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Abstract 

Metabolomic data analysis involves assessing, identifying, and quantifying all metabolites, endogenous 

and exogenous, within biological samples. It allows the global assessment of the cellular state in the 

context of the immediate environment as it considers gene expression, genetic regulation, enzyme 

regulation, altered kinetic activity as well as changes in metabolic reactions. Plants being sessile 

organisms, depend heavily on metabolites to defend themselves against various pathogen attacks e.g., 

fungi. Metabolomic analysis has been used to determine the defensive metabolites associated with plant 

pathogens with the aim of understanding both the defense mechanisms of the plant, and infection 

mechanisms of the pathogen for better disease control and prevention.  

This study aimed to assess whether metabolomic and chemical fingerprint analyses can be used in early 

disease diagnosis as it analyses the state of the plant’s physiological changes due to fungal pathogen 

infection, its proficiency in measuring disease severity, and identifying possible pathogen-related 

biomarkers. The fungal pathogens that were a point of focus for this study were Cercospora zeina which 

causes grey leaf spot, a devastating maize foliar disease characterized by necrotic lesions, and Fusarium 

verticillioides, which produces fumonisin mycotoxins that can plant growth. Maize leaf samples showing 

different stages of disease severity were collected from a field trial by Syngenta in Howick. Some samples 

were collected from plants grown in a glasshouse and inoculated with C. zeina in vitro. Cowpea seeds 

were inoculated in vitro with F. verticillioides and grown in a phytotron. Metabolites were extracted from 

the leaf samples and analysed using NMR and GCMS to detect changes in the plants' metabolome, as 

these techniques encompass both spectroscopic and volatile organic compounds detection.  

Maize samples’ NMR results showed significant differences between the infected and healthy plants, in 

both the field trial and glasshouse trial. The NMR data of cowpea samples showed minor differences. 

However, the GCMS data for both pathosystems showed significant differences between inoculated and 

uninoculated samples, and certain potential disease-related biomarkers were observed in the 

chromatograms. These biomarkers shared similarities to hexadecanoic acid, 1-(hydroxymethyl)-1,2-

ethanediyl ester, 9,12,15-octadecatrienoic acid, 1,3-dimethoxypropan-2-yl palmitate and butyl-9,12,15-

octadecatrienoate. From the results obtained we can conclude that metabolomic and chemical fingerprint 

analyses are efficient tools in successfully diagnosing plant fungal diseases by indicating various disease-

related biomarkers, that can be used for pathogen infection diagnosis.
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1. Introduction 
 

1.1 Introduction  
The cell is a vast pool filled with a plethora of molecules that co-exist and interact together to carry out 

different cellular functions. To understand this complex network of molecular interactions, techniques 

have been developed to assess and analyse some of the characteristics of the vast families of cellular 

constituents e.g., genes, proteins and metabolites. These techniques classified as ‘omics’ determine the 

specific roles, interactions and mode of actions of the different cellular molecules within an organism 

(Roessner and Bowne, 2009; Brunetti et al., 2018). Examples of these omics’ techniques are genomics, 

transcriptomics, proteomics and metabolomics.  Genomics involves the analysis of cellular genes and their 

respective functions, transcriptomics entails the analysis of genetic transcripts (e.g. mRNA) along with 

their accompanying functions, proteomics involves the analyses proteins with their respective functions 

and metabolomics is the comprehensive and quantitative analysis of all metabolites in a biological system 

(Fiehn, 2002). Metabolomics also involves the quantitative measurement of the dynamic multiparametric 

metabolic response of living systems to pathophysiological stimuli or genetic modification, often termed 

metabonomics (Beckonert et al., 2007; Ramsden, 2015).  

Plants are susceptible to a variety of fungal pathogens that cause some of the most devastating diseases 

in the world. With over 20 000 parasitic fungal species in nature with high diversity, fungal pathogens 

account for approximately 70-80 % of plant diseases (Ray et al., 2017). Fungal diseases have threatened 

food security for many countries for centuries. For example, in the mid-1840s in Ireland potato late blight 

caused by Phytopthora infestans exposed nearly a million people to starvation and drove many more to 

migrate elsewhere (Talbot, 2003). Another example is rice blast caused by Pyricularia oryzae which led to 

the loss of more than 700 ha of various rice genotypes in Bhutan in 1995 (Ray et al., 2017).  One of the 

most challenging aspects of fungal disease control is their detection (diagnosis) as they can survive in a 

dormant state on both living and dead plant tissues until environmental conditions become optimal for 

their proliferation. Their spores also have a variety of propagators e.g., water, wind, soil and animals thus 

eliciting their effect over wider areas. Omics techniques have been at the epicenter of both conventional 

and novel diagnostic techniques of various plant fungal diseases (Brunetti et al., 2018).  

Conventional diagnostic techniques of plant fungal diseases focused on morphological, microbiological 

and biochemical identifications. It is mainly composed of three aspects, i.e., visual examination, culturing 
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and plating methods and isozyme analysis (Figure 1.1). Visual examination involves analysing and 

interpreting the disease visual symptoms (e.g. spots, galls, lesions, rots, etc.) (Nutter et al., 2006). Several 

research guidelines have been implored to improve the efficacy of this technique to make it more 

accurate, reliable, and easily repeatable. However, it has encountered several shortcomings as it depends 

heavily on an individual’s experience and expertise which may lead to inconclusive results, difficult to 

repeat consistently and impractical for in-field diagnosis (Ray et al., 2017). Culturing and plating methods 

involve isolating the pathogen from the infected plants, followed by growing it on suitable artificial media 

under various conditions and microscopic analysis. This technique uses morphological characteristics to 

diagnose the pathogen i.e., spore morphology, sporulation patterns and characteristics of sporulating 

structures producing either asexual or sexual spore forms. This is then complemented by taxonomic 

classification of the fungus (Narayanasamy, 2011). This method however also has its shortcomings which 

include the need for experience and necessary expertise to make successful diagnosis and it’s also time 

consuming (Ray et al., 2017). In isozyme analysis, the fungal pathogens are detected, differentiated and 

identified based on morphological similarities or phylogenetic proximity (Rosendahl and Banke, 2020). 

This technique has been quite proficient in revealing genetic variability in fungal pathogens. Its main 

limitation however is the low level of polymorphism found in various fungal taxa that have been examined 

(Burdon, 1993). 

 

Figure 1.1: Conventional diagnostic techniques (Ray et al., 2017).  

Due to the limitations of conventional diagnostic methods which include poor sensitivity and reliability, 

novel diagnostic methods were developed with the aim of improving detection of fungal pathogens in 

plants. The novel techniques have been broadly divided into two main categories, direct detection 
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(pathogen detection) and indirect detection (pathogen-influenced physiological changes) methods (Ray 

et al., 2017). The direct detection methods are further divided into major categories i.e. immunology-

based methods which use antibodies or antibody alternatives and PCR (polymerase chain reaction)- based 

methods which use nucleic acid probes (Sankaran et al., 2010). Indirect methods of plant disease diagnosis 

involve detecting the impact of the pathogen on the overall physiological plant response rather than 

detecting the fungal pathogen itself. It entails plant stress profiling, plant metabolite profiling and gaseous 

metabolites profiling. It's mainly divided into spectroscopic and imaging techniques with its basis on plant 

stress response and volatile organic compounds detection which entail identifying specific biomarkers 

that may indicate infection (Ray et al., 2017). Some examples of direct and indirect fungal diagnostic 

methods are listed in Figure 1.2. 
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Figure 1.2: Examples of novel disease diagnostic methods used for fungal detection (Ray et al., 2017). 

In this study, metabolomic analyses, an indirect detection method that encompasses both spectroscopic 

and volatile organic compounds detection, will be the point of focus. Metabolomic analyses has been 

widely used to study the impact of fungal pathogens on the plants’ metabolome and as a complementary 

technique to the preferred direct methods of detection (e.g. PCR) (Chen et al., 2011; Narayanasamy, 

2011). This study aims to assess whether metabolomic analyses can be used in early disease diagnosis as 

it analyses the plant’s physiological changes due to fungal pathogen infection. It will also entail assessing 

the possibility of utilizing metabolomic analysis to directly detect the fungal pathogen’s presence in the 

host plant by detecting the pathogen’s metabolomic fingerprint (possibly indicating fungal biomarkers) 
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within the plant host. Another aspect of this study will be determining the proficiency of metabolomic 

data in reflecting the degree of disease infection since metabolites are regarded as a direct reflection of a 

plant’s phenotype (Mhlongo et al., 2018). 

1.2 Hypothesis 
Infected plants will carry the pathogen’s metabolite fingerprint in their metabolome, i.e.: 

• Presence of metabolites that are known to only be produced by the pathogen. 

• Regulation (production/inhibition) of certain metabolites in the plant’s metabolome. 

• Fluctuations in the concentrations of some metabolites. 

1.3 Aims 
The main aims of this study were to: 

• Successfully diagnose the infected plants through the analysis of their metabolome. 

• Determine whether metabolomical analyses can be used for early detection of plant disease. 

• Determine the degree of infection of the pathogens in question in the subject plants during 

certain time intervals. 

• Determine whether metabolomical analyses can be used as a direct method of diagnosis. 

1.4 Objectives 
The main objectives of this study were to:  

• Culture fungal pathogens under in vitro conditions. 

• Obtain the metabolomic data of pure pathogen cultures. 

• Successfully inoculate plant species with respective fungal pathogens in a greenhouse and/or 

collect symptomatic field trial samples. 

• Analyses of metabolite profile by NMR and GCMS for fluctuations or changes in the symptomatic 

plants' metabolome. 
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2. Literature Review 
 

2.1 Metabolomics 
Metabolites are structurally diverse small molecules that are chemically transformed during cell 

metabolism and are a direct product of protein activity. In plants, metabolite synthesis pathways are 

particularly branched since they lead to the production of highly diverse metabolites and minimise the cost 

put into their production (Ramakrishna and Ravishankar, 2011). Metabolomic data analysis involves the 

assessment, identification and quantification of all metabolites, endogenous and exogenous, within 

biological samples (Smolinska et al., 2012). Metabolomics do not function independently of other omics 

techniques; instead, their interactions with other omics such as functional genomics i.e. DNA sequencing, 

RNA expression profiling and proteomics provide a better understanding of metabolites (Manzoni et al., 

2018). Gene and protein functions are directly subjected to epigenetic regulations and post-translational 

modifications, respectively. Metabolites are also directly affected downstream by epigenetic factors, 

however they function as a direct fingerprint of biochemical activity; as such they can easily be correlated 

with a specific phenotype as illustrated in Figure 2.1 (Jorge et al., 2015). Metabolomics allows the global 

assessment of the cellular state in the context of the immediate environment as it is a result of gene 

expression, genetic regulation, enzyme regulation, altered kinetic activity as well as changes in metabolic 

reactions (Gomez-Casati et al., 2013). Changes in the metabolome are often more amplified relative to the 

changes in the proteome or transcriptome (Feussner and Polle, 2015).  
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Figure 2.1: General schematic presentation of the omics techniques flowing from genes to transcripts to proteins 
to metabolites to phenotype as well as the accompanying interactions of the different omics techniques (Baidoo, 
2019). 

Metabolite analysis provides a new way of analysing functional genomics, as a large number of genes may 

contribute to the production of a single metabolite and various metabolites may arise from a single or few 

genes (Smedsgaard and Nielsen, 2005; Luo, 2015). Metabolomics is not dependent on organism-specific 

genome information for data analysis (Jorge et al., 2015). Metabolomics uses highly sophisticated analytical 

techniques such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectrometry, 

accompanied by statistical and multivariate analysis for data attainment and interpretation (Heyman and 

Meyer, 2012). 

Metabolites manifest as signals from the genetic architecture and the environment i.e. they are considered 

to be a direct reflection of the physiological state of an organism (Muji et al., 2015). Studies have shown 

that certain metabolites are widely distributed in different taxa, while other metabolites are confined to 

specific clades or taxa e.g. the diterpenoids kaurene and abietane are confined to the Alismataceae (Wink 

et al., 2018). The metabolomes of organisms are large, complex, and highly dynamic; thus, no specific 

metabolomics approach can singularly analyse the entire metabolome. Various complementary approaches 

have to be incorporated for the different stages of metabolomical analysis  until the identification of the 

specific metabolite (Roessner and Beckles, 2009). Metabolomic analyses are focused on metabolite-

targeted analysis, metabolite profiling and metabolic fingerprinting (Tan et al., 2009; Worley and Powers, 

2013). Targeted analysis is used mainly for screening purposes and analysing compounds that are present 

at low concentrations, such as phytohormones (Shulaev et al., 2008). Metabolite profiling is an analytical 
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process that is restricted to identifying and quantifying a specific niche of pre-defined secondary metabolite 

groups in a biological sample (Roessner and Bowne, 2009). Metabolite profiling is used to determine which 

class of compounds e.g. lipids, isoprenoids or carbohydrates the metabolites belong to and is often used in 

drug research (Shulaev et al., 2008). Metabolic fingerprinting is aimed at classification of metabolic samples 

based on their origin or biological relevance, without identifying classes or compounds. Certain fingerprints 

have been used to differentiate individual signals that can be attributed to specific sample classification 

(Worley and Powers, 2013). The types of metabolites obtained from samples is heavily influenced by the 

type of solvent used for the extraction as shown in Table 2.1. It's therefore a critical decision in a study on 

which extraction solvent(s) will be used. 

Table 2.1: Examples of solvents used for metabolite extractions and the metabolites that can be found in the 
extract. NB: Compounds in bold are usually extracted using only one solvent  (Cowan, 1999). 

Water Ethanol Ether Dichloromethanol Methanol Chloroform Acetone 

Anthocyanins Tannins Alkaloids Terpenoids Anthocyanins Terpenoids Flavanols 

Starches Polyphenols Terpenoids  Terpenoids 

 

Flavonoids  

Tannins Polyacetylenes Coumarins  Saponins   

Saponins Flavanol Fatty acids  Tannins   

Terpenoids Terpenoids   Xanthoxyllines   

Polypeptides Sterols 

 

  Totarol   

Lectins 

 

Alkaloids   Quassinoids   

 Propolis 

 

  Lactones   

    Flavones 

 

  

    Phenones   

    Polyphenols   
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Metabolomics have been used substantially in analysing plant responses to abiotic and biotic stress (Hong 

et al., 2016). They have contributed largely in understanding the metabolites used by plants to overcome 

biotic stresses i.e. diseases and infections, as well as abiotic stresses such as adverse environmental effects 

e.g. extremely low temperatures (AbuQamar et al., 2016). This has contributed enormously to the field of 

biotechnology, specifically genetic modification of plant species to produce metabolites, originally from 

other plants, to combat stresses that transformed plants were previously susceptible to (Okazaki and Saito, 

2012). It can also be used to assess the degree of success of the transformation of the genetically modified 

plant species (Worley and Powers, 2013).  

In summary, metabolomics aims to study metabolomes, the pools of metabolites in a cell at any given point 

in time (Feussner and Polle, 2015). There are some challenges to this process, particularly for secondary 

metabolites. Firstly, in comparison to metabolites of  primary metabolism, secondary metabolite 

concentrations vary greatly depending on the environmental conditions (Go, 2010) and through time. 

Secondly, many secondary metabolites are present at extremely low concentrations; for example, the 

average secondary metabolite concentration is usually much lower than the highly abundant primary 

compounds such as those involved in the physiological pathways, e.g. photosynthesis and respiration (Pott 

et al., 2019). Metabolomic analysis is also relatively new compared to other omics techniques, and 

reference information for metabolomic analysis is not as abundant as those for proteins or genes, i.e. 

referencing NMR data for known metabolites (Worley and Powers, 2013). Metabolite concentrations are 

highly dynamic in both space and time and have an immense range of chemical structures which leads to 

challenges in their analytical procedures and measurements (Roessner and Bowne, 2009; Gomez-Casati et 

al., 2013). Linked to this, the complexity of metabolomic data, especially when identifying and analysing 

biomarker metabolites (i.e. metabolites used as references in identifying and analysing new metabolites in 

an organism), can lead to misinterpretation of data due to the use of wrong biomarkers (Broadhurst and 

Kell, 2006). Some metabolites can also have uncontrolled fluctuations in concentrations under the same 

experimental conditions, termed uninduced biological variations (Van den Berg et al., 2006).  

2.2 Metabolomics and Disease Diagnosis 
Although metabolomic techniques are more recent compared to other omics techniques, they have been 

used in a wide range of applications as illustrated in Figure 2.2. Metabolomics offers the same advantages 

as transcriptomic and proteomic techniques i.e. the ability to analyse biofluids and involves relatively 

inexpensive, rapid and automated techniques once start-up costs have been settled (Gomez-Casati et al., 

2013). Though its role in plant disease diagnosis has been primarily acting as a complementary technique 
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to conventional methods (genomics, transcriptomics, etc.), studies have shown its capability to distinctively 

diagnose plant disease independently of other techniques (Chen et al., 2019). The proficiency of 

metabolomic analysis has been portrayed through its role in human disease diagnosis through the 

utilization of metabolite biomarkers to diagnose various human diseases e.g. cancer, diabetes, coronary 

diseases, etc. as shown in Table 2.2  (Gomez-Casati et al., 2013).  

  

Figure 2.2: Examples of some metabolomics applications (Gomez-Casati et al., 2013). 

Table 2.2: Examples of metabolites used as biomarkers of human diseases (Gomez-Casati et al., 2013). 

 Disease  Metabolite Biomarker 

 Male Infertility  Citrate, lactate, glycerylphosphorylcholine 

 Chronic obstructive pulmonary disease  Acetate, leucine, lactate, pyruvate 

 Huntington disease  3-Nitropropionic acid 

 Colorectal cancer  Acetycarnine, phenylalanine, tryptophan, 

 Kidney cancer  Quinolinate, 4-hydroxybenzoate and gentisate 

 Impaired glucose tolerance  Glycine, acetylcarnitine 

 Renal-cell carcinoma  Phospholipids, phenylalanine, tryptophan  
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Like other organisms, secondary metabolites have evolved in fungi over millions of years as chemical signals 

to defend their habitat as well as inhibit growth of competitors (Yim et al., 2007; Brakhage and Schroeckh, 

2011). These secondary metabolites are also used by pathogenic fungi during host infection to induce 

various changes in the plant’s metabolic pathways e.g. Fusarium species secrete secondary metabolites 

called fumonisins that kill plant tissue, which they utilize as a nutrient source infection (Lowe et al., 2010); 

(Chen et al., 2019). In fungi, many secondary metabolites are non-ribosomal peptides (NRPs) or polyketides. 

Examples of NRP derivatives are penicillin, cephalosporin and cyclosporines (Hoffmeister and Keller, 2007).  

The biosynthetic genes for fungal secondary metabolites are generally located in clusters with a few 

exceptions e.g. Aspergillus nidulans has two separate gene clusters that are located on different 

chromosomes and are used for the synthesis of meroterpenoids austinol and dehydroaustinol (Lo et al., 

2012). These clusters contain one or more central biosynthesis genes encoding large multidomain, 

multimodular enzymes that belong to the polyketide synthases (PKSs) or non-ribosomal peptide 

synthetases (Hertweck, 2009). Fungal metabolites mediate regulation of microbial metabolism in response 

to continuous environmental changes and these regulatory mechanisms are adaptation tools for the 

organism (Aretz and Meierhofer, 2016). However they must also be reversible as the environmental 

conditions can revert to the original state, thus metabolites show the fastest response times to changes in 

the environment (Baidoo, 2019). 

Using proton NMR and GCMS it was discovered that F. oxysporum infection causes changes in metabolite 

concentrations by affecting the tricarboxylic cycle, gamma-amino butyric acid (GABA) bypass, the shikimate 

pathway and various other metabolites (Chen et al., 2011). Ustilago maydis is a fungal pathogen that causes 

tumors in maize. It was discovered that during tumor formation the flavonoid and shikimate pathways were 

activated leading to the upregulation of metabolites such as phenylpropionic acid, shikimic acid and 

tyrosine, as well as the levels of anthocyanins and hydroxycinnamic acid. It was also discovered that 

glutamate concentrations were sharply decreased (Doehlemann et al., 2008). Rhizoctonia solani is a 

causative agent of sheath blight in various plant species, e.g. Oryza sativa (rice), Glycine max (soybean) etc. 

(Hayden et al., 2019). Using metabolomic profiling analysis on infected soybean it was shown that the 

pathogen causes mobilisation of carbohydrates, disturbance of the amino acid pool, as well as the activation 

of isoflavonoid and phenylpropanoid biosynthetic pathways. These affected pathways have antioxidant 

effects and bioactivity, as such they assist the soybean to defend itself during R. solani infection (Aliferis et 

al., 2014: Verwaaijen et al., 2019).  
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Table 2.3 provides a summary of some instances where metabolomic techniques were employed in the 

study and diagnosis of various fungal diseases. Metabolomic analysis has also been discovered to have 

potential in studying plant root interaction with various microbes in the rhizosphere from growth promoting 

to pathogenic organisms. The roots produce various metabolites e.g. flavonoids and 

lipochitooligosaccharides during their interaction with bacteria (Mhlongo et al., 2018).  
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Table 2.3: Examples of the application of metabolomics in fungi-plant interaction analysis (Chen et al., 2019). 

