic interference.

This work provided insight into the mechanics of gradient descent and continual

learning under the third objective. It was shown that learning on one part of the domain

can affect the model in a distant or non-local region. Training on a task like regression

allows the training process to balance changes at distant points in the domain because

all the training data is used simultaneously. In continual learning, the training data

are not present simultaneously for all tasks. Thus, learning on one task can modify the

model in other parts of the domain, degrading performance on previous tasks. Whether

distal interference slows down training with SGD is still an open experimental question.

The fourth objective was to develop an efficient architecture capable of continual

learning. The ABEL-Spline architecture was designed from first principles for desirable

properties like bounded gradients, uniform trainability, and min-distal orthogonality, as

discussed in Chapter 6. Antisymmetric exponentials were used to prove the universal

function approximation ability of the ABEL-Spline architecture in Chapter 5. A Tensor-

Flow implementation of the architecture was developed and evaluated experimentally.

The results showed mixed performance when compared with ReLU models with similar

numbers of parameters. The results suggest that min-distal orthogonality is too weak to

substantially improve continual learning, especially on uniformly sampled data that do

not satisfy the conditions for min-distal orthogonality.
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The generalisation and performance of ABEL-Splines on the PMLB regression exper-

iments from Section 7.3 highlighted the significance of choosing the partition number.

Generalisation or overfitting depends on the target function and how localised or fine the

input space needs to be partitioned. The number of sub-intervals or partition number

for a spline corresponds to the spatial resolution of the model. Using small partition

numbers constitutes an inductive bias in the model for slow-varying target functions

useful for most regression tasks. Large partition numbers constitute an inductive bias

for fast-varying target functions and can be useful for anomaly detection, as mentioned

in Section 4.3.5.

Generalisation and bridging the gap between training error and test error on unseen

data is integral to modern machine learning. The bias-variance decomposition or trade-

off for small (under-parameterised) models governed most discussions of generalisation

in classical machine learning [109]. The generalisation of over-parameterised ANNs in

modern machine learning research was unexpected, with neural tangent kernels consti-

tuting a post facto theoretical basis for generalisation [76, 110]. It is not clear which

methods of analysis are appropriate for characterising ABEL-Spline generalisation or

overfitting.

In summary, min-distal orthogonality is too weak, and max-distal orthogonality is

too computationally expensive for practical continual learning. Developing and inves-

tigating models with properties between the two extremes might be worthwhile, and

careful consideration should be given to generalisation. The method for constructing

such models is left for future work. Training augmentation or data augmentation seems

necessary for practical and effective continual learning.
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8.2 Future Work

This study highlighted a few potential avenues for future research. Some ideas pertain

to continual learning, while others are tangential or unrelated to continual learning and

catastrophic interference. Some of the recommended future work includes:

1. Developing polynomial complexity models with properties between max-distal and

min-distal orthogonality. It is expected that such models would have better con-

tinual learning ability than ABEL-Splines while still being more tractable than a

lookup table. One could potentially use small or low-dimensional (n > 1) max-

distal orthogonal models as components in more elaborate multi-variable models

over many variables. One need only replace z-Spline ANNs with sums of low-

dimensional max-distal orthogonal models, for example:

F (x) = g(x1, x2) + h(x3, x4, x5)

where g and h are two- or three-variable max-distal orthogonal models. One can

easily extend such models to universal function approximators using antisymmetric

bounded exponential layers similar to the ABEL-Spline architecture constructed

for this study. It is unclear how effective such architectures could be.

2. Local cluster gradient descent can be developed as a potentially faster training

algorithm that keeps distal interference in mind. A summary of the process is:

(a) Cluster training data with a distance function into neighbourhoods.

(b) Calculate the average gradient of the loss function on each cluster to lessen

the effect of noise.

(c) Sort the loss gradients from the largest to the smallest error to prioritise

clusters with large errors.

(d) Orthogonalise the gradient vectors associated with each cluster using the

Gram-Schmidt procedure [111].

(e) Apply the computed parameter updates to learn on clusters without distal

interference with each update step.
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3. The ABEL-Spline architecture created for this study is a shallow neural network

with two (effective) hidden layers between input and output. It would be interesting

to see if one can extend the architecture to develop deep neural networks with many

layers while preserving the original properties. Comparing the performance of such

a deep architecture with the shallow ABEL-Spline architecture presented in this

work could be an interesting future study.

4. Partial differential equations (PDEs) are challenging to solve. One could evalu-

ate ABEL-Splines’ effectiveness in representing solutions to PDEs, where training

corresponds to satisfying the boundary conditions and PDEs. The smoothness

of ABEL-Splines could be very useful for such applications. A good baseline for

comparison would be sinusoidal representation networks called SIRENs [112].

5. Adapting the analysis for antisymmetric exponential for function approximation

to other domains like continuous signals is a promising research direction. As an

example: The non-linear integral function of the form:

A[f ] = exp

(∫ t1

t0

G(t, f(t)) dt

)
− exp

(∫ t1

t0

H(t, f(t)) dt

)
,

where G, and H are trainable ANNs. The overall model A[f ] maps the function

f(t) like an audio signal over some time interval to a scalar number in a non-linear

fashion. This could be useful for non-linear signal processing or speech recognition.
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Appendix A

Acronyms

This appendix lists and defines acronyms and abbreviations used in this work.

ABEL Antisymmetric bounded exponential layer

ABEL-Spline Antisymmetric bounded exponential layer spline

ADAM Adaptive moment estimation

AI Artificial intelligence

ANN Artificial neural network

CNN convolutional neural network

FFNN Feedforward neural network

LTD Long-term (neural) depression

LTP Long-term (neural) potentiation

n Number of perturbations or dataset instances

N Number of data points in a dataset

R2 Coefficient of determination, goodness of fit also called R-squared

MAE Mean absolute error

MLP Multi-layer perceptron

MSE Mean squared error

NPR No pseudo-rehearsal

OGD Orthogonal gradient descent

124

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix A. Acronyms 125

PDE Partial differential equation

PMLB Penn machine learning benchmarks

PR Pseudo-rehearsal

ReLU Rectified linear unit

REM Rapid eye movement (sleep phase)

RNN Recurrent neural network

Spline ANN Spline artificial neural network

SIREN Sinusoidal representation network

SDR Sparse distributed representation

SGD Stochastic gradient descent

T. MSE Test mean squared error

T. MAE Test mean absolute error

Tr. MAE Final (training) mean absolute error
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Appendix B

Symbols

This appendix lists and defines the numerous mathematical symbols and operations used

throughout this work. The definitions are grouped according to the relevant chapters,

with their first occurrence in most cases.

B.1 Chapter 1: Introduction

f A differentiable model trainable with gradient descent optimisation

f ′ A modified model after training with updated or perturbed parameters

D(f) The domain of a model f , same as D(f ′)

v A training data point v ∈ D(f)

x Any input point x ∈ D(f)

d(x, v) Some general non-negative distance or difference measure d(x, v) > 0

δ Some positive number δ > 0

|f(x)− f ′(x)| The absolute difference between function values

ε Some positive number ε > 0

maxi(|xi − vi|) Maximum norm distance ∥x− v∥∞ between points x, v ∈ D(f)

mini(|xi − vi|) Minimum absolute difference between points, not a proper metric
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B.2 Chapter 2: Artificial Neural Networks

σ Activation function

x Input or vector

xi Scalar input to the neuron

wi Weight associated with input xi

b Bias term

n Input dimension or number of inputs to neuron

yi Actual value in the loss functions (MAE, MSE)

ŷi Predicted value in the loss functions (MAE, MSE)

L(·) Loss function

R2 Coefficient of determination (evaluation metric)

V Vocabulary size in embedding layers

D Desired embedding dimension in embedding layers

θ Trainable model parameters

∇θ Gradient operator w.r.t. model parameters θ

∇θL(θ(t), xi, yi) Point estimate of loss function gradient

t Time step or iteration number in optimisation algorithm

ĝ(t) Averaged estimate of gradient at iteration t

η Learning rate or step size for a gradient descent optimiser

m(t), v(t), m̂, v̂ Variables used in Adam optimisation algorithm

MAE Mean Absolute Error

MSE Mean Squared Error

R2 Coefficient of determination, goodness of fit also called R-Squared
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B.3 Chapter 3: Catastrophic Interference and

Continual Learning

v · u The inner, scalar, or dot-product of vectors v and u

f(x) Function f evaluated at x

f(θ, x) Function f with trainable parameters θ evaluated at x

f(θ0, x) Function f with initial parameters θ0 evaluated at x

c Constant term in a function

k Index variable in a sum of terms added together

ak, bk Real coefficients

xk Monomial term in a polynomial function, k ∈ N0

ĝ Update of the parameters θ based on gradient of loss function

y Previously learned input

v Input data for pseudo-rehearsal or generative replay

P (x, y) Data distribution of the current task

P (v), UD(f) Distribution of input data for generative replay

ρ Mixing coefficient for pseudo-rehearsal

u(i) ∈ [0, 1]n Grid-point in the domain of f

θ Trainable parameters θ ∈ Rp of a model f

∇θf(x) Parameter gradient of a model f

z ∈ N Partition number of a model f

x, v ∈ [0, 1]n Points in the domain of a model f

∇θf(x)·∇θf(v) Overlap between v and x in a model f

Θ(zn) Asymptotically tight (upper and lower) bound on number of vectors

Ω(zn) Asymptotic lower bound on the number of model parameters

R(f) Expected risk of model f

ℓ(f(x), y) Loss between model’s output f(x) and target value y

D(f), D(f(θ)) Domain of function f or function with parameters θ
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B.4 Chapter 4: Spline Artificial Neural Networks

z The partition number or density of cardinal B-spline intervals

f(x) Spline Artificial Neural Network

fj(xj) Single-variable B-spline function in z-Spline ANN

x, y Input vectors in domain

D(f) Domain of function f(x) and f(x)

Si(x) Cardinal cubic B-spline basis functions

Si,j(xj) Basis functions in z-Spline ANN

|x− v| Absolute difference between two real numbers x, v

∥x− v∥−∞ Minimum absolute difference between points: mini(|xi − vi|)

∥x− v∥∞ Maximum norm distance between points maxi(|xi − vi|)

∇θf(x) Gradient w.r.t parameters θ of f(x), evaluated at x

B.5 Chapter 5: Universal Function Approximation

exp Exponential function

S Set

X A set of points or a space

d Metric function

(X, d) A metric space with distance metric d

Cb(X) Normed subspace of bounded continuous functions on X

(X, d) Compact metric space

(x1, .., xn) Components of the vector x

gk,j, hk,j Continuous single-variable functions

Gk, Hk Sum-decomposable functions: Sums of single-variable functions

α Scalar constant

Ψ Set of antisymmetric exponentials

M,M ′,M ′′ Denote the number of positive or negative exponentials
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B.6 Chapter 6: ABEL-Splines: Antisymmetric

Bounded Exponential Layer Splines

K The number of (positive and negative) exponentials

z The partition number or density of cardinal B-spline intervals

n The input dimension of the model

m The output dimension of the model

A(x) ABEL-Spline function

F (x) z-Spline ANN function for A(x)

Gk(x) z-Spline ANN function for positive exponential term in A(x)

Hk(x) z-Spline ANN function for negative exponential term in A(x)

fj(xj) Single-variable density B-spline function in A(x)

gk,j(xj) Single-variable density B-spline function in A(x)

hk,j(xj) Single-variable density B-spline function in A(x)

B.7 Chapter 7: Experimentation

f(x) Model function before perturbation or training with an optimiser

f ′(x) Model function after weights have been changed by some process

z Partition number for ABEL-Splines, Spline ANNs, and lookup tables

K Number of positive and negative exponentials in ABEL-Splines models

v ∈ D(f) Random input point for training

τ ∈ R Random target value from normal distribution for training

∥f ′ − f∥1 Model perturbation equal to
∫
D
|f ′(x)− f(x)| dx

xj ∈ D(f) Randomly sampled points from a uniform distribution over D(f)

AP (x) Absolute point-wise perturbation equal to |f(x)− f ′(x)|
1

5000

∑
j AP (xj) Approximates ∥f ′ − f∥1 when the domain is D(f) = [0, 1]n

Dmax(x
(j)) Equal to maxi(|x(j)i − vi|) max-distance from training data

Dmin(x(j)) Equal to mini(|x(j)i − vi|) min-distance from training data

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix B. Symbols 131

B.8 Chapter 8: Conclusions

A[f ] The non-linear integral function

f(t) A function such as an audio signal over some time interval

exp Exponential function

G, H Trainable ANNs

t0 and t1 Time interval limits for the integral operation

dt Differential of time, used in the integral operation∫
dt Integral operation over time
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Appendix C

Experimentation Data

Tables of raw experimental data with means and standard deviations are presented in

this appendix.

C.1 Perturbation Experiment Data

The means and standard deviations (indicated with a ±-symbol) averaged over 30 trials

for the perturbation experiments discussed in Section 7.1 are presented in Table C.1.

The table columns correspond to dimension, model names and experiment configurations

(Adam or SGD, pseudo-rehearsal or no pseudo-rehearsal). The columns from left to right

are: The input dimension n; the model name; no pseudo-rehearsal (NPR) with Adam;

NPR with SGD; pseudo-rehearsal (PR) with Adam; and PR with SGD.

Table C.1: Mean and standard deviation of absolute model perturbation.

n Model NPR with ADAM NPR with SGD PR with ADAM PR with SGD

1 Linear Model 0.402 ± 0.340 0.659 ± 0.597 0.369 ± 0.377 0.391 ± 0.424

1 Wide ReLU ANN 0.394 ± 0.414 0.532 ± 0.552 0.136 ± 0.309 0.236 ± 0.341

1 Deep ReLU ANN 0.623 ± 0.528 0.703 ± 0.531 0.027 ± 0.145 0.135 ± 0.230

1 ABEL-Spline (z=1) 0.508 ± 0.493 0.305 ± 0.398 0.190 ± 0.300 0.191 ± 0.297

1 ABEL-Spline (z=2) 0.297 ± 0.440 0.168 ± 0.329 0.131 ± 0.264 0.123 ± 0.262

1 ABEL-Spline (z=4) 0.161 ± 0.355 0.087 ± 0.251 0.079 ± 0.222 0.068 ± 0.214

1 ABEL-Spline (z=8) 0.083 ± 0.270 0.044 ± 0.186 0.044 ± 0.173 0.038 ± 0.169

1 ABEL-Spline (z=10) 0.067 ± 0.244 0.035 ± 0.165 0.039 ± 0.165 0.030 ± 0.150

1 Spline ANN (z=1) 0.324 ± 0.244 0.311 ± 0.409 0.208 ± 0.265 0.208 ± 0.316

1 Spline ANN (z=2) 0.192 ± 0.241 0.173 ± 0.338 0.134 ± 0.233 0.134 ± 0.285

1 Spline ANN (z=4) 0.103 ± 0.198 0.088 ± 0.254 0.084 ± 0.198 0.075 ± 0.230

1 Spline ANN (z=8) 0.053 ± 0.152 0.046 ± 0.190 0.048 ± 0.159 0.042 ± 0.180

1 Spline ANN (z=10) 0.043 ± 0.137 0.036 ± 0.168 0.038 ± 0.143 0.033 ± 0.161

1 Lookup Table (z=1) 0.449 ± 0.231 0.729 ± 0.565 0.403 ± 0.288 0.429 ± 0.333

Continued on next page

132
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Appendix C. Experimentation Data 133

