# Impact of COVID-19 on TB diagnostic services at primary healthcare clinics in eThekwini district, South Africa 

Thobeka Dlangalala ${ }^{1 *}$, Alfred Musekiwa ${ }^{1}$, Tivani Mashamba-Thompson ${ }^{3}$

## Statistical Analysis

To estimate the impact of the exposure on the level and trend of the outcome variables the following regression model was used:
$Y_{t=} \beta_{0}+\beta_{1} T_{t}+\beta_{2}$ Exposure $1_{t}+\beta_{3}$ Time after Exposure $1_{t}+\beta_{4}$ Exposure $_{t}+$ $\beta_{5}$ Time after Exposure $2_{t}+\beta_{6}$ Exposure $3_{t}+\beta_{7}$ Time after Exposure $3_{t}+\beta_{8}$ Exposure $_{t}+$ $\beta_{9}$ Time after Exposure $4_{t}+\beta_{10}$ Exposure $5_{t}+\beta_{11}$ Time after Exposure $5_{t}+\varepsilon_{t}$
$Y_{t}$ represents the outcomes, either TB investigations or confirmation of TB cases measured per month $t$, respectively. Tt represents the time, in months, that has elapsed since the beginning of the series. Exposure ${ }_{t}$ is a dummy variable that is equal to 0 in the pre-exposure and 1 in the post-exposure period. Time after Exposure $_{t}$ is the interaction factor between a specified exposure and time. $\beta_{0}$ is the starting level of the outcomes at time zero, respectively. The coefficient $\beta_{l}$ measures the monthly change in the outcomes in the pre-pandemic period while $\beta_{2,4,6,8,10}$ denotes the changes in the outcome levels immediately after a respective exposure period. $B_{3,5,7,9,11}$ represents the changes in the slope of the outcomes pre- and post-exposure period of interest. P-value $\leq 0.05$ will be used as the measure of statistical significance. Thus, significant $p$-values in $\beta_{2,4,6,8,10}$ will show an immediate exposure effect whereas a significant $p$-value in $\beta_{3,5,7,9,11}$ represents a change over time. ${ }^{1} \varepsilon_{t}$ is the error term for any arising random variability that has not been accounted for by the model.

1
Linden, A. Conducting Interrupted Time-series Analysis for Single- and Multiple-group Comparisons. The Stata Journal 15, 480-500, doi:10.1177/1536867x1501500208 (2015).

Cumby, R. E. \& Huizinga, J. Testing the Autocorrelation Structure of Disturbances in Ordinary Least Squares and Instrumental Variables Regressions. Econometrica 60, 185, doi:10.2307/2951684 (1992).