Fungal pathogen Plant host Metabolomic 

technique 

Metabolomic  

Experiment (summary) 
 

Research  

Findings (summary) 

Citation 

Fusarium graminearum Arabidopsis 

thaliana 

1H NMR The seeds of four lines of 

Arabidopsis thaliana were 

infected with F. graminearum. 

Metabolites were extracted from 

the ground plants’ powder using 

aqueous methanol. Plant extract 

was analysed using 1H NMR. 

F. graminearum resistance was 

associated with an upregulation in 

various secondary metabolites 

e.g., alkaloids, phenylpropanoids, 

etc., and various organic 

osmolytes e.g., betaine, proline, 

etc., as well as enhanced TCA cycle 

and GABA shunt. 

(Chen et al., 

2011) 

Fusarium oxysporum Cicer 

arietinum 

(chickpea) 

1H NMR and 

UHPLC-ESI-

MS/MS 

Used non-targeted metabolomics 

analysis through high resolution 

LCMS and multivariate data analysis 

to identify metabolic modulations at 

various time points in roots of 

resistant and susceptible chickpea 

cultivars infected with F. oxysporum 

f. sp. ciceri. 

Resistant cultivars had increased 

flavonoid, isoflavonoids and 

molonyl conjugates expression. 

Pathogen infection induced the 

expression of aurantion-obstine 

and querecitin. 

(Kumar et al., 

2015) 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

15 
 

Fusarium tucumaniae Glycine max 

(soybean) 

GCMS Leaves of two commercially 

significant soybean cultivars (one 

susceptible and one partially 

resistant) were infected with F. 

tucumaniae. Leaf samples were 

collected at different time intervals 

after inoculation. Powdery leaf 

material was dissolved in methanol 

and later derivatized using 

methoxyamine hydrochloride and 

analysed using GCMS. The aim was 

to determine cultivar response to 

pathogen infection.       

It was discovered that pathogen 

infection led to increased amino 

acid production, a decrease in 

photosynthesis activity and 

increased plant specific 

peroxidase activity in the 

susceptible cultivars in the 

asymptomatic stages. 

(Rosati et al., 

2018) 

Magnaporthe oryzae Oryza sativa 

(rice) 

GCMS, 1H NMR, 

LCMS 

Three susceptible plant species 

were infected with a single strain of 

the pathogen. The aim was to detect 

the impact of the pathogen on the 

plant’s physiology during the 

asymptomatic stages. Metabolomic 

fingerprinting and targeted 

metabolite analysis was carried out 

using various MS techniques. 

Results showed an unexpected 

upregulation of polyamines and 

malate during the asymptomatic 

stages. These metabolites were 

expected to be used in generating 

defensive oxygen species. 

Metabolomic profile showed the 

modulation of various conserved 

metabolites.  

(Parker et al., 

2009) 
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Cercospora beticola Beta vulgaris 

subsp. 

vulgaris var. 

altissima 

(sugar beet) 

(U)HPLC-UV-ESI-

MS 

Three sugar beet host genotypes 

with different susceptibility 

(resistant, tolerant, and susceptible) 

to the pathogen were selected to 

determine the plant’s metabolites 

responses to fungal infection, in a 

non-invasive manner and during 

asymptomatic periods. The seeds of 

the hosts were treated and planted; 

the experiment took place 8 weeks 

into the plant growth stage. The 

samples were subjected to 

hyperspectral image analysis and 

MS metabolomic analysis. 

Metabolomic data showed that 

pathogen infection stimulated the 

host to produce L-DOPA, 12-

hydrojamonic acid, pantothenic 

acid and 5-O-feruloylquinic acid, 

to use as their defensive response. 

(Arens et al., 

2016) 

Rhizoctonia solani Zeae maydis UHPLC-QTOF-MS The aim was to study the 

pathogenesis of R. solani and its 

phytotoxin phenylacetic acid (PAA) 

on various maize leaf components. 

Maize plants were treated with the 

pathogen and the phytotoxin. A 

quality control sample was 

prepared for all the treatments. The 

The metabolomic results showed 

that disease infection by the 

respective pathogen led to a 

change in the concentration of 

various metabolites e.g., 

phospholipids, flavonoids, 

alkaloids, etc. Both treatments 

caused an upregulation of 

(Hu et al., 2018) 
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metabolites were extracted using 

methanol and a combination of 

centrifugation, vortexing and 

sonication. The extract was 

analysed using UPLC and MS. 

capsorubin expression and the 

inhibition of 3-hexaprenyl-4-

hydroxy-5-methoxybenzoate 

expression. In the leaves treated 

with R. solani an increase in the 

levels of quercitrin, cis-

homoaconitate and rutin was 

observed, as well as the inhibition 

of L-Glutamate. Many of the 

upregulated metabolites assist 

the plants in counteracting 

stresses and deterring pathogens. 

Botrytis cinerea Fragaria x 

ananassa 

(Strawberry) 

GCMS The aim of the study was to 

determine the metabolome 

changes during the latent infection 

periods of B. cinerea. Plant leaves 

were inoculated with B. cinerea at a 

concentration of 105 spores/ml. The 

infected plants and the control 

plants were grown at the same 

time. The leaves were harvested at 

2,5- and 7-days post inoculation. 

Results showed that B. cinerea 

infection caused concentration 

alterations of 13 metabolites. 

Among them were the inositol a 

cell signal metabolite. Other 

metabolites included 

hexadecenoic acid and 

octadecanoic acid which are 

involved in jasmonic acid 

synthesis which is also involved in 

(Hu et al., 2019) 
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The plants were ground into powder 

and metabolites were extracted 

using methanol and water solution 

(4:1) by ultrasonication and 

centrifugation. The crude extract 

was analysed in GCMS. 

plant defense against pathogens. 

There was an increase in 

metabolites such as malic acid, 

fructose, galactose, and pyruvic 

acid which are in involved in 

adjustment of plant morphology 

during the restraining of 

pathogens during infections.  

Sclerotinia sclerotum Phaseolus 

vulgaris 

(common 

bean) 

UPLC-MS and 

GCMS 

The aim of the study was to 

determine the metabolic responses 

of common bean to S. sclerotum 

infection. Leaves and stems of 

plants were inoculated in a cut-stem 

and detached leaf assays. The plant 

material was then lyophilized and 

ground to a fine powder. 

Metabolites were extracted using a 

methanol and water solution 

(80:20) by shaking on a vortex 

mixer. The extracts were analysed 

using UPLC-MS and GCMS. 

Results showed a decrease in 

amino acids, except for 

asparagine. The metabolic change 

also included the increase in 

ureides and pyridines, terpenes, 

flavonoids including bean 

phytoalexins and some variable 

shifts in phytohormones. 
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Most diagnostic studies that have been carried out using metabolomical analysis aimed at understanding 

or detecting the impact of the plant pathogens on the physiology and metabolome of the plant host, and 

not detecting the pathogen itself. Mass spectrometry combined by various separation techniques e.g. GC, 

LC, etc. were commonly used in these studies as they provide easy identification and analysis of individual 

metabolites involved (Mhlongo et al., 2018).  

2.3 Zea mays L. (Maize) 
Zea mays L., commonly known as maize is considered one of the most important food sources in the world 

along with rice and wheat  (Cai et al., 2020). It belongs to Panicoideae subfamily of the Poaceae (grass 

family) and its widely cultivated globally due to its adaptability to an array of environmental conditions as 

well as its rich nutritional value (Borrego and Kolomiets, 2016).  Maize is also used for fuel, feed, fibres and 

scientifically as a model plant for the study of plant genetics due to its unprecedented structural, 

morphological and nucleotide diversity (Tenaillon et al., 2001; Gore et al., 2009).  

 

Archaeological studies revealed that the earliest evidence of maize domestication was found in the Balsa 

region of Mexico dating back to 8 700 cal. years BP (calibrated years before the present) (Piperno et al., 

2009; Ranere et al., 2009). Maize now has the broadest cultivated varieties farmed globally from latitude 

ranges of 50oN to 40oS and from altitudes ranging from 3400 m above ground in the Andean Mountains to 

the Caribbean Islands (Tenaillon and Charcosset, 2011). Maize also uses C4-carbon metabolism making it 

adaptable to high light intensities, high temperatures and low water availability which also promoted its 

increased global cultivation (Borrego and Kolomiets, 2016).   

 

This global dissemination of maize resulted in various morphological differentiations from its ancestor, and 

these include changes in vegetative architecture e.g., decreased branching, kernel morphology and some 

characteristics (shape, size, hardness, dormancy, protein, and starch content, etc.) and ear morphology 

(size, shape, etc.) (Tenaillon and Charcosset, 2011). South Africa is considered one of the major producers 

of maize globally and it's one of the country’s major exports. Maize is easily assimilated by different cultures 

in the country due to its taste and high source of nutrition as well as other reasons that include  (Verheye, 

2012): 

• High yield per person or time of labour spent 

• Its adaptation against biotic (birds) and abiotic (rain) stresses 

• Easy storage and transportation over long distances 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

20 
 

• Easy harvest and durability 

According to the census of commercial agricultural report compiled by the South African Department of 

Statistics in 2017, maize production increased by 46.5% from 2007 (Figure 2.3) and this was mainly 

attributed to the increase in the production per hectare across various regions in the country as shown in 

Figure. 2.4. 

  

Figure 2.3: Pie charts illustrating the total production of major South African field crops from 2007 (left) to 2017 
(right) (in metric-tons) (Statistics South Africa, 2020). 

 

Figure 2.4: Illustrates the total amount of hectares used for the cultivation of the top field crops in South Africa 
(Statistics South Africa, 2020). 
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2.4 Cercospora Zeina (Grey Leaf Spot Pathogen)  
C. zeina is the causal agent of grey leaf spot (GLS), one of the deadliest and most devastating maize diseases 

in the world (Meisel et al., 2009). Initially the disease was known to be caused by Cercospora zeae-maydis 

globally but studies conducted in the US revealed the existence of two genetically distinct yet 

morphologically similar C. zeae-maydis species which were classified as Type I and Type II (Dunkle and Levy, 

2000). Dunkle and Levy (2000) came to this conclusion after analyzing the pathogens’ internal transcribed 

spacer (ITS) and 5.8S ribosomal DNA (rDNA) regions. The distinction between the pathogens was further 

affirmed by Crous et al. (2006) by analysing DNA sequences of different Cercospora isolates. The analysed 

DNA sequences included ITS1 and ITS2 loci, 5.8S rRNA gene, elongation factor 1-α, histone 3, actin and 

calmodulin regions using a PCR test incorporating species-specific primers. Phylogenetic trees obtained 

using maximum parsimony illustrated the distinction between C. zeina (formerly C. zeae-maydis type II) and 

C. zeae-maydis (formerly C. zeae-maydis type I). Okori et al. (2003) confirmed the prevalence of C. zeae-

maydis type II strains in eastern African countries and indicated that its genetic flow was dominant amongst 

C. zeae-maydis populations in Africa. A study done by Mathioni et al. (2006) on type I and type II isolates at 

different locations in Brazil indicated that the latter was more aggressive. Furthermore, the study also 

outlined that the degree of fitness of the two isolates differed and was environment specific. Type II was 

reclassified by Crous et al. (2006) as a distinct species called C. zeina and Meisel et al. (2009) affirmed that 

it was the causal agent of GLS in southern Africa.    

C. zeina, is a poor food-base competitor in the soil, thus it is better suited to survive intercrop periods within 

infested maize crop residue. The primary source of pathogen inoculum are the Infected maize crop debris. 

Ideal conditions for rapid disease development are moderate/ high temperatures (20-30oC) accompanied 

by periods of high humidity in early spring. This leads to extensive blighting and leaf tissue necrosis, causing 

lesion formation on the leaf (Figure. 2.5). Prolonged favorable conditions result in conidiophores contained 

in early infection lesions producing more spores that are dispersed either by wind or rain and the disease 

progresses to the upper parts of the plant (Ward et al., 1999; Lyimo et al., 2013). The pathogen has high 

sporulating potential thus lesion numbers can rapidly increase on developing leaves higher in the canopy. 

When environmental conditions are unfavorable  the fungi may remain dormant and resume rapid 

development under favorable conditions (Korsman et al., 2012). Infection can also occur later in the season 

when spores are blown from adjacent fields (Meyer et al., 2017).  
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Figure 2.5: (A) Maize leaves infected with C. zeina. (B) Microscopic image of C. zeina conidium (42.5 µm). (C) In 
vitro culture of C. zeina on V8 media. 

The symptoms of the disease are initially observed on the lower leaves of the plant. GLS disease lesions 

assume a rectangular shaped greyish cast, and this is attributed to the name of the disease (Kinyua et al., 

2011). Immature lesions are not distinguishable in the earlier stages from the lesions of other foliar 

pathogens (Muller et al., 2016). GLS disease has a latent period of 14 to 28 days after infection before any 

visible lesions appear and the fungi begin to sporulate (Meisel et al., 2009: Dhami et al., 2015). GLS disease 

lesions first appear as small spots that are approximately 1-3 mm in length and rectangular to irregularly 

shaped. The spots are characterized by a chlorotic border that can be observed when diseased leaves are 

viewed via transmitted light. In mature GLS disease, the lesions can be easily distinguishable from those of 

other maize foliar pathogens. A unique feature of GLS disease lesions is that they run parallel to the leaf 

veins (Ward et al., 1999). In-breds and hybrids that are susceptible show necrotic lesions, while those that 

are moderately resistant show chlorotic or fleck type lesions (Meisel et al., 2009). 

2.5 Vigna unguiculata (L.) Walp. (Cowpea)  
Vigna unguiculata (L.) Walp. commonly known as cowpea, is an herbaceous crop that is widely cultivated 

as a grain and vegetable crop. It is a legume plant belonging to the Fabaceae family. It is widely grown in 

over 100 countries in Africa, Europe, North and South America and Asia, in areas with semi-arid and humid 
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climate between the latitudes of 35o N and 30o. Africa is considered the largest producer of cowpea 

attributing approximately 68% to global yield (Nandi et al., 2013; Mfeka et al., 2019), with Nigeria being 

the largest producer with approximately 2.14 million metric tonnes (Boukar et al., 2019). 

Cowpea origins can be traced back to west and central Africa and its cultivation then spread to Latin 

America and south east Asia around 2 300 years BP (Owade et al., 2020). It was formerly named Dolichos 

unguiculatus L. and it was renamed to Vigna unguiculata (L.) Walp. in 1753 (Pasquet, 1998). The wild 

cowpea Vigna unguiculata ssp. unguiculata var. spontanea is considered to be the progenitor of the 

cultivated cowpea and its only found in Africa (Pasquet, 1998). Cowpea domestication evidence can be 

traced back to north-eastern Africa based on the results from amplified fragment length polymorphism 

(AFLP) analysis (Coulibaly et al., 2002). 

Cowpea’s morphology is characterized by dark green compound leaves with a central terminal 

symmetrical leaflet. The first pair of leaves are opposite, and the subsequent leaves are trifoliate and 

arranged in alternate patterns (Pottorff et al., 2012). They have thick hairy stems and branches, as well as 

well-developed tap root system with spreading lateral roots (Timko et al., 2007). Cowpeas develop flowers 

with a racemose inflorescence which are self-pollinating. The flowers have a variety of colours, which 

include white, pink, pale blue, dirty yellow or purple. It has rhomboid seeds of 6-12 mm and pedant pods 

which are 12-30 cm long (Pasquet, 1998). Each pod may contain between 8 to 20 seeds. The pods turn 

yellow  or when they are mature (Boukar et al., 2019).  

The global spread of cowpea was highly influenced by its ability to grow in semi-arid regions with low 

input requirements (Gonçalves et al., 2016). It is able to withstand poor soil fertility, water stress caused 

by irregular and low rainfall (300 mm or less annually) and tolerates wide ranges of soil pH (Timko et al., 

2007). It is a good source of nutritious food with approximately 23 - 25% protein, 50 - 67% carbohydrates 

and several minerals and vitamins in the grains. The immature cowpea pods and leaves are consumed as 

fresh vegetables, and they contain 17 – 25% minerals and proteins (Moswatsi et al., 2013). In addition, 

cowpea has been reported to be a good source of folic acid, a particularly significant nutrient for pregnant 

women (Boukar et al., 2019).  

Cowpea has been predominantly utilized as an intercrop along with cereal crops such as maize, sorghum 

(Sorghum bicolor) and millet (Pennisetum glaucum) due to its role in nitrogen fixation in the soil thus 

contributing to soil fertility and reducing the costs of purchasing commercial nitrogen fertilizers (Sanginga 

et al., 2003). It has a short growth period which means it can be harvested earlier than most plants; thus 
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shortening the hunger period (Timko et al., 2007). Furthermore, it’s an important source of forage for 

livestock during dry seasons in some parts of west Africa (Adeyemi et al., 2012).  

These traits led to its assimilation as a significant indigenous crop with potential to promote food security 

in sub-Saharan Africa, a region where many crops perform very poorly (Boukar et al., 2019). In 2020 the 

global estimates for cowpea production were approximately 8.9 million metric tonnes with Africa having 

the highest production as shown (Figure 2.6). In South Africa cowpea cultivation occurs particularly in the 

provinces of Limpopo, KwaZulu-Natal (KZN), North West and Mpumalanga, mainly by subsistence farmers 

(Mfeka et al., 2019). In 2020, South African cowpea production was estimated at 4,867 metric tonnes, a 

significant amount but a decline from the estimated 6,400 metric tonnes reported in 1994 (Figure 2.5). 

This is attributed to lack of funding and interest of researchers to carry out studies on the crop which led 

to  improper production practices by the subsistence farmers and use of old seed varieties (Asiwe, 2009). 

 

Figure 2.6: Global cowpea production in 2020 and the trend in cowpea production in South Africa from 1994 – 
2020 (FAOSTAT, 2022). 

2.6 Fusarium Verticillioides  
Some of the most threatening fungal pathogens belong to the genus Fusarium and some species are 

known to produce mycotoxins e.g., fumonisins. Pathogens belonging to this genus are proficient soil 

inhabitants with saprophytic growth capabilities (Rheeder et al., 2002). Fusarium verticillioides is 
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considered as one of the most prevalent plant pathogens globally (Stockmann-Juvala and Savolainen, 

2008). It was first isolated in 1970 from a batch of moldy maize suspected of causing an outbreak of equine 

leukoencepholomalacia in horses in South Africa (Marasas, 2001). Extensive studies on the fungus led to 

the initial isolation and identification of the mycotoxins named fumonisins from F. verticillioides MRC 826 

cultures in 1988 (Gelderblom et al., 1988). Three years later it was discovered that their mode of action 

involved disrupting sphingolipid biosynthesis (Wang et al., 1991).  Fusarium verticillioides is widely 

regarded as the main producer of fumonisins (Stockmann-Juvala and Savolainen, 2008). Other fumonisin-

-producing species include F. proliferatum, F. dlamini, and Aternaria alternata f. sp. lycopersici 

(Stockmann-Juvala and Savolainen, 2008).  

Fusarium verticillioides is primarily a maize pathogen but studies have shown that it also infects other 

crops e.g. wheat (Triticum), and barley (Hordeum vulgare) (Zeng et al., 2020). The infection process of F. 

verticillioides was illustrated by Oren et al. (2003) using green fluorescent protein.  Under optimal growth 

(warm and humid) conditions for the plant, the initial growth of the pathogens hyphae progressed 

sparsely along the root surface. Approximately 72 hours after planting in infested soil the pathogen 

penetrated the lateral roots and mesocotyl and proliferated in the intercellular matrix. Approximately, 14 

days post infection, there were no visible symptoms, the pathogen could not be detected using a 

fluorescent microscope. However, it could still be recovered using in vitro plating methods. Coincidentally, 

certain undefined rounded organelles were observed around the mesocotyl and conidophores had 

developed on the endophytic hyphae. Consequently, 21 days after planting conidia had accumulated in 

the mesocotyl cells. However, the surrounding cells were unaffected, and the infection was still 

asymptomatic. Relatively 30 days after planting the fungal pathogen became active and caused necrosis 

in the mesocotyl and main root. Movement of the conidia through the vascular system allows the 

pathogen to spread to aerial parts of the plant. Under favourable conditions (low light) the pathogen 

proliferates aggressively in the roots, mesocotyl and stem (Oren et al., 2003).  