Table C.1 – Continued from previous page

n Model NPR with ADAM NPR with SGD PR with ADAM PR with SGD

1 Lookup Table (z=2) 0.227 ± 0.279 0.367 ± 0.539 0.242 ± 0.333 0.272 ± 0.400

1 Lookup Table (z=4) 0.113 ± 0.227 0.182 ± 0.421 0.132 ± 0.286 0.155 ± 0.360

1 Lookup Table (z=8) 0.057 ± 0.171 0.092 ± 0.315 0.070 ± 0.223 0.085 ± 0.290

1 Lookup Table (z=10) 0.045 ± 0.153 0.072 ± 0.278 0.055 ± 0.201 0.067 ± 0.260

2 Linear Model 0.467 ± 0.393 0.756 ± 0.692 0.440 ± 0.443 0.470 ± 0.523

2 Wide ReLU ANN 0.519 ± 0.617 0.714 ± 0.545 0.046 ± 0.148 0.250 ± 0.353

2 Deep ReLU ANN 0.724 ± 0.546 0.856 ± 0.564 0.014 ± 0.086 0.065 ± 0.153

2 ABEL-Spline (z=1) 0.672 ± 0.576 0.398 ± 0.413 0.194 ± 0.274 0.206 ± 0.252

2 ABEL-Spline (z=2) 0.405 ± 0.460 0.220 ± 0.308 0.139 ± 0.203 0.154 ± 0.192

2 ABEL-Spline (z=4) 0.217 ± 0.342 0.113 ± 0.222 0.100 ± 0.168 0.101 ± 0.157

2 ABEL-Spline (z=8) 0.112 ± 0.248 0.058 ± 0.160 0.067 ± 0.138 0.062 ± 0.130

2 ABEL-Spline (z=10) 0.089 ± 0.221 0.046 ± 0.143 0.056 ± 0.127 0.050 ± 0.121

2 Spline ANN (z=1) 0.555 ± 0.353 0.418 ± 0.424 0.268 ± 0.305 0.260 ± 0.302

2 Spline ANN (z=2) 0.328 ± 0.313 0.228 ± 0.325 0.207 ± 0.247 0.188 ± 0.244

2 Spline ANN (z=4) 0.179 ± 0.248 0.120 ± 0.238 0.138 ± 0.200 0.117 ± 0.199

2 Spline ANN (z=8) 0.091 ± 0.184 0.060 ± 0.172 0.085 ± 0.160 0.063 ± 0.158

2 Spline ANN (z=10) 0.074 ± 0.167 0.049 ± 0.156 0.074 ± 0.150 0.051 ± 0.146

2 Lookup Table (z=1) 0.525 ± 0.189 0.937 ± 0.664 0.496 ± 0.288 0.551 ± 0.391

2 Lookup Table (z=2) 0.130 ± 0.245 0.231 ± 0.519 0.158 ± 0.318 0.197 ± 0.442

2 Lookup Table (z=4) 0.032 ± 0.133 0.056 ± 0.274 0.041 ± 0.181 0.054 ± 0.263

2 Lookup Table (z=8) 0.008 ± 0.069 0.014 ± 0.140 0.011 ± 0.095 0.014 ± 0.139

2 Lookup Table (z=10) 0.005 ± 0.053 0.009 ± 0.111 0.006 ± 0.073 0.009 ± 0.110

3 Linear Model 0.273 ± 0.324 0.361 ± 0.418 0.223 ± 0.285 0.227 ± 0.292

3 Wide ReLU ANN 0.344 ± 0.475 0.476 ± 0.431 0.022 ± 0.060 0.137 ± 0.219

3 Deep ReLU ANN 0.539 ± 0.436 0.679 ± 0.478 0.005 ± 0.029 0.043 ± 0.093

3 ABEL-Spline (z=1) 0.530 ± 0.425 0.308 ± 0.285 0.104 ± 0.148 0.134 ± 0.160

3 ABEL-Spline (z=2) 0.301 ± 0.312 0.164 ± 0.206 0.076 ± 0.106 0.103 ± 0.122

3 ABEL-Spline (z=4) 0.162 ± 0.222 0.086 ± 0.145 0.062 ± 0.088 0.075 ± 0.096

3 ABEL-Spline (z=8) 0.083 ± 0.159 0.043 ± 0.103 0.045 ± 0.077 0.048 ± 0.079

3 ABEL-Spline (z=10) 0.068 ± 0.143 0.036 ± 0.093 0.041 ± 0.074 0.041 ± 0.074

3 Spline ANN (z=1) 0.516 ± 0.393 0.317 ± 0.291 0.174 ± 0.210 0.166 ± 0.195

3 Spline ANN (z=2) 0.303 ± 0.292 0.173 ± 0.211 0.136 ± 0.164 0.128 ± 0.147

3 Spline ANN (z=4) 0.165 ± 0.215 0.092 ± 0.152 0.100 ± 0.128 0.088 ± 0.117

3 Spline ANN (z=8) 0.084 ± 0.155 0.046 ± 0.109 0.066 ± 0.104 0.051 ± 0.094

3 Spline ANN (z=10) 0.067 ± 0.138 0.037 ± 0.097 0.056 ± 0.096 0.041 ± 0.087

3 Lookup Table (z=1) 0.454 ± 0.237 0.714 ± 0.508 0.403 ± 0.273 0.420 ± 0.299

3 Lookup Table (z=2) 0.058 ± 0.173 0.090 ± 0.295 0.071 ± 0.223 0.083 ± 0.272

3 Lookup Table (z=4) 0.007 ± 0.063 0.011 ± 0.107 0.009 ± 0.084 0.011 ± 0.106

3 Lookup Table (z=8) 0.001 ± 0.023 0.001 ± 0.039 0.001 ± 0.031 0.001 ± 0.039

3 Lookup Table (z=10) 0.000 ± 0.016 0.001 ± 0.028 0.001 ± 0.022 0.001 ± 0.028

4 Linear Model 0.414 ± 0.426 0.539 ± 0.535 0.372 ± 0.414 0.373 ± 0.421

4 Wide ReLU ANN 0.316 ± 0.433 0.451 ± 0.443 0.023 ± 0.066 0.125 ± 0.230

4 Deep ReLU ANN 0.694 ± 0.577 0.853 ± 0.562 0.006 ± 0.025 0.042 ± 0.095

4 ABEL-Spline (z=1) 0.671 ± 0.452 0.397 ± 0.315 0.102 ± 0.140 0.140 ± 0.153

4 ABEL-Spline (z=2) 0.394 ± 0.352 0.216 ± 0.227 0.073 ± 0.097 0.111 ± 0.117

4 ABEL-Spline (z=4) 0.209 ± 0.237 0.110 ± 0.151 0.065 ± 0.076 0.086 ± 0.088

4 ABEL-Spline (z=8) 0.109 ± 0.170 0.056 ± 0.109 0.052 ± 0.072 0.059 ± 0.075

4 ABEL-Spline (z=10) 0.086 ± 0.150 0.044 ± 0.096 0.047 ± 0.068 0.050 ± 0.070

4 Spline ANN (z=1) 0.659 ± 0.428 0.408 ± 0.326 0.203 ± 0.235 0.193 ± 0.215

4 Spline ANN (z=2) 0.388 ± 0.332 0.222 ± 0.233 0.153 ± 0.179 0.143 ± 0.156

4 Spline ANN (z=4) 0.210 ± 0.237 0.116 ± 0.163 0.114 ± 0.130 0.104 ± 0.115

4 Spline ANN (z=8) 0.111 ± 0.169 0.060 ± 0.116 0.082 ± 0.104 0.066 ± 0.094

4 Spline ANN (z=10) 0.087 ± 0.150 0.047 ± 0.103 0.070 ± 0.097 0.053 ± 0.087

4 Lookup Table (z=1) 0.537 ± 0.183 0.907 ± 0.552 0.495 ± 0.267 0.534 ± 0.325

4 Lookup Table (z=2) 0.034 ± 0.139 0.058 ± 0.264 0.044 ± 0.187 0.056 ± 0.253

4 Lookup Table (z=4) 0.002 ± 0.036 0.004 ± 0.068 0.003 ± 0.049 0.004 ± 0.068

4 Lookup Table (z=8) 0.000 ± 0.009 0.000 ± 0.016 0.000 ± 0.012 0.000 ± 0.016

4 Lookup Table (z=10) 0.000 ± 0.007 0.000 ± 0.014 0.000 ± 0.010 0.000 ± 0.014

5 Linear Model 0.369 ± 0.399 0.441 ± 0.474 0.320 ± 0.379 0.320 ± 0.383

5 Wide ReLU ANN 0.292 ± 0.360 0.408 ± 0.365 0.022 ± 0.046 0.106 ± 0.185

5 Deep ReLU ANN 0.618 ± 0.560 0.821 ± 0.675 0.006 ± 0.015 0.033 ± 0.067

5 ABEL-Spline (z=1) 0.611 ± 0.540 0.352 ± 0.334 0.072 ± 0.112 0.106 ± 0.130

Continued on next page
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Table C.1 – Continued from previous page

n Model NPR with ADAM NPR with SGD PR with ADAM PR with SGD

5 ABEL-Spline (z=2) 0.349 ± 0.353 0.189 ± 0.219 0.050 ± 0.075 0.084 ± 0.103

5 ABEL-Spline (z=4) 0.178 ± 0.224 0.093 ± 0.139 0.045 ± 0.060 0.064 ± 0.076

5 ABEL-Spline (z=8) 0.099 ± 0.161 0.051 ± 0.101 0.045 ± 0.062 0.051 ± 0.066

5 ABEL-Spline (z=10) 0.078 ± 0.141 0.040 ± 0.088 0.040 ± 0.059 0.044 ± 0.062

5 Spline ANN (z=1) 0.619 ± 0.522 0.373 ± 0.352 0.169 ± 0.229 0.158 ± 0.202

5 Spline ANN (z=2) 0.348 ± 0.344 0.197 ± 0.229 0.121 ± 0.169 0.113 ± 0.149

5 Spline ANN (z=4) 0.189 ± 0.238 0.104 ± 0.159 0.094 ± 0.129 0.086 ± 0.111

5 Spline ANN (z=8) 0.098 ± 0.160 0.053 ± 0.107 0.068 ± 0.097 0.056 ± 0.083

5 Spline ANN (z=10) 0.079 ± 0.143 0.042 ± 0.095 0.060 ± 0.089 0.047 ± 0.077

5 Lookup Table (z=1) 0.459 ± 0.243 0.820 ± 0.682 0.434 ± 0.322 0.483 ± 0.401

5 Lookup Table (z=2) 0.015 ± 0.092 0.026 ± 0.188 0.019 ± 0.126 0.026 ± 0.183

5 Lookup Table (z=4) 0.000 ± 0.015 0.001 ± 0.030 0.001 ± 0.020 0.001 ± 0.030

5 Lookup Table (z=8) 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001

5 Lookup Table (z=10) 0.000 ± 0.002 0.000 ± 0.004 0.000 ± 0.003 0.000 ± 0.004

6 Linear Model 0.267 ± 0.317 0.294 ± 0.332 0.218 ± 0.272 0.217 ± 0.269

6 Wide ReLU ANN 0.253 ± 0.276 0.353 ± 0.270 0.018 ± 0.035 0.084 ± 0.132

6 Deep ReLU ANN 0.452 ± 0.366 0.542 ± 0.416 0.006 ± 0.012 0.036 ± 0.059

6 ABEL-Spline (z=1) 0.416 ± 0.353 0.243 ± 0.220 0.042 ± 0.061 0.076 ± 0.092

6 ABEL-Spline (z=2) 0.242 ± 0.237 0.133 ± 0.147 0.030 ± 0.044 0.058 ± 0.073

6 ABEL-Spline (z=4) 0.133 ± 0.151 0.072 ± 0.097 0.033 ± 0.040 0.048 ± 0.055

6 ABEL-Spline (z=8) 0.069 ± 0.103 0.036 ± 0.065 0.030 ± 0.038 0.035 ± 0.042

6 ABEL-Spline (z=10) 0.056 ± 0.091 0.029 ± 0.058 0.028 ± 0.037 0.031 ± 0.040

6 Spline ANN (z=1) 0.428 ± 0.351 0.253 ± 0.226 0.098 ± 0.131 0.099 ± 0.124

6 Spline ANN (z=2) 0.254 ± 0.246 0.141 ± 0.157 0.075 ± 0.102 0.075 ± 0.099

6 Spline ANN (z=4) 0.135 ± 0.156 0.074 ± 0.101 0.058 ± 0.076 0.056 ± 0.068

6 Spline ANN (z=8) 0.068 ± 0.106 0.036 ± 0.068 0.042 ± 0.059 0.037 ± 0.051

6 Spline ANN (z=10) 0.057 ± 0.093 0.030 ± 0.061 0.038 ± 0.053 0.033 ± 0.047

6 Lookup Table (z=1) 0.395 ± 0.234 0.572 ± 0.466 0.326 ± 0.252 0.336 ± 0.273

6 Lookup Table (z=2) 0.006 ± 0.058 0.009 ± 0.094 0.008 ± 0.076 0.009 ± 0.093

6 Lookup Table (z=4) 0.000 ± 0.007 0.000 ± 0.012 0.000 ± 0.009 0.000 ± 0.012

6 Lookup Table (z=8) 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

6 Lookup Table (z=10) 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
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C.2 PMLB Regression Benchmark Data

The means and standard deviations (indicated with a±-symbol) for the regression bench-

marks averaged over the 10 folds of cross-validation discussed in Section 7.3 are presented

in Table C.2. The table columns correspond to the dataset names, input dimension n,

data sample size N , model name, The test R2 or R-squared score, test mean squared

error (T. MSE), test mean absolute error (T. MAE), and final training mean absolute

error (Tr. MAE).

Table C.2: PMLB: Mean and standard deviation of test and training error.

Dataset n N Model R2 T. MSE T. MAE Tr. MAE

192 vineyard 2 52 Linear Model −2.028 ± 2.907 1.546 ± 3.441 0.791 ± 0.850 0.652 ± 0.167

192 vineyard 2 52 Wide ReLU ANN −0.967 ± 0.996 0.716 ± 1.093 0.608 ± 0.402 0.405 ± 0.040

192 vineyard 2 52 Deep ReLU ANN −1.203 ± 1.059 0.850 ± 1.347 0.657 ± 0.452 0.397 ± 0.051

192 vineyard 2 52 ABEL-Spline (z=1) −0.768 ± 1.093 0.786 ± 1.504 0.604 ± 0.491 0.475 ± 0.035

192 vineyard 2 52 ABEL-Spline (z=2) −0.913 ± 1.217 0.838 ± 1.595 0.616 ± 0.512 0.452 ± 0.028

192 vineyard 2 52 ABEL-Spline (z=4) −1.257 ± 1.372 0.937 ± 1.742 0.660 ± 0.527 0.411 ± 0.029

192 vineyard 2 52 ABEL-Spline (z=8) −1.703 ± 1.915 1.112 ± 2.139 0.704 ± 0.597 0.379 ± 0.029

192 vineyard 2 52 ABEL-Spline (z=10) −1.702 ± 1.969 1.197 ± 2.406 0.710 ± 0.622 0.375 ± 0.029

192 vineyard 2 52 Spline ANN (z=1) −1.905 ± 2.388 1.298 ± 2.643 0.772 ± 0.697 0.631 ± 0.025

192 vineyard 2 52 Spline ANN (z=2) −1.732 ± 2.296 1.254 ± 2.598 0.743 ± 0.694 0.607 ± 0.030

192 vineyard 2 52 Spline ANN (z=4) −1.902 ± 2.524 1.335 ± 2.782 0.769 ± 0.720 0.605 ± 0.029

192 vineyard 2 52 Spline ANN (z=8) −2.204 ± 2.796 1.423 ± 2.925 0.797 ± 0.737 0.609 ± 0.024

192 vineyard 2 52 Spline ANN (z=10) −2.182 ± 2.791 1.439 ± 2.992 0.801 ± 0.742 0.608 ± 0.023

192 vineyard 2 52 Lookup Table (z=1) −3.298 ± 3.477 1.735 ± 3.344 0.933 ± 0.783 0.771 ± 0.019

192 vineyard 2 52 Lookup Table (z=2) −2.302 ± 2.949 1.415 ± 2.860 0.810 ± 0.730 0.674 ± 0.017

192 vineyard 2 52 Lookup Table (z=4) −2.454 ± 3.142 1.457 ± 2.922 0.829 ± 0.740 0.672 ± 0.023

192 vineyard 2 52 Lookup Table (z=8) −2.894 ± 3.730 1.564 ± 3.099 0.860 ± 0.762 0.660 ± 0.025

192 vineyard 2 52 Lookup Table (z=10) −2.971 ± 3.471 1.599 ± 3.118 0.880 ± 0.762 0.664 ± 0.020

228 elusage 2 55 Linear Model −3.922 ± 9.989 1.116 ± 0.786 0.858 ± 0.297 0.833 ± 0.252

228 elusage 2 55 Wide ReLU ANN 0.339 ± 0.433 0.294 ± 0.190 0.424 ± 0.160 0.318 ± 0.017

228 elusage 2 55 Deep ReLU ANN 0.378 ± 0.398 0.282 ± 0.173 0.389 ± 0.129 0.299 ± 0.015

228 elusage 2 55 ABEL-Spline (z=1) 0.271 ± 0.499 0.387 ± 0.390 0.448 ± 0.184 0.380 ± 0.012

228 elusage 2 55 ABEL-Spline (z=2) 0.345 ± 0.379 0.357 ± 0.323 0.434 ± 0.179 0.357 ± 0.012

228 elusage 2 55 ABEL-Spline (z=4) 0.296 ± 0.425 0.378 ± 0.329 0.449 ± 0.189 0.319 ± 0.014

228 elusage 2 55 ABEL-Spline (z=8) 0.332 ± 0.389 0.356 ± 0.304 0.424 ± 0.153 0.275 ± 0.013

228 elusage 2 55 ABEL-Spline (z=10) 0.348 ± 0.358 0.367 ± 0.323 0.423 ± 0.156 0.266 ± 0.014

228 elusage 2 55 Spline ANN (z=1) −1.199 ± 3.774 0.790 ± 0.745 0.691 ± 0.273 0.648 ± 0.019

228 elusage 2 55 Spline ANN (z=2) −0.752 ± 2.800 0.712 ± 0.717 0.641 ± 0.261 0.598 ± 0.014

228 elusage 2 55 Spline ANN (z=4) −0.770 ± 2.804 0.702 ± 0.681 0.641 ± 0.252 0.581 ± 0.014

228 elusage 2 55 Spline ANN (z=8) −0.838 ± 3.087 0.695 ± 0.680 0.633 ± 0.255 0.576 ± 0.010

228 elusage 2 55 Spline ANN (z=10) −0.836 ± 3.012 0.702 ± 0.684 0.637 ± 0.248 0.574 ± 0.015

228 elusage 2 55 Lookup Table (z=1) −2.300 ± 5.478 1.165 ± 0.999 0.869 ± 0.304 0.822 ± 0.011

228 elusage 2 55 Lookup Table (z=2) −1.661 ± 4.626 0.894 ± 0.789 0.740 ± 0.267 0.693 ± 0.017

228 elusage 2 55 Lookup Table (z=4) −1.583 ± 4.388 0.900 ± 0.791 0.745 ± 0.267 0.693 ± 0.014

228 elusage 2 55 Lookup Table (z=8) −1.675 ± 4.668 0.907 ± 0.837 0.744 ± 0.276 0.691 ± 0.013

228 elusage 2 55 Lookup Table (z=10) −1.787 ± 4.747 0.932 ± 0.776 0.764 ± 0.263 0.701 ± 0.009

523 analcatdata neavote 2 100 Linear Model 0.027 ± 0.651 0.927 ± 0.628 0.849 ± 0.375 0.839 ± 0.337

523 analcatdata neavote 2 100 Wide ReLU ANN 0.757 ± 0.229 0.232 ± 0.215 0.324 ± 0.225 0.282 ± 0.173

523 analcatdata neavote 2 100 Deep ReLU ANN 0.920 ± 0.078 0.077 ± 0.085 0.141 ± 0.059 0.126 ± 0.006

523 analcatdata neavote 2 100 ABEL-Spline (z=1) 0.929 ± 0.037 0.067 ± 0.037 0.160 ± 0.041 0.151 ± 0.018

523 analcatdata neavote 2 100 ABEL-Spline (z=2) 0.941 ± 0.038 0.054 ± 0.033 0.128 ± 0.048 0.128 ± 0.006

523 analcatdata neavote 2 100 ABEL-Spline (z=4) 0.934 ± 0.048 0.062 ± 0.048 0.131 ± 0.051 0.124 ± 0.007

523 analcatdata neavote 2 100 ABEL-Spline (z=8) 0.937 ± 0.043 0.059 ± 0.042 0.129 ± 0.050 0.123 ± 0.007

523 analcatdata neavote 2 100 ABEL-Spline (z=10) 0.934 ± 0.048 0.062 ± 0.048 0.131 ± 0.051 0.124 ± 0.006

Continued on next page
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Dataset n N Model R2 T. MSE T. MAE Tr. MAE

523 analcatdata neavote 2 100 Spline ANN (z=1) 0.343 ± 0.086 0.619 ± 0.084 0.744 ± 0.067 0.729 ± 0.013

