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Abstract: A measurement matrix is essential to compressed sensing frameworks. The measurement
matrix can establish the fidelity of a compressed signal, reduce the sampling rate demand, and
enhance the stability and performance of the recovery algorithm. Choosing a suitable measurement
matrix for Wireless Multimedia Sensor Networks (WMSNs) is demanding because there is a sensitive
weighing of energy efficiency against image quality that must be performed. Many measurement
matrices have been proposed to deliver low computational complexity or high image quality, but only
some have achieved both, and even fewer have been proven beyond doubt. A Deterministic Partial
Canonical Identity (DPCI) matrix is proposed that has the lowest sensing complexity of the leading
energy-efficient sensing matrices while offering better image quality than the Gaussian measurement
matrix. The simplest sensing matrix is the basis of the proposed matrix, where random numbers were
replaced with a chaotic sequence, and the random permutation was replaced with random sample
positions. The novel construction significantly reduces the computational complexity as well time
complexity of the sensing matrix. The DPCI has lower recovery accuracy than other deterministic
measurement matrices such as the Binary Permuted Block Diagonal (BPBD) and Deterministic Binary
Block Diagonal (DBBD) but offers a lower construction cost than the BPBD and lower sensing cost
than the DBBD. This matrix offers the best balance between energy efficiency and image quality for
energy-sensitive applications.

Keywords: chaotic sequences; energy efficiency; image quality; sensing matrix; wireless multimedia
sensor network; wireless sensor network

1. Introduction

A Wireless Multimedia Sensor Network (WMSN) consists of optical sensor nodes de-
ployed to an area of interest and at least one data sink in different topologies [1]. The nodes
study various areas and send data to at least one sink. Multi-hop routing can be part of the
link, raising the requirement of a high compression ratio.

These WMSNs have to function in energy-constrained environments that demand novel
compression schemes to lessen the bandwidth utilisation and computational complexity [2].
Energy conservation is one of the three energy management methods exploited in Wireless
Sensor Networks (WSN); the others are energy transfer and energy harvesting [3]. However,
the large data transfers for WMSN make energy conservation the greatest tool. Compressed
Sensing (CS) was introduced by Pudlewski et al. [4] as a means to overcome this. The CS
mechanism is appropriate for WMSN owing to its low complexity, high compression rate,
and robustness to transmission errors [5].

Even though there have been other approaches to complexity reduction, such as
sparsity transforms [5,6], they come at an intractable price of image quality [7].

Traditionally, each CS measurement maps an image onto an unrepeated measurement
vector [8]. However, this imposes a sizable memory footprint when the signal is significant,
such as in high-resolution images. In [9], Gan introduced Block-Compressed Sensing (BCS)
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to break up the image into blocks and use the same measurement vector for every block,
thus vastly minimizing the footprint.

Bajwa et al. [10] significantly reduced sensing and storage complexity by proving
the efficacy of Toeplitz and circulant sensing matrices. With these, just the first row needs
random entries, while the other rows are transformations of the first. These matrices are
called semi-deterministic, and matrices with no random entries are fully deterministic.

Some researchers have been looking at optimisation-based matrices that minimise
the mutual coherence with the sparsity transform [11–16], but these matrices cannot be
constructed on WMSN nodes. More recent approaches have been training the sensing
matrix based on a signal dataset [17–19], but similarly, this is not ideal for WMSN nodes.

Arjoune et al. [20] contrasted different types of sensing matrices with great detail. They
investigated using experiments on 1D signals on a central processing unit (CPU)-powered
computer. However, these time measurements (and possible energy consumption) are not
characteristic of WMSNs using microcontroller units (MCUs).

Determinsistic sensing matrices have outperformed dense ones in many studies [21–30].
Semi-deterministic matrices are being displaced in popularity by fully deterministic ones,
particularly matrices based on chaotic sequences [24,27,28].

1.1. Motivation

Sensing complexity has yet to be analysed or compared with previous work by most
researchers. Storage complexity has been studied more, but it is not a good proxy for
sensing complexity. Energy consumption has been studied even less. A sensing matrix is
needed that can meet the need for energy efficiency and recovery performance and compare
favourably with current approaches.

1.2. Contribution and Organisation

In this paper, we analyse, evaluate, and compared the leading deterministic mea-
surement matrices. We propose a new measurement matrix that addresses the identified
shortcomings and compare it with the leading matrices in terms of its energy efficiency for
construction and sensing as well as recovery performance.