2.6.1 Fumonisins 
There are 28 fumonisin analogs that have been characterized since 1988 and can be divided into four main 

groups, namely fumonisin A, B, C, and P (Rheeder et al., 2002). The most abundant naturally occurring 

analogs amongst these groups are the fumonisin B or FB class (Figure 2.7 and Table 2.4), comprising of 

FB1, FB2 and FB3, which are considered toxicologically significant, with FB1 being more prevalent and 

usually found in higher levels in nature (Blacutt et al., 2018). The molecular structures of FB2 and FB3 are 

almost identical to that of FB1 thus its reported that their level of toxicity may be similar (Stockmann-
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Juvala and Savolainen, 2008). The toxicological significance of other fumonisins remains unknown and 

most publications focus on FB1  (Månsson et al., 2010). 

                                                                                                       

.  

Figure 2.7: Basic structure of fumonisins with some of its side chains. 

Table 2.4: List of known fumonisin B analogs (TCA – tricarboxylic acid) (Rheeder et al., 2002). 

 Analogs  Side chains to fumonisin backbone 

  R1  R2  R3  R4  R5  R6  R7 

 FB1  TCA  TCA  OH  OH  H  NH2  CH3 

 Iso-FB1  TCA  TCA  OH  H  OH  NH2  CH3 

 HFB1  OH  TCA  OH  OH  H  NH2  CH3 

FB2  TCA  TCA  H  OH  H  NH2  CH3 

 FB3  TCA  TCA  OH  H  H  NH2  CH3 

 FB4  TCA  TCA  H  H  H  NH2  CH3 

 

FB1 is a structural analog of sphinganine and sphingosine (Figure 2.8), precursors in ceramide biosynthesis, 

a sphingolipid  (Merrill et al., 2001; Zeng et al., 2020). Sphingolipids is a class of lipids found in all eukaryotic 

cells where they carry out an array of functions. These functions include acting as structural components 

for the plasma membrane and endomembrane systems, secondary messengers and bioactive molecules 

for plant cell signaling for development, stress response (biotic and abiotic) and programmed cell death 

(apoptosis) (Zeng et al., 2020). Furthermore, sphingolipids also play an essential role in pollen 

development (Michaelson et al., 2016). Sphingolipid signaling and metabolism in plants is still quite a 

mystery with many of the participants such as the receptors, mediators, and targets still unknown (Ali et 

al., 2018).  
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The main steps in the biosynthesis pathway involve the formation of sphinganine, which is acylated to 

dihydroceramide and ceramide by the enzyme ceramide synthase. The complex sphingolipids are 

subsequently hydrolysed to form ceramide and further to sphingosine (Stockmann-Juvala and Savolainen, 

2008). FB1 elicits its phytotoxicity by competitively inhibiting the enzyme ceramide synthase thus blocking 

the formation of complex sphingolipids (Figure 2.9). Inhibition of ceramide synthase leads to accumulation 

of sphinganine from the de novo ceramide biosynthesis; sphingosine recycled from ceramide; and 

sphinganine 1-phosphate and sphingosine 1-phosphate due to kinase phosphorylation of the two 

sphingoid bases. The result is the disruption of the sphingolipid dependent signaling and physiological 

functions (Riley et al., 1996).  

 

Figure 2.8: Chemical structures of sphinganine and sphingosine. 
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Figure 2.9: Illustration of the effects of ceramide synthase inhibition by fumonisin B1 leading to disruption in 
various cell signaling mechanisms (Riley and Merrill, 2019).  

Various diseases caused by F. verticillioides have been reported in plants, animals and even humans. 

Comparative studies carried out in parts of China and South Africa indicated a high incidence of 

esophageal cancer and neural tube defects in maize growing areas with significant high levels of F. 

verticillioIdes (Cornell et al., 1983; Chu and Li, 1994). Fumonisins were attributed to causing porcine 

pulmonary edema syndrome (PES) and cancer in rodents and swine (Haschek et al., 2001; Riley and 

Merrill, 2019). Another study done by Gelderblom et al. (2001) illustrated that male rats treated with 

purified FB1 or F. verticillioides resulted in the formation of cholangiocarcinomas and hepatocellular 

carcinomas (Stockmann-Juvala and Savolainen, 2008). 

Fumonisin B1 is phytotoxic to a wide range of agriculturally important crops. Its phytotoxic effects in maize 

include necrosis, wilting, stunted growth, chlorosis and reduced root growth leading to the death of the 

plant (Williams et al., 2007). Kritzinger et al. (2006) discovered that cowpea seeds artificially treated with 

varying concentrations of FB1 had reduced seed germination. Transmission electron microscopy (TEM) 

demonstrated that FB1 led to the plasma membrane being separated from the cell wall, formation of 

irregular sized vacuoles and abundance of lipid bodies next to the cell wall (Kritzinger et al., 2003). In 

plants FB1 triggers long chain bases accumulation which serve as secondary messengers and building 

blocks for sphingolipids (Zeng et al., 2020). This is what inherently leads to induced cell death (Saucedo-
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García et al., 2011; Yanagawa et al., 2017). A study done by Coll et al. (2014) indicated autophagy 

constituted pro-survival mechanisms in plants with unrestricted cell death upon exposure to FB1. Zeng et 

al., (2020) concluded that in addition to FB1 causing cell death, it also damaged the structural components 

of the cell thus impairing plant development. Gutiérrez-Nájera et al. (2005) discovered that sphingoid 

intermediates and FB1 inhibited H+ ATPase in maize embryos, thus affecting the growth of the plant as 

ATP is a vital energy molecule.   
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3. The Use of Metabolomical Analyses 

As A Potential Tool To Diagnose 

Grey Leaf Spot In Maize Caused By 

Cercospora Zeina 
 

3.1 Introduction 
Cercospora zeina has been known to be the deadliest and most devastating maize pathogen in the world 

which causes grey leaf spot disease (Meisel et al., 2009). Since maize is one of the most important crops 

globally  (Cai et al., 2020), C. zeina poses a great threat to global food security. Due to its extended latency 

period in the host plant, early detection of the pathogen has proven quite challenging and thus most 

measures available are to control its damage rather than prevent it (Dhami et al., 2015). Metabolites are 

the earliest means that maize use to defend against the invasion of pathogens, as such they provide 

extensive information on the underlying conditions that the plant might be experiencing, i.e, C. zeina 

infection. Suggesting that the monitoring and analyses of these defensive metabolites may provide leeway 

into the early detection of C. zeina as well as its control. Metabolomical analyses provides extensive 

techniques that can be used for the study of these defensive metabolites to possibly identify a biomarker 

unique to C. zeina infection in maize which will be used in future grey leaf spot diagnostic measures. 

Maize (Zea mays) fungal infection triggers the formation and accumulation of low molecular weight 

metabolites (>900 daltons) or phytoalexins for resistance (Pechanova and Pechan, 2015). Phytoalexins 

represent different classes of specialized metabolites (Jeandet et al., 2014). In maize sesquiterpenoid and 

diterpenoid phytoalexins have been extensively reported e.g. zealexins, kauralexins and dolabralexins 

(Huffaker et al., 2011; Ding et al., 2020). Phytoalexin activity in plants can be non-volatile or volatile. It was 

widely believed that non-volatile chemical defenses in maize were mainly mediated by benzoxazinoids 

(Huffaker et al., 2011b). However, Schmelz et al. (2011) indicated that a group of kauralexins, non-volatile 

diterpenoid phytoalexins, had a significant role in maize pathogen defense.  

Figure 3.1 illustrates some of the most widely reported defense metabolites found in maize in response to 

various biotic stresses. Benzoxazinoids involved in maize pathogen defense include DIMBOA (2,4-dihydroxy-

7-methoxy-2H-1,4-benzoxazin-3(4H)-one) and HDMBOA-Glc (2-hydroxy-4,7-dimethoxy-1,4-benzoxazinoid 
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glucoside). DIMBOA is used by maize seedlings in response to fungal pathogens e.g. northern corn leaf 

blight caused by Setosphaeria turcica, and herbivores (McMullen et al., 2009). HDMBOA-Glc is used by 

plants in response to pathogen infection and herbivory (Oikawa et al., 2001).  

Maize also utilize terpenoids that mediate inter-organism interaction leading to the formation of chemical 

barriers, e.g. terpene olefins serve as precursors to produce non-volatile antibiotic defenses (Schmelz et al., 

2014). Kauralexins were observed when Rhizopus microsporus inoculated maize induced the production of 

kauralexin A3 (ent-kaur-19-al-17-oic acid) and kauralexin B3 (ent-kaur-15-en-19-al-17-oic acid). These 

metabolites accumulate at the plant-pathogen interface displaying antimicrobial activity against various 

maize fungal pathogens e.g., R. microsporus and Colletotrichum graminicola which causes anthranose stalk 

rot (Schmelz et al., 2011). Ahuja et al. (2012) reported that the accumulation of non-volatile terpenoid end 

products e.g., dolabradiene limit the impact of fungal pathogens, oxidative stresses and herbivores.  

Doehlemann et al. (2008) observed that Ustilago maydis infection induced the expression of terpene 

synthases TPS6 and TPS11 and this preceded the accumulation of zealexins. A GCMS analysis done in a 

study by Meyer et al. (2017) showed that C. zeina infection stimulated an accumulation of both kauralexins 

and zealexins with the latter being more abundant.  

Flavonoids also constitute a significant part of phytoalexins (De Souza et al., 2020; Ube et al., 2021). The 

role of flavonoids in plant pathogen resistance has been observed in various cereal plants e.g., 3-

deoxyanthocyadinins in sorghum (Sorghum bicolor).  A sub-group of O-methylated flavonoids has been 

reported to have a role in plant disease resistance. Kodama et al. (1992) and Park et al. (2014)  discovered 

that 7-methoxyapigenin and 7-methoxynaringenin had antifungal and antibacterial activity in vitro. 

Examples of various metabolites that have been reported to be involved in maize pathogen resistance are 

shown in Figure 3.1.  
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Figure 3.1: Examples of maize secondary metabolites used in pathogen and disease resistance. 

3.2 Aim 
The aim of this chapter was to investigate the efficacy of metabolomical analyses in successfully diagnosing 

maize infected with GLS caused by C. zeina, by identifying disease related metabolite biomarkers in the 

maize leaf metabolome. For this investigation, two main strategies were implored which were metabolomic 

fingerprinting using NMR and GCMS analyses and biomarker target analyses using GCMS. The objective was 

to observe any metabolomic changes that may occur in the maize metabolome due to the infection and to 

identify potential biomarker metabolites that may be associated with C. zeina infection. Grey leaf spot is a 

significant maize disease with considerable impact on the food security and economy of South Africa. 

Metabolomical analyses can be used as an additional tool for early diagnosis prompting execution of quick 

control measures give ref or refer to previous section.   

3.3 Materials and Methods 

3.3.1 Maize Field Trial  
Maize leaves from six plants (cultivar Hybrid 1), infected by C. zeina, were sampled from a 25-ha farm in 

the Umgungundlovu district, near Howick, KZN. The farm was used by Syngenta South Africa (Pty) Ltd to 

test the efficacy of different fungicide treatments on GLS. The 12 ha of the farm were demarcated 

diagonally into three areas where each treatment was applied. The plants were planted on the fifth of 

November 2020. Approximately five weeks after planting (wap) all regions were sprayed with the 
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fungicide treatment 1 containing 62.3 g/ha Difenconazole and 100 g/ha Azoxystrobin. Fungicide 

treatment 2 was applied approximately nine wap. It involved spraying of the demarcated areas on the 

farm peripheral with fungicide 3 and the middle area was sprayed with Syngenta’s new fungicide 

(fungicide N). At 14 wap, the maize in all regions were sprayed with fungicide treatment 3 containing 60 

g/Ha cyperconazole and 188 g/Ha propiconazole. Robertson and Mueller (2007) reported that fungicides 

are present in the plant for only 14 to 21 days after application and therefore should not be detected 

chemically since the samples were collected 15 wap and later. 

Maize leaf samples showing chlorotic spots (early GLS symptoms) and mature lesions were randomly 

collected across the farm. Maize leaf samples showing chlorotic spots were collected 15 wap and maize 

leaves with mature lesions were collected 18 wap. All leaf samples were collected at V14 growth stage 

and for each set of symptomatic samples, asymptomatic controls (fungicide N sprayed) were collected at 

the same field. A grading system shown in Figure 3.2 was created to measure the degree of infection 

based on lesion length and leaf area covered. Leaf samples with chlorotic spots were classified as having 

a degree of infection of 1 - 2 and those with mature lesions were classified as a grade of 3 - 5. Samples 

showing no GLS symptoms (control) were graded 0. The maize samples were packaged in an ice box for 

transportation to the University of Pretoria. The midribs of the leaves were removed, and the samples 

stored at -80 oC.  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

41 
 

 

 

Figure  3.2: Visual scale used to assert degree of infection of collected maize leaf samples based on observed 
lesions length and area covered on the leaf. 

3.3.2 Glasshouse Trial 
A glasshouse trial was carried out to compare the field trial results with those of maize grown under 

controlled environmental conditions with no fungicide treatment. The glasshouse trial was carried out 

according to the protocol set by Meisel et al. (2009) with a few modifications. Maize seeds (cultivar Hybrid 

1) were planted in a glasshouse at the University of Pretoria experimental farm with a 16 hr day length 

and average temperature of 28+4 oC. Cercospora zeina  strain CMW 25467 (Meisel et al., 2009) single 

conidial cultures were collected from 15 % glycerol stocks stored at -80 oC. The glycerol stocks with the 

pure cultures were transferred onto V8 media plates for proliferation and subsequent multiplication 

through conidia sub-culturing. The plates were incubated in an incubator kept in the dark at 25 oC for a 

period of 4-7 days before further subcultured at the conidia phase to bulk up the pathogen culture. The 

pathogen inoculum was prepared by pouring 0.02 % Tween detergent solution onto V8 media plates and 

rubbing the conidia using a laboratory glass hockey stick to dissolve it in the detergent. The conidia-

Chlorotic Spots  Mature Lesions Control 
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detergent solution was transferred to a Falcon tube for inoculation. The subsequent inoculum was diluted 

to a concentration of 1.43 x 105 spores/ml, using a hemocytometer.  

When the maize reached the V9 growth stage (5 wap) they were inoculated with the C. zeina spore 

suspension. Three leaves were selected per plant (V7, V8, V9 growth stages) to be inoculated. The 

inoculum was applied onto a 15 cm demarcated leaf region on the adaxial and abaxial sides of the leaf 

using a small paint brush as described by Meisel et al. (2009). The control plants were treated in a similar 

manner, with the application of detergent only. The plants were left to grow in the glasshouse and 

observed for symptoms (lesions). Approximately 7 weeks post-inoculation (or 12 wap) mature lesions 

were observed on the inoculated leaves as shown in Figure 3.4. All leaf samples, both inoculated and 

control were collected, the midribs removed and stored in a -80 oC freezer.  

 

3.3.3 Metabolite Extraction 
The frozen maize leaf samples were placed in a Virtis freeze-drier (SP Scientific, USA) to remove the water. 

The samples were weighed and extracted with distilled methanol using a Büchi E-916 Speed-extractor 

(Büchi E-916, Switzerland) which can control the extraction pressure and temperature. Plant material 

(Table 3.1) were placed in 10 ml stainless steel tubes with the pressure set at 100 bar and temperature at 

50 oC. Each extraction consisted of four cycles, with each one having a 1 min heating phase, 9 min solvent 

holding phase and a discharge phase of 5 min. A nitrogen gas purge was performed for 8 min at the end 

and the total extraction time was 1 hr and 32 min. The extracts were vacuum-dried using a Büchi Genevac 

(EZ-2 plus, England) at 40 oC, using the methanol protocol and the dry masses of the crude extracts were 

recorded.  

 

3.3.4 1H Nuclear Magnetic Resonance (NMR) Analysis 
Maize crude extracts were analysed using proton NMR (1H NMR) with an Oxford 200 MHz NMR instrument 

(Varian Incorporated, USA). This was done to determine if there were changes in the maize metabolomic 

fingerprint due to C. zeina infection. A leaf extract of 25 mg/ml was prepared and dissolved using 80 % 

deuterated methanol and 20 % potassium phosphate buffer. Maleic acid (2 mg/ml) was used as an internal 

standard. From this solution, 700 μl were transferred to a clean NMR glass tube which was placed in the 

NMR machine.  The NMR parameters were set as follows; 512 scans were carried out on the sample 

consisting of 11 976 data points, an acquisition time of 2 seconds per scan and manual magnetic shimming 
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was done for each individual sample (Triba et al., 2015). The obtained sample spectra were processed, 

analysed and compared using MestreNova (Mnova) version 14 (Mestrelab Research, Spain). The spectra 

were binned (0.04 ppm/bin) and exported to SIMCA-P version 14.1 (Sartorius Stedim Data Analytics AB, 

Sweden) for multivariate statistical analysis. Principal component analysis plots (PCA) and orthogonal 

projection to latent structures discriminant analysis (OPLS-DA) plots were generated. PCA plots provide 

unsupervised data comparison of all samples while OPLS-DA plots generate a supervised or sample group 

comparison. This was done to establish if a correlation between C. zeina infection and a metabolomic 

change could be observed. Furthermore, multivariate analysis in SIMCA would provide statistical values 

R2 and Q2 to validate the observed results. R2 indicates how well the analytical model suits the data and 

Q2 indicates the predictability potential of the data; R2 values of above 0.5 are acceptable and Q2 > 0.5 

shows that the data has good predictability (Triba et al., 2015). 

3.3.5 Gas Chromatography Mass Spectrometry (GCMS) Analysis 
Maize leaves crude extracts were analysed using a Shimadzu GCMS-QP2010 SE instrument (Shimadzu 

Corporation, Japan). This analysis was done to determine if volatile metabolites could be identified in 

maize that were synthesized after C. zeina infection or if metabolite concentration changes can be 

observed. Such compounds could possibly be used as biomarkers for GLS diagnosis and understanding 

GLS effects on maize leaves metabolome. 

An extract solution of 1 mg/ml was prepared from the crude extract using distilled methanol of which 1 

ml was transferred to GCMS glass vials after filtration through 0.45 μm syringe-fitted filters (Merck and 

Co. Inc., USA). The samples were loaded on to the column using an AOC-20i+s auto-sampler. Compounds 

were separated in a Rtx- 5MS capillary column with dimensions of 29.3 m x 0.26 μm. Splitless injections 

of 1 μl were preformed using an AOC-20i+s autosampler and the temperature for both the injector and 

detector were set at 270 oC. The oven was programmed at an initial temperature of 50 oC which was held 

for 2 min, thereafter the temperature was increased to 300 oC at a rate of 10 oC per min and held for 5 

min, making the total run time 32 min. The acquisition for mass spectra was set to a mass range of 50.0 

to 600.0 m/z. Compound ionizations were carried out using an Electron Ionization Source at -70 eV. 

The chromatograms were processed and analysed using the Shimadzu post-run analysis software and 

Mnova. The chromatograms were binned (0.01 ppm/bin) in Mnova and exported to SIMCA-P version 14.1 

for multivariate statistical analysis. Principal component analysis plots (PCA) and orthogonal projection to 

latent structures discriminant analysis (OPLS-DA) plots were generated. Furthermore, the chromatogram 

numerical data for the specific identified potential biomarkers was exported to Microsoft Excel (Microsoft 
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Corporation, USA) and a single factor ANOVA test was carried out on the biomarkers to assess whether 

the observed change due to grey leaf spot was significant.  

3.4 Results  

3.4.1 Maize Leaf Samples 
Figure 3.3 illustrates the maize samples obtained from the field trial in Howick, KZN. The first images (1A 

and 1B) are the maize leaf samples with chlorotic spots and their accompanying asymptomatic control 

samples respectively. Images 2A and 2B show the maize leaf samples with mature lesions and their 

accompanying asymptomatic control samples respectively. Figure 3.4 illustrates the examples of leaf 

samples collected from the glasshouse trial at the University of Pretoria experimental farm. The first image 

(A) illustrates the inoculated leaf samples with mature lesions and (B) shows the uninoculated leaf samples 

with no observable symptoms. From Table 4.1 it is evident that based on the grading system (Figure 3.2), 

the maize leaf samples from the field trial had higher mature lesions grades than the inoculated glass 

house leaf samples.  

 

Figure 3.3: Examples of maize leaf samples collected from the field trial in Howick KZN. 1A shows the examples 
of the maize leaves with chlorotic spots and 1B are the asymptomatic control maize leaves collected along with 
the chlorotic spots’ samples. 2A shows maize leaf samples with mature lesions and 2B shows the asymptomatic 
controls collected along with the mature lesions’ samples.   

1A 1B 

2A 

2B 
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Figure 3.4: Example of the maize leaves sampled from the glasshouse trial at the University of Pretoria. Image A 
shows maize leaves with mature lesions and image B shows asymptomatic control maize leaves collected along 
with the mature lesions’ samples from the glasshouse. 

Table 3.1: Dry mass of maize leaf samples (in replicates) and the obtained metabolite extract mass.  (NB: some 
samples were spoilt during the storage process hence metabolites could not be extracted from them, and this is 
indicated by an extract mass of 0). The grading system is meant to illustrate the prevalence of the GLS 
symptoms. 