523 analcatdata neavote 2 100 Spline ANN (z=2) 0.423 ± 0.069 0.545 ± 0.080 0.700 ± 0.068 0.687 ± 0.013

523 analcatdata neavote 2 100 Spline ANN (z=4) 0.421 ± 0.063 0.547 ± 0.082 0.701 ± 0.069 0.684 ± 0.008

523 analcatdata neavote 2 100 Spline ANN (z=8) 0.431 ± 0.049 0.537 ± 0.064 0.697 ± 0.059 0.681 ± 0.011

523 analcatdata neavote 2 100 Spline ANN (z=10) 0.414 ± 0.071 0.555 ± 0.092 0.707 ± 0.075 0.688 ± 0.016

523 analcatdata neavote 2 100 Lookup Table (z=1) −0.114 ± 0.114 1.051 ± 0.124 0.972 ± 0.079 0.958 ± 0.008

523 analcatdata neavote 2 100 Lookup Table (z=2) 0.409 ± 0.062 0.559 ± 0.078 0.714 ± 0.060 0.706 ± 0.020

523 analcatdata neavote 2 100 Lookup Table (z=4) 0.433 ± 0.046 0.535 ± 0.060 0.700 ± 0.055 0.693 ± 0.015

523 analcatdata neavote 2 100 Lookup Table (z=8) 0.413 ± 0.042 0.555 ± 0.070 0.712 ± 0.060 0.705 ± 0.018

523 analcatdata neavote 2 100 Lookup Table (z=10) 0.426 ± 0.048 0.541 ± 0.054 0.703 ± 0.054 0.692 ± 0.013

663 rabe 266 2 120 Linear Model 0.001 ± 0.664 0.934 ± 0.709 0.774 ± 0.288 0.748 ± 0.311

663 rabe 266 2 120 Wide ReLU ANN 0.991 ± 0.019 0.005 ± 0.009 0.045 ± 0.035 0.026 ± 0.003

663 rabe 266 2 120 Deep ReLU ANN 0.979 ± 0.050 0.012 ± 0.023 0.071 ± 0.070 0.039 ± 0.012

663 rabe 266 2 120 ABEL-Spline (z=1) 0.945 ± 0.078 0.038 ± 0.033 0.138 ± 0.052 0.123 ± 0.004

663 rabe 266 2 120 ABEL-Spline (z=2) 0.964 ± 0.067 0.023 ± 0.030 0.098 ± 0.057 0.081 ± 0.006

663 rabe 266 2 120 ABEL-Spline (z=4) 0.955 ± 0.085 0.028 ± 0.038 0.120 ± 0.067 0.068 ± 0.009

663 rabe 266 2 120 ABEL-Spline (z=8) 0.926 ± 0.151 0.044 ± 0.068 0.150 ± 0.099 0.068 ± 0.007

663 rabe 266 2 120 ABEL-Spline (z=10) 0.819 ± 0.338 0.114 ± 0.152 0.266 ± 0.165 0.071 ± 0.007

663 rabe 266 2 120 Spline ANN (z=1) 0.393 ± 0.180 0.524 ± 0.108 0.604 ± 0.069 0.592 ± 0.013

663 rabe 266 2 120 Spline ANN (z=2) 0.464 ± 0.150 0.466 ± 0.108 0.548 ± 0.071 0.531 ± 0.010

663 rabe 266 2 120 Spline ANN (z=4) 0.462 ± 0.133 0.472 ± 0.120 0.548 ± 0.077 0.533 ± 0.008

663 rabe 266 2 120 Spline ANN (z=8) 0.413 ± 0.156 0.512 ± 0.121 0.580 ± 0.072 0.554 ± 0.003

663 rabe 266 2 120 Spline ANN (z=10) 0.346 ± 0.262 0.554 ± 0.124 0.611 ± 0.076 0.558 ± 0.004

663 rabe 266 2 120 Lookup Table (z=1) −0.206 ± 0.341 1.035 ± 0.191 0.862 ± 0.078 0.851 ± 0.003

663 rabe 266 2 120 Lookup Table (z=2) 0.311 ± 0.299 0.575 ± 0.113 0.622 ± 0.069 0.609 ± 0.008

663 rabe 266 2 120 Lookup Table (z=4) 0.250 ± 0.277 0.634 ± 0.124 0.652 ± 0.067 0.620 ± 0.006

663 rabe 266 2 120 Lookup Table (z=8) 0.136 ± 0.255 0.744 ± 0.168 0.711 ± 0.090 0.629 ± 0.004

663 rabe 266 2 120 Lookup Table (z=10) 0.014 ± 0.297 0.845 ± 0.173 0.768 ± 0.090 0.641 ± 0.006

712 chscase geyser1 2 222 Linear Model 0.532 ± 0.230 0.453 ± 0.207 0.531 ± 0.132 0.531 ± 0.116

712 chscase geyser1 2 222 Wide ReLU ANN 0.759 ± 0.114 0.223 ± 0.070 0.379 ± 0.071 0.362 ± 0.009

712 chscase geyser1 2 222 Deep ReLU ANN 0.751 ± 0.113 0.233 ± 0.083 0.380 ± 0.075 0.357 ± 0.010

712 chscase geyser1 2 222 ABEL-Spline (z=1) 0.745 ± 0.133 0.234 ± 0.081 0.387 ± 0.076 0.370 ± 0.009

712 chscase geyser1 2 222 ABEL-Spline (z=2) 0.742 ± 0.130 0.237 ± 0.073 0.392 ± 0.074 0.365 ± 0.009

712 chscase geyser1 2 222 ABEL-Spline (z=4) 0.724 ± 0.145 0.252 ± 0.082 0.401 ± 0.075 0.352 ± 0.008

712 chscase geyser1 2 222 ABEL-Spline (z=8) 0.686 ± 0.145 0.289 ± 0.074 0.437 ± 0.069 0.334 ± 0.010

712 chscase geyser1 2 222 ABEL-Spline (z=10) 0.665 ± 0.173 0.306 ± 0.095 0.449 ± 0.072 0.327 ± 0.010

712 chscase geyser1 2 222 Spline ANN (z=1) 0.562 ± 0.080 0.434 ± 0.125 0.533 ± 0.088 0.530 ± 0.004

712 chscase geyser1 2 222 Spline ANN (z=2) 0.586 ± 0.085 0.409 ± 0.120 0.521 ± 0.086 0.510 ± 0.006

712 chscase geyser1 2 222 Spline ANN (z=4) 0.563 ± 0.108 0.430 ± 0.128 0.534 ± 0.086 0.512 ± 0.006

712 chscase geyser1 2 222 Spline ANN (z=8) 0.538 ± 0.115 0.454 ± 0.132 0.551 ± 0.087 0.515 ± 0.007

712 chscase geyser1 2 222 Spline ANN (z=10) 0.520 ± 0.129 0.469 ± 0.129 0.561 ± 0.085 0.519 ± 0.007

712 chscase geyser1 2 222 Lookup Table (z=1) −0.081 ± 0.039 1.080 ± 0.282 0.813 ± 0.132 0.809 ± 0.005

712 chscase geyser1 2 222 Lookup Table (z=2) 0.518 ± 0.127 0.478 ± 0.174 0.558 ± 0.118 0.553 ± 0.009

712 chscase geyser1 2 222 Lookup Table (z=4) 0.489 ± 0.071 0.507 ± 0.142 0.583 ± 0.094 0.545 ± 0.009

712 chscase geyser1 2 222 Lookup Table (z=8) 0.487 ± 0.058 0.513 ± 0.150 0.585 ± 0.092 0.543 ± 0.006

712 chscase geyser1 2 222 Lookup Table (z=10) 0.433 ± 0.077 0.565 ± 0.166 0.613 ± 0.113 0.552 ± 0.008

519 vinnie 2 380 Linear Model 0.578 ± 0.123 0.387 ± 0.157 0.504 ± 0.108 0.477 ± 0.084

519 vinnie 2 380 Wide ReLU ANN 0.684 ± 0.106 0.271 ± 0.057 0.416 ± 0.046 0.387 ± 0.007

519 vinnie 2 380 Deep ReLU ANN 0.675 ± 0.110 0.280 ± 0.066 0.420 ± 0.050 0.388 ± 0.009

519 vinnie 2 380 ABEL-Spline (z=1) 0.696 ± 0.094 0.261 ± 0.052 0.406 ± 0.043 0.390 ± 0.006

519 vinnie 2 380 ABEL-Spline (z=2) 0.694 ± 0.091 0.265 ± 0.054 0.408 ± 0.043 0.388 ± 0.006

519 vinnie 2 380 ABEL-Spline (z=4) 0.686 ± 0.088 0.273 ± 0.054 0.413 ± 0.046 0.382 ± 0.006

519 vinnie 2 380 ABEL-Spline (z=8) 0.674 ± 0.094 0.283 ± 0.062 0.421 ± 0.050 0.379 ± 0.006

519 vinnie 2 380 ABEL-Spline (z=10) 0.671 ± 0.095 0.286 ± 0.065 0.423 ± 0.051 0.378 ± 0.006

519 vinnie 2 380 Spline ANN (z=1) 0.592 ± 0.070 0.367 ± 0.093 0.485 ± 0.060 0.474 ± 0.007

519 vinnie 2 380 Spline ANN (z=2) 0.594 ± 0.076 0.360 ± 0.072 0.486 ± 0.051 0.463 ± 0.006

519 vinnie 2 380 Spline ANN (z=4) 0.586 ± 0.073 0.370 ± 0.087 0.492 ± 0.060 0.465 ± 0.005

519 vinnie 2 380 Spline ANN (z=8) 0.552 ± 0.070 0.403 ± 0.096 0.512 ± 0.063 0.480 ± 0.006

519 vinnie 2 380 Spline ANN (z=10) 0.537 ± 0.065 0.417 ± 0.098 0.521 ± 0.063 0.487 ± 0.006

519 vinnie 2 380 Lookup Table (z=1) −0.130 ± 0.137 1.017 ± 0.214 0.831 ± 0.116 0.824 ± 0.006

519 vinnie 2 380 Lookup Table (z=2) 0.392 ± 0.090 0.543 ± 0.110 0.588 ± 0.049 0.571 ± 0.007

519 vinnie 2 380 Lookup Table (z=4) 0.449 ± 0.065 0.503 ± 0.135 0.583 ± 0.078 0.524 ± 0.009
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Dataset n N Model R2 T. MSE T. MAE Tr. MAE

519 vinnie 2 380 Lookup Table (z=8) 0.428 ± 0.049 0.528 ± 0.157 0.583 ± 0.089 0.512 ± 0.009

519 vinnie 2 380 Lookup Table (z=10) 0.415 ± 0.081 0.546 ± 0.197 0.587 ± 0.102 0.513 ± 0.005

banana 2 5300 Linear Model −0.815 ± 0.106 1.809 ± 0.126 0.902 ± 0.062 0.902 ± 0.006

banana 2 5300 Wide ReLU ANN 0.673 ± 0.031 0.326 ± 0.033 0.312 ± 0.025 0.305 ± 0.004

banana 2 5300 Deep ReLU ANN 0.603 ± 0.051 0.395 ± 0.050 0.208 ± 0.025 0.211 ± 0.007

banana 2 5300 ABEL-Spline (z=1) 0.561 ± 0.025 0.438 ± 0.027 0.434 ± 0.017 0.436 ± 0.012

banana 2 5300 ABEL-Spline (z=2) 0.665 ± 0.011 0.334 ± 0.014 0.342 ± 0.012 0.340 ± 0.002

banana 2 5300 ABEL-Spline (z=4) 0.659 ± 0.024 0.340 ± 0.026 0.289 ± 0.017 0.284 ± 0.003

banana 2 5300 ABEL-Spline (z=8) 0.634 ± 0.027 0.365 ± 0.029 0.277 ± 0.018 0.270 ± 0.002

banana 2 5300 ABEL-Spline (z=10) 0.617 ± 0.029 0.382 ± 0.031 0.282 ± 0.019 0.273 ± 0.003

banana 2 5300 Spline ANN (z=1) 0.041 ± 0.026 0.955 ± 0.033 0.710 ± 0.016 0.706 ± 0.001

banana 2 5300 Spline ANN (z=2) 0.047 ± 0.047 0.950 ± 0.050 0.642 ± 0.022 0.641 ± 0.002

banana 2 5300 Spline ANN (z=4) 0.002 ± 0.055 0.995 ± 0.055 0.612 ± 0.024 0.606 ± 0.003

banana 2 5300 Spline ANN (z=8) −0.053 ± 0.068 1.049 ± 0.068 0.576 ± 0.027 0.569 ± 0.004

banana 2 5300 Spline ANN (z=10) −0.068 ± 0.069 1.064 ± 0.069 0.574 ± 0.027 0.567 ± 0.003

banana 2 5300 Lookup Table (z=1) −0.817 ± 0.106 1.811 ± 0.127 0.902 ± 0.062 0.902 ± 0.006

banana 2 5300 Lookup Table (z=2) −0.538 ± 0.149 1.533 ± 0.159 0.884 ± 0.047 0.867 ± 0.005

banana 2 5300 Lookup Table (z=4) 0.022 ± 0.090 0.974 ± 0.087 0.498 ± 0.030 0.493 ± 0.008

banana 2 5300 Lookup Table (z=8) 0.428 ± 0.057 0.570 ± 0.062 0.288 ± 0.031 0.286 ± 0.003

banana 2 5300 Lookup Table (z=10) 0.492 ± 0.047 0.506 ± 0.047 0.257 ± 0.023 0.255 ± 0.004

678 visualizing environmental 3 111 Linear Model −0.136 ± 0.313 0.924 ± 0.387 0.755 ± 0.146 0.734 ± 0.091

678 visualizing environmental 3 111 Wide ReLU ANN 0.061 ± 0.387 0.729 ± 0.320 0.671 ± 0.134 0.589 ± 0.015

678 visualizing environmental 3 111 Deep ReLU ANN −0.007 ± 0.267 0.827 ± 0.362 0.731 ± 0.160 0.563 ± 0.037

678 visualizing environmental 3 111 ABEL-Spline (z=1) 0.109 ± 0.239 0.713 ± 0.300 0.658 ± 0.114 0.614 ± 0.013

678 visualizing environmental 3 111 ABEL-Spline (z=2) 0.071 ± 0.241 0.748 ± 0.329 0.679 ± 0.133 0.598 ± 0.012

678 visualizing environmental 3 111 ABEL-Spline (z=4) 0.060 ± 0.261 0.746 ± 0.321 0.671 ± 0.110 0.556 ± 0.016

678 visualizing environmental 3 111 ABEL-Spline (z=8) 0.003 ± 0.272 0.794 ± 0.350 0.702 ± 0.126 0.471 ± 0.018

678 visualizing environmental 3 111 ABEL-Spline (z=10) −0.038 ± 0.346 0.833 ± 0.455 0.705 ± 0.142 0.430 ± 0.017

678 visualizing environmental 3 111 Spline ANN (z=1) 0.065 ± 0.169 0.767 ± 0.309 0.677 ± 0.127 0.659 ± 0.008

678 visualizing environmental 3 111 Spline ANN (z=2) 0.029 ± 0.181 0.795 ± 0.324 0.691 ± 0.135 0.653 ± 0.011

678 visualizing environmental 3 111 Spline ANN (z=4) −0.027 ± 0.169 0.848 ± 0.355 0.715 ± 0.146 0.646 ± 0.012

678 visualizing environmental 3 111 Spline ANN (z=8) −0.071 ± 0.179 0.882 ± 0.367 0.734 ± 0.141 0.629 ± 0.009

678 visualizing environmental 3 111 Spline ANN (z=10) −0.064 ± 0.166 0.879 ± 0.363 0.731 ± 0.142 0.620 ± 0.008

678 visualizing environmental 3 111 Lookup Table (z=1) −0.275 ± 0.246 1.065 ± 0.474 0.803 ± 0.191 0.781 ± 0.006

678 visualizing environmental 3 111 Lookup Table (z=2) −0.088 ± 0.198 0.907 ± 0.392 0.738 ± 0.163 0.705 ± 0.010

678 visualizing environmental 3 111 Lookup Table (z=4) −0.152 ± 0.237 0.954 ± 0.411 0.767 ± 0.174 0.701 ± 0.008

678 visualizing environmental 3 111 Lookup Table (z=8) −0.254 ± 0.325 1.029 ± 0.455 0.789 ± 0.184 0.679 ± 0.009

678 visualizing environmental 3 111 Lookup Table (z=10) −0.280 ± 0.248 1.060 ± 0.450 0.802 ± 0.192 0.666 ± 0.005

556 analcatdata apnea2 3 475 Linear Model −0.077 ± 0.015 1.094 ± 0.503 0.271 ± 0.065 0.270 ± 0.003

556 analcatdata apnea2 3 475 Wide ReLU ANN −0.051 ± 0.014 1.072 ± 0.498 0.261 ± 0.062 0.258 ± 0.002

556 analcatdata apnea2 3 475 Deep ReLU ANN 0.474 ± 0.418 0.474 ± 0.413 0.177 ± 0.074 0.163 ± 0.070

556 analcatdata apnea2 3 475 ABEL-Spline (z=1) −0.052 ± 0.012 1.072 ± 0.495 0.270 ± 0.064 0.268 ± 0.003

556 analcatdata apnea2 3 475 ABEL-Spline (z=2) −0.051 ± 0.009 1.071 ± 0.496 0.270 ± 0.063 0.267 ± 0.002

556 analcatdata apnea2 3 475 ABEL-Spline (z=4) −0.050 ± 0.012 1.068 ± 0.491 0.272 ± 0.058 0.266 ± 0.003

556 analcatdata apnea2 3 475 ABEL-Spline (z=8) −0.045 ± 0.020 1.069 ± 0.502 0.277 ± 0.063 0.266 ± 0.003

556 analcatdata apnea2 3 475 ABEL-Spline (z=10) −0.030 ± 0.026 1.052 ± 0.490 0.282 ± 0.057 0.264 ± 0.002

556 analcatdata apnea2 3 475 Spline ANN (z=1) −0.059 ± 0.012 1.078 ± 0.498 0.269 ± 0.064 0.267 ± 0.003

556 analcatdata apnea2 3 475 Spline ANN (z=2) −0.052 ± 0.010 1.072 ± 0.497 0.269 ± 0.064 0.267 ± 0.003

556 analcatdata apnea2 3 475 Spline ANN (z=4) −0.053 ± 0.007 1.072 ± 0.496 0.270 ± 0.062 0.267 ± 0.003