• We review the leading deterministic matrices regarding image quality and computa-
tional complexity.

• We identify the best techniques for designing deterministic sensing matrices.
• We evaluate the effect of random numbers and block size on recovery performance

and energy consumption.
• We propose a sensing matrix based on random sample positions.

In Section 2, research output on Sensing Matrices is reviewed. The theoretical back-
ground is introduced in Section 3. In Section 4, the new sensing matrix is proposed.
Experiments are detailed in Section 5, and the results are presented in Section 6. The results
are discussed in Section 7, and the conclusion is presented in Section 8.

2. Related Work

There has been considerable work on developing sensing matrices for addressing
the computational complexity and reconstruction quality of CS. In the next subsections,
the current semi-deterministic and fully deterministic approaches are reviewed. Amongst
semi-deterministic matrices, the Binary Permuted Block Diagonal (BPBD) had the most
promise because of its high sparsity. The other matrices had lower sparsity and complex
computations. The Deterministic Binary Block Diagonal matrix (DBBD) had the highest
sparsity amongst fully deterministic matrices, which is based on the BPBD. The semi-
deterministic matrices tend to have complex computations, while the fully deterministic
matrices have low sparsity.
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2.1. Semi-Deterministic Matrices

He et al. [31] proposed the BPBD to address hardware implementation and sensing
efficiency. The matrix is binary and significantly sparse, which substantially simplifies
hardware implementation and reduces sensing computations. This matrix requires random
numbers to permute the columns during construction, which adds complexity depend-
ing on the source of the random numbers. The researchers contrasted the BPBD with
other matrices with experiments on MATLAB. They found that their measurement matrix
gives comparable recovery performance to scrambled block Hadamard, scrambled Fourier,
partial Noiselet, and Gaussian and that their measurement matrix outperforms the other
matrices at a sampling rate of 10%.

In [23], two memory-efficient measurement matrices were proposed. The first one
is called the Combination matrix, and it is the Kronecker product of the Gaussian and
Toeplitz measurement matrices. This approach reduces the effective number of required
random entries, but the multiplication increases the construction complexity. The second
matrix is called the Hybrid matrix, and it is generated through a compound of Toeplitz and
Binary matrices. The authors evaluated their matrices using experiments on the TelosB
platform. They observed that their matrices performed better than the Gaussian matrix
based on energy consumption and recovery performance. The Hybrid performed better
than the Combination matrix.

A combination of Toeplitz, Hankel, and circulant matrices was proposed in [26]. First,
the Toeplitz matrix is constructed from Gaussian random entries. The Hankel and circulant
matrices are constructed from transformations of the Toeplitz matrix. Finally, the sensing
matrix is constructed by summing all three matrices. These researchers compared their
matrix to the Gaussian matrix on the TelosB platform. The authors found that their matrix
outperformed the Gaussian matrix on recovery performance and energy consumption.

2.2. Fully Deterministic Matrices

Ravelomanantsoa et al. [30] proposed a simple deterministic measurement matrix
that facilitates hardware implementation. This sensing matrix is named the DBBD and
simplifies the BPBD by eliminating random permutations. The authors tested their pro-
posed measurement matrix on a 1D electrocardiogram (ECG) and an electromyogram
(EMG) on an MSP-EXP430G2 LaunchPad development board. They experimented to assess
their proposed matrix against the Gaussian and BPBD matrices. They exploited the DCT
and their proposed OMP-variant reconstruction algorithm. Their measurement matrix
performed better than both the Gaussian and BPBD in terms of recovery accuracy measured
in SNR and computational complexity.

In [24], the authors exploited the simplicity of the Logistic mapping chaotic systems
to develop the incoherent rotated chaotic (IRC) sensing matrix. They ignored the first
1000 elements of the sequence and downsampled the subsequent elements using an interval
of d to improve the randomness. This means that to generate t sampled values, a chaotic
sequence of length l = 1000 + dt must be generated. The IRC matrix requires only n factors
that are rotated for each row, which improves storage compared with other chaotic matrices.
The authors added an incoherence factor η, which is multiplied for each rotation and can
be separated into a matrix ω. However, the multiple multiplications from the incoherence
factor add computational complexity to the generation process. The matrix was compared
to the Gaussian matrix using MATLAB experiments. The authors found that their matrix
outperforms the Gaussian one, but it is a challenge to select the incoherence factor, which
has a meaningful impact on the reconstruction performance.