Sample code Leaf dry mass (mg) Extract mass (mg) Infection grade 

(see on Figure 

3.2) 

Chlorotic spots 1 2299.3 607.6 2 

Chlorotic spots 2 2353.3 475.0 1 

Chlorotic spots 3 1610.3 417.9 1 

Chlorotic spots 4 1717.9 422.1 2 

Chlorotic spots 5 2225.0 549.8 2 

Chlorotic spots 6 1566.0 390.2 1 

Average Mass 1961.9 477.1  

Control 1 2321.8 565.9 0 

Control 2 1579.3 443.8 0 

Control 3 2451.9 616.5 0 

Control 4 2716.8 733.5 0 

Control 5 2299.6 323.9 0 

Control 6 1948.8 570.1 0 

                                                          A                                                                                                      B 
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Average Mass 2219.7 542.3  

Mature Lesions 1 3265.1 603.7 4 

Mature Lesions 2 2387.8 411.9 5 

Mature Lesions 3 2320.4 0 5 

Mature Lesions 4 2584.7 376.4 3 

Mature Lesions 5 2507.0 356.4 4 

Mature Lesions 6 2804.1 559.3 3 

Average Mass 2644.85 384.6  

Control 1 2207.3 0 0 

Control 2 2153.8 425.1 0 

Control 3 2798.5 611.9 0 

Control 4 2214.8 411.0 0 

Control 5 2545.7 656.3 0 

Control 6 3184.0 852.8 0 

Average Mass 2517.4 492.9  

Inoculated 1 851.6 236.4 3 

Inoculated 2 438.4 124.5 3 

Inoculated 3 635.5 198.9 3 

Inoculated 4 966.8 268.5 3 

Inoculated 5 1249.2 317.5 3 

Inoculated 6 975.9 321.8 3 

Average Mass 852.9 244.6  

Control 1 1264.3 356.7 0 

Control 2 1049.5 292.2 0 

Control 3 1033.6 265.7 0 

Control 4 1443.4 358.7 0 

Control 5 1447.3 375.1 0 

Control 6 913.6 236.0 0 

Average Mass 1191.9 314.1  
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3.4.2 1H Nuclear Magnetic Resonance (NMR) Results 

3.4.2.1 Field trial  
The leaf extracts were subjected to 1H NMR analysis to determine if the plants' polar (methanol extraction) 

metabolomic fingerprint changed because of grey leaf spot infection. The samples' NMR spectra were 

compared in Mnova by stacking them.  The NMR spectra of the chlorotic spots’ samples did not show any 

clear differences (Figure 3.5) when compared to their control samples. This suggests that early infection 

of C. zeina does not have a notable influence on the NMR determined metabolomic fingerprint of maize 

leaves. The PCA plot in Figure 3.7 (A) also showed no clear separation between the infected and control 

samples. The multivariate statistical values, R2 (0.72) and Q2 (0.43), suggests that the analytical model is 

good however it cannot be used to predict unknown samples under the same premise as there is no clear 

difference in the metabolomic fingerprints of the infected and control plants. The supervised OPLS-DA 

plot (Figure 3.7 B) which considers allocated sample groups, showed slight separations between the 

infected and control plans. However, the statistical value of Q2 was negative suggesting that the 

metabolomic differences between the two groups were not definitive enough to be used to predict 

unknown samples under the same parameters. Furthermore, this reflects that early C. zeina infection had 

little influence in altering the metabolomic fingerprint of the maize leaves. 

The NMR spectra of leaf samples with mature lesions showed several differences in their metabolomic 

fingerprint when compared to their control samples, clearly indicated in Figure 3.6.  The chemical shifts 

of 3.90 – 5.05 ppm are regions where compounds containing functional groups such as hydroxyls, esters, 

alkyl halides and alkenes are detected. Signals in the region of 0.7 ppm indicates compounds containing 

long saturated carbon chains (Gable, 2019), including the terpenoids. The unsupervised PCA plot (Figure 

3.8 A) showed no definitive separation between the infected and control samples. Furthermore, the Q2 

value (0.27) suggests that the samples’ data is not reliable in predicting unknown samples under the same 

premise. However, the OPLS-DA plot in Figure 3.8 (B) showed clear separation between the infected and 

control samples. This means that the average metabolomic fingerprint of the infected samples differed 

from the control samples. Furthermore, a Q2 > 0.5 suggested that the data can be used to predict 

unknown samples under the same premises.  The R2 value indicates how well the analytical model suits 

the data and Q2 indicates the predictability potential of the data; R2 values bigger than 0.5 are acceptable 

and Q2 > 0.5 shows that data has good predictability (Triba et al., 2015).) 
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Figure 3.5: Stacked 1H NMR of field trial maize leaves with chlorotic spots and accompanying control samples. No definitive spectra differences were 
observed between the two sets of samples. The solvent (methanol), water and internal standard (maleic acid) peaks were removed from the NMR spectra 
by physically cutting out the peaks from the spectra (Chemical shifts 3.4 ppm, 5.1 ppm and 6.2 ppm respectively). 

 

 

  

 

Chlorotic Spots 

Chlorotic Spots 

Chlorotic Spots 

Chlorotic Spots 

Chlorotic Spots 

Control  

Control  

Control  

Control  

Control  

chemical shift (ppm) 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

49 
 

 

Figure 3.6: Stacked 1H NMR spectra of field trial leaves with mature lesions and their accompanying controls. Most spectral difference between the maize 
leaves with mature lesions and the control were peak concentration differences. The concentration differences were observed in the following spectral 
regions (indicated by red boxes from left to right); 5.20-5.35ppm, 5.05-5.10 ppm, 4.40-4.45 ppm, 3.85-4.00 ppm, 3.85-3.95 ppm, 3.40-3.45 ppm and 0.75-
0.85 ppm.  
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Figure 3.7: (A) 1H NMR PCA score plot of field trial maize leaves with chlorotic spots and corresponding controls. 
No definitive separation between the two sample sets. Multivariate statistical values: RX2 = 0.72; Q2 = 0.43. (B) 
1H NMR OPLS-DA score plot of field trial with chlorotic spots and corresponding controls. No definitive 
separation between the two sample sets. Multivariate statistical values: R2X = 0.646 and R2Y = 0.43; Q2 = -
0.969. 
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Figure 3.8: (A) 1H NMR PCA score plot of field trial maize leaves with mature lesions and corresponding controls. 
No definitive separation between the two sample sets. Multivariate statistical values R2X = 0.77; Q2 = 0.27. (B) 
1H NMR OPLS-DA score plot of field trial leaves with mature lesions and corresponding controls. Definitive 
separation between the two sample sets. Multivariate statistical values: R2X = 0.95 and R2Y = 1; Q2 = 0.63. 
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3.4.2.2 Glasshouse trial 
The glasshouse trial's leaf extracts were also subjected to 1H NMR analysis. The stacked spectra of all 

samples showed differences between the inoculated and the control samples at certain regions indicated 

in Figure 3.9. This suggested that C. zeina inoculation altered the metabolomic fingerprints of the maize 

leaves. The first difference between the inoculated samples (mature lesions) and the control samples was 

at the chemical shift region of 1.87 ppm and 2.8 - 3.0 ppm. It was observed that the peaks (functional 

groups) were only present in the inoculated samples and not the control samples. This suggests a possible 

C zeina related metabolomic fingerprint within the maize leaf metabolome. Furthermore, Gable (2019) 

reported that the region of 1.8 shows signals of compounds containing allylic, benzylic or ketone functional 

groups and the region of 2.80 – 3.53 ppm shows the signals of compounds with alkynes, alkyl halides, esters, 

alcohol, or ethers. Other spectral regions that showed differences between the inoculated and the control 

were in the regions of 5.2 - 5.4 ppm, 4.4 - 4.5 ppm, 3.1 - 3.5 ppm. In these regions the detected peaks were 

present in higher concentrations in the inoculated than in the control samples. The chemical shifts of 3.90 

– 5.05 ppm are regions where compounds containing functional groups such as alcohols, esters, alkyl 

halides and alkenes are detected. The functional groups of interest detected may belong to a single 

compound or various compounds that are upregulated due to C. zeina infection. 

 The unsupervised PCA plot (Figure 3.10 A) shows separation between the infected and the control samples. 

This indicates that the individual metabolomic fingerprints of the control samples had little intra-variation 

and differed to that of the inoculated samples.  The statistical validation values were high and the Q2 value 

suggests that the data is reliable in predicting unknown samples. Furthermore, the OPLS-DA plot in Figure 

10 (B) showed a clear separation between the two data samples and the statistical values corresponded to 

those obtained in the PCA plot, indicating a clear metabolomic fingerprint difference between the 

inoculated and control samples. 
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Figure 3.9: Stacked 1H NMR spectra of glasshouse leaves with mature lesions and their accompanying controls. Various concentration differences were 
observed between the two sets of samples. Peak concentration differences i.e., higher peak intensity in the inoculated were observed at 5.2-5.4 ppm, 4.4-4.5 
ppm, 3.1-3.5 ppm (indicated by red boxes from left to right). Peaks unique ONLY the inoculated were identified at 2.8-3.0 ppm and 1.9 ppm (indicated by 
light blue boxes).
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Figure 3.10: (A) 1H NMR PCA Score plot of glasshouse trial inoculated maize leaves with mature lesions and 
corresponding controls. No definitive separation between the two sample sets. Multivariate statistical values: 
R2X = 0.95; Q2 = 0.80. (B) OPLS-DA Score plot of glasshouse trial leaves and corresponding controls. Definitive 
separation between the two sample sets. Multivariate statistical values: R2X = 0.99 and R2Y = 1; Q2= 0.85.
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3.4.2.3 Comparison of 1H NMR spectra of field trial chlorotic spots and mature lesions, and 

glasshouse trial mature lesions leaf samples 
The 1H NMR spectra of the all the field and glass house maize leaves were compared to assess similarities 

and differences in the metabolomic fingerprints of the different sample sets (Figure 3.11). The comparison 

indicated that all maize samples had the same peak composition (functional) groups in the most parts of 

their chromatograms. Based on the comparison of the symptomatic samples i.e., field trial chlorotic spots, 

field trial mature lesions and glasshouse inoculated (mature lesions), the chlorotic spots samples’ spectra 

differed from the mature lesions’ samples (both glasshouse and field trial) in the regions of 5.20 -5.35 

ppm and 4.00 – 4.10 ppm. In this region the chlorotic spots spectra had some peaks absent that were 

present in the mature lesions’ samples. It was also discovered that in the same regions, though the 

glasshouse and field trial mature lesions’ samples had the same peak composition, the peaks were present 

in higher concentrations in the glasshouse samples. Another observation made was in the region of 2.40 

– 2.47 ppm, where a peak (functional group) was present only in the glasshouse samples and not the field 

trial samples. This could possibly be attributed to the difference in environment where the samples were 

collected from (Sardans et al., 2020). Another difference was observed in the region of 2.09 – 2.28 ppm 

where all symptomatic sample’s spectra differed in peak composition. This may be attributed to 

differences in both the environment of sample collection and time of collection. Coincidentally, upon 

comparison of the control (asymptomatic) samples’ spectra it was discovered they differed in the same 

regions as the symptomatic samples and in the same way. This suggests that most of the differences 

observed were due to differences in environment and time of collection.  
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Figure 3.11: Stacked 1H NMR spectra of representatives of field trial maize leaves with chlorotic spots, field trial leaves with mature lesions, inoculated 
glasshouse leaves with mature lesions and their respective controls. This was to compare the symptomatic samples NMR fingerprint and to compare the 
control samples’ NMR metabolomic fingerprint. The field trial control’s spectra are labelled as follows: FT-ML – Field Trial Mature Lesions; FT-ChlS – Field 
Trial Chlorotic Spots. GH – Glasshouse. Major differences were observed between the symptomatic samples in the regions of 5.20 -5.35 ppm, 4.00 – 4.10 
ppm, 2.40 – 2.47 ppm and 2.09 – 2.28 ppm. Coincidentally the control samples also differed in the same regions. (NB: All solvent peaks and internal 
standard peaks have been removed from the spectra to magnify the peaks of interest).
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3.4.3 Gas Chromatography Mass Spectrometry (GCMS) Results 

3.4.3.1 Chlorotic spots  

Maize leaf extracts with chlorotic spots were also subjected to GCMS analysis to identify possible 

metabolite changes in the early stages of C. zeina infection. It was also aimed at identifying 

potential biomarkers that can be used to characterize the initial stages of grey leaf spot. The 

sample chromatograms were stacked for comparison in Mnova as shown in Figure 3.12. A single 

metabolite's concentration difference was observed between the infected samples and the control 

samples at retention time of 27.4 mins. as shown in Figure 3.13. Chromatogram numerical data 

analysis in Microsoft Excel (Figure 3.14) showed that the average metabolite concentration in the 

chlorotic spots samples was higher than in the control samples. However, the 95% confidence 

ANOVA statistical test (Figure 3.14) revealed that the concentration of the metabolite in the 

chlorotic spots leaf samples was not significantly different (p>0.05) to that in the control samples. 

This suggests that early infection of C. zeina in maize leaves possibly had no significant detectable 

metabolite affect. Since the identity of the compound was unknown it was named compound A. 

The samples with chlorotic spots were further subjected to multivariate statistical analysis in 

SIMCA-P. This would allow overall comparison of the chromatograms and possibly elucidate the 

correlation between the maize leaf metabolome change during early C. zeina infection. The 

unsupervised PCA plot (Figure 3.15) showed no clear grouping between the samples with chlorotic 

spots and their control. This suggests that there was little inter- and intra-variation between the 

metabolites found in the two data sets and this is probably supported by the single difference 

observed in the chromatograms of the control and infected extracts. The supervised OPLS-DA plot 

(Figure 3.16) showed groupings between the treatments, though not quite distinctive. This 

suggests that the average chromatogram data of the two sample sets differ to a certain degree, 

though not definitive or significant. The model fit values (R2X=0.84, R2Y=0.81) suggested that the 

model was well suited for the data, however the predictability value (Q2 < 0.5) suggested that the 

data could not be used to predict unknown samples under the same premise (Triba et al., 2015). 
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Figure 3.12: Stacked GCMS chromatograms of field trial leaf samples with chlorotic spots and their 
accompanying controls. At first glance, no clear definitive metabolite differences were observed in the 
chromatograms of the leaves with chlorotic spots and the asymptomatic controls. 
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Figure 3.13: Expanded part of the chromatogram region showing the metabolite concentration change observed 
in the chlorotic spots leaf samples at retention time 27.4 mins. (red box) identified as a potential pathogen 
related biomarker. The metabolite concentration (peak intensity) is higher in the chlorotic spots’ samples than in 
the asymptomatic control samples. 

 

Figure 3.14: Statistical analysis of the concentration of compound A in maize leaf samples with chlorotic spots 
and their control. Average metabolite concentration difference of compound A between the chlorotic spots and 
the asymptomatic controls was not significant, p-value > 0.05. 
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Figure 3.15: (A) GCMS chromatograms PCA score plot of leaf samples with chlorotic spots and accompanying 
asymptomatic controls. No definitive separation between the sample sets. Multivariate statistical values R2 = 
0.77, Q2 = 0.60. (B) GCMS chromatograms OPLS-DA score plot of leaf samples with chlorotic spots and 
accompanying asymptomatic controls. Multivariate statistical values R2X = 0.84, R2Y = 0.81, Q2 = 0.37. Samples 
sets separated but not definitively. 
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3.4.3.2 Mature lesions 
The maize leaves with fully developed lesions were also further subjected to GCMS analysis. The sample 

chromatograms were stacked in Mnova for comparison as shown in Figure 3.16. Several metabolite 

differences were observed in the mature lesions samples’ chromatogram and were identified as potential 

biomarkers. The first metabolite concentration change was observed at retention time 24.5 min.  as shown 

in Figure 3.17. The metabolite (named compound B) was observed to have a higher peak intensity in the 

symptomatic leaves. Further chromatogram numerical data analysis (Figure 3.18) revealed that the average 

concentration of the metabolite in symptomatic leaves was higher than the asymptomatic leaves. A 

univariate ANOVA test (Figure 3.18) yielded a p-value lower than 0.05, indicating that the concentration of 

the metabolite in the symptomatic (mature lesions) samples was significantly higher than in the control 

samples. Suggesting that C. zeina infection possibly induced the upregulation of the metabolite.  

Another metabolite concentration difference between the symptomatic and the control samples in the 

chromatogram was observed at retention time 27.4 mins, as illustrated in Figure 3.19. The metabolite peak 

was present in higher concentrations in the mature lesions’ chromatograms than the control samples'. The 

same observation was made in the chromatogram of chlorotic spots samples and the metabolite was 

named Compound A. Univariate statistical analysis of the chromatogram numerical data (Figure 3.20) 

revealed that based on the p-value, which was smaller than 0.05, the concentration of the metabolite in 

the maize leaf samples with mature lesions was significantly higher than in the asymptomatic control 

samples, suggesting that the metabolite change was influenced by C. zeina infection. Subsequent 

chromatogram differences were identified at retention times of 29.0 mins (Figure 3.21) which was named 

Compound C, and 30.2 mins (Figure 3.22) which was named Compound D. Compound C had a reduced peak 

intensity in the symptomatic samples, and this was highlighted by the statistical analysis of the 

chromatogram numerical data shown in Figure 3.23. This suggested that C. 61eina infection hindered or 

negatively impacted the production and expression of this metabolite. However, the univariate statistical 

analyses yielded a p-value larger than 0.05 suggesting that the concentration reduction of the metabolite 

in the symptomatic samples was not significantly different from that observed in the asymptomatic control 

samples. This meant that the observation could not be definitively asserted as a biomarker for C. 61eina 

diagnosis. Metabolite. Univariate statistical analysis of the chromatogram numerical data (Figure 3.31) 

yielded a p-value less than 0.05 indicating that the metabolite concentration was significantly higher in the 

maize leaves with mature lesions.  
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Figure 3.16: Stacked GCMS chromatograms of field trial leaf samples with mature lesions and the accompanying 
controls. At first glance, very few metabolite differences were observed in the chromatograms of the leaves with 
mature lesions and the asymptomatic controls. (These will be shown in subsequent expanded chromatogram 
regions). 
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Figure 3.17: Expanded chromatogram region showing metabolite concentration change observed in the mature 
lesions leaf samples at retention time 24.5 mins. (red box) identified as a potential pathogen related biomarker. 
The metabolite concentration (peak intensity) is higher in the mature lesions’ samples than in the asymptomatic 
control samples. 

 

Figure 3.18: Statistical analysis of the concentration of compound B in maize leaf samples with mature lesions 
and their control. Average metabolite concentration difference of compound B in leaves with mature lesions was 
significantly higher than the asymptomatic controls; p-value < 0.05. 
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Figure 3.19: Expanded chromatogram region showing metabolite concentration change observed in the mature 
lesions leaf samples at retention time 27.4 mins. (red box) identified as a potential pathogen related biomarker. 
The metabolite concentration (peak intensity) is higher in the mature lesions’ samples than in the asymptomatic 
control samples. 

 

Figure 3.20: Statistical analysis of the concentration of compound A in maize leaf samples with mature lesions 
and their control. Average metabolite concentration difference of compound A in leaves with mature lesions was 
significantly higher than the asymptomatic controls; p-value < 0.05. 
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Figure 3.21: Expanded chromatogram region showing metabolite concentration change observed in the mature 
lesions leaf samples at retention time 29.0 mins. (red box) identified as a potential pathogen related biomarker. 
The metabolite concentration (peak intensity) is lower in the mature lesions’ samples than in the asymptomatic 
control samples. 

 

 

Figure 3.22: Statistical analysis of the concentration of compound C in maize leaf samples with mature lesions 
and their control. Average metabolite concentration difference of compound C in leaves with mature lesions was 
not significantly lower than the asymptomatic controls; p-value > 0.05. 
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Figure 3.23: Expanded chromatogram region showing metabolite concentration change observed in the mature 
lesions leaf samples at retention time 30.2 mins. (red box) identified as a potential pathogen related biomarker. 
The metabolite concentration (peak intensity) is higher in the mature lesions’ samples than in the asymptomatic 
control samples. The metabolite appears to be absent in the asymptomatic control samples. 