556 analcatdata apnea2 3 475 Spline ANN (z=8) −0.049 ± 0.011 1.069 ± 0.496 0.275 ± 0.059 0.267 ± 0.003

556 analcatdata apnea2 3 475 Spline ANN (z=10) −0.048 ± 0.011 1.069 ± 0.495 0.278 ± 0.057 0.267 ± 0.003

556 analcatdata apnea2 3 475 Lookup Table (z=1) −0.078 ± 0.015 1.095 ± 0.503 0.271 ± 0.065 0.270 ± 0.003

556 analcatdata apnea2 3 475 Lookup Table (z=2) −0.076 ± 0.017 1.093 ± 0.503 0.271 ± 0.064 0.270 ± 0.003

556 analcatdata apnea2 3 475 Lookup Table (z=4) 0.028 ± 0.102 1.009 ± 0.496 0.264 ± 0.060 0.248 ± 0.015

556 analcatdata apnea2 3 475 Lookup Table (z=8) 0.205 ± 0.098 0.832 ± 0.424 0.247 ± 0.048 0.204 ± 0.003

556 analcatdata apnea2 3 475 Lookup Table (z=10) 0.210 ± 0.059 0.828 ± 0.427 0.235 ± 0.054 0.200 ± 0.004

557 analcatdata apnea1 3 475 Linear Model −0.075 ± 0.015 1.094 ± 0.519 0.265 ± 0.057 0.264 ± 0.003

557 analcatdata apnea1 3 475 Wide ReLU ANN −0.053 ± 0.006 1.074 ± 0.514 0.261 ± 0.056 0.257 ± 0.002

557 analcatdata apnea1 3 475 Deep ReLU ANN 0.529 ± 0.462 0.381 ± 0.400 0.148 ± 0.075 0.158 ± 0.070

557 analcatdata apnea1 3 475 ABEL-Spline (z=1) −0.060 ± 0.014 1.080 ± 0.513 0.265 ± 0.057 0.263 ± 0.003

557 analcatdata apnea1 3 475 ABEL-Spline (z=2) −0.060 ± 0.015 1.080 ± 0.514 0.265 ± 0.057 0.263 ± 0.003

557 analcatdata apnea1 3 475 ABEL-Spline (z=4) −0.060 ± 0.018 1.078 ± 0.511 0.269 ± 0.055 0.262 ± 0.003
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Dataset n N Model R2 T. MSE T. MAE Tr. MAE

557 analcatdata apnea1 3 475 ABEL-Spline (z=8) −0.054 ± 0.016 1.077 ± 0.520 0.271 ± 0.063 0.263 ± 0.003

557 analcatdata apnea1 3 475 ABEL-Spline (z=10) −0.046 ± 0.016 1.067 ± 0.509 0.275 ± 0.056 0.261 ± 0.003

557 analcatdata apnea1 3 475 Spline ANN (z=1) −0.064 ± 0.015 1.083 ± 0.515 0.265 ± 0.057 0.263 ± 0.003

557 analcatdata apnea1 3 475 Spline ANN (z=2) −0.063 ± 0.014 1.082 ± 0.514 0.265 ± 0.057 0.263 ± 0.003

557 analcatdata apnea1 3 475 Spline ANN (z=4) −0.066 ± 0.014 1.085 ± 0.514 0.267 ± 0.056 0.263 ± 0.003

557 analcatdata apnea1 3 475 Spline ANN (z=8) −0.063 ± 0.011 1.084 ± 0.516 0.267 ± 0.055 0.263 ± 0.003

557 analcatdata apnea1 3 475 Spline ANN (z=10) −0.063 ± 0.015 1.082 ± 0.515 0.269 ± 0.059 0.263 ± 0.003

557 analcatdata apnea1 3 475 Lookup Table (z=1) −0.075 ± 0.014 1.094 ± 0.519 0.265 ± 0.057 0.264 ± 0.003

557 analcatdata apnea1 3 475 Lookup Table (z=2) −0.074 ± 0.015 1.093 ± 0.518 0.265 ± 0.057 0.264 ± 0.003

557 analcatdata apnea1 3 475 Lookup Table (z=4) 0.026 ± 0.103 1.004 ± 0.500 0.255 ± 0.058 0.245 ± 0.015

557 analcatdata apnea1 3 475 Lookup Table (z=8) 0.193 ± 0.068 0.836 ± 0.430 0.247 ± 0.057 0.202 ± 0.001

557 analcatdata apnea1 3 475 Lookup Table (z=10) 0.206 ± 0.063 0.838 ± 0.456 0.239 ± 0.062 0.200 ± 0.002

titanic 3 2201 Linear Model −0.052 ± 0.168 1.007 ± 0.120 0.472 ± 0.056 0.472 ± 0.007

titanic 3 2201 Wide ReLU ANN 0.061 ± 0.204 0.891 ± 0.118 0.484 ± 0.050 0.443 ± 0.008

titanic 3 2201 Deep ReLU ANN 0.007 ± 0.173 0.948 ± 0.100 0.456 ± 0.050 0.393 ± 0.014

titanic 3 2201 ABEL-Spline (z=1) −0.027 ± 0.173 0.982 ± 0.118 0.476 ± 0.054 0.473 ± 0.007

titanic 3 2201 ABEL-Spline (z=2) 0.048 ± 0.161 0.912 ± 0.120 0.473 ± 0.056 0.460 ± 0.008

titanic 3 2201 ABEL-Spline (z=4) 0.062 ± 0.194 0.896 ± 0.139 0.462 ± 0.065 0.448 ± 0.007

titanic 3 2201 ABEL-Spline (z=8) 0.076 ± 0.190 0.881 ± 0.127 0.461 ± 0.064 0.445 ± 0.007

titanic 3 2201 ABEL-Spline (z=10) 0.074 ± 0.194 0.882 ± 0.129 0.467 ± 0.062 0.444 ± 0.006

titanic 3 2201 Spline ANN (z=1) −0.049 ± 0.167 1.005 ± 0.120 0.472 ± 0.056 0.472 ± 0.007

titanic 3 2201 Spline ANN (z=2) −0.032 ± 0.154 0.990 ± 0.120 0.471 ± 0.056 0.470 ± 0.007

titanic 3 2201 Spline ANN (z=4) 0.001 ± 0.138 0.962 ± 0.131 0.468 ± 0.058 0.463 ± 0.008

titanic 3 2201 Spline ANN (z=8) 0.004 ± 0.156 0.959 ± 0.142 0.463 ± 0.062 0.457 ± 0.008

titanic 3 2201 Spline ANN (z=10) 0.007 ± 0.156 0.956 ± 0.145 0.464 ± 0.062 0.457 ± 0.009

titanic 3 2201 Lookup Table (z=1) −0.500 ± 0.173 1.485 ± 0.375 0.694 ± 0.171 0.693 ± 0.014

titanic 3 2201 Lookup Table (z=2) −0.008 ± 0.180 0.960 ± 0.091 0.525 ± 0.058 0.461 ± 0.007

titanic 3 2201 Lookup Table (z=4) −0.043 ± 0.172 0.998 ± 0.103 0.591 ± 0.093 0.431 ± 0.007

titanic 3 2201 Lookup Table (z=8) −0.044 ± 0.079 1.014 ± 0.143 0.672 ± 0.163 0.401 ± 0.006

titanic 3 2201 Lookup Table (z=10) −0.083 ± 0.074 1.053 ± 0.153 0.696 ± 0.167 0.411 ± 0.011

485 analcatdata vehicle 4 48 Linear Model −0.232 ± 0.658 0.982 ± 0.953 0.756 ± 0.312 0.811 ± 0.179

485 analcatdata vehicle 4 48 Wide ReLU ANN 0.596 ± 0.429 0.366 ± 0.537 0.388 ± 0.323 0.251 ± 0.018

485 analcatdata vehicle 4 48 Deep ReLU ANN 0.483 ± 0.684 0.404 ± 0.641 0.401 ± 0.374 0.194 ± 0.040

485 analcatdata vehicle 4 48 ABEL-Spline (z=1) 0.450 ± 0.438 0.608 ± 0.856 0.489 ± 0.380 0.379 ± 0.016

485 analcatdata vehicle 4 48 ABEL-Spline (z=2) 0.446 ± 0.392 0.591 ± 0.795 0.503 ± 0.363 0.356 ± 0.017

485 analcatdata vehicle 4 48 ABEL-Spline (z=4) 0.382 ± 0.383 0.607 ± 0.718 0.538 ± 0.323 0.338 ± 0.013

485 analcatdata vehicle 4 48 ABEL-Spline (z=8) 0.379 ± 0.406 0.610 ± 0.720 0.536 ± 0.330 0.337 ± 0.012

485 analcatdata vehicle 4 48 ABEL-Spline (z=10) 0.374 ± 0.384 0.608 ± 0.704 0.541 ± 0.320 0.338 ± 0.014

485 analcatdata vehicle 4 48 Spline ANN (z=1) 0.016 ± 0.568 0.995 ± 1.280 0.735 ± 0.377 0.653 ± 0.020

485 analcatdata vehicle 4 48 Spline ANN (z=2) 0.097 ± 0.510 0.911 ± 1.157 0.700 ± 0.368 0.613 ± 0.015

485 analcatdata vehicle 4 48 Spline ANN (z=4) 0.081 ± 0.545 0.939 ± 1.215 0.706 ± 0.381 0.608 ± 0.014

485 analcatdata vehicle 4 48 Spline ANN (z=8) 0.088 ± 0.549 0.933 ± 1.227 0.705 ± 0.384 0.607 ± 0.018

485 analcatdata vehicle 4 48 Spline ANN (z=10) 0.065 ± 0.531 0.940 ± 1.201 0.713 ± 0.371 0.616 ± 0.017

485 analcatdata vehicle 4 48 Lookup Table (z=1) −0.330 ± 0.436 1.192 ± 1.211 0.854 ± 0.312 0.810 ± 0.010

485 analcatdata vehicle 4 48 Lookup Table (z=2) −0.069 ± 0.421 0.966 ± 1.052 0.756 ± 0.307 0.692 ± 0.007

485 analcatdata vehicle 4 48 Lookup Table (z=4) −0.143 ± 0.401 1.012 ± 1.048 0.782 ± 0.307 0.697 ± 0.010

485 analcatdata vehicle 4 48 Lookup Table (z=8) −0.324 ± 0.416 1.139 ± 1.097 0.841 ± 0.283 0.702 ± 0.009

485 analcatdata vehicle 4 48 Lookup Table (z=10) −0.351 ± 0.382 1.168 ± 1.103 0.855 ± 0.276 0.699 ± 0.008

1096 FacultySalaries 4 50 Linear Model −1.404 ± 3.343 0.759 ± 0.479 0.660 ± 0.170 0.570 ± 0.156

1096 FacultySalaries 4 50 Wide ReLU ANN 0.395 ± 0.735 0.207 ± 0.074 0.386 ± 0.089 0.257 ± 0.014

1096 FacultySalaries 4 50 Deep ReLU ANN 0.079 ± 1.249 0.270 ± 0.105 0.424 ± 0.097 0.256 ± 0.019

1096 FacultySalaries 4 50 ABEL-Spline (z=1) 0.347 ± 0.844 0.261 ± 0.164 0.385 ± 0.091 0.326 ± 0.012

1096 FacultySalaries 4 50 ABEL-Spline (z=2) 0.350 ± 0.698 0.286 ± 0.168 0.413 ± 0.091 0.300 ± 0.013

1096 FacultySalaries 4 50 ABEL-Spline (z=4) 0.324 ± 0.652 0.313 ± 0.150 0.425 ± 0.088 0.249 ± 0.014

1096 FacultySalaries 4 50 ABEL-Spline (z=8) 0.125 ± 0.769 0.464 ± 0.359 0.473 ± 0.146 0.187 ± 0.008

1096 FacultySalaries 4 50 ABEL-Spline (z=10) −0.025 ± 0.921 0.526 ± 0.367 0.516 ± 0.144 0.171 ± 0.010

1096 FacultySalaries 4 50 Spline ANN (z=1) 0.101 ± 0.675 0.659 ± 0.560 0.556 ± 0.186 0.519 ± 0.014

1096 FacultySalaries 4 50 Spline ANN (z=2) 0.122 ± 0.695 0.645 ± 0.581 0.539 ± 0.189 0.491 ± 0.010

1096 FacultySalaries 4 50 Spline ANN (z=4) 0.093 ± 0.709 0.674 ± 0.613 0.553 ± 0.198 0.489 ± 0.009

1096 FacultySalaries 4 50 Spline ANN (z=8) −0.028 ± 0.823 0.750 ± 0.665 0.578 ± 0.201 0.484 ± 0.011

1096 FacultySalaries 4 50 Spline ANN (z=10) −0.118 ± 0.874 0.806 ± 0.682 0.609 ± 0.209 0.483 ± 0.007

1096 FacultySalaries 4 50 Lookup Table (z=1) −0.840 ± 2.022 1.089 ± 0.752 0.740 ± 0.214 0.725 ± 0.010

Continued on next page
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Dataset n N Model R2 T. MSE T. MAE Tr. MAE

1096 FacultySalaries 4 50 Lookup Table (z=2) −0.614 ± 2.094 0.882 ± 0.616 0.664 ± 0.195 0.631 ± 0.010

1096 FacultySalaries 4 50 Lookup Table (z=4) −0.955 ± 2.918 0.944 ± 0.608 0.694 ± 0.202 0.634 ± 0.012

1096 FacultySalaries 4 50 Lookup Table (z=8) −0.962 ± 2.568 1.029 ± 0.696 0.728 ± 0.200 0.637 ± 0.013

1096 FacultySalaries 4 50 Lookup Table (z=10) −0.833 ± 2.455 0.981 ± 0.670 0.709 ± 0.207 0.635 ± 0.012

690 visualizing galaxy 4 323 Linear Model −1.162 ± 4.374 0.507 ± 0.313 0.572 ± 0.197 0.507 ± 0.106

690 visualizing galaxy 4 323 Wide ReLU ANN 0.794 ± 0.269 0.067 ± 0.071 0.180 ± 0.085 0.106 ± 0.004

690 visualizing galaxy 4 323 Deep ReLU ANN 0.803 ± 0.306 0.065 ± 0.066 0.176 ± 0.081 0.114 ± 0.007

690 visualizing galaxy 4 323 ABEL-Spline (z=1) 0.705 ± 0.404 0.086 ± 0.095 0.210 ± 0.116 0.133 ± 0.009

690 visualizing galaxy 4 323 ABEL-Spline (z=2) 0.087 ± 1.650 0.161 ± 0.202 0.266 ± 0.198 0.116 ± 0.009

690 visualizing galaxy 4 323 ABEL-Spline (z=4) −0.033 ± 1.878 0.162 ± 0.200 0.273 ± 0.186 0.104 ± 0.008

690 visualizing galaxy 4 323 ABEL-Spline (z=8) −0.305 ± 2.442 0.185 ± 0.254 0.286 ± 0.210 0.096 ± 0.008

690 visualizing galaxy 4 323 ABEL-Spline (z=10) −0.276 ± 2.372 0.185 ± 0.247 0.288 ± 0.205 0.094 ± 0.007

690 visualizing galaxy 4 323 Spline ANN (z=1) 0.272 ± 1.301 0.127 ± 0.107 0.283 ± 0.108 0.217 ± 0.019

690 visualizing galaxy 4 323 Spline ANN (z=2) −0.129 ± 2.133 0.150 ± 0.207 0.257 ± 0.186 0.166 ± 0.017

690 visualizing galaxy 4 323 Spline ANN (z=4) −0.539 ± 2.918 0.205 ± 0.273 0.292 ± 0.217 0.166 ± 0.020

690 visualizing galaxy 4 323 Spline ANN (z=8) −0.866 ± 3.467 0.283 ± 0.309 0.368 ± 0.229 0.178 ± 0.026

690 visualizing galaxy 4 323 Spline ANN (z=10) −0.938 ± 3.542 0.313 ± 0.316 0.394 ± 0.229 0.188 ± 0.028

690 visualizing galaxy 4 323 Lookup Table (z=1) −1.300 ± 2.413 1.078 ± 0.465 0.852 ± 0.254 0.819 ± 0.011

690 visualizing galaxy 4 323 Lookup Table (z=2) −0.112 ± 1.584 0.335 ± 0.112 0.492 ± 0.104 0.408 ± 0.027

690 visualizing galaxy 4 323 Lookup Table (z=4) −0.199 ± 1.231 0.505 ± 0.212 0.575 ± 0.160 0.428 ± 0.013

690 visualizing galaxy 4 323 Lookup Table (z=8) −0.931 ± 2.704 0.747 ± 0.291 0.692 ± 0.201 0.474 ± 0.015

690 visualizing galaxy 4 323 Lookup Table (z=10) −1.072 ± 2.818 0.830 ± 0.390 0.741 ± 0.241 0.492 ± 0.009