Gan et al. [27] presented a measurement matrix that exploits bipolar chaotic sequences
to simplify storage and multiplication. However, the sequences are generated from the
Chebyshev chaotic system that entails the cos function, which is expensive to implement
in MCU. A threshold value is applied to the sequence to make a bipolar matrix. The re-
searchers contrasted their matrix to the Gaussian, Bernoulli, improved Hadamard, and
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dense Chebyshev matrices through experiments. Their matrix performed comparably to
the other matrices and performed the best at low sampling rates.

Sun et al. [28] presented the Chaos-Bernoulli Block Circulant Matrix to conserve
transmission capacity. They produced a pseudo-random sequence by choosing the initial
value and sampling interval. The sequence is derived from a nonlinear Hybrid Chaotic
map where the Logistic map and Tent map are combined. The authors ignored the first
1000 values of the sequence to improve the randomness. They also sampled the chaotic
sequence at an interval to improve the independence of the sampled values. The sampled
sequence is then mapped through the sign function. The authors built a block-circulant
matrix from a chaotic sequence to reduce the storage and implementation requirements.
The final measurement matrix was obtained by randomly selecting M rows from the block
circulant matrix. The matrix was compared to the Gaussian, Bernoulli, Hybrid chaotic, and
Gaussian circulant matrices using numerical experiments. The authors found that their
matrix outperformed the other matrices.

2.3. Summary

The relative performance of the different matrices is presented in Table 1. The com-
plexity was assigned values of Low, Medium, or High. The reconstruction accuracy was
judged based on whether the matrix had higher image quality than the Gaussian matrix.

Table 1. Sensing matrix comparison.

Ref. Type Construction Complexity Sensing Complexity Image Quality

[31] Semi High Low Good
[23] Semi High High Good
[23] Semi High Medium Good
[26] Semi High High Good
[30] Full Low Low Good
[24] Full Medium High Good
[27] Full Medium Medium Good
[28] Full High High Good

3. Preliminaries

This section gives a short background on the compressive sensing and WSN used for
the development of the proposed scheme.

3.1. Compressed Sensing

The CS framework allows for the accurate recovery of data captured in a vector of
length N from only M� N samples. CS depends on sparsity and incoherence to ensure
signal recovery [32]. Sparsity is the quality of how few non-zero entries belong to a vector
representing the signal. A signal can also be made sparse by applying a transformation, Ψ,
to a domain where the signal can be sparse. Incoherence is the quality of low correlation
between the sparsifying transform and the sensing matrix, Φ [32]. The incoherence can be
measured through mutual coherence, shown in Equation (1), where lower values mean
more incoherence.

µ(Φ, Ψ−1) =
√

N max
i 6=j

|φT
i ψ−1

j |

‖φi‖2‖ψ−1
j ‖2

, (1)

The mutual coherence is the maximum normalised similarity between the row vectors
of Φ, φi and the column vectors of Ψ, ψj.

Once the signal has been compressively sensed in M measurements, it can be recovered
in its entirety using numerical optimisation algorithms. The algorithms attempt to recover
an unknown signal Z from a few measurements. The signal to be compressed x ∈ RN can
be expressed as

x = Ψs, (2)



Sensors 2023, 23, 4843 5 of 17

where Ψ is the sparsity transform and s is the N length vector of the captured signal.
The signal x is sparse, with a sparsity of K. When the measurement matrix is applied to x,
we obtain a vector y.

y = Φx = ΦΨs = Θs, (3)

The robustness of CS depends on the restricted isometry property (RIP) of the sensing
matrix. The RIP requires columns of Φ to be close to orthogonal. Random sensing matrices
meet the RIP criteria with high probability on the condition that Equation (4) [32] holds.
The RIP is also important in ensuring that CS can gracefully deal with additive noise.

M ≥ CK log
(N

K

)
, (4)

3.2. Peak Signal-to-Noise Ratio

Image quality is measured using the Peak-Signal-to Noise Ratio (PSNR). This metric
has been shown to be robust at low sampling rates and high distortion [33]. This was
a popular objective measure of image quality. PSNR is measured in decibels (dB) and raises
in value with image quality; Equation 5 is the mathematical formulation [34].