 

 

Figure 3.24: Statistical analysis of the concentration of compound D in maize leaf samples with mature lesions 
and their control. Average metabolite concentration difference of compound D in leaves with mature lesions was 
significantly higher than the asymptomatic controls; p-value < 0.05. 
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The maize leaves portraying mature lesions were further subjected to metabolomical multivariate 

statistical analysis. This would allow overall comparison of the chromatograms and further highlight the 

change in the maize leaf metabolome in the later stages of GLS. The unsupervised PCA score plot shown 

in Figure 3.25 (A) indicates the treatments separating into their unique groups solely based on their 

individual GCMS chromatogram profiles, with one exception (one of the metabolites in this sample’s 

chromatogram had an exaggerated peak intensity). This indicates that there is less intra-variation and 

considerable inter-variation in the sample’s profiles. The statistical value Q2 also highlights the potential 

reliability of this data model to predict unknown samples with possible GLS infection. The supervised 

OPLS-DA plot in Figure 3.25 (B) correlates with the observation in the PCA plot further affirming the 

distinction between the groups in their GCMS chromatogram profile. Moreover, this illustrates that the 

metabolite changes that were observed in the symptomatic samples created a considerable change in the 

metabolome of the maize leaves. The statistical values (give them in brackets) suggest that the model can 

be reliably used to predict unknown samples under a similar premise. 
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Figure 3.25: (A) GCMS chromatogram PCA score plot of leaf samples with mature lesions and accompanying 
controls. Clear separation of the mature lesions and control samples was observed. Multivariate statistical 
values: R2X = 0.94, Q2 = 0.70. (B) GCMS chromatogram OPLS-DA score plot of leaf samples with mature lesions 
and accompanying controls. Definitive separation of the two sample sets was observed. Multivariate statistical 
values R2X = 0.78, R2Y = 0.97, Q2 = 0.88). 
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3.4.3.3 Glasshouse trial 
The maize leaves from the glasshouse trial i.e., inoculated maize leaves with mature lesions and 

asymptomatic control leaves, were also subjected to GCMS analysis. The sample chromatograms were 

stacked in Mnova (Figure 3.26) for comparison and identification of key changes in the metabolite profile. 

Intensive analysis of the chromatograms revealed several changes between the inoculated plants and the 

control. The first difference was observed at retention time 29.0 mins as shown in Figure 3.27, named 

compound C. The chromatogram data showed that the metabolite at this retention time had lower 

expressions in the inoculated maize leaves with mature lesions than in the asymptomatic controls. This 

observation corresponds to the observation made in the field trial leaf samples with mature lesions (Figure 

3.21). Statistical analysis of the chromatogram numerical data (Figure 3.28) highlighted the difference in 

the peak intensity of the metabolite between the two sample sets. Based on the data’s p-value (p = 0.07) 

the observed difference was insignificant under the 95% confidence interval, but it was significant under 

the 90% confidence interval. This means that there is a 90 % confidence that the concentration of 

compound C in the inoculated leaves with mature lesions is significantly lower than in the asymptomatic 

control samples. Subsequently, another key point difference in the chromatogram was observed at 

retention time 30.95 mins, illustrated in Figure 3.29. The metabolite was observed predominantly in the 

control samples and appeared to be present in minute amounts (to none) in the inoculated samples. 

Statistical analysis of the chromatogram numerical data (Figure 3.30) showed a p-value less than 0.05, 

indicating that the decreased concentration in the inoculated samples was significantly different from that 

in the control samples. Both these observations suggest that C. zeina hinders the production or expression 

of these metabolites in maize leaves.  
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Figure 3.26: Stacked GCMS chromatograms of maize leaves sampled from the glasshouse trial. 

 

Figure 3.27: Expanded chromatogram region showing metabolite concentration change observed in the 
glasshouse trial leaf samples at retention time 29.0 mins. (red box) identified as a potential pathogen related 
biomarker. The metabolite concentration (peak intensity) is lower in the glasshouse inoculated leaves with 
mature lesions than in the uninoculated control samples. 
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Figure 3.28: Statistical analysis of the concentration of compound C in glasshouse inoculated maize leaves with 
mature lesions and their control. Average metabolite concentration difference of compound C in the inoculated 
leaves was not significantly lower than in the asymptomatic controls; p-value > 0.05. 

 

Figure 3.29: Expanded chromatogram region showing metabolite concentration change observed in the 
glasshouse trial leaf samples at retention time 29.0 mins. (red box) identified as a potential pathogen related 
biomarker. The metabolite concentration (peak intensity) is lower in the glasshouse inoculated leaves with 
mature lesions than in the uninoculated control samples. Using visual observations, it appears as if the peak is 
almost absent in the inoculated samples. 
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Figure 3.30: Statistical analysis of the concentration of compound C in glasshouse inoculated maize leaves with 
mature lesions and their control. Average metabolite concentration difference of compound C in the inoculated 
leaves was significantly lower than in the asymptomatic controls; p-value < 0.05. 

The glasshouse samples’ chromatogram numerical data was further analysed using multivariate statistical 

analysis. This would allow overall comparison of the metabolomic profiles of the two sample sets and 

establish a correlation between C. zeina inoculation and change in leaf metabolome. The unsupervised 

PCA plot in Figure 3.31 (A) showed no clear separation between the sample sets, indicating that there is 

little inter-variation in the samples’ chromatograms based on individual their metabolomic profiles. 

Furthermore, separation was observed between the samples within the same group, suggesting intra-

variation amongst the replicates. Though the statistical values are high (R2X = 0.95; Q2 = 0.89), the plot 

trend is inconclusive in providing a clear indication on the metabolome change due to C. zeina inoculation. 

The supervised OPLS-DA plot shown in Figure 3.31 (B), which takes the average GCMS metabolomic profile 

of all the replicates within a designated treatment (group) showed a clear distinction between the two 

sample sets. This indicates the difference in the metabolomic profile between the inoculated and control 

groups. This leads us to believe that changes in the maize leaf metabolome can be attributed to C. zeina. 

Furthermore, the statistical values also suggest that the model can be reliably used to predict unknown 

samples under a similar premise.  Moreover, this provides evidence that C. zeina inoculation has a 

considerable effect on the metabolomic profile of causing a notable distinction from the metabolic profile 

of asymptomatic maize leaves. Therefore, establishing a correlation between C. zeina and changes in the 

maize leaf’s metabolome.  
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Figure 3.31: (A) GCMS chromatogram PCA score plot of glasshouse inoculated leaves with mature lesions and 
accompanying controls. Clear separation of the mature lesions and control samples was observed. Multivariate 
statistical values: R2X = 0.95, Q2 = 0.89. (B) GCMS chromatogram OPLS-DA score plot of leaf samples with 
mature lesions and accompanying controls. Definitive separation of the two sample sets was observed. 
Multivariate statistical values R2X = 0.97, R2Y = 0.97, Q2 = 0.86). 
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3.4.3.4 Comparative Analysis of Field Trial and Glasshouse Trial Chromatograms and 

Potential Biomarkers’ Mass Spectra.  
A comparative analysis was carried out on all the maize leaf sample GCMS chromatograms to determine 

similarities between the different classes of leaf samples, i.e., field trial and glasshouse trial samples. 

Representative chromatograms from each class were stacked in Mnova as illustrated by Figure 3.43. The 

comparison showed that the field trial samples had more metabolites in their chromatograms than the 

glasshouse samples. However, several metabolites were similar between the two classes but differed only 

in peak intensity or concentration. The glasshouse samples’ plant material was less than the field trial 

samples’ plant material, as only the inoculated regions were sampled and extracted for metabolites. 

Therefore, the metabolites were more concentrated in the field trial samples, i.e., same occurrence with 

different levels of expression.  

The potential grey leaf spot metabolite biomarkers found in all classes were also compared, and their 

suggested identities were determined using their MS fragmentation patterns from the NIST 14 (NIST, USA) 

database as illustrated in Table 3.2. The database suggested that compound A shared similarities to 

hexadecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester (Figure 3.44), compound B shared similarities 

with 7-hexadecenal (Figure 3.45), compound C shared similarities with 9,12,15-octadecatrienoic acid 

(Figure 3.46), compound D shared similarities to 7,8-epoxylanostan-11-ol,3-acetoxy (Figure 3.47), and 

compound E shared similarities with methyl-5,11,14,17-eicosatetraenoate (Figure 3.48).The comparison 

indicated that the observation made for compound A in the chlorotic spots’ chromatogram was also 

observed in the mature lesions’ chromatogram. A similar observation was made for compound C in the 

mature lesions of the field trial and the glasshouse trial samples’ chromatograms. The metabolite was 

present in a smaller concentration in the symptomatic (mature lesions samples). However, no similar 

metabolite trend was observed in the chlorotic spots and glasshouse chromatograms.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

75 
 

 

Figure 3.32: Stacked GCMS chromatograms of representatives of field trial maize leaves with chlorotic spots, field trial leaves with mature lesions, inoculated glasshouse 
leaves with mature lesions and their respective controls. This was to compare the symptomatic samples chromatograms and to compare the control samples’ chromatograms 
metabolomic profile. The field trial control’s spectra are labelled as follows: (M. Les) – Field Trial Mature Lesions; (ChlS) – Field Trial Chlorotic Spots. (GH) – Glasshouse. The 
major differences observed are that the field trial and the glasshouse trial samples have common metabolites in their profiles but expressed in different concentrations, i.e., 
more concentrated in the field trial samples. 
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Table 3.2: Comparison of potential grey leaf spot biomarkers identified in the GCMS chromatograms of the field trial maize leaf samples (chlorotic spots and mature lesions) 
and glasshouse trial maize leaf samples (C. zeina inoculated).  All samples were compared to their appropriate controls. 

Potential 

biomarker 

Chromatogram retention 

time (mins.) 

Chlorotic spots 

(Field Trial) 

Mature lesions 

(Field Trial) 

Mature lesions 

Glasshouse trial 

 

Suggested compound match 

(NIST 14 database) 

and their similarity index (SI) 

Compound A 27.4 Higher peak intensity 

in the symptomatic 

leaf samples. 

p > 0.05 

Higher peak intensity in 

the symptomatic leaf 

samples. 

p < 0.05 

Absent in all samples. 

 
 

Hexadecanoic acid, 1-

(hydroxymethyl)-1,2-

ethanediyl ester  

SI = 63.5 

(See Figure 3.44) 

Compound B 24.5 Same peak intensity 

in all samples. 

 

Higher in symptomatic 

leaf samples. 

p < 0.05 

Same peak intensity in 

all samples 

 

7-Hexadecenal 

SI = 86.2 

(See Figure 3.45) 

Compound C 29.0 Same peak intensity 

in all samples. 

 

Higher peak intensity in 

the asymptomatic leaf 

samples. 

p > 0.05 

Higher peak intensity in 

the asymptomatic leaf 

samples.  

p > 0.05 

9,12,15-octadecatrienoic acid 

SI = 87.6 

(See Figure 3.46) 

Compound D 30.2 Absent in all samples. 

 

 

Present only in the 

symptomatic leaf 

samples. 

p < 0.05 

Absent in all samples. 

 

7,8-epoxylanostan-11-ol,3-

acetoxy 

SI = 71.4 

(See Figure 3.47) 

Compound E 30.95 Absent in all samples. 

 

Same peak intensity in 

all samples. 

 

 

Present only in the 

asymptomatic leaf 

samples. 

p < 0.05 

Methyl-5,11,14,17-

eicosatetraenoate 

SI = 83.4 

(See Figure 3.48) 
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Figure 3.33: Suggested match for compound A based on MS spectrum comparison in NIST 14 database. The MS 
fragments of the unknown extracted metabolite are in red and the MS fragments for hexadecanoic acid, 1-
(hydroxymethyl)-1,2 are blue. 

 

 

Figure 3.34: Suggested match for compound B based on MS spectrum comparison in NIST 14 database. The MS 
fragments of the unknown metabolite are in red and the MS fragments for 7-hexadecenal are in blue. 
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Figure 3.35: Suggested match for compound C based on MS spectrum comparison in NIST 14 database. The MS 
fragments of the unknown metabolite are in red and the MS fragments for 9,12,15-octadecatrienoic acid are in 
blue. 

 

 

Figure 3.36: Suggested match for compound D based on MS spectrum comparison in NIST 14 database. The MS 
fragments of the unknown metabolite are in red and the MS fragments for 7,8-epoxylanostan-11-ol-acetoxy are 
in blue. 
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Figure 3.37: Suggested match for compound E based on MS spectrum comparison in NIST 14 database. The MS 
fragments of the unknown metabolite are in red and the MS fragments for methyl-5,11,14,17-eicosatetraenoate 
are in blue. 

 

3.5 Discussion 
This study assessed the efficacy of metabolomical analyses techniques, NMR and GCMS in the diagnosis 

of grey leaf spot caused by C. zeina. The study was done by analysing the metabolome of GLS symptomatic 

maize leaves from a field trial and inoculated leaves from a glasshouse trial, with their respective controls. 

The field trial provided two sets of symptomatic leaf samples, i.e., chlorotic spots and mature lesions. 

From the glasshouse trial only samples depicting mature lesions were collected for analysis. These would 

allow the analysis of metabolomic changes caused by grey leaf spot in the early and late stages of 

infection. The metabolomic fingerprint of the NMR spectra of the field trial leaves with chlorotic spots did 

not indicate any changes in the plant’s metabolome as result of grey leaf spot. This indicates possibly that 

early stages of grey leaf spot infection do not induce observable changes in the metabolomic fingerprint 

of maize leaves with chlorotic spots. This however is inconclusive as a stronger NMR instrument might be 

able to detect metabolomic fingerprint changes in maize leaves during the early stages of C. zeina 

infection. It has is reported that maize leaves like many plants produce various metabolites as a form of 

defense at the onset of pathogen entry into the plant (Oikawa et al., 2001). 

The GCMS analysis showed a single metabolite change (increased concentration in the symptomatic 

leaves) at retention time 27.4 mins. in the metabolomic profile of chlorotic spots leaf samples which was 
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named compound A. However, statistical analyses showed that the increase in compound A's 

concentration in these samples was not significantly different from that in the asymptomatic control 

samples.  

Analyses of the metabolomic fingerprint of maize leaves with mature lesions using NMR analysis showed 

several changes in the spectra of symptomatic leaves. It was observed that certain functional groups in 

the NMR spectra of mature lesions leaf samples had a higher peak intensity that the healthy leaves. 

According to the specific functional group 1H NMR chemical shift reference chart by Gable (2019) the 

peak intensity differences were found in spectral regions where functional groups such as alcohols, esters, 

alkyl halides, alkenes and long saturated carbon chains are detected. All these functional groups can be 

found in maize sesquiterpenoid and diterpenoid phytoalexins e.g., zealexins, kauralexins and 

dolabralexins (Huffaker et al., 2011; Ding et al., 2020) (Figure 3.1), which have all been reported to play a 

role in maize fungal pathogen defense mechanisms. 

The GCMS data of the mature lesions showed several metabolite differences between the symptomatic 

mature lesions and their relative controls, and these were identified as potential biomarkers. These 

metabolites of interest were named compounds A-D. It’s worthwhile to note that compound A was also 

detected in the leaf samples with chlorotic spots, thus indicating its potential significance in its association 

with grey leaf spot. Statistical analysis of these metabolites of interest in the mature lesions’ samples 

indicated that were significantly different from their relative control samples’ metabolites, except for 

compound C. The MS of the metabolites of interest were run through the NIST 14 database to determine 

the possible identity of the metabolites. The suggested metabolites from the database contained most or 

all the functional groups of interest detected in the NMR spectra.  

The NMR spectra of the glasshouse leaf samples with mature lesions also showed several differences 

between the inoculated and control samples. Furthermore, a similar phenomenon was observed in the 

mature lesion samples of the glasshouse and field trial samples in the spectral region of 4.0-5.1 ppm. The 

observation made was that the NMR peaks in this region had higher intensities in the symptomatic 

samples than the asymptomatic (control) samples, in both trials. The chemical shifts of 3.90 – 5.05 ppm 

are regions where compounds containing functional groups such as alcohols, esters, alkyl halides and 

alkenes are detected (Gable, 2019). The GCMS analysis of the crude extracts from the glasshouse samples 

indicated some metabolite differences between the inoculated and uninoculated samples. The identified 

metabolites of interest were named compounds C and E. It is important to note that compound C was 

also found in the mature lesions’ samples from the field trial. Though statistical analysis deemed the 
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metabolite difference in the glasshouse samples as insignificant, this was the first observation of a 

concurring possible biomarker in both the glasshouse symptomatic samples and field trial mature lesions 

samples.   

A similarity search in the NIST 14 database using the metabolite MS data of the identified biomarkers from 

the maize samples was carried out to determine the possible identities of these metabolites of interest. 

The database suggested that the compound A had a 63.5 % similarity to hexadecanoic acid, 1-

(hydroxymethyl)-1,2-ethanediyl ester (Figure 3.44), a fatty acid ester. Despite the low similarity 

percentage, analyses of the MS fragmentation indicated that several mass fragments were present in both 

the target and database compound. This suggests that the low similarity could be attributed to the 

esterification of the fatty acid. Fatty acids have been reported to play a significant role in plant defense 

signaling mechanism (Walley et al., 2013). Studies have also indicated that levels of free fatty acids 

increase are triggered during early plant-microbe interactions depicting their vital role in this process 

(Trépanier et al., 2005). Additionally, it has been concluded that fatty acids in general play a role in 

impairing the growth of some plant microbial pathogens including mycelial growth and spore germination 

(Prost et al., 2005). A study done by Xing and Chin (2000) indicated that eggplants with increased levels 

of palmitoleic acid had enhanced resistance to Verticillium dahlia. This study indicated an enhanced level 

of compound A in maize leaves with chlorotic spots and mature lesions suggesting that grey leaf spot 

influenced the concentration increase. This suggests that this compound is involved in C. zeina – maize 

interaction. A study done by Arora and Kumar (2017) showed that hexadecanoic acid, 1-(hydroxymethyl)-

1,2-ethanediyl ester isolated from Cenchrus setigerus (Poacea) displayed antioxidant activity in vitro. 

Another study by Kadhim et al. (2017) indicated that the same compound had antimicrobial activity. Khan 

and Javaid (2020) identified 1-(hydroxymethyl)-1,2-ethanediyl ester in Trichoderma pseudokoningii, a 

fungal biocontrol against various fungal pathogens. Since compound A share some chemical similarities 

to this compound, a possible explanation is that its production in maize was upregulated possibly in 

response to C. zeina infection. Since 1-(hydroxymethyl)-1,2-ethanediyl ester was also discovered in a 

fungus, it is possible that compound A may also be produced by the fungi hence the high concentration 

observation in the maize. The enhanced expression of compound A in the maize leaf samples with 

chlorotic spots further suggests its role in early infection of grey leaf spot. This leads to the belief that it 

can possibly be used in early detection of grey leaf spot in maize and provide an understanding the early 

mechanism of C. zeina in maize infection.  
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Based on the NIST 14 database search, compound B had 86.3 % similarity 7-hexadecenal (Figure 3.45). 

Enhanced expression of compound B was observed in the field trial maize leaves with mature lesions. This 

suggests its involvement in the later stages of grey leaf spot infection in maize. Ethyl acetate extract of 

Solenostemma arghel containing 7-hexadecenal showed high antifungal activity against Penicillium 

funiculosum, Penicillium jensenii and Candida albicans in vitro (Abdel-Motaal et al., 2022). Another study 

done by Olanrewaju et al. (2019) showed that a methanol extract of Polyalthia longifolia containing 7-

hexadecenal portrayed antimicrobial activity. The similarity of compound B to 7-hexadecenal possibly 

suggests that it has possible antimicrobial activity in maize against C. zeina. Furthermore, the observed 

increase of compound expression in the field trial leaf samples with mature lesions suggests its 

involvement in pathogen defense of maize.  

Compound C had 87.6 % similarity to 9,12,15-octadecatrienoic acid (Figure 3.46), commonly known as 

alpha linolenic acid. This compound had decreased concentrations in the leaf samples with mature lesions 

in both the field trial and the glasshouse trial. This brought about two possibilities; perhaps the pathogen 

caused a decrease in the expression of the compound during infection or possibly the plant repurposed 

resources to produce metabolites essential for the infection process. It has been reported that plants 

often produce secondary metabolites only when required, to conserve resources (Erb and Kliebenstein, 

2020). A key process in plant response to biotic stresses is enhanced production of variety of oxylipins 

(Walley et al., 2013). Oxylipins are produced by enzymatic or autoxidation of polyunsaturated fatty acids 

and this leads to the production of phytohormone jasmonic acid (Kachroo and Kachroo, 2009). Alpha 

linolenic acid released from membrane lipids is a precursor for oxylipin biosynthesis via the octadecanoid 

pathway (Xue et al., 2008; Lim et al., 2017).  

Studies have indicated that linolenic acid along with oleic acid regulate fungal development, seed 

colonization and mycotoxin production by Aspergillus spp. (Xue et al., 2008). This was observed in A. 

niduans, which metabolises linolenic acid to a series of of sporongenic molecules known as psi factors.  

These psi factors regulate the ratio of asexual and sexual spores production (Calvo et al., 1999). 