1027 ESL 4 488 Linear Model 0.819 ± 0.031 0.175 ± 0.060 0.322 ± 0.051 0.310 ± 0.015

1027 ESL 4 488 Wide ReLU ANN 0.834 ± 0.063 0.152 ± 0.041 0.268 ± 0.042 0.218 ± 0.004

1027 ESL 4 488 Deep ReLU ANN 0.840 ± 0.049 0.148 ± 0.031 0.259 ± 0.033 0.209 ± 0.008

1027 ESL 4 488 ABEL-Spline (z=1) 0.845 ± 0.039 0.144 ± 0.030 0.283 ± 0.031 0.267 ± 0.003

1027 ESL 4 488 ABEL-Spline (z=2) 0.843 ± 0.036 0.148 ± 0.033 0.284 ± 0.034 0.260 ± 0.003

1027 ESL 4 488 ABEL-Spline (z=4) 0.837 ± 0.035 0.154 ± 0.037 0.290 ± 0.035 0.258 ± 0.003

1027 ESL 4 488 ABEL-Spline (z=8) 0.836 ± 0.034 0.155 ± 0.037 0.294 ± 0.036 0.256 ± 0.004

1027 ESL 4 488 ABEL-Spline (z=10) 0.837 ± 0.033 0.154 ± 0.036 0.295 ± 0.037 0.256 ± 0.003

1027 ESL 4 488 Spline ANN (z=1) 0.842 ± 0.034 0.150 ± 0.039 0.293 ± 0.035 0.283 ± 0.004

1027 ESL 4 488 Spline ANN (z=2) 0.844 ± 0.035 0.147 ± 0.036 0.288 ± 0.033 0.271 ± 0.004

1027 ESL 4 488 Spline ANN (z=4) 0.840 ± 0.031 0.153 ± 0.043 0.289 ± 0.035 0.268 ± 0.003

1027 ESL 4 488 Spline ANN (z=8) 0.836 ± 0.029 0.157 ± 0.048 0.292 ± 0.037 0.268 ± 0.003

1027 ESL 4 488 Spline ANN (z=10) 0.836 ± 0.029 0.158 ± 0.049 0.292 ± 0.037 0.269 ± 0.003

1027 ESL 4 488 Lookup Table (z=1) −0.070 ± 0.110 1.034 ± 0.282 0.798 ± 0.093 0.797 ± 0.004

1027 ESL 4 488 Lookup Table (z=2) 0.628 ± 0.059 0.371 ± 0.156 0.430 ± 0.089 0.408 ± 0.004

1027 ESL 4 488 Lookup Table (z=4) 0.597 ± 0.057 0.405 ± 0.168 0.430 ± 0.088 0.367 ± 0.004

1027 ESL 4 488 Lookup Table (z=8) 0.409 ± 0.051 0.590 ± 0.228 0.523 ± 0.094 0.413 ± 0.005

1027 ESL 4 488 Lookup Table (z=10) 0.344 ± 0.062 0.657 ± 0.251 0.551 ± 0.101 0.425 ± 0.003

1029 LEV 4 1000 Linear Model 0.546 ± 0.100 0.452 ± 0.133 0.514 ± 0.055 0.505 ± 0.004

1029 LEV 4 1000 Wide ReLU ANN 0.532 ± 0.118 0.466 ± 0.151 0.446 ± 0.070 0.422 ± 0.008

1029 LEV 4 1000 Deep ReLU ANN 0.511 ± 0.124 0.487 ± 0.159 0.429 ± 0.079 0.400 ± 0.013

1029 LEV 4 1000 ABEL-Spline (z=1) 0.537 ± 0.105 0.460 ± 0.136 0.497 ± 0.062 0.481 ± 0.005

1029 LEV 4 1000 ABEL-Spline (z=2) 0.528 ± 0.101 0.469 ± 0.136 0.495 ± 0.060 0.469 ± 0.006

1029 LEV 4 1000 ABEL-Spline (z=4) 0.527 ± 0.102 0.471 ± 0.139 0.494 ± 0.064 0.467 ± 0.006

1029 LEV 4 1000 ABEL-Spline (z=8) 0.526 ± 0.102 0.471 ± 0.139 0.494 ± 0.064 0.466 ± 0.006

1029 LEV 4 1000 ABEL-Spline (z=10) 0.525 ± 0.104 0.473 ± 0.141 0.494 ± 0.065 0.466 ± 0.006

1029 LEV 4 1000 Spline ANN (z=1) 0.543 ± 0.106 0.455 ± 0.137 0.509 ± 0.062 0.498 ± 0.005

1029 LEV 4 1000 Spline ANN (z=2) 0.525 ± 0.093 0.471 ± 0.126 0.516 ± 0.059 0.493 ± 0.005

1029 LEV 4 1000 Spline ANN (z=4) 0.516 ± 0.095 0.480 ± 0.128 0.517 ± 0.058 0.492 ± 0.005

1029 LEV 4 1000 Spline ANN (z=8) 0.515 ± 0.097 0.481 ± 0.129 0.518 ± 0.058 0.492 ± 0.005

1029 LEV 4 1000 Spline ANN (z=10) 0.514 ± 0.095 0.482 ± 0.128 0.519 ± 0.057 0.492 ± 0.005

1029 LEV 4 1000 Lookup Table (z=1) −0.071 ± 0.058 1.052 ± 0.099 0.752 ± 0.053 0.751 ± 0.003

1029 LEV 4 1000 Lookup Table (z=2) 0.333 ± 0.096 0.664 ± 0.152 0.574 ± 0.084 0.554 ± 0.016

1029 LEV 4 1000 Lookup Table (z=4) 0.454 ± 0.095 0.544 ± 0.142 0.499 ± 0.062 0.450 ± 0.006

1029 LEV 4 1000 Lookup Table (z=8) 0.463 ± 0.102 0.535 ± 0.148 0.497 ± 0.068 0.443 ± 0.007

1029 LEV 4 1000 Lookup Table (z=10) 0.463 ± 0.103 0.536 ± 0.151 0.497 ± 0.066 0.442 ± 0.007

1030 ERA 4 1000 Linear Model 0.347 ± 0.157 0.639 ± 0.134 0.629 ± 0.060 0.624 ± 0.006

1030 ERA 4 1000 Wide ReLU ANN 0.325 ± 0.170 0.660 ± 0.142 0.627 ± 0.066 0.599 ± 0.007

1030 ERA 4 1000 Deep ReLU ANN 0.316 ± 0.167 0.669 ± 0.145 0.631 ± 0.068 0.596 ± 0.006

1030 ERA 4 1000 ABEL-Spline (z=1) 0.331 ± 0.174 0.653 ± 0.143 0.628 ± 0.065 0.610 ± 0.007

Continued on next page
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Dataset n N Model R2 T. MSE T. MAE Tr. MAE

1030 ERA 4 1000 ABEL-Spline (z=2) 0.306 ± 0.178 0.679 ± 0.150 0.640 ± 0.066 0.600 ± 0.007

1030 ERA 4 1000 ABEL-Spline (z=4) 0.299 ± 0.165 0.687 ± 0.145 0.639 ± 0.070 0.591 ± 0.007

1030 ERA 4 1000 ABEL-Spline (z=8) 0.291 ± 0.171 0.694 ± 0.151 0.640 ± 0.072 0.589 ± 0.007

1030 ERA 4 1000 ABEL-Spline (z=10) 0.295 ± 0.165 0.691 ± 0.148 0.639 ± 0.071 0.589 ± 0.007

1030 ERA 4 1000 Spline ANN (z=1) 0.335 ± 0.174 0.649 ± 0.145 0.629 ± 0.065 0.616 ± 0.007

1030 ERA 4 1000 Spline ANN (z=2) 0.334 ± 0.168 0.651 ± 0.142 0.632 ± 0.065 0.613 ± 0.007

1030 ERA 4 1000 Spline ANN (z=4) 0.329 ± 0.151 0.658 ± 0.136 0.641 ± 0.066 0.604 ± 0.006

1030 ERA 4 1000 Spline ANN (z=8) 0.323 ± 0.147 0.666 ± 0.143 0.638 ± 0.070 0.595 ± 0.007

1030 ERA 4 1000 Spline ANN (z=10) 0.323 ± 0.147 0.665 ± 0.143 0.635 ± 0.071 0.595 ± 0.007

1030 ERA 4 1000 Lookup Table (z=1) −0.015 ± 0.012 1.007 ± 0.147 0.815 ± 0.072 0.814 ± 0.002

1030 ERA 4 1000 Lookup Table (z=2) 0.294 ± 0.144 0.696 ± 0.150 0.658 ± 0.066 0.637 ± 0.007

1030 ERA 4 1000 Lookup Table (z=4) 0.334 ± 0.144 0.655 ± 0.136 0.635 ± 0.067 0.608 ± 0.007

1030 ERA 4 1000 Lookup Table (z=8) 0.335 ± 0.135 0.654 ± 0.132 0.637 ± 0.069 0.606 ± 0.007

1030 ERA 4 1000 Lookup Table (z=10) 0.338 ± 0.141 0.651 ± 0.135 0.637 ± 0.071 0.603 ± 0.008

529 pollen 4 3848 Linear Model 0.768 ± 0.020 0.232 ± 0.023 0.377 ± 0.020 0.377 ± 0.002

529 pollen 4 3848 Wide ReLU ANN 0.782 ± 0.024 0.218 ± 0.028 0.371 ± 0.025 0.355 ± 0.003

529 pollen 4 3848 Deep ReLU ANN 0.769 ± 0.020 0.231 ± 0.022 0.379 ± 0.021 0.353 ± 0.006

529 pollen 4 3848 ABEL-Spline (z=1) 0.790 ± 0.021 0.210 ± 0.023 0.362 ± 0.021 0.359 ± 0.002

529 pollen 4 3848 ABEL-Spline (z=2) 0.790 ± 0.022 0.210 ± 0.024 0.364 ± 0.022 0.356 ± 0.002

529 pollen 4 3848 ABEL-Spline (z=4) 0.785 ± 0.025 0.215 ± 0.028 0.367 ± 0.024 0.350 ± 0.003

529 pollen 4 3848 ABEL-Spline (z=8) 0.776 ± 0.026 0.224 ± 0.028 0.373 ± 0.024 0.342 ± 0.003

529 pollen 4 3848 ABEL-Spline (z=10) 0.773 ± 0.027 0.226 ± 0.030 0.375 ± 0.025 0.338 ± 0.003

529 pollen 4 3848 Spline ANN (z=1) 0.769 ± 0.020 0.230 ± 0.023 0.376 ± 0.019 0.375 ± 0.002

529 pollen 4 3848 Spline ANN (z=2) 0.779 ± 0.020 0.221 ± 0.023 0.369 ± 0.019 0.366 ± 0.002

529 pollen 4 3848 Spline ANN (z=4) 0.772 ± 0.024 0.227 ± 0.026 0.373 ± 0.021 0.365 ± 0.002

529 pollen 4 3848 Spline ANN (z=8) 0.747 ± 0.025 0.252 ± 0.027 0.389 ± 0.020 0.372 ± 0.002

529 pollen 4 3848 Spline ANN (z=10) 0.735 ± 0.026 0.264 ± 0.028 0.397 ± 0.021 0.375 ± 0.002

529 pollen 4 3848 Lookup Table (z=1) −0.002 ± 0.002 1.001 ± 0.043 0.788 ± 0.018 0.788 ± 0.001

529 pollen 4 3848 Lookup Table (z=2) 0.350 ± 0.032 0.649 ± 0.047 0.628 ± 0.026 0.623 ± 0.002

529 pollen 4 3848 Lookup Table (z=4) 0.520 ± 0.032 0.479 ± 0.035 0.540 ± 0.022 0.509 ± 0.002

529 pollen 4 3848 Lookup Table (z=8) 0.441 ± 0.058 0.559 ± 0.066 0.554 ± 0.030 0.377 ± 0.002

529 pollen 4 3848 Lookup Table (z=10) 0.308 ± 0.045 0.692 ± 0.059 0.622 ± 0.026 0.338 ± 0.001

687 sleuth ex1605 5 62 Linear Model −1.472 ± 3.349 1.062 ± 0.603 0.836 ± 0.296 0.743 ± 0.136

687 sleuth ex1605 5 62 Wide ReLU ANN −0.315 ± 1.663 0.438 ± 0.192 0.552 ± 0.138 0.274 ± 0.015

687 sleuth ex1605 5 62 Deep ReLU ANN −0.950 ± 3.144 0.571 ± 0.414 0.599 ± 0.223 0.189 ± 0.046

687 sleuth ex1605 5 62 ABEL-Spline (z=1) −0.528 ± 2.369 0.499 ± 0.285 0.552 ± 0.174 0.454 ± 0.025

687 sleuth ex1605 5 62 ABEL-Spline (z=2) −0.663 ± 2.470 0.553 ± 0.309 0.602 ± 0.185 0.392 ± 0.018

687 sleuth ex1605 5 62 ABEL-Spline (z=4) −0.915 ± 2.421 0.621 ± 0.313 0.662 ± 0.154 0.273 ± 0.020

687 sleuth ex1605 5 62 ABEL-Spline (z=8) −0.941 ± 2.648 0.629 ± 0.317 0.644 ± 0.178 0.143 ± 0.019

687 sleuth ex1605 5 62 ABEL-Spline (z=10) −0.640 ± 1.876 0.608 ± 0.320 0.603 ± 0.168 0.119 ± 0.017

687 sleuth ex1605 5 62 Spline ANN (z=1) −0.862 ± 2.116 0.843 ± 0.360 0.751 ± 0.206 0.673 ± 0.017

687 sleuth ex1605 5 62 Spline ANN (z=2) −0.891 ± 2.111 0.857 ± 0.373 0.758 ± 0.197 0.637 ± 0.015

687 sleuth ex1605 5 62 Spline ANN (z=4) −0.771 ± 1.713 0.841 ± 0.359 0.746 ± 0.166 0.584 ± 0.016

687 sleuth ex1605 5 62 Spline ANN (z=8) −0.751 ± 1.808 0.788 ± 0.359 0.709 ± 0.153 0.508 ± 0.014

687 sleuth ex1605 5 62 Spline ANN (z=10) −0.764 ± 1.863 0.805 ± 0.373 0.715 ± 0.155 0.490 ± 0.016

687 sleuth ex1605 5 62 Lookup Table (z=1) −1.133 ± 2.069 1.110 ± 0.508 0.868 ± 0.221 0.813 ± 0.009

687 sleuth ex1605 5 62 Lookup Table (z=2) −1.048 ± 2.039 1.010 ± 0.442 0.828 ± 0.203 0.734 ± 0.012

687 sleuth ex1605 5 62 Lookup Table (z=4) −1.036 ± 2.049 1.069 ± 0.501 0.835 ± 0.225 0.686 ± 0.010

687 sleuth ex1605 5 62 Lookup Table (z=8) −1.006 ± 1.999 1.084 ± 0.521 0.848 ± 0.227 0.682 ± 0.009

687 sleuth ex1605 5 62 Lookup Table (z=10) −0.990 ± 1.938 1.092 ± 0.531 0.850 ± 0.233 0.682 ± 0.009

594 fri c2 100 5 5 100 Linear Model −1.108 ± 2.431 1.233 ± 0.693 0.824 ± 0.257 0.776 ± 0.045

594 fri c2 100 5 5 100 Wide ReLU ANN 0.438 ± 0.263 0.508 ± 0.365 0.475 ± 0.231 0.291 ± 0.015

594 fri c2 100 5 5 100 Deep ReLU ANN 0.416 ± 0.267 0.436 ± 0.284 0.459 ± 0.179 0.224 ± 0.059

594 fri c2 100 5 5 100 ABEL-Spline (z=1) 0.421 ± 0.333 0.459 ± 0.323 0.501 ± 0.196 0.425 ± 0.017

594 fri c2 100 5 5 100 ABEL-Spline (z=2) 0.663 ± 0.363 0.192 ± 0.143 0.336 ± 0.129 0.231 ± 0.014

594 fri c2 100 5 5 100 ABEL-Spline (z=4) 0.698 ± 0.286 0.175 ± 0.150 0.311 ± 0.123 0.146 ± 0.017

594 fri c2 100 5 5 100 ABEL-Spline (z=8) 0.511 ± 0.618 0.252 ± 0.171 0.382 ± 0.135 0.090 ± 0.011

594 fri c2 100 5 5 100 ABEL-Spline (z=10) 0.432 ± 0.646 0.288 ± 0.173 0.419 ± 0.137 0.067 ± 0.009

594 fri c2 100 5 5 100 Spline ANN (z=1) −0.192 ± 0.994 0.844 ± 0.551 0.682 ± 0.239 0.634 ± 0.010

594 fri c2 100 5 5 100 Spline ANN (z=2) −0.026 ± 0.915 0.708 ± 0.471 0.621 ± 0.216 0.548 ± 0.011

594 fri c2 100 5 5 100 Spline ANN (z=4) 0.135 ± 0.638 0.615 ± 0.415 0.593 ± 0.204 0.492 ± 0.010

594 fri c2 100 5 5 100 Spline ANN (z=8) −0.061 ± 0.997 0.684 ± 0.448 0.647 ± 0.216 0.460 ± 0.010
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Dataset n N Model R2 T. MSE T. MAE Tr. MAE

594 fri c2 100 5 5 100 Spline ANN (z=10) −0.113 ± 1.175 0.692 ± 0.444 0.656 ± 0.222 0.453 ± 0.008

594 fri c2 100 5 5 100 Lookup Table (z=1) −0.601 ± 1.247 1.102 ± 0.637 0.798 ± 0.242 0.771 ± 0.009

594 fri c2 100 5 5 100 Lookup Table (z=2) −0.474 ± 1.435 0.920 ± 0.536 0.748 ± 0.217 0.693 ± 0.013

594 fri c2 100 5 5 100 Lookup Table (z=4) −0.753 ± 1.870 1.030 ± 0.520 0.796 ± 0.215 0.659 ± 0.009

594 fri c2 100 5 5 100 Lookup Table (z=8) −0.825 ± 1.893 1.059 ± 0.503 0.818 ± 0.209 0.645 ± 0.011

594 fri c2 100 5 5 100 Lookup Table (z=10) −0.834 ± 1.951 1.065 ± 0.514 0.817 ± 0.209 0.637 ± 0.009

611 fri c3 100 5 5 100 Linear Model −0.135 ± 0.514 0.985 ± 0.448 0.736 ± 0.182 0.757 ± 0.039

611 fri c3 100 5 5 100 Wide ReLU ANN 0.901 ± 0.059 0.079 ± 0.046 0.215 ± 0.062 0.144 ± 0.009

611 fri c3 100 5 5 100 Deep ReLU ANN 0.649 ± 0.454 0.221 ± 0.133 0.341 ± 0.103 0.180 ± 0.035

611 fri c3 100 5 5 100 ABEL-Spline (z=1) 0.608 ± 0.199 0.312 ± 0.154 0.455 ± 0.129 0.387 ± 0.017

611 fri c3 100 5 5 100 ABEL-Spline (z=2) 0.878 ± 0.080 0.093 ± 0.059 0.224 ± 0.065 0.168 ± 0.007

611 fri c3 100 5 5 100 ABEL-Spline (z=4) 0.834 ± 0.148 0.113 ± 0.071 0.255 ± 0.047 0.127 ± 0.006

611 fri c3 100 5 5 100 ABEL-Spline (z=8) 0.712 ± 0.223 0.201 ± 0.088 0.355 ± 0.057 0.088 ± 0.008

611 fri c3 100 5 5 100 ABEL-Spline (z=10) 0.685 ± 0.241 0.220 ± 0.094 0.371 ± 0.064 0.066 ± 0.010

611 fri c3 100 5 5 100 Spline ANN (z=1) 0.132 ± 0.172 0.769 ± 0.352 0.685 ± 0.183 0.636 ± 0.009