MSE =
1

MN

M−1

∑
i=0

N−1

∑
j=0

(ρr(i, j)− ρp(i, j))2

PSNR =10 log

(
L2

MSE

) (5)

The PSNR has an opposite relationship to the mean square error (MSE), which is the
cumulative squared error between the reference ρr(i, j) and the processed image ρp(i, j),
and L is the dynamic range of the pixel value.

3.3. Wireless Multimedia Sensor Networks

There have been many WMSN node designs, ranging from 8 MHz using the AT-
mega128L to 624 MHz using the XScale PXA270. In [35], the authors classify these WMSN
nodes into Low and High performance. The microcontroller unit (MCU) is an integral
part of the sensor node and is responsible for a significant amount of its total energy con-
sumption [36]. The focus of this study will be on low-performance nodes, in particular,
the TelosB mote, for energy analysis. This mote has a Texas Instrument MSP430 MCU that
runs at 8 MHz with 10 KB of RAM and 1 MB of an external flash. The mote has two AA
batteries, each with a capacity of around 2850 mAh.

The choice of sensing matrix design affects the required number of random numbers
for generating the measurement matrix, as well as the number of matrix multiplications
during sensing. The Bernoulli matrix with ±1 entries was favoured for ease of imple-
mentation [37] by eliminating the multiplications. Another popular matrix is the Binary
Sparse Random matrix, which has a small d number of non-zero entries per column, thus
eliminating most addition operations [38].

Two choices exist for obtaining random entries for a measurement matrix, retrieval
from memory or random generation. Retrieval from memory has the drawback of requiring
large storage space, and non-volatile memory requires significant energy to operate [39].
The random generation of measurement matrix columns has considerable energy con-
sumption from complex mathematical functions such as log or sqrt [38]. Deterministic
measurement matrices have been identified as a means to ease hardware requirements by
obviating random number generation and/or large memory storage [30].
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Energy Consumption

It has been observed that the current drawn by 8- to 32-bit MCUs deviates very
slightly during active operation [40]. It is, therefore, sufficient to measure the time length
of an operation to estimate relative energy consumption, as seen in Equation (6).

Econ = Vcc × Iactive × top, (6)

The time length top can be estimated using the clock frequency f of the MCU and the
number of instruction cycles required for the operation Nic, as shown in Equation (7).

top =
Nic

f
, (7)

The MSP430 does not have a hardware multiplier, and thus, the implementation
of complex mathematical operations requires multiple instruction cycles. In [41], the
authors discuss efficient algorithms to implement multiplication and division on the MCU.
In Table 2, the instruction cycle cost of different arithmetic and logical operations on the
MSP430 MCU are listed [41,42]. In the table, each mathematical operation is listed and the
instruction cycle cost is presented. All the arithmetic and logical operations require one
instruction cycle except multiply and divide. These arithmetic operations require 29 and
22 cycles, respectively.

Table 2. No. of cycles for operations.

Operation Number of Instruction Cycles

Add 1
Subtract 1
Multiply 29
Divide 22

Compare 1

4. Proposed Sensing Matrix

In this section, an energy-efficient and high-fidelity sensing matrix for WMSN is
proposed. Fully deterministic matrices commonly use chaotic sequences to replace random
numbers, which give similar sparsity to the Bernoulli matrix. Another successful fully
deterministic matrix is the DBBD, which has a static matrix but still requires N−M addition
operations during sensing. Semi-deterministic matrices have had good sparsity, with the
PCI requiring no add operations during sensing. The PCI also has low mutual coherence
with most sparsity transforms [43]. The weakness of the PCI matrix is that it requires
expensive random numbers, which is similar to other semi-deterministic matrices. This
shortcoming is addressed by replacing the random numbers with a chaotic sequence.
The construction complexity is further improved by replacing random permutation with
random sample positions, which also reduces time complexity.

4.1. Deterministic Partial Canonical Identity Matrix

The PCI matrix is traditionally constructed by randomly choosing M rows from an
N × N identity matrix. The PCI has been used in [43–45], but in these studies, the ma-
trix computational complexity and recovery performance have not been investigated.
The construction of the PCI is where the energy consumption, and recovery performance
are determined.