Furthermore, linolenic acid and hydroxylinolenic acid have been reported to cause an increase in asexual 

spore production in A. nidulans, A. parasiticus and A. flavus (Calvo et al., 1999; Calvo et al., 2001). Another 

study by Xue et al. (2008) showed that colonization of soybean seed by C. kikuchii correlated with the ratio 

of oleic acid/linolenic acid. This leads to the plausible conclusion that compound C was possibly used by 

the plant to synthesize defensive oxylipins against the infection. Another possibility is that since this 

observation was made in the later stages of infection, i.e., mature lesions stage, compound A was used by 
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the pathogen to synthesize more spores for its dissemination in the leaves. It’s also probable to assume 

that both these scenarios might have occurred simultaneously, however, this study cannot provide 

evidence to distinguish which is true with certainty.  

Compound D was observed in the field trial maize leaves showing mature lesions and not in the control 

samples, suggesting it’s a pathogen or infection induced metabolite. The NIST 14 database search 

suggested that compound D had a 71.4 % similarity to 7,8-epoxylanostan-11-ol,3-acetoxy (Figure 3.47). 

Previously, 7,8-epoxylanostan-11-ol,3-acetoxy was identified in the methanol crude extract of Phyllanthus 

amarus, which exhibited antimicrobial effect against Pseudomonas aeruginosa and Staphylococcus aureus 

(Parker et al., 2009).  The compound was also identified in ethanolic extracts of Rhus muelleri which 

depicted an antimicrobial effect against Fusarium oxysorum f. sp. lycopersici (De Rodríguez et al., 2015). 

Interestingly, the same metabolite was also identified in an ethyl acetate extract of Trichoderma 

pseudokoningii (Khan and Javaid, 2020). The study by Khan and Javaid (2020) showed that T. 

pseudokoningii had an antagonistic effect against the growth of Macrophomina phaseolina, a soil-borne 

pathogen that affects various plants. It was suggested that 7,8-epoxylanostan-11-ol,3-acetoxy maybe be 

involved in this biocontrol effect (Khan and Javaid, 2020). Since the compound shares some similarities 

with 7,8-epoxylanostan-11-ol,3-acetoxy, it is possible that the observation made in the maize leaf samples 

from the glasshouse trial were influenced by grey leaf spot disease. It's also plausible to suggest that since 

compound D is found in the symptomatic samples only, it may be a pathogen metabolite released during 

the infection process. On the contrary, it may also be produced by the plant itself as a defense mechanism. 

Either way, this indicates that compound D may be a potentially significant biomarker in grey leaf spot 

diagnosis in maize leaves. 

Compound E had an 83.4 % similarity to methyl-5,11,14,17-eicosatetraenoate (Figure 3.48). 

Eicosapolyenoic acids are reported to be molecules that engage in plant signaling networks involved in 

fungal pathogen resistance. They trigger a response cascade in plants that includes transcriptional 

activation of phytoalexin synthesis genes, lignification, programmed cell death, and other hypersensitive 

responses against pathogens (Walley et al., 2013). A study by Ahmed et al. (2022) illustrated that 

methanolic extracts of Pleurospermum candollei containing methyl-5,11,14,17-eicosatetraenoate had 

antimicrobial effects. Since compound E has an 83.4 % similarity to methyl-5,11,14,17-eicosatetraenoate, 

it perhaps elicits similar antimicrobial effects on the fungal pathogen. However, in this study it was also 

observed that compound E was present in low concentrations in the inoculated glasshouse maize leaves 
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with mature lesions. This could mean that the increased concentration observed in the field trial samples 

could be the result of another metabolic process and not be a result of the fungal infection.  

The evidence from this study illustrates that grey leaf spot caused by C. zeina leaves a footprint in the 

metabolome of maize leaves. It alters the metabolomic fingerprint of the leaves by affecting specific 

metabolites within the metabolome. It possibly does this by triggering certain defensive secondary 

metabolites and/or inhibiting the expression of others in its path to full infection. These metabolite 

footprints were picked up by the metabolomic analyses techniques NMR and GCMS. Furthermore, the 

altered metabolites of interest shared similarities with reported secondary metabolites involved in plant 

defense signaling or pathogen attack mechanisms. This indicates the potential capability of these 

metabolites in providing clarity on the infection mechanism of grey leaf spot in maize and possibly acting 

as potential biomarkers in future grey leaf spot diagnosis. The differences in the metabolomic changes 

between the different treatments (field trial chlorotic spots and mature lesions, and the glasshouse 

samples with mature lesions) also provides a gateway into understanding the metabolomic changes at 

the different stages of infection as well as different degrees of infection. Conclusively, it was found that 

metabolic fingerprint and metabolomic analyses are considerably powerful tools in diagnosing and 

assessing grey leaf spot infection in maize caused by C. zeina.  
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4. The Use of Metabolomical Analyses 

To Diagnose The Effect of 

Fumonisin-Producing Fusarium 

Verticillioides On Vigna Unguiculata 

(Cowpea) 
 

4.1 Introduction 
Cowpea (Vigna unguiculata (L.) Walp.)  also falls victim to fumonisins produced by Fusarium verticillioides 

as indicated by Kritzinger et al. (2003)  and Kotze et al. (2016). Through the production of fumonisins, the 

fungus can cause necrosis and systemically disrupt the functions of the plant in its early stages thus 

hindering the plant’s proliferation (Kamle et al., 2019).  Fumonisins are  structural analogs of sphinganine 

and sphingosine which are precursors in the production of sphingolipids  (Merrill et al., 2001; Zeng et al., 

2020). Sphingolipids carry out an array of functions necessary for the growth and proliferation of various 

eukaryotic organisms (Michaelson et al., 2016). It was discovered that the disease symptoms observed in 

plants contaminated with fumonisins were a result of changes in the level of various bioactive lipids and 

related biosynthetic processes (Zeng et al., 2020). Baldwin et al. (2014) carried out a study that indicated 

that FB1 produced by F. verticilloides in maize roots could be transported to the leaves through 

transpiration mediated bulk flow without the fungi colonizing the leaves, causing disruption in leaf 

proliferation. This implies that it is possible to observe the effect of F. verticilloides in the leaves without 

detecting the fungus itself. This brings forth a challenge in diagnosing such a pathogen as it is possible that 

the site of infection and site of effect are spatially separated.  

Cowpea has developed means to curb and control the effect of a causative pathogen primarily using 

secondary metabolites. An example is by using reactive oxygen species (ROS) catalysed by the enzyme 

peroxidase (Bhagat and Chakraborty, 1970). ROS oxidises hydroxy cinnamyl alcohols into free radical 

intermediates that play various roles in directly or indirectly reducing fungal pathogen viability and spread 

in cowpea (Passardi et al., 2005). A study done by Nandi et al. (2013) on the biochemical responses of 

cowpea infected with Sclerotium rofsii indicated an increase in peroxidase activity three days post 
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inoculation.  It also showed enhanced activity of polyphenol oxidase, which produces polyphenols and 

quinones that inhibit the activity of the pathogen’s extracellular enzymes and triggers signals for the 

adjacent unaffected cells (Nandi et al., 2013). It has been reported that peroxidases and polyphenol 

oxidases play a vital role in strengthening the cell wall barrier thus restricting pathogen entry into the 

plant cells (Bruce and West, 1989).  

Phenyl ammonia lyase, which is involved in phenyl propanoid metabolism is used by cowpea in the 

production of flavonoid phytoalexins, which they use as antimicrobial molecules (Nandi et al., 2013). Xue 

et al. (1998) reported that in an effort to resist Rhizoctonia sp. infection, bean (Phaseolus vulgaris L.) plants 

produce pathogenenesis related proteins of β-1,3-glucanases and chitinases involved in the hydrolysis of 

β-1,3-glucans, and chitin respectively, which are vital components of fungal cell walls. Nandi et al. (2013) 

also observed an enhanced activity of these two enzymes in cowpea inoculated with S. rofsii.  

The metabolomic changes of cowpea due to soil-borne pathogens have not been significantly explored. 

Kotze et al. (2016) showed that fumonisins produced by F. verticillioides have a significant impact on the 

growth and development of cowpea. However, little information is available on the specific metabolomic 

changes to the various parts of the plant. It has already been reported that both fumonisins and F. 

verticillioides conidia can translocate from the roots and elicit their effect in the leaves (Baldwin et al., 

2014). This study aims to build on the work done by  Kotze et al. (2016) by assessing the metabolomical 

changes that occur in cowpea leaves due to  fumonisin-producing F. verticillioides, to better understand 

the negative effect on plant growth and development.  

4.2 Aim 
The aim of this study was to determine if metabolomical analyses can be used in diagnosing a systemic 

effect in cowpea after inoculation with a fumonisin-producing Fusarium verticillioides isolate. This was done 

by artificially inoculating the seeds and analysing the metabolomic profile of the leaves. The latter was 

achieved by imploring two main strategies i.e., metabolomic fingerprinting using Nuclear Magnetic 

Resonance (NMR) analysis and biomarker target analyses using Gas Chromatography coupled with Mass 

Spectrometry (GCMS). The objectives were to identify any metabolic changes that may occur in the cowpea 

leaf metabolome due to the infection and to identify potential biomarker metabolites that may be uniquely 

associated with F. verticillioides infection in cowpea. This would provide a gateway to understanding the 

systemic effect of fumonisins in cowpea leaves and possibly assist in early diagnosis leading to the 

development of early control measures. 
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4.3 Materials and Methods 

4.3.1 Cowpea Phytotron Trial 
Cowpea seeds (Bets Wit cultivar) were obtained from Barenbrug South Africa (Pty) Ltd, Pyramid, Pretoria, 

South Africa. Fusarium verticillioides strain MRC 8265 (Gelderblom et al., 1988) was sub-cultured from 

15% glycerol stocks stored at -80 oC. This strain is known to produce fumonisins. The stocks were 

transferred aseptically onto Petri dishes containing potato carrot agar (PCA) and incubated in the dark at 

25 oC for a period of 14 days. Thereafter, further subculturing was carried out to bulk up the pathogen 

and the Petri dishes were also incubated. Sterilized 0.02 % Tween solution was added to four-week-old 

cultures and a laboratory “hockey stick” was used to detach the conidia into the solution. The resultant 

conidial suspension was transferred to a 50 ml falcon tube. The conidial suspensions were adjusted to a 

concentration of 1x106 conidia/ml using a haemocytometer.  

Seed treatment was carried out according to the protocol by Kotze et al. (2016).  Cowpea seeds were 

surface disinfected in 1% sodium hypochlorite, rinsed thrice with sterile distilled water and left to dry on 

a sterile paper towel in a laminar floor for 10 mins. The dried seeds were imbibed in the F. verticillioides 

conidia suspension using a disinfected falcon tube for 4 hrs and placed on a sterile paper towel in the 

laminar floor to dry for 10 mins. The control seeds were imbibed in 0.02 % Tween solution alone for the 

same duration and dried along with the inoculated seeds. The dried seeds were planted in plastic pots (10 

cm diameter and 8.5 cm height) containing sterilized University of Pretoria obtained compost soil, . The 

inoculated and control samples comprised of six replicates with three seeds in each pot (6 pots x 3 seeds 

each). The pots were placed in a phytotron at the Plant Sciences Complex, in the Department of Plant and 

Soil Science set to 25 oC with a 16 hr light and 8 hr dark cycle at 80 % humidity.  

Some seedlings were thinned, and the remainder were left to grow in the phytotron, where they were 

watered every two days until run off to keep the soil moist. Throughout the growth period several 

morphological observations such as germination rate, leaf size and colour were made. Approximately 10 

weeks after planting all the leaves from each plant (both inoculated and control) were collected, placed 

in a brown bag and frozen over night at -80 oC. Thereafter, the frozen leaves were placed in a Virtis freeze-

drier (SP Scientific, USA) in order to remove all the moisture. Freeze-dried material was then used for 

subsequent metabolite extraction and analyses. 

4.3.2 Metabolite Extraction  
The dried cowpea leaves were placed in a Büchi E-916 speed-extractor (Büchi E-916, Switzerland) for 

crude metabolite extraction using distilled methanol. The extraction parameters were set as follows: Dried 
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cowpea leaves were placed in 10 ml stainless steel tubes; the pressure set at 100 bar and temperature at 

50 oC. Each extraction consisted of four cycles, with each one consisting of a 1 min heating phase, 9 mins 

solvent holding phase, and a discharge phase of 5 mins. A nitrogen gas purge was performed for 8 min at 

the end and the total extraction time was 1 hr and 32 mins. The extracts were dried using a Büchi Genevac 

(EZ-2 plus, England) at 40 oC, using the methanol protocol and dry extract masses were obtained. The 

chemical analyses techniques implored for analysing the metabolomic changes due to F. verticillioides 

were GCMS and NMR.  

4.3.3 1H Nuclear Magnetic Resonance (NMR) Analysis 
The cowpea leaf crude extracts from inoculated and uninoculated treatments were subjected to proton 

NMR (1H NMR) analysis using an Oxford 200 MHz NMR instrument (Varian Incorporated, USA). This was 

done to analyse the cowpea leaves’ metabolic fingerprint and metabolomical changes due to F. 

verticillioides infection and possible fumonisin contamination. A solution of 25 mg/ml was prepared from 

the crude extract using 80 % deuterated methanol and 20 % potassium phosphate buffer. Maleic acid (2 

mg) was used as an internal standard. From the solution, 700 μl were transferred to a clean NMR glass 

tube which was placed in the NMR machine.  The NMR parameters were set as follows: 512 scans were 

carried out on the sample consisting of 11 976 data points, an acquisition time of 2 seconds per scan and 

manual magnetic shimming was done for each individual sample. The obtained sample spectra were 

processed, analysed and compared using MestReNova (Mnova) version 14 (Mestrelab Research, Spain). 

The spectra’s numerical data was exported to SIMCA-P version 14.1 (Sartorius Stedim Data Analytics AB, 

Sweden) for multivariate statistical analysis. Multivariate analysis provided principal component analysis 

plot (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). PCA plots 

provide unsupervised data comparison of all samples while OPLS-DA plots provide supervised or sample 

group comparisons. This was done to establish a correlation between systemic F. verticillioides infection 

and observed cowpea metabolomic changes.   

4.3.4 Gas Chromatography Mass Spectrometry (GCMS) Analysis 

Cowpea leaf crude extracts from inoculated and uninoculated treatments were subjected to GCMS 

analysis in a Shimadzu GCMS-QP2010 SE instrument (Shimadzu Corporation, Japan). This was done to 

analyse the cowpea metabolic and metabolomic profile post F. verticillioides inoculation. These analyses 

were also aimed at identifying individual volatile metabolites’ concentration change in cowpea due to F. 

verticillioides inoculation that can be used as potential biomarkers for infection diagnosis.   
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A solution of 1 mg/ml was prepared from the crude extract using distilled methanol and 1 ml was 

transferred to a GCMS glass vial. The samples were loaded on to the column using an AOC-20i+s auto-

sampler. Compounds were separated in a Rtx- 5MS capillary column with dimensions of 29.3 m x 0.26 μm 

and a thickness of 0.25 μm. Splitless injections of 1 μl were preformed using an AOC-20i+s and the 

temperature for both the injector and detector were set at 270 oC. The oven was programmed at an initial 

temperature of 50 oC which was held for 2 min and thereafter the temperature was increased to 300 °C 

at a rate of 10 oC per min and it was held for 5 min making the total run time 32 min.  

The acquisition for mass spectra was set at a mass range of 50.0 to 600.0 m/z. The chromatograms were 

analysed using the Shimadzu post-run analysis software and Mnova. Multivariate statistical analysis was 

also carried out in SIMCA-P. This was done to establish a correlation between systemic F. verticillioides 

infection and observed cowpea metabolomic changes. Numerical data of key metabolites identified as 

potential biomarkers from the chromatogram were exported to Microsoft Excel (Microsoft Corporation, 

USA) for further statistical analysis.  

4.4 Results 

4.4.1 Effect of Artificial Inoculation of Cowpea Seed with F. Verticillioides on 

Emergence and Growth. 
All the seeds emerged around the same time thus no definitive correlation could be associated between 

F. verticillioides inoculation and rate of emergence.  Once emerged, the cowpea seedlings were left to 

proliferate under observation for any further distinguishable phenotypic symptoms. The initial difference 

observed approximately 21 dap was that the inoculated seedlings had smaller leaves. This symptomatic 

trait became more noticeable at V5 growth stage (five fully emerged leaf pairs with leaf collars). 

Furthermore, around 42 dap the inoculated seedlings appeared to portray stunted growth when 

compared to the control plants. This became more and more evident as the growth progressed until the 

trial was concluded 10 weeks after planting. This led to a generalized possible conclusion that F. 

verticillioides seed inoculation does affect cowpea growth by prohibiting plant foliar and apical growth as 

highlighted in Figure 4.1.  Moreover, after drying the leaves in the freeze drier, the dry mass recorded 

indicated that the average mass of inoculated leaf samples was lower than the dry mass of the control 

leaf samples (Table 1 and Figure 4.2). However, statistical analysis showed that the dry mass difference 

between the samples was not significant.  
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Figure 4.1: Cowpea plants showing the growth differences between the plants from seeds inoculated with F. 
verticillioides and control plants at 42 dap. 

 

Figure 4.2: Dry mass of all cowpea leaf samples and the accompanying mass average for inoculated plants and 
the control (uninoculated) plants. 

 

 

 

 

 

 

Average mass 

(inoculated) = 884.76 mg 

Average mass      

(control) = 1286.38 mg 

α = 0.05 

p > 0.05 
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Table 4.1: Dry masses and metabolite extract masses of cowpea plants from seeds inoculated with F. 
verticillioides and their accompanying controls. 

Cowpea Sample Dry Mass (mg) Extract Mass (mg) 

Inoculated 1 273.6 82.5 

Inoculated 2 953.0 224.7 

Inoculated 3 1333.2 973.1 

Inoculated 4 716.5 169.5 

Inoculated 5 887.5 259.0 

Control 1 550.4 149.4 

Control 2 814.6 258.8 

Control 3 1785.6 374.4 

Control 4 1583.7 412.8 

Control 5 1697.6 358.4 

 

4.4.2 1H Nuclear Magnetic Resonance (NMR) Results 
The leaf extracts were analysed on a 1H NMR to assess the possible systemic effect of F. verticillioides 

infection on the cowpea metabolomic fingerprint. NMR spectra comparison was done in Mnova by 

stacking the treated and control samples’ spectra.  The spectra did not show any definitive differences 

between the inoculated and control samples (Figure 4.3). This observation suggests that cowpea seed 

inoculation with F. verticillioides had little to no influence on the metabolomic fingerprint of cowpea 

leaves according to NMR analysis, which is much less sensitive than GCMS analysis. The cowpea leaf 

extracts NMR spectra’s numerical data was obtained (binned) and subjected to multivariate statistical 

analysis to establish a possible correlation between F. verticillioides inoculation and a metabolomic 

change in cowpea leaves. The unsupervised PCA score plot in Figure 4.4 (A) showed no clear separation 

between the samples.  Though statistical values of the PCA plot (Q2 and R2) were good, the lack of 

separation between the sample sets led to an inconclusive resolve in determining the implications of F. 

verticillioides on the cowpea leaf metabolome. Furthermore, the supervised OPLS-DA plot (Figure 4.4 B) 

which accounts for the two sample groups, also showed no separation between the inoculated and the 

control samples. The negative Q2 statistical value further cements the suggestion that the leaf 

metabolome did not provide a definitive indication of the impact F. verticillioides has on cowpea, as 

determined by 1H NMR analysis.  
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Figure 4.3: Stacked 1H NMR spectra of cowpea leaf extracts from cowpea seeds inoculated with F. verticillioides and accompanying control samples. No 
definitive spectra differences were observed between the two sets of samples. The solvent (methanol) and internal standard (maleic acid) peaks were 
removed from the NMR spectra.

chemical shift (ppm) 
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Figure 4.4: (A) 1H NMR PCA score plot of cowpea leaf extracts from cowpea seeds inoculated with F. 
verticillioides and accompanying controls. No definitive separation between the two sample sets. Multivariate 
statistical values: Q2 = 0.65; R2X = 0.82. (B) 1H NMR OPLS-DA Score plot of cowpea leaf extracts from cowpea 
seeds inoculated with F. verticillioides and accompanying controls. No definitive separation between the two 
sample sets. Multivariate statistical values: Q2 = -0.49; R2X = 0.69, R2Y = 0.54. 
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4.4.3 Gas Chromatography Mass Spectrometry (GCMS) Results 
The cowpea crude leaf extracts were also subjected to GCMS analysis to assess the effect of F. 

verticillioides on individual metabolites in cowpea leaves. This would potentially lead to the identification 

of infection related biomarkers that may be used in future F. verticillioides infection diagnosis.  

The chromatograms of all samples of leaves inoculated with F. verticillioides  were stacked for comparison 

in Mnova (Figure 4.5).  Several metabolite differences were observed between the two sample sets. The 

first metabolite difference was observed at retention time 27.35 mins. The peak intensity of the 

metabolite was observed to be higher in the inoculated samples as shown in Figure 4.6. Statistical analysis 

of the chromatogram's numerical data (Figure 4.7) indicated a significant increase in the concentration of 

this compound in the inoculated samples. This metabolite was named Metabolite A, due to the identity 

being unknown.   