611 fri c3 100 5 5 100 Spline ANN (z=2) 0.424 ± 0.108 0.543 ± 0.285 0.559 ± 0.168 0.500 ± 0.013

611 fri c3 100 5 5 100 Spline ANN (z=4) 0.524 ± 0.105 0.457 ± 0.249 0.508 ± 0.163 0.427 ± 0.012

611 fri c3 100 5 5 100 Spline ANN (z=8) 0.438 ± 0.176 0.483 ± 0.225 0.518 ± 0.130 0.396 ± 0.011

611 fri c3 100 5 5 100 Spline ANN (z=10) 0.381 ± 0.184 0.526 ± 0.228 0.543 ± 0.127 0.390 ± 0.011

611 fri c3 100 5 5 100 Lookup Table (z=1) −0.153 ± 0.177 1.070 ± 0.492 0.792 ± 0.228 0.778 ± 0.009

611 fri c3 100 5 5 100 Lookup Table (z=2) −0.018 ± 0.216 0.892 ± 0.389 0.738 ± 0.188 0.695 ± 0.005

611 fri c3 100 5 5 100 Lookup Table (z=4) 0.073 ± 0.105 0.857 ± 0.417 0.720 ± 0.199 0.616 ± 0.008

611 fri c3 100 5 5 100 Lookup Table (z=8) −0.098 ± 0.122 0.999 ± 0.447 0.784 ± 0.209 0.628 ± 0.009

611 fri c3 100 5 5 100 Lookup Table (z=10) −0.116 ± 0.098 1.036 ± 0.493 0.794 ± 0.221 0.630 ± 0.007

624 fri c0 100 5 5 100 Linear Model −0.300 ± 0.836 0.929 ± 0.444 0.781 ± 0.209 0.697 ± 0.117

624 fri c0 100 5 5 100 Wide ReLU ANN 0.825 ± 0.138 0.113 ± 0.054 0.268 ± 0.078 0.104 ± 0.010

624 fri c0 100 5 5 100 Deep ReLU ANN 0.729 ± 0.111 0.230 ± 0.161 0.351 ± 0.127 0.118 ± 0.028

624 fri c0 100 5 5 100 ABEL-Spline (z=1) 0.788 ± 0.151 0.139 ± 0.053 0.299 ± 0.079 0.241 ± 0.010

624 fri c0 100 5 5 100 ABEL-Spline (z=2) 0.750 ± 0.209 0.156 ± 0.068 0.305 ± 0.077 0.207 ± 0.009

624 fri c0 100 5 5 100 ABEL-Spline (z=4) 0.754 ± 0.156 0.170 ± 0.066 0.316 ± 0.079 0.165 ± 0.006

624 fri c0 100 5 5 100 ABEL-Spline (z=8) 0.607 ± 0.235 0.273 ± 0.099 0.400 ± 0.096 0.106 ± 0.009

624 fri c0 100 5 5 100 ABEL-Spline (z=10) 0.539 ± 0.360 0.301 ± 0.102 0.419 ± 0.096 0.079 ± 0.008

624 fri c0 100 5 5 100 Spline ANN (z=1) 0.329 ± 0.193 0.535 ± 0.197 0.606 ± 0.122 0.569 ± 0.012

624 fri c0 100 5 5 100 Spline ANN (z=2) 0.409 ± 0.190 0.468 ± 0.182 0.562 ± 0.125 0.508 ± 0.011

624 fri c0 100 5 5 100 Spline ANN (z=4) 0.328 ± 0.222 0.526 ± 0.197 0.601 ± 0.127 0.500 ± 0.015

624 fri c0 100 5 5 100 Spline ANN (z=8) 0.177 ± 0.307 0.625 ± 0.213 0.664 ± 0.114 0.483 ± 0.013

624 fri c0 100 5 5 100 Spline ANN (z=10) 0.135 ± 0.343 0.650 ± 0.215 0.678 ± 0.113 0.474 ± 0.009

624 fri c0 100 5 5 100 Lookup Table (z=1) −0.403 ± 0.502 1.078 ± 0.353 0.876 ± 0.145 0.845 ± 0.007

624 fri c0 100 5 5 100 Lookup Table (z=2) −0.104 ± 0.313 0.876 ± 0.317 0.779 ± 0.146 0.711 ± 0.007

624 fri c0 100 5 5 100 Lookup Table (z=4) −0.311 ± 0.404 1.029 ± 0.361 0.855 ± 0.155 0.683 ± 0.008

624 fri c0 100 5 5 100 Lookup Table (z=8) −0.353 ± 0.459 1.053 ± 0.363 0.872 ± 0.153 0.684 ± 0.006

624 fri c0 100 5 5 100 Lookup Table (z=10) −0.353 ± 0.457 1.052 ± 0.360 0.870 ± 0.151 0.686 ± 0.007

656 fri c1 100 5 5 100 Linear Model 0.037 ± 0.276 0.922 ± 0.611 0.735 ± 0.269 0.796 ± 0.047

656 fri c1 100 5 5 100 Wide ReLU ANN 0.439 ± 0.383 0.594 ± 0.520 0.465 ± 0.238 0.295 ± 0.016

656 fri c1 100 5 5 100 Deep ReLU ANN 0.563 ± 0.220 0.400 ± 0.269 0.457 ± 0.156 0.208 ± 0.037

656 fri c1 100 5 5 100 ABEL-Spline (z=1) 0.651 ± 0.170 0.353 ± 0.271 0.420 ± 0.173 0.331 ± 0.014

656 fri c1 100 5 5 100 ABEL-Spline (z=2) 0.799 ± 0.068 0.192 ± 0.128 0.337 ± 0.129 0.216 ± 0.008

656 fri c1 100 5 5 100 ABEL-Spline (z=4) 0.833 ± 0.037 0.150 ± 0.078 0.305 ± 0.088 0.148 ± 0.008

656 fri c1 100 5 5 100 ABEL-Spline (z=8) 0.718 ± 0.121 0.235 ± 0.102 0.382 ± 0.102 0.094 ± 0.007

656 fri c1 100 5 5 100 ABEL-Spline (z=10) 0.675 ± 0.130 0.270 ± 0.110 0.410 ± 0.107 0.072 ± 0.010

656 fri c1 100 5 5 100 Spline ANN (z=1) 0.342 ± 0.119 0.658 ± 0.451 0.631 ± 0.238 0.590 ± 0.011

656 fri c1 100 5 5 100 Spline ANN (z=2) 0.471 ± 0.129 0.543 ± 0.402 0.563 ± 0.228 0.503 ± 0.011

656 fri c1 100 5 5 100 Spline ANN (z=4) 0.491 ± 0.112 0.517 ± 0.369 0.554 ± 0.215 0.450 ± 0.005

656 fri c1 100 5 5 100 Spline ANN (z=8) 0.407 ± 0.145 0.603 ± 0.433 0.604 ± 0.236 0.435 ± 0.010

656 fri c1 100 5 5 100 Spline ANN (z=10) 0.360 ± 0.120 0.633 ± 0.429 0.624 ± 0.226 0.430 ± 0.007

656 fri c1 100 5 5 100 Lookup Table (z=1) −0.130 ± 0.119 1.066 ± 0.648 0.815 ± 0.268 0.795 ± 0.008

656 fri c1 100 5 5 100 Lookup Table (z=2) 0.014 ± 0.129 0.912 ± 0.515 0.756 ± 0.228 0.694 ± 0.007

656 fri c1 100 5 5 100 Lookup Table (z=4) −0.078 ± 0.112 1.021 ± 0.625 0.797 ± 0.262 0.643 ± 0.005

656 fri c1 100 5 5 100 Lookup Table (z=8) −0.161 ± 0.161 1.063 ± 0.598 0.826 ± 0.245 0.647 ± 0.008

656 fri c1 100 5 5 100 Lookup Table (z=10) −0.151 ± 0.134 1.059 ± 0.582 0.818 ± 0.241 0.644 ± 0.005

579 fri c0 250 5 5 250 Linear Model 0.320 ± 0.253 0.633 ± 0.216 0.654 ± 0.135 0.614 ± 0.082

579 fri c0 250 5 5 250 Wide ReLU ANN 0.855 ± 0.087 0.125 ± 0.044 0.266 ± 0.044 0.202 ± 0.006
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Dataset n N Model R2 T. MSE T. MAE Tr. MAE

579 fri c0 250 5 5 250 Deep ReLU ANN 0.797 ± 0.076 0.191 ± 0.058 0.336 ± 0.057 0.227 ± 0.023

579 fri c0 250 5 5 250 ABEL-Spline (z=1) 0.829 ± 0.084 0.150 ± 0.041 0.300 ± 0.044 0.268 ± 0.007

579 fri c0 250 5 5 250 ABEL-Spline (z=2) 0.845 ± 0.078 0.137 ± 0.042 0.281 ± 0.047 0.236 ± 0.008

579 fri c0 250 5 5 250 ABEL-Spline (z=4) 0.841 ± 0.078 0.141 ± 0.039 0.285 ± 0.054 0.213 ± 0.007

579 fri c0 250 5 5 250 ABEL-Spline (z=8) 0.823 ± 0.086 0.159 ± 0.054 0.306 ± 0.057 0.182 ± 0.008

579 fri c0 250 5 5 250 ABEL-Spline (z=10) 0.793 ± 0.090 0.187 ± 0.055 0.337 ± 0.061 0.170 ± 0.007

579 fri c0 250 5 5 250 Spline ANN (z=1) 0.629 ± 0.040 0.363 ± 0.098 0.495 ± 0.088 0.478 ± 0.010

579 fri c0 250 5 5 250 Spline ANN (z=2) 0.676 ± 0.050 0.314 ± 0.086 0.452 ± 0.079 0.417 ± 0.011

579 fri c0 250 5 5 250 Spline ANN (z=4) 0.635 ± 0.048 0.357 ± 0.102 0.483 ± 0.085 0.426 ± 0.012

579 fri c0 250 5 5 250 Spline ANN (z=8) 0.530 ± 0.102 0.448 ± 0.118 0.540 ± 0.081 0.441 ± 0.013

579 fri c0 250 5 5 250 Spline ANN (z=10) 0.502 ± 0.097 0.478 ± 0.129 0.558 ± 0.082 0.445 ± 0.013

579 fri c0 250 5 5 250 Lookup Table (z=1) −0.044 ± 0.071 1.011 ± 0.235 0.838 ± 0.121 0.834 ± 0.004

579 fri c0 250 5 5 250 Lookup Table (z=2) 0.180 ± 0.074 0.801 ± 0.211 0.750 ± 0.114 0.707 ± 0.007

579 fri c0 250 5 5 250 Lookup Table (z=4) 0.013 ± 0.078 0.959 ± 0.237 0.803 ± 0.119 0.616 ± 0.004

579 fri c0 250 5 5 250 Lookup Table (z=8) −0.036 ± 0.083 1.003 ± 0.238 0.833 ± 0.121 0.609 ± 0.004

579 fri c0 250 5 5 250 Lookup Table (z=10) −0.048 ± 0.073 1.016 ± 0.239 0.840 ± 0.122 0.610 ± 0.004

596 fri c2 250 5 5 250 Linear Model 0.039 ± 0.174 0.923 ± 0.266 0.784 ± 0.115 0.749 ± 0.018

596 fri c2 250 5 5 250 Wide ReLU ANN 0.863 ± 0.106 0.125 ± 0.091 0.246 ± 0.068 0.209 ± 0.016

596 fri c2 250 5 5 250 Deep ReLU ANN 0.731 ± 0.249 0.235 ± 0.173 0.345 ± 0.122 0.277 ± 0.055

596 fri c2 250 5 5 250 ABEL-Spline (z=1) 0.604 ± 0.107 0.383 ± 0.134 0.495 ± 0.099 0.446 ± 0.011

596 fri c2 250 5 5 250 ABEL-Spline (z=2) 0.857 ± 0.056 0.134 ± 0.048 0.261 ± 0.033 0.215 ± 0.006

596 fri c2 250 5 5 250 ABEL-Spline (z=4) 0.890 ± 0.025 0.105 ± 0.029 0.234 ± 0.026 0.167 ± 0.004

596 fri c2 250 5 5 250 ABEL-Spline (z=8) 0.874 ± 0.033 0.123 ± 0.046 0.261 ± 0.039 0.141 ± 0.006

596 fri c2 250 5 5 250 ABEL-Spline (z=10) 0.860 ± 0.033 0.134 ± 0.040 0.282 ± 0.046 0.131 ± 0.002

596 fri c2 250 5 5 250 Spline ANN (z=1) 0.360 ± 0.084 0.621 ± 0.186 0.642 ± 0.103 0.628 ± 0.010

596 fri c2 250 5 5 250 Spline ANN (z=2) 0.644 ± 0.074 0.349 ± 0.127 0.469 ± 0.092 0.438 ± 0.011

596 fri c2 250 5 5 250 Spline ANN (z=4) 0.729 ± 0.069 0.267 ± 0.108 0.402 ± 0.088 0.352 ± 0.011

596 fri c2 250 5 5 250 Spline ANN (z=8) 0.696 ± 0.075 0.301 ± 0.123 0.424 ± 0.090 0.342 ± 0.010

596 fri c2 250 5 5 250 Spline ANN (z=10) 0.682 ± 0.072 0.315 ± 0.131 0.435 ± 0.089 0.344 ± 0.006

596 fri c2 250 5 5 250 Lookup Table (z=1) −0.077 ± 0.076 1.045 ± 0.278 0.833 ± 0.105 0.826 ± 0.004

596 fri c2 250 5 5 250 Lookup Table (z=2) 0.233 ± 0.093 0.745 ± 0.221 0.702 ± 0.103 0.670 ± 0.009

596 fri c2 250 5 5 250 Lookup Table (z=4) 0.182 ± 0.076 0.792 ± 0.219 0.731 ± 0.097 0.606 ± 0.005

596 fri c2 250 5 5 250 Lookup Table (z=8) 0.013 ± 0.061 0.951 ± 0.226 0.812 ± 0.095 0.614 ± 0.004

596 fri c2 250 5 5 250 Lookup Table (z=10) −0.045 ± 0.067 1.005 ± 0.236 0.840 ± 0.093 0.617 ± 0.002

601 fri c1 250 5 5 250 Linear Model 0.028 ± 0.260 0.864 ± 0.171 0.772 ± 0.094 0.769 ± 0.034

601 fri c1 250 5 5 250 Wide ReLU ANN 0.749 ± 0.112 0.222 ± 0.104 0.313 ± 0.070 0.269 ± 0.021

601 fri c1 250 5 5 250 Deep ReLU ANN 0.623 ± 0.225 0.316 ± 0.142 0.388 ± 0.068 0.280 ± 0.044

601 fri c1 250 5 5 250 ABEL-Spline (z=1) 0.733 ± 0.110 0.244 ± 0.130 0.340 ± 0.075 0.319 ± 0.017

601 fri c1 250 5 5 250 ABEL-Spline (z=2) 0.904 ± 0.045 0.082 ± 0.029 0.212 ± 0.038 0.182 ± 0.005

601 fri c1 250 5 5 250 ABEL-Spline (z=4) 0.901 ± 0.046 0.084 ± 0.029 0.213 ± 0.037 0.156 ± 0.005

601 fri c1 250 5 5 250 ABEL-Spline (z=8) 0.877 ± 0.051 0.106 ± 0.036 0.247 ± 0.034 0.128 ± 0.006

601 fri c1 250 5 5 250 ABEL-Spline (z=10) 0.858 ± 0.071 0.120 ± 0.045 0.265 ± 0.049 0.118 ± 0.006

601 fri c1 250 5 5 250 Spline ANN (z=1) 0.398 ± 0.108 0.550 ± 0.144 0.605 ± 0.088 0.578 ± 0.013

601 fri c1 250 5 5 250 Spline ANN (z=2) 0.699 ± 0.076 0.273 ± 0.087 0.409 ± 0.071 0.378 ± 0.010

601 fri c1 250 5 5 250 Spline ANN (z=4) 0.761 ± 0.057 0.216 ± 0.061 0.364 ± 0.062 0.322 ± 0.010

601 fri c1 250 5 5 250 Spline ANN (z=8) 0.692 ± 0.075 0.277 ± 0.060 0.418 ± 0.057 0.329 ± 0.010

601 fri c1 250 5 5 250 Spline ANN (z=10) 0.662 ± 0.076 0.306 ± 0.074 0.441 ± 0.066 0.339 ± 0.012

601 fri c1 250 5 5 250 Lookup Table (z=1) −0.122 ± 0.134 1.031 ± 0.239 0.846 ± 0.097 0.834 ± 0.005

601 fri c1 250 5 5 250 Lookup Table (z=2) 0.205 ± 0.089 0.733 ± 0.175 0.717 ± 0.093 0.675 ± 0.010

601 fri c1 250 5 5 250 Lookup Table (z=4) 0.081 ± 0.088 0.854 ± 0.231 0.754 ± 0.107 0.609 ± 0.006

601 fri c1 250 5 5 250 Lookup Table (z=8) −0.069 ± 0.115 0.988 ± 0.250 0.822 ± 0.102 0.609 ± 0.005

601 fri c1 250 5 5 250 Lookup Table (z=10) −0.102 ± 0.117 1.018 ± 0.257 0.842 ± 0.104 0.610 ± 0.005

613 fri c3 250 5 5 250 Linear Model 0.091 ± 0.163 0.887 ± 0.281 0.747 ± 0.124 0.731 ± 0.021

613 fri c3 250 5 5 250 Wide ReLU ANN 0.845 ± 0.068 0.155 ± 0.083 0.284 ± 0.075 0.249 ± 0.021

613 fri c3 250 5 5 250 Deep ReLU ANN 0.754 ± 0.116 0.231 ± 0.101 0.341 ± 0.066 0.277 ± 0.031

613 fri c3 250 5 5 250 ABEL-Spline (z=1) 0.683 ± 0.097 0.310 ± 0.120 0.421 ± 0.089 0.393 ± 0.017

613 fri c3 250 5 5 250 ABEL-Spline (z=2) 0.895 ± 0.031 0.098 ± 0.030 0.244 ± 0.036 0.200 ± 0.006

613 fri c3 250 5 5 250 ABEL-Spline (z=4) 0.903 ± 0.033 0.091 ± 0.028 0.234 ± 0.034 0.162 ± 0.005

613 fri c3 250 5 5 250 ABEL-Spline (z=8) 0.884 ± 0.030 0.112 ± 0.032 0.258 ± 0.034 0.134 ± 0.007