A popular approach to improving the recovery performance of measurement matrices
is the minimisation of mutual coherence with a sparsity basis of Ψ [11,13–16]. However,
for the DPCI, mutual coherence is a constant,

√
2 [43].
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4.2. Random Number Generation

Random number generation is an important factor in reducing computational com-
plexity and recovery performance. Different random-number-generation algorithms were
evaluated to find the most suitable ones in terms of simplicity and recovery performance.

4.2.1. Linear Congruent Generator

The Linear Congruential Generator (LCG) is one of the best-known and oldest algo-
rithms for generating pseudo-random numbers. This generator is simple to implement
and has low storage complexity. The algorithm exploits recurrence to generate random
numbers shown in Equation (8).

Xn+1 =
(

aXn + c
)

mod m

xn =
Xn

m

(8)

Here, X is the state of the algorithm, and x is a random number between 0 and
1.0. The variables a, c, and m are the multiplier, increment, and modulus, respectively.
The choice of values for these variables determines the performance of the algorithm.
The values used were a = 16,807, c = 0, and m = 2,147,483,647 from [46]. The resulting
energy consumption is shown in Equation (9) in terms of instruction cycles.

εLCG =
(
εmul + 2εdiv

)
, (9)

4.2.2. Logistic Map

The Logistic map is one of the simplest chaotic systems. This system is a suitable
random number generator [47]. The equation of the system is shown in Equation (10).
The µ is the system parameter, and each value of n is xn ∈ [0, 1]. A system parameter
of µ = 4.0 and an initial state of x0 = 0.4 were used. The energy consumption for each
number in the sequence is formulated in Equation (11) and measured in instruction cycles.

xn+1 = µxn(1− xn) (10)

εlogistic =
(
εsub + 2εmul

)
, (11)

4.2.3. Tent Map

The Tent map is an iterative piece-wise linear difference equation with chaotic be-
haviour and a tent-like graph. This map is computationally efficient and has a uniform
distribution of random numbers [48]. The equation is shown in Equation (12). The µ is the
system parameter, and each value of n is xn ∈ [0, 1]. The system parameter µ = 1.99 and
initial state x0 = 0.4 were used. The energy consumption for each number in the sequence
is formulated in Equation (13) in instruction cycles.

xn+1 =

{
µxn, if 0 ≤ xn < 1

2

µ(1− xn), if 1
2 ≤ xn ≤ 1

(12)

εtent ≈
(
εcomp +

1
2

εsub + εmul
)
, (13)

4.3. Complexity Optimisation

The computational complexity of constructing the PCI was optimised by first exploit-
ing deterministic random numbers and also by replacing random permutation with random
sample positions. This optimisation reduced the computational and time complexity.
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4.3.1. Random Permutation

The Fisher–Yates Shuffle (FYS) algorithm was used to randomly permute the columns
of the PCI matrix. The algorithm has two attractive properties: permutations are unbiased,
and the shuffling has a linear time complexity O(n) [49]. The algorithm was used with
values from the Tent map chaotic sequence as described in Algorithm 1. The energy
consumption of each iteration of the algorithm is formulated using instruction cycles in
Equation (14).

ε f ys =
(

N − 1
)(

εtent + εsub + εmul + εadd
)
, (14)

Algorithm 1 Random Permutation.

1: procedure SHUFFLE(A)
2: X0 = 0.400
3: U = 1.99
4: for index i from N − 1 to 1 in A do
5: if Xi−1 < 0.5 then
6: Xi = UXi−1
7: else
8: Xi = U(1− Xi−1)
9: end if

10: j = (i − 1)Xi + 1
11: Swap A[i] and A[j]
12: end for
13: Return A
14: end procedure

4.3.2. Random Sample Position

The fundamental characteristic of the PCI matrix is that there is only one non-zero
entry per row. This fact is exploited to simplify the construction of the DPCI. The random
sample position algorithm consists of generating a random column position for each row;
see Algorithm 2.

Algorithm 2 Random Sample Position.

1: procedure SAMPLE(A)
2: X0 = 0.400
3: for row i from 1 to M in A do
4: Xi = random(Xi−1)
5: j = N × Xi
6: A[i, j] = 1.0
7: end for
8: Return A
9: end procedure

The new construction maintains the orthogonal relationship between the columns,
where the non-zero row entries do not coincide between columns. This arrangement
maintains the RIP properties of the original shuffling mechanism. The new construction is
more sensitive to the quality of the random number generator to distribute the non-zero
entries evenly across columns. The randomness of the distribution will also be sensitive to
the block size N through the sample size M.