Another distinguishing observation in the chromatogram was observed at 29.65 mins. rt (Figure 4.8). The 

metabolite was present at a considerably larger concentration in the inoculated cowpea samples and in 

trace amounts to almost absent in the control cowpea samples. This indicated evidence of a potentially F. 

verticillioides triggered metabolite concentration increase in cowpea leaves. Statistical analysis of the 

numerical data indicated the margin of difference of the metabolite between the two sample sets, 

illustrating its significance (Figure 4.9). The metabolite obtained was named Metabolite B.  

Subsequently, at retention time 30.95 mins another distinguishing observation was made but different 

from the previous observations (Figure 4.10). The specific metabolite peak intensity was considerably 

lower in the inoculated cowpea samples indicating a metabolite concentration decrease post inoculation. 

However, statistical analysis of the chromatogram numerical data indicated that the margin of difference 

of the metabolite between the sample sets, though considerable, was not significant (Figure 4.11). The 

metabolite was named Metabolite C.  
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Figure 4.5: Stacked GCMS chromatograms of leaf extracts samples with chlorotic spots and their accompanying 
controls. At first glance, no clear definitive metabolite differences were observed in the chromatograms of the 
leaves with chlorotic spots and the asymptomatic controls. 

 

Figure 4.6: Expanded chromatogram region showing a metabolite concentration change observed in the cowpea 
leaf extracts from inoculated cowpea seeds at retention time 27.35 mins. (red box) identified as a potential 
pathogen related biomarker. The metabolite concentration (peak intensity) is higher in the inoculated samples 
than in the control samples. 
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Figure 4.7: Statistical analysis of the concentration of metabolite A in the cowpea leaf extracts from inoculated 
cowpea seeds and their control (α = 0.05). Average metabolite concentration difference of metabolite A between 
the inoculated and controls was significant, p-value < 0.05. 

 

Figure 4.8: Expanded chromatogram region showing a metabolite concentration change observed in the cowpea 
leaf extracts from inoculated cowpea seeds at retention time 29.6 mins. (red box) identified as a potential 
pathogen related biomarker. The metabolite concentration (peak intensity) is higher in the inoculated samples 
than in the control samples. 
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Figure 4.9: Statistical analysis of the concentration of metabolite B in the cowpea leaf extracts from inoculated 
cowpea seeds and their control (α = 0.05). Average metabolite concentration difference of metabolite B between 
the inoculated and controls was significant, p-value < 0.05. 

 

Figure 4.10: Expanded chromatogram region showing a metabolite concentration change observed in the 
cowpea leaf extracts from inoculated cowpea seeds at 30.95 mins. (red box) identified as a potential pathogen 
related biomarker. The metabolite concentration (peak intensity) is lower in the inoculated samples than in the 
controls. 
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Figure 4.11: Statistical analysis of the concentration of metabolite C in the cowpea leaf extracts from inoculated 
cowpea seeds and their control (α = 0.05). The average metabolite concentration difference of metabolite C 
between the inoculated and controls was not significant, p-value > 0.05. 

The cowpea leaf extracts chromatograms' numerical data was further subjected to multivariate statistical 

analysis to determine the possible correlation between F. verticillioides inoculation and change in the 

metabolomic profile in cowpea leaves. The unsupervised PCA plot (Figure 4.12 A) showed some separation 

between the two sample sets, though not definitive, solely based on each sample’s individual GCMS 

chromatogram. This indicated that F. verticillioides inoculation had a certain degree of influence on the 

cowpea metabolomic profile that caused the slight observed distinction between the sample sets. 

However, the statistical value, Q2 was very low suggesting that the model could not be used to definitively 

diagnose unknown cowpea leaf samples inoculated with F. verticillioides under similar premises. The 

supervised OPLS-DA plot, which compares the average metabolomic profiles of the replicates within a set, 

highlighted clear separation between the two sample sets (Figure 4.12 B). This highlighted a clear 

distinction in the metabolic profiles of the F. verticillioides inoculated cowpea samples and the 

uninoculated cowpea samples. Furthermore, this suggests that F. verticillioides had a considerable 

influence on the metabolomic profile of cowpea samples creating a notable distinction from the 

untampered metabolomic profile in the uninoculated samples. The statistical values indicated that the 

data model could be reliably used to predict or diagnose unknown cowpea leaf samples inoculated with 

F. verticillioides under similar premises. Moreover, it establishes a correlation between F. verticillioides 

inoculation and the observed change in the cowpea leaf metabolome.  
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The mass spectra of the identified potential biomarkers were run through NIST 14 database to check for 

similarities to known compounds based on their MS fragmentation patterns (summarized in table 4.2). 

Based on the database it was suggested that metabolite A shared similarities with 1,3-dimethoxypropan-

2-yl palmitate (Figure 4.13), metabolite B shared similarities to butyl-9,12,15-octadecatrienoate (Figure 

4.14), and metabolite C methyl-5,11,14,17, eicosatretranoate (Figure 3.15). 
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Figure 4.12: (A) GCMS chromatogram PCA score plot of cowpea leaf extracts from cowpea seeds inoculated with 
F. verticillioides and accompanying controls. Clear separation of the mature lesions and control samples was 
observed. Multivariate statistical values: Q2 = 0.01; R2X = 0.64. (B) GCMS chromatogram OPLS-DA score plot of 
cowpea leaf extracts from cowpea seeds inoculated with F. verticillioides and accompanying controls. Definitive 
separation of the two sample sets was observed. Multivariate statistical values Q2 = 0.90; R2X = 0.92, R2Y = 1. 
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Table 4.2: Identified potential biomarkers associated with cowpea leaves after seed inoculation with F. 
verticillioides with suggested matches from the NIST 14 database (α = 0.05). 

Potential 

Biomarker 

Chromatogram retention 

time (mins.) 

Observation Suggested compound match 

and their similarity index (SI) 

Metabolite A 27.38 

p < 0.05 

Higher concentration in 

inoculated samples 

1,3-Dimethoxypropan-2-yl 

palmitate 

SI = 63.9 

(See Figure 4.13) 

Metabolite B 29.64 

p < 0.05 

Present predominantly in 

inoculated samples only 

Butyl-9,12,15-

octadecatrienoate 

SI = 73.0 

(See Figure 4.14) 

Metabolite C 30.95 

p> 0.05 

Lower concentration in 

inoculated samples. 

Methyl-5,11,14,17, 

eicosatretranoate 

SI = 81.7 

(See Figure 4.15) 
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Figure 4.13: Suggested match for metabolite A based on MS spectrum comparison in NIST 14 database. The MS 
fragments of the unknown metabolite are in red and the MS fragments for 1,3 dimethoxypropan-2-yl palmitate 
are blue. 

 

Figure 4.14: Suggested match for metabolite B based on MS spectrum comparison in NIST 14 database. The MS 
fragments of the unknown metabolite are in red and the MS fragments for butyl-9,12,15-octadecatrienoate are 
blue. 
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Figure 4.15: Suggested match for metabolite C based on MS spectrum comparison in NIST 14 database. The MS 
fragments of the unknown metabolite are in red and the MS fragments for methyl-5,11,14,17- eicosatretranoate 
are blue. 

4.5 Discussion 
This study was aimed at assessing the efficacy of metabolomical analyses in diagnosing systemic cowpea 

infection following inoculation of the seed by an fumonisin-producing F. verticillioides strain. The trial 

showed that inoculated plants were smaller than the uninoculated plants, but the dry masses didn't differ 

significantly. The average dry mass of the leaves from the inoculated samples was lower than the control 

leaf samples Though this difference was deemed statistically not significant the general observed trend 

indicated that inoculated samples had a decreased mass. These results correlate with the results obtained 

by Kotze et al. (2016) who observed that cowpea seeds inoculated with F. verticillioides (strains: MRC 

8265, 8271, 8272) yielded plants with stunted growth compared to uninoculated plants.  As mentioned 

earlier, FB1 is a structural analog of sphinganine and sphingosine (Figure 2.8), which are precursors in 

ceramide biosynthesis (Merrill et al., 2001; Zeng et al., 2020). Sphingolipids carry out functions that 

include acting as structural components for the plasma membrane and endomembrane systems, 

secondary messengers and bioactive molecules for plant cell signaling for development, stress response 

(biotic and abiotic) and programmed cell death (apoptosis) (Zeng et al., 2020). Kritzinger et al. (2006) 

discovered that cowpea seeds artificially treated with varying concentrations of FB1 had decreased seed 

germination. Transmission electron microscopy (TEM) demonstrated that FB1 led to the plasma 

membrane being separated from the cell wall, formation of irregular sized vacuoles and abundance of 
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lipid bodies next to the cell wall (Kritzinger et al., 2006). It has also been widely reported that F. 

verticillioides through FB1 affects the lipid biosynthesis pathway thus affecting the plant growth (Williams 

et al., 2007). It has also been reported that FB1 inhibits H+ ATPase thus affecting ATP production, a vital 

component of plant metabolism (Gutiérrez-Nájera et al., 2005). Studies have indicated that fumonisins 

disrupt cell functions of the plant in the early development stage that’s hindering the plant’s growth (Zeng 

et al., 2020). 

To analyse the systemic impact of F. verticillioides inoculation on cowpea leaves, metabolomic fingerprints 

of the leaf extracts were analysed using 1H NMR and GCMS. The NMR spectra showed no difference 

between the inoculated and uninoculated cowpea leaf samples. This suggests that systemically, F. 

verticillioides has little to no effect on the metabolomic fingerprint of cowpea leaves. Another reason may 

be that the metabolite differences were in minute quantities that could not be detected by the NMR 

instrument (Nagana Gowda and Raftery, 2021). The leaf extracts were further subjected to GCMS analysis 

to identify leaf metabolites that may be impacted by F. verticillioides seed inoculation, that may be 

potential biomarkers in diagnosing F. verticillioides infection. There were several differences between the 

chromatograms of the inoculated samples and the uninoculated samples. The most definitive differences 

identified were at retention times 27.38, 29.64 and 30.95 mins. Due to their unknown identities, they 

were named metabolites A, B and C, respectively. The mass spectrum for these metabolites were obtained 

and a possible match was obtained in the NIST 14 database (summarized in Table 4.2).  

According to the database, metabolite A was 63.9 % similar to 1,3-dimethoxypropan-2-yl palmitate, 

metabolite B was 73.0 % similar to butyl-9,12,15-octadecatrienoate, and metabolite C was 81.7 % similar 

to methyl-5,11,14,17-eicosatretranoate. 1,3-dimethoxypropan-2-yl palmitate is a palmitic acid derivative, 

an important fatty acid involved in fatty acid synthesis and lipid oxidation (David et al., 2020). A study by 

Ma et al. (2021) showed that palmitic acid had inhibitory effects on mycelial growth and spore production 

of Fusarium oxysporum f.sp. niveum, a soil-borne fungus that infects watermelon (Citrullus lanatus). 

Studies have shown that palmitic acid has antioxidant and anti-inflammatory effects (Arora & Kumar, 

2017; Kadhim et al., 2017). Since metabolite A shares some similarity with 1,3-dimethoxypropan-2-yl 

palmitate, it may also have the same effect as the compound detected in cowpea leaves. Therefore, it is 

possible that it has the same antifungal effect as 1,3-dimethoxypropan-2-yl palmitate, leading to the 

observed increase in expression in the inoculated leaf samples. Hence, the observed increase in its 

expression in the inoculated samples.  Furthermore, this also suggests that it is a F. verticillioides triggered 

metabolite, indicating the systemic impact of this pathogen in altering the leaf metabolome of cowpea. 
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Butyl-9,12,15-octadecatrienoate is a derivative of 9,12,15-octadecatrienoic acid or alpha-linolenic acid, a 

vital fatty acid in plant defense signaling (Xue et al., 2008). Alpha-linolenic is a precursor for phyto-oxylipin 

biosynthesis, which is vital for plant's cell signaling during pathogen invasion (Upchurch, 2008). Oxylipins 

are produced when polyunsaturated fatty acids undergo autoxidation or enzymatic oxidation to produce 

phytohormones such as jasmonic acid (Lim et al., 2017). Studies have shown that linolenic acid plays a 

role in seed colonization and mycotoxin production by Aspergillus spp. (Lim et al., 2017). Calvo et al. (1999) 

observed that linolenic acid and its derivative hydroxylinolenic acid caused an increase in the asexual 

production of spores in A. nidulans, A. parasiticus and A. flavus (Calvo et al., 1999; Calvo et al., 2001). 

Studies have further suggested that linolenic acid plays a role in signaling conidiation in A. parasiticus 

(Upchurch, 2008). Another study by Xue et al. (2008) indicated that colonization of soybean (Glycine max) 

seed by Cercospora kikuchii led to a decrease in the plant levels of linoleic acid.  In this study it was 

observed that metabolite B was predominantly expressed only in the inoculated cowpea samples. 

Furthermore, the database suggested that it shares similarities with butyl-9,12,15-octadecatrienoate, a 

derivative of alpha linolenic acid. It is plausible to assume that it may also share similar activity with the 

suggested compound. Thus metabolite B may be defense signaling molecule that was upregulated in 

response to F. verticillioides infection in cowpea; hence the observed increase in concentration in the 

inoculated samples. Another possibility is that since metabolite B shares similarities to a derivative of 

alpha-linolenic acid, it may be a byproduct in linolenic acid metabolism by F. verticillioides during 

conidiation in cowpea. Based on this observation, it is plausible to suggest that metabolite B expression 

could possibly have been triggered by F. verticillioides.  

Methyl-5,11,14,17-eicosatetraenoate is an eicosapolyenoic acid, a group of fatty acids involved in 

signaling immune responses in plants (Walley et al., 2013). These compounds may serve as plant defense 

signaling molecules that induce resistance to pathogens during early infection stages (Bostock et al., 

2011). This will trigger the activation of phytoalexin synthesis genes, hypersensitive responses against 

pathogens and lignification (Walley et al., 2013). Studies have also indicated that methyl-5,11,14,17-

eicosatetraenoate has an antimicrobial effect (Ahmed et al., 2022). Since metabolite C shares similarities 

with methyl-5,11,14,17-eicosatetraenoate, it is plausible that it shares similar signaling activities with the 

compound. However, in this study it was observed that metabolite C expression was decreased in the 

inoculated samples. This contradicts the expected observation because if it has signaling properties, it 

should be upregulated upon pathogen infection. However, studies have shown that some fungi release 

toxins that target the plant’s signaling mechanisms thus weakening the plant’s defense (Wang et al., 

2014). Thus, it’s possible that F. verticillioides hindered the expression of metabolite C to improve its 
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colonization in the cowpea leaves. Additionally, this is another possible indication of F. verticillioides 

triggered metabolome change in cowpea leaves.  

Most of the suggested matches from the database were long chain carbon lipid-based molecules. 

Fusarium verticillioides elicits its effect through fumonisins, the most prominent being FB1 (Blacutt et al., 

2018). It has been widely reported that fumonisins disrupt the sphingolipid biosynthesis pathway (Riley 

and Merrill, 2019). This leads to the alteration in the levels of various bioactive lipids and associated 

processes (Zeng et al., 2020).  Sphingolipids play an important role as secondary messengers in plant 

response to biotic stress, thus perturbation in their synthesis affects the signal transduction route in 

plants, causing the plant to be more susceptible to pathogen invasion (Beccaccioli et al., 2021). FB1 is a 

structural analog of sphinganine and sphingosine, used in ceramide biosynthesis (Merrill et al., 2001). It 

competitively inhibits ceramide synthase and this leads to an accumulation of the precursors that were 

meant to partake in the biosynthesis process (Zeng et al., 2020). It is possible that the upregulated 

metabolites (metabolite A and B) observed in the inoculated samples were precursors to the biosynthetic 

pathway blocked by FB1 produced by F. verticillioides. Additionally, the database suggests that they 

contain long carbon chains, and these are attributes of lipid biosynthesis precursors.  

The results from this study illustrate that seed infection of cowpea by a fumonisin-producing F. 

verticillioides isolate causes a systemic change to the metabolome of the plant as observed by the 

metabolite changes in the leaves.  This corresponds to the discovery by Baldwin et al. (2014) that indicated 

that FB1 produced by F. verticilloides in the roots could be transported to the leaves through transpiration 

mediated bulk flow without the fungi colonizing the leaves, causing disruption in leaf proliferation. 

Furthermore, the study highlighted the proficiency of metabolomic profiling in detecting the systemic 

metabolite changes elicited by F. verticillioides. This Illustrates the capabilities of metabolomical analyses 

in diagnosing systemic F. verticillioides infection where the site of infection and the site of effect are in 

different plant organs. Three inoculation-related potential biomarkers where identified and further 

analysis could assert these as F. verticillioides infection biomarkers, which could prove useful in the future 

diagnosis of F. verticillioides infection. Thus, it can be concluded that metabolomic analyses is an effective 

tool in the systemic diagnosis of F. verticillioides infection in cowpea. Additionally, it is possibly a powerful 

tool in understanding systemic metabolomic changes caused by F. verticillioides (fumonisins) cowpea 

infection and its associated impact on lipid metabolism in plants. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

111 
 

4.6 References 
Ahmed, M., Khan, K.-R., Ahmad, S., Aati, H.Y., Ovatlarnporn, C., Rehman, M.S., Javed, T., Khursheed, A., 

Ghalloo, B.A., Dilshad, R., Anwar, M., 2022. Comprehensive phytochemical profiling, biological 
activities, and molecular docking studies of pleurospermum candollei: An insight into potential for 
natural products development. Molecules 27, 4113. https://doi.org/10.3390/molecules27134113 

Arora, S., Kumar, G., 2017. Gas Chromatography-Mass Spectrometry ( GC-MS ) determination of 
bioactive constituents from the methanolic and ethyl acetate extract of Cenchrus setigerus Vahl ( 
Poaceae ) 6, 635–640. 

Baldwin, T.T., Zitomer, N.C., Mitchell, T.R., Zimeri, A.M., Bacon, C.W., Riley, R.T., Glenn, A.E., 2014. Maize 
seedling blight induced by Fusarium verticillioides: Accumulation of fumonisin B1 in leaves without 
colonization of the leaves. J. Agric. Food Chem. 62, 2118–2125. 
https://doi.org/10.1021/JF5001106/ASSET/IMAGES/LARGE/JF-2014-001106_0007.JPEG 

Beccaccioli, M., Salustri, M., Scala, V., Ludovici, M., Cacciotti, A., D’angeli, S., Brown, D.W., Reverberi, M., 
2021. The effect of Fusarium verticillioides fumonisins on fatty acids, sphingolipids, and oxylipins in 
maize germlings. Int. J. Mol. Sci. 22, 1–17. https://doi.org/10.3390/IJMS22052435 

Bhagat, I., Chakraborty, B., 1970. Defense response triggered by Sclerotium rolfsii in tea plants. Ecoprint 
An Int. J. Ecol. 17, 69–76. https://doi.org/10.3126/ECO.V17I0.4119 

Blacutt, A.A., Gold, S.E., Voss, K.A., Gao, M., Glenn, A.E., 2018. Fusarium verticillioides : Advancements in 
understanding the toxicity , virulence , and niche adaptations of a model Mycotoxigenic pathogen 
of maize 312–326. 

Bostock, R.M., Savchenko, T., Lazarus, C., Dehesh, K., 2011. Plant signaling & behavior eicosapolyenoic 
acids novel MAMPs with reciprocal effect on oomycete-plant defense signaling networks. 
https://doi.org/10.4161/psb.6.4.14782 

Bruce, R.J., West, C.A., 1989. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic 
fragments in suspension cultures of castor bean. Plant Physiol. 91, 889–897. 
https://doi.org/10.1104/PP.91.3.889 

Calvo, A.M., Gardner, H.W., Keller, N.P., 2001. Genetic connection between fatty acid metabolism and 
sporulation in Aspergillus nidulans. J. Biol. Chem. 276, 25766–25774. 
https://doi.org/10.1074/JBC.M100732200 

Calvo, A.M., Hinze, L.L., Gardner, H.W., Keller, N.P., 1999. Sporogenic effect of polyunsaturated fatty 
acids on development of Aspergillus spp. Appl. Environ. Microbiol. 65, 3668–3673. 
https://doi.org/10.1128/AEM.65.8.3668-3673.1999 

David, L., Kang, J., Dufresne, D., Zhu, D., Chen, S., 2020. Multi-omics revealed molecular mechanisms 
underlying guard cell systemic acquired resistance. Int. J. Mol. Sci. 22, 1–22. 
https://doi.org/10.3390/IJMS22010191 

Gelderblom, W.C., Jaskiewicz, K., Marasas, W.F., Thiel, P.G., Horak, R.M., Vleggaar, R., Kriek, N.P., 1988. 
Fumonisins--novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. 
Appl. Environ. Microbiol. 54. 