613 fri c3 250 5 5 250 ABEL-Spline (z=10) 0.870 ± 0.041 0.126 ± 0.043 0.275 ± 0.051 0.123 ± 0.006

613 fri c3 250 5 5 250 Spline ANN (z=1) 0.309 ± 0.102 0.675 ± 0.206 0.637 ± 0.110 0.617 ± 0.012

613 fri c3 250 5 5 250 Spline ANN (z=2) 0.608 ± 0.085 0.388 ± 0.149 0.472 ± 0.100 0.437 ± 0.010
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Dataset n N Model R2 T. MSE T. MAE Tr. MAE

613 fri c3 250 5 5 250 Spline ANN (z=4) 0.699 ± 0.050 0.299 ± 0.110 0.414 ± 0.083 0.367 ± 0.011

613 fri c3 250 5 5 250 Spline ANN (z=8) 0.646 ± 0.065 0.349 ± 0.135 0.456 ± 0.092 0.362 ± 0.008

613 fri c3 250 5 5 250 Spline ANN (z=10) 0.635 ± 0.046 0.358 ± 0.108 0.466 ± 0.087 0.359 ± 0.006

613 fri c3 250 5 5 250 Lookup Table (z=1) −0.063 ± 0.099 1.030 ± 0.247 0.792 ± 0.112 0.785 ± 0.005

613 fri c3 250 5 5 250 Lookup Table (z=2) 0.210 ± 0.098 0.771 ± 0.225 0.687 ± 0.110 0.657 ± 0.008

613 fri c3 250 5 5 250 Lookup Table (z=4) 0.214 ± 0.104 0.759 ± 0.185 0.672 ± 0.099 0.586 ± 0.006

613 fri c3 250 5 5 250 Lookup Table (z=8) 0.057 ± 0.078 0.911 ± 0.213 0.758 ± 0.099 0.581 ± 0.006

613 fri c3 250 5 5 250 Lookup Table (z=10) −0.017 ± 0.065 0.984 ± 0.230 0.785 ± 0.105 0.579 ± 0.005

597 fri c2 500 5 5 500 Linear Model 0.189 ± 0.097 0.785 ± 0.105 0.730 ± 0.053 0.711 ± 0.008

597 fri c2 500 5 5 500 Wide ReLU ANN 0.952 ± 0.033 0.048 ± 0.037 0.148 ± 0.021 0.126 ± 0.008

597 fri c2 500 5 5 500 Deep ReLU ANN 0.933 ± 0.020 0.066 ± 0.023 0.187 ± 0.021 0.141 ± 0.016

597 fri c2 500 5 5 500 ABEL-Spline (z=1) 0.907 ± 0.055 0.092 ± 0.063 0.208 ± 0.038 0.198 ± 0.006

597 fri c2 500 5 5 500 ABEL-Spline (z=2) 0.925 ± 0.030 0.073 ± 0.033 0.190 ± 0.032 0.172 ± 0.003

597 fri c2 500 5 5 500 ABEL-Spline (z=4) 0.925 ± 0.025 0.072 ± 0.027 0.192 ± 0.029 0.157 ± 0.003

597 fri c2 500 5 5 500 ABEL-Spline (z=8) 0.913 ± 0.028 0.084 ± 0.030 0.214 ± 0.028 0.139 ± 0.003

597 fri c2 500 5 5 500 ABEL-Spline (z=10) 0.906 ± 0.028 0.091 ± 0.031 0.225 ± 0.030 0.130 ± 0.003

597 fri c2 500 5 5 500 Spline ANN (z=1) 0.554 ± 0.073 0.429 ± 0.056 0.507 ± 0.034 0.486 ± 0.007

597 fri c2 500 5 5 500 Spline ANN (z=2) 0.896 ± 0.027 0.102 ± 0.034 0.233 ± 0.035 0.219 ± 0.005

597 fri c2 500 5 5 500 Spline ANN (z=4) 0.920 ± 0.027 0.078 ± 0.029 0.199 ± 0.028 0.180 ± 0.003

597 fri c2 500 5 5 500 Spline ANN (z=8) 0.910 ± 0.024 0.088 ± 0.028 0.217 ± 0.029 0.176 ± 0.002

597 fri c2 500 5 5 500 Spline ANN (z=10) 0.898 ± 0.025 0.100 ± 0.029 0.231 ± 0.028 0.175 ± 0.003

597 fri c2 500 5 5 500 Lookup Table (z=1) −0.073 ± 0.076 1.061 ± 0.243 0.811 ± 0.111 0.805 ± 0.005

597 fri c2 500 5 5 500 Lookup Table (z=2) 0.352 ± 0.073 0.628 ± 0.083 0.622 ± 0.050 0.589 ± 0.009

597 fri c2 500 5 5 500 Lookup Table (z=4) 0.335 ± 0.070 0.650 ± 0.118 0.642 ± 0.070 0.506 ± 0.005

597 fri c2 500 5 5 500 Lookup Table (z=8) 0.047 ± 0.054 0.936 ± 0.180 0.792 ± 0.086 0.523 ± 0.003

597 fri c2 500 5 5 500 Lookup Table (z=10) 0.001 ± 0.021 0.978 ± 0.160 0.812 ± 0.076 0.524 ± 0.002

617 fri c3 500 5 5 500 Linear Model 0.137 ± 0.071 0.862 ± 0.203 0.740 ± 0.092 0.733 ± 0.015

617 fri c3 500 5 5 500 Wide ReLU ANN 0.902 ± 0.054 0.095 ± 0.056 0.182 ± 0.032 0.160 ± 0.012

617 fri c3 500 5 5 500 Deep ReLU ANN 0.909 ± 0.034 0.090 ± 0.040 0.205 ± 0.030 0.163 ± 0.013

617 fri c3 500 5 5 500 ABEL-Spline (z=1) 0.847 ± 0.051 0.148 ± 0.045 0.254 ± 0.033 0.240 ± 0.006

617 fri c3 500 5 5 500 ABEL-Spline (z=2) 0.906 ± 0.025 0.090 ± 0.023 0.211 ± 0.021 0.186 ± 0.003

617 fri c3 500 5 5 500 ABEL-Spline (z=4) 0.919 ± 0.024 0.080 ± 0.027 0.202 ± 0.027 0.163 ± 0.003

617 fri c3 500 5 5 500 ABEL-Spline (z=8) 0.908 ± 0.021 0.091 ± 0.026 0.220 ± 0.026 0.141 ± 0.002

617 fri c3 500 5 5 500 ABEL-Spline (z=10) 0.899 ± 0.023 0.099 ± 0.028 0.229 ± 0.027 0.133 ± 0.002

617 fri c3 500 5 5 500 Spline ANN (z=1) 0.535 ± 0.110 0.470 ± 0.168 0.490 ± 0.075 0.481 ± 0.007

617 fri c3 500 5 5 500 Spline ANN (z=2) 0.834 ± 0.042 0.167 ± 0.060 0.293 ± 0.046 0.275 ± 0.004

617 fri c3 500 5 5 500 Spline ANN (z=4) 0.892 ± 0.027 0.107 ± 0.034 0.237 ± 0.037 0.210 ± 0.005

617 fri c3 500 5 5 500 Spline ANN (z=8) 0.884 ± 0.026 0.114 ± 0.034 0.245 ± 0.033 0.191 ± 0.004

617 fri c3 500 5 5 500 Spline ANN (z=10) 0.877 ± 0.024 0.122 ± 0.034 0.254 ± 0.027 0.191 ± 0.003

617 fri c3 500 5 5 500 Lookup Table (z=1) −0.025 ± 0.031 1.016 ± 0.200 0.789 ± 0.080 0.786 ± 0.004

617 fri c3 500 5 5 500 Lookup Table (z=2) 0.247 ± 0.093 0.752 ± 0.195 0.661 ± 0.077 0.634 ± 0.005

617 fri c3 500 5 5 500 Lookup Table (z=4) 0.427 ± 0.055 0.571 ± 0.136 0.560 ± 0.061 0.489 ± 0.007

617 fri c3 500 5 5 500 Lookup Table (z=8) 0.171 ± 0.048 0.822 ± 0.165 0.696 ± 0.081 0.490 ± 0.005

617 fri c3 500 5 5 500 Lookup Table (z=10) 0.096 ± 0.054 0.898 ± 0.194 0.738 ± 0.083 0.486 ± 0.005

631 fri c1 500 5 5 500 Linear Model 0.228 ± 0.078 0.748 ± 0.079 0.728 ± 0.049 0.712 ± 0.005

631 fri c1 500 5 5 500 Wide ReLU ANN 0.941 ± 0.027 0.057 ± 0.025 0.162 ± 0.015 0.136 ± 0.005

631 fri c1 500 5 5 500 Deep ReLU ANN 0.902 ± 0.059 0.091 ± 0.041 0.221 ± 0.040 0.151 ± 0.018

631 fri c1 500 5 5 500 ABEL-Spline (z=1) 0.865 ± 0.047 0.133 ± 0.049 0.249 ± 0.034 0.235 ± 0.005

631 fri c1 500 5 5 500 ABEL-Spline (z=2) 0.884 ± 0.049 0.114 ± 0.049 0.223 ± 0.037 0.201 ± 0.004

631 fri c1 500 5 5 500 ABEL-Spline (z=4) 0.883 ± 0.041 0.115 ± 0.042 0.228 ± 0.035 0.183 ± 0.003

631 fri c1 500 5 5 500 ABEL-Spline (z=8) 0.885 ± 0.032 0.113 ± 0.034 0.235 ± 0.031 0.161 ± 0.003

631 fri c1 500 5 5 500 ABEL-Spline (z=10) 0.876 ± 0.030 0.121 ± 0.031 0.250 ± 0.030 0.154 ± 0.003

631 fri c1 500 5 5 500 Spline ANN (z=1) 0.570 ± 0.104 0.411 ± 0.072 0.484 ± 0.042 0.468 ± 0.008

631 fri c1 500 5 5 500 Spline ANN (z=2) 0.843 ± 0.039 0.151 ± 0.035 0.277 ± 0.034 0.259 ± 0.004

631 fri c1 500 5 5 500 Spline ANN (z=4) 0.878 ± 0.034 0.119 ± 0.036 0.240 ± 0.034 0.212 ± 0.003

631 fri c1 500 5 5 500 Spline ANN (z=8) 0.879 ± 0.033 0.118 ± 0.034 0.241 ± 0.032 0.199 ± 0.004

631 fri c1 500 5 5 500 Spline ANN (z=10) 0.870 ± 0.036 0.127 ± 0.035 0.254 ± 0.032 0.200 ± 0.004

631 fri c1 500 5 5 500 Lookup Table (z=1) −0.046 ± 0.051 1.023 ± 0.145 0.819 ± 0.053 0.814 ± 0.001

631 fri c1 500 5 5 500 Lookup Table (z=2) 0.380 ± 0.052 0.603 ± 0.079 0.624 ± 0.055 0.598 ± 0.005

631 fri c1 500 5 5 500 Lookup Table (z=4) 0.244 ± 0.063 0.743 ± 0.133 0.678 ± 0.061 0.519 ± 0.005

631 fri c1 500 5 5 500 Lookup Table (z=8) 0.041 ± 0.057 0.940 ± 0.152 0.776 ± 0.069 0.514 ± 0.003

631 fri c1 500 5 5 500 Lookup Table (z=10) −0.014 ± 0.043 0.992 ± 0.146 0.812 ± 0.061 0.516 ± 0.002
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Dataset n N Model R2 T. MSE T. MAE Tr. MAE

649 fri c0 500 5 5 500 Linear Model 0.664 ± 0.097 0.323 ± 0.095 0.431 ± 0.069 0.425 ± 0.032

649 fri c0 500 5 5 500 Wide ReLU ANN 0.934 ± 0.026 0.061 ± 0.015 0.189 ± 0.017 0.152 ± 0.004

649 fri c0 500 5 5 500 Deep ReLU ANN 0.900 ± 0.026 0.095 ± 0.022 0.240 ± 0.022 0.172 ± 0.012

649 fri c0 500 5 5 500 ABEL-Spline (z=1) 0.887 ± 0.053 0.104 ± 0.034 0.239 ± 0.024 0.225 ± 0.004

649 fri c0 500 5 5 500 ABEL-Spline (z=2) 0.886 ± 0.049 0.106 ± 0.035 0.245 ± 0.028 0.214 ± 0.003

649 fri c0 500 5 5 500 ABEL-Spline (z=4) 0.881 ± 0.043 0.111 ± 0.031 0.253 ± 0.026 0.199 ± 0.004

649 fri c0 500 5 5 500 ABEL-Spline (z=8) 0.872 ± 0.044 0.119 ± 0.036 0.264 ± 0.032 0.177 ± 0.003

649 fri c0 500 5 5 500 ABEL-Spline (z=10) 0.867 ± 0.045 0.124 ± 0.038 0.269 ± 0.029 0.165 ± 0.004

649 fri c0 500 5 5 500 Spline ANN (z=1) 0.852 ± 0.047 0.140 ± 0.036 0.289 ± 0.029 0.279 ± 0.004

649 fri c0 500 5 5 500 Spline ANN (z=2) 0.873 ± 0.043 0.119 ± 0.028 0.268 ± 0.026 0.250 ± 0.004

649 fri c0 500 5 5 500 Spline ANN (z=4) 0.874 ± 0.043 0.117 ± 0.028 0.267 ± 0.028 0.235 ± 0.004

649 fri c0 500 5 5 500 Spline ANN (z=8) 0.863 ± 0.043 0.128 ± 0.032 0.276 ± 0.035 0.224 ± 0.006

649 fri c0 500 5 5 500 Spline ANN (z=10) 0.849 ± 0.044 0.141 ± 0.034 0.290 ± 0.034 0.223 ± 0.005

649 fri c0 500 5 5 500 Lookup Table (z=1) −0.038 ± 0.039 1.016 ± 0.235 0.816 ± 0.114 0.808 ± 0.003

649 fri c0 500 5 5 500 Lookup Table (z=2) 0.404 ± 0.090 0.583 ± 0.162 0.611 ± 0.085 0.573 ± 0.004

649 fri c0 500 5 5 500 Lookup Table (z=4) 0.116 ± 0.044 0.866 ± 0.204 0.747 ± 0.108 0.526 ± 0.004

649 fri c0 500 5 5 500 Lookup Table (z=8) −0.008 ± 0.039 0.986 ± 0.228 0.800 ± 0.111 0.511 ± 0.003

649 fri c0 500 5 5 500 Lookup Table (z=10) −0.028 ± 0.035 1.007 ± 0.236 0.808 ± 0.115 0.514 ± 0.003

599 fri c2 1000 5 5 1000 Linear Model 0.301 ± 0.052 0.694 ± 0.064 0.702 ± 0.037 0.696 ± 0.006

599 fri c2 1000 5 5 1000 Wide ReLU ANN 0.957 ± 0.017 0.044 ± 0.019 0.144 ± 0.015 0.126 ± 0.006

599 fri c2 1000 5 5 1000 Deep ReLU ANN 0.957 ± 0.010 0.043 ± 0.012 0.157 ± 0.014 0.125 ± 0.006

599 fri c2 1000 5 5 1000 ABEL-Spline (z=1) 0.907 ± 0.027 0.093 ± 0.033 0.206 ± 0.018 0.198 ± 0.002

599 fri c2 1000 5 5 1000 ABEL-Spline (z=2) 0.928 ± 0.015 0.073 ± 0.020 0.191 ± 0.017 0.178 ± 0.001

599 fri c2 1000 5 5 1000 ABEL-Spline (z=4) 0.929 ± 0.017 0.071 ± 0.021 0.189 ± 0.017 0.161 ± 0.002

599 fri c2 1000 5 5 1000 ABEL-Spline (z=8) 0.921 ± 0.015 0.079 ± 0.020 0.201 ± 0.015 0.150 ± 0.002

599 fri c2 1000 5 5 1000 ABEL-Spline (z=10) 0.918 ± 0.016 0.082 ± 0.021 0.205 ± 0.017 0.143 ± 0.001

599 fri c2 1000 5 5 1000 Spline ANN (z=1) 0.752 ± 0.025 0.248 ± 0.039 0.376 ± 0.028 0.370 ± 0.002

599 fri c2 1000 5 5 1000 Spline ANN (z=2) 0.916 ± 0.018 0.085 ± 0.024 0.206 ± 0.018 0.196 ± 0.001

599 fri c2 1000 5 5 1000 Spline ANN (z=4) 0.922 ± 0.018 0.078 ± 0.023 0.196 ± 0.021 0.179 ± 0.002

599 fri c2 1000 5 5 1000 Spline ANN (z=8) 0.918 ± 0.016 0.083 ± 0.021 0.204 ± 0.018 0.170 ± 0.002

599 fri c2 1000 5 5 1000 Spline ANN (z=10) 0.916 ± 0.016 0.085 ± 0.022 0.207 ± 0.018 0.167 ± 0.002

599 fri c2 1000 5 5 1000 Lookup Table (z=1) −0.061 ± 0.049 1.054 ± 0.083 0.824 ± 0.045 0.823 ± 0.003

599 fri c2 1000 5 5 1000 Lookup Table (z=2) 0.484 ± 0.082 0.512 ± 0.080 0.559 ± 0.040 0.537 ± 0.005

599 fri c2 1000 5 5 1000 Lookup Table (z=4) 0.637 ± 0.037 0.361 ± 0.045 0.467 ± 0.026 0.350 ± 0.004

599 fri c2 1000 5 5 1000 Lookup Table (z=8) 0.206 ± 0.052 0.790 ± 0.075 0.727 ± 0.042 0.402 ± 0.003

599 fri c2 1000 5 5 1000 Lookup Table (z=10) 0.062 ± 0.024 0.933 ± 0.070 0.807 ± 0.037 0.412 ± 0.002

609 fri c0 1000 5 5 1000 Linear Model 0.720 ± 0.041 0.276 ± 0.047 0.404 ± 0.032 0.400 ± 0.003

609 fri c0 1000 5 5 1000 Wide ReLU ANN 0.950 ± 0.003 0.050 ± 0.006 0.178 ± 0.012 0.140 ± 0.003

609 fri c0 1000 5 5 1000 Deep ReLU ANN 0.920 ± 0.017 0.078 ± 0.012 0.221 ± 0.019 0.164 ± 0.008

609 fri c0 1000 5 5 1000 ABEL-Spline (z=1) 0.893 ± 0.031 0.104 ± 0.027 0.241 ± 0.028 0.229 ± 0.003