The energy consumption of the algorithm is formulated in Equation (15) in instruction
cycles. The permutation requires M iterations to approximate the shuffling of N columns.
Each iteration entails only one complex computation, that of a Tent random number. This
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eliminates most of the computational complexity from shuffling. The algorithm also reduces
the required random numbers and iterations from N − 1 to M.

εrsp = Mεtent, (15)

This algorithm was tested with all three random number generators, LCG, Logistic,
and Tent. Finally, it was compared with the traditional implementation using random
permutation; see Figures 1 and 2. The traditional implementation with FYS performed
the best in terms of recovery quality, but the LCG and Tent had a competitive perfor-
mance. The Tent implementation was chosen for further evaluation because of the lower
computational complexity.

Figure 1. The recovery performance of different variants of DPCI.

(a) (b) (c)

(d) (e)

Figure 2. Lena2 from different variants of DPCI. (a) LCG. (b) Original. (c) FYS. (d) Logistic. (e) Tent.
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5. Experimental Evaluation

MATLAB was used for compressed sensing experiments on a Windows 10 computer
with 16 GB RAM and an Intel Core i7 CPU. In order to make the results representative,
many images were utilised during the experiments. A selection of images from the col-
lection of greyscale images from the Waterloo Repertoire GreySet2 [50] was exploited in
512 × 512 sizes in order to assess image quality. The collection consists of 11 images of a
wide range of subjects such as people, landscapes, animals, objects and posters (with text
and sub-figures); the dataset is detailed in Table 3. The image was divided into blocks of
8 × 8, 16 × 16 and 32× 32 pixels. Every block was made sparse using DCT and sampled us-
ing different sensing matrices. The images were recovered using block-based CS sampling
and smoothed projected Landweber (BCS-SPL) method [51]. Experiments were conducted
to assess each sensing matrix at a low sampling rate of 10% to evaluate the matrices at
the most challenging and energy-efficient level. Each experiment was repeated multiple
times to account for statistical variations using five trials. The recovery accuracy was
measured using the average image quality in the form of PSNR. The energy consumption
was evaluated using analytical methods.

Table 3. Dataset images

File Subject Image Content

barb.tiff A person is photographed sitting on the floor with
their face and most of the body visible.

The image has a lot of fine and regular textures,
from the carpet floor to tablecloths with
checked patterns.

boat.tiff A small grounded sailboat is captured with a person
standing next to it.

The image contains very little textures, mostly the
ground; however, the textures are irregular.

france.tiff Travel poster with smooth background and some text. The image has grey-level gradient in the background
but has very few textures.

goldhill2.tiff The image captures conjoined houses built on a hill,
and there is a person walking down the hill.

The image has a lot of texture from the roofs, ground,
and trees in the background.

lena2.tiff This image is a portrait of a person at close range and
mostly captures their face.

The image has a mostly smooth background, but there
is some rough texture from the feathers on the hat
worn by the subject.

library.tiff This is a poster with three subfigures; each subfigure
has people and both small and large text. The image has a lot of fine details and structures.

mandrill.tiff The image is a close-up of the face of a mandrill. The image has fine textures from the fur of
the mandrill.

mountain.tiff The image is a landscape of a mountain range with a
body of water also visible.

The image has very high contrast, smooth and textured
areas, and intricate details.

peppers2.tiff This is a close-up image of peppers. There are no textures but there are smooth surfaces and
modest contrast.

washsat.tiff This is a satellite image of a city where there are
structures formed by the streets. The image has a lot of fine details but is largely dark.

zelda.tiff This is a portrait of a person where the background is
out of focus and the face dominates the frame.

The image consists largely of smooth surfaces and
almost no textures.

6. Results

The results of the experiments are presented in this section. The recovery performance
is first presented using image quality. Finally, the energy consumption is analysed.

6.1. Recovery Performance

The quantitative recovery performance of the different matrices is presented using
image quality in Tables 4–6. These tables cover disparate block sizes, 8 × 8, 16 × 16, and
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32 × 32. The PSNR for each recovered image is listed for each sensing matrix, and the
average over all the images is listed on the last row of each table.

