Supporting information

Triterpenoids from *Protorhus longifolia* exhibit hypocholesterolemic potential via regulation of cholesterol biosynthesis and stimulation of LDL uptake in HepG2 cells.

Musawenkosi Ndlovu^{a*}, June C. Serem^b, Mamoalosi A. Selepe^c, Andrew R. Opoku^d, Megan J. Bester^b, Zeno Apostolides^a, and Rebamang A. Mosa^{a*}

^aDepartment of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0028, South Africa

^bDepartment of Anatomy, University of Pretoria, Pretoria 0007, South Africa

^cDepartment of Chemistry, University of Pretoria, Hatfield 0028, South Africa

^dDepartment of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.

*Corresponding authors

M Ndlovu Email address: muser165@gmail.com

R.A. Mosa Email address: rebamang.mosa@up.ac.za

Table of Contents

The supplementary information provides some contents that were not added in the main manuscript including:	S1
Figure S1. Schematic diagram for the isolation procedure	
NMR and MS spectra for new compound (ARM-2)	
Figure S2. ¹ H NMR spectrum of ARM-2 in (CD ₃) ₂ SO	
Figure S3. ¹³ C NMR spectrum of ARM-2 in (CD ₃) ₂ SO	
Figure S4. Dept-135 NMR spectrum of ARM-2 in (CD ₃) ₂ SO	
Figure S5. Dept-90 NMR spectrum of ARM-2 in (CD ₃) ₂ SO	S6
Figure S6. HSQC NMR spectrum of ARM-2 in (CD ₃) ₂ SO	
Figure S7. HSQC NMR spectrum of ARM-2 in (CD ₃) ₂ SO (expanded)	
Figure S8. HMBC NMR spectrum of ARM-2 in (CD ₃) ₂ SO	
Figure S9. HMBC NMR spectrum of ARM-2 in (CD ₃) ₂ SO (expanded 1)	S10
Figure S10. HMBC NMR spectrum of ARM-2 in (CD ₃) ₂ SO (expanded 2)	S11
Figure S11. COSY NMR spectrum of ARM-2 in (CD ₃) ₂ SO	
Figure S12. COSY NMR spectrum of ARM-2 in (CD ₃) ₂ SO (expanded)	
Figure S13. ROESY NMR spectrum of ARM-2 in (CD ₃) ₂ SO	S14
Figure S14. ROESY NMR spectrum of ARM-2 in (CD ₃) ₂ SO (expanded)	S15
Figure S15. HRESIMS of ARM-2 in negative mode	S16
References	

Schematic diagram for the isolation procedure

Figure S1. Procedure for extraction and isolation of the triterpenoids from *P. longifolia*

NMR and MS spectra for new compound (ARM-2) Figure S2. ¹H NMR spectrum of ARM-2 in (CD₃)₂SO

S3

Figure S4. Dept-135 NMR spectrum of ARM-2 in (CD₃)₂SO

Figure S6. HSQC NMR spectrum of ARM-2 in (CD₃)₂SO

Figure S7. HSQC NMR spectrum of ARM-2 in (CD₃)₂SO (expanded)

Figure S8. HMBC NMR spectrum of ARM-2 in (CD₃)₂SO

Figure S9. HMBC NMR spectrum of ARM-2 in (CD₃)₂SO (expanded 1)

Figure S10. HMBC NMR spectrum of ARM-2 in (CD₃)₂SO (expanded 2)

Figure S11. COSY NMR spectrum of ARM-2 in (CD₃)₂SO

Figure S12. COSY NMR spectrum of ARM-2 in (CD₃)₂SO (expanded)

Figure S14. ROESY NMR spectrum of ARM-2 in (CD₃)₂SO (expanded)

Figure S15. HRESIMS of ARM-2 in negative mode

The supplementary information provides some contents regarding the extraction, isolation, and characterization of the newly isolated (3α , 26-dihydroxytirucalla-7,24-dien-21-oic acid, ARM-2) that were not added in the main manuscript including:

- Graphic demonstrating the extraction and isolation procedure.
- NMR spectra of ARM-2 (¹H, ¹³C, Dept-135, Dept-90, HSQC, HMBC, COSY and ROESY)
- HRESIMS

References

1. Verhoff, M.; Seitz, S.; Paul, M.; Noha, S. M.; Jauch, J.; Schuster, D.; Werz, O. J. Nat. Prod. 2014, 77, 1445–1451.

doi.org/10.1021/np500198g