609 fri c0 1000 5 5 1000 ABEL-Spline (z=2) 0.901 ± 0.026 0.097 ± 0.023 0.231 ± 0.024 0.214 ± 0.005

609 fri c0 1000 5 5 1000 ABEL-Spline (z=4) 0.895 ± 0.027 0.102 ± 0.024 0.237 ± 0.026 0.207 ± 0.003

609 fri c0 1000 5 5 1000 ABEL-Spline (z=8) 0.887 ± 0.027 0.111 ± 0.026 0.251 ± 0.029 0.195 ± 0.003

609 fri c0 1000 5 5 1000 ABEL-Spline (z=10) 0.881 ± 0.028 0.117 ± 0.027 0.259 ± 0.029 0.191 ± 0.003

609 fri c0 1000 5 5 1000 Spline ANN (z=1) 0.872 ± 0.026 0.125 ± 0.025 0.274 ± 0.028 0.267 ± 0.004

609 fri c0 1000 5 5 1000 Spline ANN (z=2) 0.879 ± 0.029 0.118 ± 0.025 0.261 ± 0.028 0.249 ± 0.004

609 fri c0 1000 5 5 1000 Spline ANN (z=4) 0.877 ± 0.029 0.120 ± 0.026 0.262 ± 0.026 0.241 ± 0.003

609 fri c0 1000 5 5 1000 Spline ANN (z=8) 0.875 ± 0.027 0.122 ± 0.025 0.264 ± 0.028 0.232 ± 0.003

609 fri c0 1000 5 5 1000 Spline ANN (z=10) 0.873 ± 0.027 0.124 ± 0.024 0.267 ± 0.028 0.227 ± 0.003

609 fri c0 1000 5 5 1000 Lookup Table (z=1) −0.015 ± 0.023 1.004 ± 0.122 0.812 ± 0.052 0.810 ± 0.001

609 fri c0 1000 5 5 1000 Lookup Table (z=2) 0.517 ± 0.046 0.476 ± 0.050 0.552 ± 0.034 0.529 ± 0.005

609 fri c0 1000 5 5 1000 Lookup Table (z=4) 0.319 ± 0.065 0.673 ± 0.092 0.635 ± 0.057 0.403 ± 0.005

609 fri c0 1000 5 5 1000 Lookup Table (z=8) 0.049 ± 0.023 0.941 ± 0.111 0.776 ± 0.053 0.404 ± 0.001

609 fri c0 1000 5 5 1000 Lookup Table (z=10) −0.009 ± 0.027 0.999 ± 0.121 0.807 ± 0.052 0.408 ± 0.002

612 fri c1 1000 5 5 1000 Linear Model 0.247 ± 0.059 0.747 ± 0.090 0.721 ± 0.051 0.714 ± 0.003

612 fri c1 1000 5 5 1000 Wide ReLU ANN 0.952 ± 0.016 0.047 ± 0.013 0.148 ± 0.012 0.126 ± 0.004

612 fri c1 1000 5 5 1000 Deep ReLU ANN 0.951 ± 0.007 0.049 ± 0.009 0.167 ± 0.016 0.134 ± 0.009

612 fri c1 1000 5 5 1000 ABEL-Spline (z=1) 0.897 ± 0.039 0.100 ± 0.034 0.212 ± 0.018 0.205 ± 0.002

612 fri c1 1000 5 5 1000 ABEL-Spline (z=2) 0.921 ± 0.021 0.077 ± 0.019 0.192 ± 0.013 0.180 ± 0.003

612 fri c1 1000 5 5 1000 ABEL-Spline (z=4) 0.934 ± 0.014 0.065 ± 0.013 0.182 ± 0.011 0.160 ± 0.004

612 fri c1 1000 5 5 1000 ABEL-Spline (z=8) 0.927 ± 0.016 0.072 ± 0.015 0.192 ± 0.014 0.151 ± 0.003

612 fri c1 1000 5 5 1000 ABEL-Spline (z=10) 0.922 ± 0.017 0.077 ± 0.014 0.201 ± 0.014 0.147 ± 0.002

Continued on next page
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Table C.2 – Continued from previous page

Dataset n N Model R2 T. MSE T. MAE Tr. MAE

612 fri c1 1000 5 5 1000 Spline ANN (z=1) 0.747 ± 0.019 0.250 ± 0.029 0.368 ± 0.028 0.362 ± 0.003

612 fri c1 1000 5 5 1000 Spline ANN (z=2) 0.907 ± 0.026 0.091 ± 0.022 0.215 ± 0.018 0.207 ± 0.002

612 fri c1 1000 5 5 1000 Spline ANN (z=4) 0.911 ± 0.019 0.088 ± 0.017 0.209 ± 0.014 0.192 ± 0.002

612 fri c1 1000 5 5 1000 Spline ANN (z=8) 0.912 ± 0.018 0.086 ± 0.016 0.209 ± 0.014 0.180 ± 0.002

612 fri c1 1000 5 5 1000 Spline ANN (z=10) 0.912 ± 0.017 0.087 ± 0.015 0.212 ± 0.011 0.177 ± 0.002

612 fri c1 1000 5 5 1000 Lookup Table (z=1) −0.028 ± 0.036 1.021 ± 0.117 0.816 ± 0.055 0.814 ± 0.002

612 fri c1 1000 5 5 1000 Lookup Table (z=2) 0.430 ± 0.076 0.562 ± 0.069 0.601 ± 0.044 0.574 ± 0.005

612 fri c1 1000 5 5 1000 Lookup Table (z=4) 0.525 ± 0.058 0.469 ± 0.060 0.522 ± 0.040 0.383 ± 0.007

612 fri c1 1000 5 5 1000 Lookup Table (z=8) 0.169 ± 0.054 0.820 ± 0.064 0.717 ± 0.030 0.397 ± 0.004

612 fri c1 1000 5 5 1000 Lookup Table (z=10) 0.039 ± 0.017 0.952 ± 0.088 0.791 ± 0.045 0.405 ± 0.001

628 fri c3 1000 5 5 1000 Linear Model 0.200 ± 0.076 0.788 ± 0.127 0.727 ± 0.053 0.718 ± 0.004

628 fri c3 1000 5 5 1000 Wide ReLU ANN 0.945 ± 0.037 0.054 ± 0.037 0.151 ± 0.021 0.134 ± 0.004

628 fri c3 1000 5 5 1000 Deep ReLU ANN 0.957 ± 0.013 0.042 ± 0.011 0.151 ± 0.015 0.136 ± 0.010

628 fri c3 1000 5 5 1000 ABEL-Spline (z=1) 0.888 ± 0.058 0.110 ± 0.061 0.210 ± 0.028 0.204 ± 0.003

628 fri c3 1000 5 5 1000 ABEL-Spline (z=2) 0.914 ± 0.022 0.084 ± 0.022 0.195 ± 0.018 0.183 ± 0.003

628 fri c3 1000 5 5 1000 ABEL-Spline (z=4) 0.916 ± 0.020 0.082 ± 0.019 0.192 ± 0.017 0.168 ± 0.001

628 fri c3 1000 5 5 1000 ABEL-Spline (z=8) 0.911 ± 0.021 0.086 ± 0.017 0.199 ± 0.016 0.153 ± 0.002

628 fri c3 1000 5 5 1000 ABEL-Spline (z=10) 0.904 ± 0.023 0.093 ± 0.018 0.209 ± 0.017 0.150 ± 0.002

628 fri c3 1000 5 5 1000 Spline ANN (z=1) 0.733 ± 0.029 0.263 ± 0.041 0.391 ± 0.033 0.382 ± 0.005

628 fri c3 1000 5 5 1000 Spline ANN (z=2) 0.901 ± 0.032 0.096 ± 0.032 0.213 ± 0.021 0.205 ± 0.003

628 fri c3 1000 5 5 1000 Spline ANN (z=4) 0.908 ± 0.025 0.089 ± 0.024 0.204 ± 0.020 0.187 ± 0.003

628 fri c3 1000 5 5 1000 Spline ANN (z=8) 0.906 ± 0.024 0.091 ± 0.020 0.210 ± 0.019 0.179 ± 0.002

628 fri c3 1000 5 5 1000 Spline ANN (z=10) 0.903 ± 0.024 0.094 ± 0.020 0.216 ± 0.018 0.177 ± 0.002

628 fri c3 1000 5 5 1000 Lookup Table (z=1) −0.042 ± 0.039 1.027 ± 0.146 0.793 ± 0.055 0.792 ± 0.003

628 fri c3 1000 5 5 1000 Lookup Table (z=2) 0.348 ± 0.139 0.646 ± 0.175 0.603 ± 0.065 0.588 ± 0.006

628 fri c3 1000 5 5 1000 Lookup Table (z=4) 0.670 ± 0.049 0.324 ± 0.056 0.431 ± 0.036 0.367 ± 0.009

628 fri c3 1000 5 5 1000 Lookup Table (z=8) 0.440 ± 0.051 0.551 ± 0.083 0.566 ± 0.046 0.363 ± 0.004

628 fri c3 1000 5 5 1000 Lookup Table (z=10) 0.247 ± 0.056 0.740 ± 0.090 0.661 ± 0.040 0.372 ± 0.005

706 sleuth case1202 6 93 Linear Model −0.111 ± 0.503 1.053 ± 0.794 0.787 ± 0.256 0.753 ± 0.156

706 sleuth case1202 6 93 Wide ReLU ANN 0.688 ± 0.168 0.260 ± 0.182 0.342 ± 0.119 0.214 ± 0.014

706 sleuth case1202 6 93 Deep ReLU ANN 0.571 ± 0.208 0.375 ± 0.286 0.408 ± 0.145 0.190 ± 0.026

706 sleuth case1202 6 93 ABEL-Spline (z=1) 0.509 ± 0.138 0.469 ± 0.299 0.464 ± 0.136 0.388 ± 0.013

706 sleuth case1202 6 93 ABEL-Spline (z=2) 0.502 ± 0.117 0.485 ± 0.313 0.491 ± 0.137 0.360 ± 0.011

706 sleuth case1202 6 93 ABEL-Spline (z=4) 0.403 ± 0.252 0.544 ± 0.373 0.526 ± 0.128 0.319 ± 0.015

706 sleuth case1202 6 93 ABEL-Spline (z=8) 0.185 ± 0.278 0.749 ± 0.548 0.626 ± 0.164 0.246 ± 0.016

706 sleuth case1202 6 93 ABEL-Spline (z=10) 0.145 ± 0.288 0.789 ± 0.571 0.654 ± 0.174 0.221 ± 0.017

706 sleuth case1202 6 93 Spline ANN (z=1) 0.216 ± 0.210 0.862 ± 0.703 0.613 ± 0.231 0.563 ± 0.010

706 sleuth case1202 6 93 Spline ANN (z=2) 0.252 ± 0.170 0.812 ± 0.656 0.605 ± 0.211 0.519 ± 0.009

706 sleuth case1202 6 93 Spline ANN (z=4) 0.259 ± 0.171 0.806 ± 0.679 0.602 ± 0.208 0.499 ± 0.012

706 sleuth case1202 6 93 Spline ANN (z=8) 0.204 ± 0.160 0.854 ± 0.740 0.618 ± 0.201 0.474 ± 0.009

706 sleuth case1202 6 93 Spline ANN (z=10) 0.187 ± 0.197 0.869 ± 0.759 0.625 ± 0.210 0.462 ± 0.009

706 sleuth case1202 6 93 Lookup Table (z=1) −0.086 ± 0.074 1.104 ± 0.785 0.785 ± 0.247 0.767 ± 0.008

706 sleuth case1202 6 93 Lookup Table (z=2) 0.077 ± 0.113 0.944 ± 0.689 0.734 ± 0.235 0.662 ± 0.011

706 sleuth case1202 6 93 Lookup Table (z=4) −0.020 ± 0.115 1.035 ± 0.726 0.797 ± 0.252 0.650 ± 0.005

706 sleuth case1202 6 93 Lookup Table (z=8) −0.067 ± 0.080 1.049 ± 0.700 0.807 ± 0.230 0.641 ± 0.006

706 sleuth case1202 6 93 Lookup Table (z=10) −0.080 ± 0.048 1.067 ± 0.716 0.815 ± 0.237 0.642 ± 0.006

665 sleuth case2002 6 147 Linear Model −0.174 ± 0.379 1.025 ± 0.351 0.768 ± 0.158 0.734 ± 0.051

665 sleuth case2002 6 147 Wide ReLU ANN 0.238 ± 0.326 0.678 ± 0.320 0.562 ± 0.139 0.446 ± 0.013

665 sleuth case2002 6 147 Deep ReLU ANN 0.192 ± 0.325 0.734 ± 0.378 0.584 ± 0.152 0.423 ± 0.020

665 sleuth case2002 6 147 ABEL-Spline (z=1) 0.278 ± 0.240 0.657 ± 0.308 0.539 ± 0.132 0.508 ± 0.015

665 sleuth case2002 6 147 ABEL-Spline (z=2) 0.287 ± 0.244 0.648 ± 0.310 0.536 ± 0.142 0.501 ± 0.012

665 sleuth case2002 6 147 ABEL-Spline (z=4) 0.251 ± 0.249 0.671 ± 0.287 0.573 ± 0.148 0.473 ± 0.013

665 sleuth case2002 6 147 ABEL-Spline (z=8) 0.261 ± 0.230 0.672 ± 0.319 0.575 ± 0.144 0.431 ± 0.012

665 sleuth case2002 6 147 ABEL-Spline (z=10) 0.254 ± 0.227 0.668 ± 0.283 0.587 ± 0.122 0.420 ± 0.012

665 sleuth case2002 6 147 Spline ANN (z=1) 0.125 ± 0.184 0.785 ± 0.259 0.675 ± 0.117 0.649 ± 0.007

665 sleuth case2002 6 147 Spline ANN (z=2) 0.121 ± 0.191 0.785 ± 0.248 0.676 ± 0.108 0.637 ± 0.009

665 sleuth case2002 6 147 Spline ANN (z=4) 0.119 ± 0.191 0.784 ± 0.243 0.678 ± 0.111 0.622 ± 0.010

665 sleuth case2002 6 147 Spline ANN (z=8) 0.113 ± 0.166 0.791 ± 0.233 0.691 ± 0.102 0.600 ± 0.011

665 sleuth case2002 6 147 Spline ANN (z=10) 0.099 ± 0.184 0.798 ± 0.230 0.692 ± 0.096 0.595 ± 0.011

665 sleuth case2002 6 147 Lookup Table (z=1) −0.142 ± 0.183 1.027 ± 0.294 0.777 ± 0.129 0.772 ± 0.006

665 sleuth case2002 6 147 Lookup Table (z=2) −0.060 ± 0.205 0.948 ± 0.282 0.754 ± 0.113 0.697 ± 0.007

665 sleuth case2002 6 147 Lookup Table (z=4) −0.122 ± 0.213 1.000 ± 0.288 0.777 ± 0.111 0.675 ± 0.012

Continued on next page
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Table C.2 – Continued from previous page

Dataset n N Model R2 T. MSE T. MAE Tr. MAE

665 sleuth case2002 6 147 Lookup Table (z=8) −0.123 ± 0.214 1.010 ± 0.314 0.783 ± 0.131 0.649 ± 0.010

665 sleuth case2002 6 147 Lookup Table (z=10) −0.121 ± 0.177 1.002 ± 0.275 0.777 ± 0.118 0.644 ± 0.009

230 machine cpu 6 209 Linear Model 0.380 ± 0.256 0.789 ± 1.342 0.338 ± 0.289 0.299 ± 0.033

230 machine cpu 6 209 Wide ReLU ANN 0.534 ± 0.350 0.358 ± 0.616 0.251 ± 0.207 0.102 ± 0.010

230 machine cpu 6 209 Deep ReLU ANN 0.634 ± 0.264 0.328 ± 0.584 0.236 ± 0.184 0.106 ± 0.012

230 machine cpu 6 209 ABEL-Spline (z=1) 0.573 ± 0.248 0.362 ± 0.678 0.230 ± 0.176 0.166 ± 0.006

230 machine cpu 6 209 ABEL-Spline (z=2) 0.576 ± 0.268 0.345 ± 0.656 0.234 ± 0.176 0.143 ± 0.008

230 machine cpu 6 209 ABEL-Spline (z=4) 0.515 ± 0.354 0.271 ± 0.475 0.237 ± 0.168 0.111 ± 0.008

230 machine cpu 6 209 ABEL-Spline (z=8) 0.349 ± 0.767 0.234 ± 0.426 0.234 ± 0.155 0.086 ± 0.006

230 machine cpu 6 209 ABEL-Spline (z=10) 0.284 ± 0.857 0.284 ± 0.556 0.255 ± 0.192 0.082 ± 0.005

230 machine cpu 6 209 Spline ANN (z=1) 0.509 ± 0.299 0.608 ± 1.104 0.273 ± 0.233 0.226 ± 0.008

230 machine cpu 6 209 Spline ANN (z=2) 0.494 ± 0.250 0.596 ± 1.087 0.277 ± 0.230 0.213 ± 0.007

230 machine cpu 6 209 Spline ANN (z=4) 0.512 ± 0.233 0.631 ± 1.171 0.283 ± 0.240 0.204 ± 0.007

230 machine cpu 6 209 Spline ANN (z=8) 0.496 ± 0.212 0.649 ± 1.217 0.292 ± 0.238 0.189 ± 0.005

230 machine cpu 6 209 Spline ANN (z=10) 0.433 ± 0.245 0.661 ± 1.238 0.299 ± 0.240 0.184 ± 0.005

230 machine cpu 6 209 Lookup Table (z=1) −0.200 ± 0.152 1.480 ± 2.309 0.531 ± 0.468 0.490 ± 0.016

230 machine cpu 6 209 Lookup Table (z=2) 0.239 ± 0.255 0.973 ± 1.654 0.392 ± 0.336 0.301 ± 0.007

230 machine cpu 6 209 Lookup Table (z=4) 0.180 ± 0.239 1.079 ± 1.816 0.419 ± 0.371 0.307 ± 0.008

230 machine cpu 6 209 Lookup Table (z=8) −0.925 ± 1.304 1.293 ± 2.015 0.569 ± 0.374 0.341 ± 0.013

230 machine cpu 6 209 Lookup Table (z=10) −1.045 ± 1.416 1.296 ± 1.995 0.574 ± 0.370 0.339 ± 0.013
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