In Table 4, the highest image quality was from the Zelda file, with 32.19 dB compressed
with the DBBD matrix. The lowest image quality was on the Library file, with 15.19 dB
compressed using the DPCI matrix. The DBBD had the highest average performance at
24.42 dB, followed by the BPBD at 24.01 dB. The DPCI, at 22.94 dB, had the third best,
and finally, the Gaussian matrix was the lowest at 21.84 dB.

Table 4. Image quality results for 8 × 8.

File
PSNR (dB)

Gaussian BPBD DBBD DPCI

barb.tiff 21.62 23.40 23.47 22.63
boat.tiff 24.16 25.32 25.84 24.64
france.tiff 15.65 17.78 18.32 16.89
goldhill2.tiff 25.47 26.71 26.56 26.25
lena2.tiff 25.57 27.51 28.13 26.28
library.tiff 15.58 16.15 16.74 15.13
mandrill.tiff 19.80 20.57 20.67 19.79
mountain.tiff 15.87 16.97 17.44 16.10
peppers2.tiff 25.33 27.16 27.57 25.08
washsat.tiff 22.46 31.33 31.75 29.66
zelda.tiff 28.67 31.23 32.19 29.89
Average 21.84 24.01 24.42 22.94

Table 5 shows that the highest image quality from the Zelda file, with 33.36 dB
compressed using the DBBD matrix. The lowest image quality was found in the Library
file, with 15.65 dB compressed using both the DPCI and Gaussian matrices. The DBBD
had the best average performance of 25.28 dB; the second was the BPBD with 24.03 dB.
The Gaussian was third with 23.53 dB, and the DPCI had 23.35 dB.

Table 5. Image quality results for 16 × 16.

File
PSNR (dB)

Gaussian BPBD DBBD DPCI

barb.tiff 22.97 23.19 23.90 23.03
boat.tiff 24.73 25.21 26.89 24.89
france.tiff 16.82 18.02 19.00 16.08
goldhill2.tiff 26.05 26.61 27.99 26.41
lena2.tiff 27.06 27.62 29.39 26.92
library.tiff 15.65 16.01 17.37 15.65
mandrill.tiff 20.08 20.42 21.02 20.00
mountain.tiff 16.74 16.84 17.81 16.19
peppers2.tiff 27.10 27.80 29.09 26.05
washsat.tiff 30.93 31.08 32.28 30.72
zelda.tiff 30.76 31.53 33.36 30.90
Average 23.53 24.03 25.28 23.35

Table 6 shows that the highest image quality was obtained from the Zelda file,
with 32.71 dB compressed with the DBBD matrix. The lowest image quality was found in
the Library file, with 14.91 dB compressed using the DPCI matrix. The DBBD had the high-
est average performance with 24.73 dB, followed by the BPBD with 23.96 dB. The Gaussian
had the third-best performance with 22.94 dB, and the DPCI was last with 22.81 dB.
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Table 6. Image quality results for 32 × 32.

File
PSNR (dB)

Gaussian BPBD DBBD DPCI

barb.tiff 22.94 23.11 23.56 22.72
boat.tiff 24.84 25.36 26.04 24.49
france.tiff 17.50 17.85 18.86 16.45
goldhill2.tiff 24.93 26.46 27.23 24.62
lena.tiff 26.95 27.77 28.49 26.12
library.tiff 15.72 15.85 17.21 14.91
mandrill.tiff 20.13 20.19 20.50 20.06
mountain.tiff 16.65 16.75 17.33 15.87
peppers2.tiff 26.36 27.85 28.19 25.07
washsat.tiff 30.82 30.89 31.87 30.72
zelda.tiff 30.78 31.48 32.71 29.84
Average 23.42 23.96 24.73 22.81

The qualitative difference in performance of each of the sensing matrices is shown
in Figures 3–5 through a few examples. Four images that were compressed using the
Gaussian, DBBD, BPBD. and DPCI are shown in each figure.

Figure 3 shows Boat images compressed using a block size of 8 × 8. In the figure,
the DBBD had the sharpest detail but had significant pixelation artefacts. The DPCI had
the second-best detail, where small details such as the ship rigging are visible. However,
the DPCI had pixelation artefacts. The BPBD had the third-best detail, where sections of the
ship rigging are still visible. The Gaussian had no pixelation artefacts but had the lowest
detail. These results are corroborated quantitatively in Table 4.