Gutiérrez-Nájera, N., Muñoz-Clares, R.A., Palacios-Bahena, S., Ramírez, J., Sánchez-Nieto, S., Plasencia, J., 
Gavilanes-Ruíz, M., 2005. Fumonisin B1, a sphingoid toxin, is a potent inhibitor of the plasma 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

112 
 

membrane H+-ATPase. Planta 221, 589–596. https://doi.org/10.1007/S00425-004-1469-1 

Kadhim, M.J., Al-rubaye, A.F., Hameed, I.H., 2017. Determination of bioactive compounds of methanolic 
extract of Vitis vinifera determination of bioactive compounds of methanolic extract of Vitis 
vinifera using GC-MS. Int. J. Toxicol. Pharmacol. Res. 9, 113–126. 
https://doi.org/10.25258/ijtpr.v9i02.9047 

Kamle, M., Mahato, D.K., Devi, S., Lee, K.E., Kang, S.G., Kumar, P., 2019. Fumonisins: Impact on 
agriculture, food, and human health and their management strategies. Toxins 2019, Vol. 11, Page 
328 11, 328. https://doi.org/10.3390/TOXINS11060328 

Kotze, R.G., Crampton, B.G., Kritzinger, Q., 2016. Effect of fumonisin B 1 on the emergence , growth and 
ceramide synthase gene expression of cowpea ( Vigna unguiculata ( L .) Walp ). Eur. J. Plant Pathol. 
https://doi.org/10.1007/s10658-016-1089-1 

Kritzinger, Q., Aveling, T.A.S., Marasas, W.F.O., Rheeder, J.P., Van Der Westhuizen, L. V., Shephard, G.S., 
2003. Mycoflora and fumonisin mycotoxins associated with cowpea [Vigna unguiculata (L.) Walp] 
seeds. J. Agric. Food Chem. 51, 2188–2192. https://doi.org/10.1021/jf026121v 

Kritzinger, Q., Aveling, T.A.S., Van Der Merwe, C.F., 2006. Phytotoxic effects of fumonisin B1 on cowpea 
seed. Phytoparasitica 34, 178–186. https://doi.org/10.1007/BF02981318 

Lim, G.H., Singhal, R., Kachroo, A., Kachroo, P., 2017. Fatty acid– and lipid-mediated signaling in plant 
defense. https://doi.org/10.1146/annurev-phyto-080516-035406 55, 505–536. 
https://doi.org/10.1146/ANNUREV-PHYTO-080516-035406 

Ma, K., Kou, J., Khashi U Rahman, M., Du, W., Liang, X., Wu, F., Li, W., Pan, K., 2021. Palmitic acid 
mediated change of rhizosphere and alleviation of Fusarium wilt disease in watermelon. Saudi J. 
Biol. Sci. 28, 3616–3623. https://doi.org/10.1016/J.SJBS.2021.03.040 

Merrill, A.H., Sullards, M.C., Wang, E., Voss, K.A., Riley, R.T., 2001. Sphingolipid metabolism: roles in 
signal transduction and disruption by fumonisins. Environ. Health Perspect. 109, 283–289. 
https://doi.org/10.1289/ehp.01109s2283 

Nagana Gowda, G.A., Raftery, D., 2021. NMR Based Metabolomics. Adv. Exp. Med. Biol. 1280, 19. 
https://doi.org/10.1007/978-3-030-51652-9_2 

Nandi, S., Dutta, S., Mondal, A., Nath, A.A.R., Chattopadhaya, A., Chaudhuri, S., 2013. Biochemical 
responses during the pathogenesis of Sclerotium rolfsii on cowpea. African J. Biotechnol. 12, 3968–
3977. https://doi.org/10.5897/AJB2013.12405 

Passardi, F., Cosio, C., Penel, C., Dunand, C., 2005. Peroxidases have more functions than a Swiss army 
knife. Plant Cell Rep. 24, 255–265. https://doi.org/10.1007/S00299-005-0972-6 

Riley, R.T., Merrill, A.H., 2019. Ceramide synthase inhibition by fumonisins: a perfect storm of perturbed 
sphingolipid metabolism, signaling, and disease. J. Lipid Res. 60, 1183–1189. 
https://doi.org/10.1194/JLR.S093815 

Upchurch, R.G., 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to 
stress. Biotechnol. Lett. 30, 967–977. https://doi.org/10.1007/S10529-008-9639-Z 

Walley, J.W., Kliebenstein, D.J., Bostock, R.M., Dehesh, K., 2013. Fatty acids and early detection of 
pathogens. Curr. Opin. Plant Biol. 16, 520–526. https://doi.org/10.1016/J.PBI.2013.06.011 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

113 
 

Wang, X., Jiang, N., Liu, J., Liu, W., Wang, G.L., 2014. The role of effectors and host immunity in plant-
necrotrophic fungal interactions. Virulence 5, 722–732. https://doi.org/10.4161/VIRU.29798 

Williams, L.D., Glenn, A.E., Zimeri, A.M., Bacon, C.W., Smith, M.A., Riley, R.T., 2007. Fumonisin disruption 
of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium 
verticillioides-induced seedling disease. J. Agric. Food Chem. 55, 2937–2946. 
https://doi.org/10.1021/jf0635614 

Xue, H.Q., Upchurch, R.G., Kwanyuen, P., 2008. Relationships between oleic and linoleic acid content 
and seed colonization by Cercospora kikuchii and Diaporthe phaseolorum. Plant Dis. 92, 1038–
1042. https://doi.org/10.1094/PDIS-92-7-1038 

Xue, L., Charest, P.M., Jabaji-Hare, S.H., 1998. Systemic Induction of peroxidases, 1,3-beta-glucanases, 
chitinases, and resistance in bean plants by binucleate Rhizoctonia species. Phytopathology 88, 
359–365. https://doi.org/10.1094/PHYTO.1998.88.4.359 

Zeng, H.Y., Li, C.Y., Yao, N., 2020. Fumonisin B1: A tool for exploring the multiple functions of 
sphingolipids in Plants. Front. Plant Sci. 11, 1649. 
https://doi.org/10.3389/FPLS.2020.600458/BIBTEX 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

114 
 

5. General Discussion and Future 

Prospects 
 

5.1 General Discussion 
Metabolomical analyses provides a high throughput assessment, identification and quantification of all 

metabolites, endogenous and exogenous, within biological samples (Smolinska et al., 2012). Plants being 

sessile organisms extensively depend on secondary metabolites for their survival, development, and 

proliferation. Plants are susceptible to a variety of fungal pathogens and implore secondary metabolites 

for various signal transductions to resist or curb fungal infection (Ray et al., 2017). One of the biggest 

challenges of fungal disease diagnosis in plants is that fungi upon entering their plant host, can remain 

dormant until ideal conditions arise and then they become rapidly pathogenic. This study assessed 

whether metabolomic analyses can be used as a tool to detect fungal infection in plants based on specific 

changes in the plant’s metabolome. It also aimed to determine specific metabolites unique to the subject 

fungal diseases that may potentially act as biomarkers for future disease diagnosis. To achieve this two 

extensively studied fungal pathogens and their respective target plants were selected. Cercospora zeina 

a well-known maize foliar pathogen that causes grey spot leaf in maize (Zea mays) and fumonisin 

producing Fusarium verticillioides in cowpea (Vigna unguiculata). Investigations on these two pathogen-

plant systems have been reported by e.g., Meisel et al. (2009) and Kritzinger et al. (2006), respectively. 

For the maize pathosystem two sets of samples were collected from a field trial based foliar symptoms, 

i.e., chlorotic spots indicating early stages of C. zeina infection and mature lesions indicating later stages 

C. zeina infection. A separate artificial inoculation of maize with C. zeina was carried out in a glasshouse 

to correlate to the metabolomic changes found in the field trial. For the cowpea patho-system an artificial 

seed inoculation of F. verticillioides was carried out in a phytotron and the leaves of the resulting plants 

were analysed for metabolomic changes. These two pathogens have completely different modes of 

actions. Cercospora zeina enters through the leaf stomata and elicits its virulence in the leaves, i.e., the 

site of infection is also the site of pathogenicity (Meisel et al. 2009).  On the other hand F. verticillioides is 

a soil-borne pathogen which can infectseeds and through translocation, its virulence systemically affects 

above ground parts of the plant (Kotze et al. 2016). Metabolomical analyses techniques 1H Nuclear 

Magnetic Resonance (NMR) and Gas Chromatography Mass Spectrometry (GCMS) were implored to 

determine changes in the plant’s metabolome and specific metabolite changes in the plants’ fingerprints. 
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In maize, the metabolomic analyses revealed that early infection stages (chlorotic spots) had little to no 

effect on the metabolomic fingerprint of the maize leaves as depicted by the NMR spectral data of field 

trial maize leaves with chlorotic spots. Furthermore, the metabolomic profile data from GCMS analysis of 

the same samples suggested that there are no significant changes to the specific metabolites in the leaves 

due to grey leaf spot. Thus, it can be postulated based on this study that early stages of grey leaf spot 

characterized by chlorotic spots on the maize leaves, do not have a significant impact on the metabolome 

of the maize leaves. However, analysis of the later stages of grey leaf spot infection in maize leaves from 

the same field trial showing mature lesions suggested that C. zeina caused a definitive change in the 

metabolomic fingerprint of maize leaves. This is highlighted by the differences in the NMR spectral data 

of field trial maize leaves with mature lesions and their accompanying asymptomatic controls, as well as 

the clear groupings between the sample sets in the statistical plots from multivariate analysis in SIMCA. 

According to Gable (2019), these changes were observed in the regions with the functional group signals 

of alcohols, esters, alkyl halides and alkenes. These are structural characteristics of some of the reported 

maize antimicrobial metabolites such as zealexins, kauralexins and dolabralexins (Huffaker et al., 2011; 

Ding et al., 2020). Furthermore, several specific metabolite changes were observed in the leaves 

metabolomic profile from the GCMS chromatograms. This was indicated by the separate groupings 

observed in the SIMCA statistical plots of the symptomatic and asymptomatic maize leaves based on their 

chromatograms. These metabolites that changed (due to C. zeina) were identified as potential biomarkers 

for grey leaf spot and due to their unknown identities, they were allocated generic names (compound A-

E) for future identifications. Using NIST 14 metabolite database, it was showed that the identified 

potential biomarkers observed in the maize leaves with mature lesions shared some structural similarities 

to reported metabolites with known antimicrobial effects. This led to the suggestion that possibly these 

potential biomarkers may also play a role in maize defense against C. zeina.  

Glasshouse maize trial was carried out to compare to the metabolomical changes observed in the maize 

leaves upon artificial inoculation by C. zeina. From the glasshouse trial, the maize leaves with mature 

lesions were collected and analysed for metabolomical changes.  Metabolomical analysis using 1H NMR 

showed that C. zeina artificial inoculation on maize leaves induced various changes in the metabolomical 

fingerprint of the maize leaves. Furthermore, it was also discovered that the fingerprint regions on the 

NMR spectra of the greenhouse maize leaves with mature lesions correlated with most of the changes 

observed in the maize leaves with mature lesions from the field trial. This further cemented the suggestion 

that these regions could possibly be the functional groups of some antimicrobial metabolites found in 

maize. It is also plausible that these metabolites could have been produced by C. zeina to assist in its 
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virulence in maize leaves, as it has been reported that some fungal pathogens metabolise host metabolites 

to assist in the virulence process by targeting host defense (Wang et al., 2014). The metabolomic profile 

of the greenhouse maize leaves with mature lesions obtained indicated various changes in the 

concentrations of specific metabolites. Several metabolites were identified as potential grey leaf spot 

biomarkers as their concentration and possible expression changed in the symptomatic maize leaves. 

Based on a NIST 14 database search, it was found that these metabolites shared some similarities with 

various known antimicrobial metabolites. However, most of them did not correspond to the potential 

biomarkers identified in the field trial samples. This lack of correlation could be attributed to the 

difference in degree of disease prevalence in the field trial and in the glasshouse, with the glasshouse 

plants’ leaves having less severe lesions. A single potential biomarker was observed in both the field trial 

and greenhouse trial maize leaves with mature lesions, and it was compound C eluting at 29.0 retention 

time in the GCMS analysis. This metabolite was significantly lower in the symptomatic samples of both 

sample sets. This correlation led to the conclusion that this metabolite may be strongly linked to C. zeina 

infection in maize.  

In the cowpea trial it was observed that the plants grown from cowpea seeds inoculated with F. 

verticillioides were considerably smaller than their uninoculated (control) counterparts, but the dry mass 

averages of the treatment and control leaves did not differ significantly. The observed decrease in the leaf 

area and the average leaf dry mass of the inoculated plants compared to the control plants could possibly 

be attributed to F. verticillioides. Despite the observed morphological differences, the metabolomic 

fingerprint analysis of the cowpea leaves using 1H NMR did not indicate any changes to the leaves’ 

metabolome due to F. verticillioides seed inoculation. However, metabolomic profile analysis of the same 

cowpea leaves using GCMS showed that the expression of three metabolites in the leaves was altered in 

the leaves of inoculated cowpea plants. Furthermore, a NIST 14 database comparison indicated that the 

identified metabolites shared various similarities with reported fatty acids. This led to the notion that 

these metabolites are strongly linked to F. verticillioides infection of cowpea seeds as it has been widely 

reported that this pathogen disrupts the sphingolipid biosynthesis pathway which is responsible for the 

synthesis of various fatty acids (Riley and Merrill, 2019b). Furthermore, it also affirms the discovery by 

Baldwin et al. (2014) that suggested that F. verticillioides’ virulence spreads to various parts of its host 

plant through translocation of either its conidia or fumonisins (mycotoxin), thus disrupting cell functions 

in those plant organs. 
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From these findings, it is plausible to suggest that metabolomical and chemical fingerprint analyses 

successfully distinguished maize leaves infected with grey leaf spot caused by C. zeina from their healthy 

counterparts based on specific changes observed in the metabolomic fingerprint and profile of the maize 

leaves. It also successfully distinguished cowpea leaves from plants that were grown from seeds 

inoculated with F. verticillioides. These two findings show that metabolomical analyses is capable of 

diagnosing plant fungal diseases where the site of infection and site of virulence are the same, as well as 

systemic infections where the site of infection and the site of virulence are spatially separate. 

Furthermore, metabolomical and chemical fingerprint analyses led to the identification of potential 

pathogen related biomarkers in both instances that shared similarities to various reported antifungal 

metabolites. The potential biomarkers, with further analyses, can possibly be used to identify these 

pathogens in their hosts and assist in understanding the mode of action of these pathogens for the 

development of improved control measures. Unfortunately, it failed to definitively identify metabolomical 

changes in the early stages of grey leaf spot (chlorotic spots on maize leaves). However, the preliminary 

data obtained showed much potential and upon further exploration by metabolomical analyses 

biomarkers might be identified for early fungal disease diagnosis. Although much more extensive study is 

still required to cement these findings, it can be concluded with much credibility that this study provided 

a gateway into the application of metabolomical and chemical footprint analyses in plant fungal disease 

diagnosis that can prove to be fruitful in further studies. 

5.2 Future Prospects 
This study provided some evidence which suggested that metabolomic analysis has great potential in 

detecting fungal diseases in plants. However, further intensive research is still required to definitively 

conclude this hypothesis. For the maize study, two different levels of infection were analysed using 

metabolomical techniques. A single collection was carried out for the maize leaves with chlorotic spots 

and mature lesions from the field trial. This can be improved by carrying out multiple collections of maize 

leaf samples and analyse a wider sample range over multiple time points in a season. This could result in 

more definitive metabolomical changes in the early and later stages of grey leaf spot. Another experiment 

could be conducted simultaneously in a glasshouse with artificially inoculated maize leaves with C. zeina, 

and then include collecting leaf samples with chlorotic spots. These would then be compared to the field 

trial’s leaves with chlorotic spots. This would provide a wholesome picture on the possible metabolomical 

changes in the early stages of grey leaf spot and lead to the possible identification of a more specific C. 

zeina biomarker.  
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For cowpea, a strategy that can be implored is sampling different parts of the plant, i.e., roots, stems, and 

leaves. This would possibly indicate the metabolomical changes effected by F. verticillioides from the roots 

(point of inoculation) to the leaves. If would potentially indicate how the mycotoxin produced by the fungi 

is translocated from the roots to the leaves where its virulence was observed, and maybe lead to the 

identification of a more F. verticillioides specific biomarker. Another strategy would be to emulate the 

study done by Kritzinger et al. (2006) and Kotze et al. (2016) and treat the seeds with pure fumonisin B1 

toxin. The above ground parts of the plant (i.e., stem and leaveas) will then be analysed to determine the 

metabolomical changes due to exposure to the toxin. The findings can be compared to the findings of the 

F. verticillioides cowpea seed treatment to observe possible similarities. If a common metabolomic change 

in cowpea is observed in the two sets of treatments, a definitive pathway can be established on how F. 

verticillioides uses fumonisins to elicit its virulence on plant hosts. Furthermore, this may lead to the 

identification of a biomarker that can be used to diagnose various fungal diseases caused by fumonisin 

producing fungi and shed light on the metabolical processes involved in their virulence for better disease 

control.  

In terms of metabolomical analyses, analyses, improvements can be made by imploring more analytical 

techniques. Proton NMR analysis provided an overview of the possible types of affected compounds in 

the pant metabolome but was not conclusive in providing the actual identity of the compounds affected 

by fungal inoculation. GCMS analysis carried out in this study provided possible compounds that maybe 

by the fungal infection, but further refinement is still required to confidently identify the set compound. 

A first point of improvement would be to use liquid chromatography mass spectrometry (LCMS). The 1H 

NMR analyses showed that various polar functional groups were upregulated in the maize leaves with 

mature lesions in both maize leaves from the field trial and from the glasshouse trial. Furthermore, most 

of the reported maize antimicrobial secondary metabolites e.g., DIMBOA, dobralexin, zealexins, etc., are 

all polar compounds that can be detected by LCMS. This can then be followed by preparatory liquid 

chromatography where the compounds of interest are isolated and subjected to further analyses for 

conclusive identification. This can be coupled with analysing on a GCMS with a polar column like DB-Wax, 

as these are considered efficient in separating polar compounds that's been derivatized (methylated) 

(Förster et al., 2022). Various other more sensitive metabolomical analytical techniques such as GCMS 

quantitative time of flight (QTOF) methods can be implored to give more accurate compounds identities 

of the identified potential biomarkers. This study provided a gateway that can be used as a starting point 

for an improved analytical study that will demonstrate the full potential of metabolomical analyses in 

fungal disease diagnosis in plants. 
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6. Appendix 
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Appendix A : Glasshouse trial real time temperature and humidity readings 

 

Figure 6.1: HOBO measurements of glasshouse temperature (oC, bottom graph) and relative humidity (top graph) for the duration of the trial. 
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Appendix B : Full mass spectra of all potential Cercospora zeina biomarkers 

identified in maize.  

 

Figure 6.2: Mass spectrum of Compound A identified as a potential biomarker for grey leaf spot in the maize field 
trial chlorotic spots and mature lesions samples. It was identified at 27.4 minutes retention time in the leaf 
chromatogram. 
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Figure 6.3: Mass spectrum of Compound B identified as a potential biomarker for grey leaf spot in the maize field 
trial mature lesions samples. It was identified at 24.5 minutes retention time in the leaf chromatogram. 

 

Figure 6.4: Mass spectrum of Compound C identified as a potential biomarker for grey leaf spot in both the leaf 
samples from the maize field trial with mature lesions and glasshouse trial with mature lesions. It was identified 
at 30.2 minutes retention time in the leaf chromatogram. 
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Figure 6.5: Mass spectrum of Compound D identified as a potential biomarker for grey leaf spot in symptomatic 
leaf samples from field trial with mature lesions. It was identified at 30.2 minutes retention time in the leaf 
chromatogram. 

 

Figure 6.6: Mass spectrum of Compound D identified as a potential biomarker for grey leaf spot in symptomatic 
leaf samples from glasshouse trial with mature lesions. It was identified at 30.95 minutes retention time in the 
leaf chromatogram. 
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Appendix C : Full mass spectra of all potential biomarkers identified in cowpea 

artificially inoculated with Fusarium verticillioides.  

 

Figure 6.7: Mass spectrum of Metabolite A identified as a potential biomarker identified in the leaves of 
Fusarium verticillioides inoculated cowpea seeds. It was identified at 27.35 minutes retention time in the leaf 
chromatogram. 
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Figure 6.8: Mass spectrum of Metabolite B identified as a potential biomarker identified in the leaves of 
Fusarium verticillioides inoculated cowpea seeds. It was identified at 27.60 minutes retention time in the leaf 
chromatogram. 

 

Figure 6.9: Mass spectrum of Metabolite A identified as a potential biomarker identified in the leaves of 
Fusarium verticillioides inoculated cowpea seeds. It was identified at 30.95 minutes retention time in the leaf 
chromatogram. 
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