(a) (b) (c)

(d) (e)

Figure 3. Reconstructed Boat images for block size 8. (a) BPBD. (b) Original. (c) DBBD. (d) DPCI
(e) Gaussian.
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Figure 4 shows the GoldHill2 images compressed using a block size of 16 × 16.
The DBBD had the best visual detail but had some colour distortions. The BPBD and DPCI
had very similar performances. The Gaussian had the least detail but had no distortions.
These results are similar to the quantitative results in Table 5.

(a) (b) (c)

(d) (e)

Figure 4. Reconstructed Goldhill2 images for block size 16. (a) BPBD. (b) Original. (c) DBBD.
(d) DPCI. (e) Gaussian.

Figure 5 shows Mandrill images compressed using a block size of 32. The DBBD had
the best visual detail but had visible lines across the image. The DPCI and Gaussian had
similar performance with the second-most detail. The BPBD had blocking artefacts and
had the worst performance. The results are reflected in Table 6, where the performance
numbers are close, with only the DBBD standing out.

(a) (b) (c)

Figure 5. Cont.
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(d) (e)
Figure 5. Reconstructed Mandrill images for block size 32. (a) BPBD. (b) Original. (c) DBBD. (d) DPCI
(e) Gaussian.

6.2. Energy Consumption

The energy consumption of the different measurement matrices was compared using
the MSP430x1xx Family MCU as a reference. The most energy-efficient operating region of
the MCU is 1MHz, with a voltage supply of 2.2 V. In the active mode, the MCU current draw
is 220 µA. The instruction cycle cost of mathematical operations is translated into energy
consumption in Table 7. Multiplication and division are the most expensive operations,
while the other operations are the same and lower in energy consumption.

Table 7. Energy for operations.

Operation Energy Consumption (nJ)

Add 0.484
Subtract 0.484
Multiply 14.036
Divide 10.648
Compare 0.484

The construction of the DPCI requires M Tent sequence numbers. The DPCI uses no
multiplications or additions during sensing, unlike the BPBD and DBBD, which use N−M
additions. The construction and sensing costs are shown in Table 8 for block sizes 8, 16, and
32, all at a 10% sampling rate. The DPCI only consumes energy for construction, while the
BPBD and DBBD only consume energy for sensing. The total energy consumed for sensing
the image is unaffected by block size and depends only on the size of the image. In this
case, it was 114.2 µJ.

Table 8. Energy consumption for matrices.

Process
Energy Per Block (µJ)

Gaussian BPBD DBBD DPCI

Constructing 8 High High 0 0.089
Constructing 16 High High 0 0.369
Constructing 32 High High 0 1.506

Sensing 8 High 0.028 0.028 0
Sensing 16 High 0.112 0.112 0
Sensing 32 High 0.446 0.446 0

7. Discussion

The images had different levels of image quality after recovery. What is interesting is
that three images had much lower performance, france.tiff, library.tiff, and mountain.tiff.
These three images had an image quality below 20 dB for all the sensing matrices and block
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sizes. The first image is a poster with text and a high-contrast background. The second
image is another poster with three sub-figures, text, and a white background. The last
image is of a mountain range with high contrast.

The DBBD had the best quantitative and qualitative performance for all the block
sizes. The matrix suffered from some distortion but had the greatest detail in all the images.
The BPBD had the second-highest quantitative performance for all the block sizes, but the
qualitative performance was only sometimes second-best. The DPCI had the third-best
quantitative results for the block size of 8 × 8. However, it had the worst performance
for the bigger sizes. The DPCI had the second- and third-best qualitative performance for
some of the images. The Gaussian had the least detail and worst qualitative performance
for most of the images but had no distortions.

The block size had different effects on each sensing matrix. The Gaussian had the
lowest performance at the block size of 8 × 8 but had improved performance for 16 × 16
and 32 × 32. The BPBD had similar recovery performance for all the block sizes, while the
DBBD and DPCI had peak performance at 16 × 16. The DPCI had the worst quantitative
performance at 32× 32, and it performed particularly severely for challenging images, with
a relative dip in performance of almost 1 dB compared to the Gaussian. This performance
drop may be caused by the statistical properties of the distribution of the non-zero values
being affected by the sample size, N, but this needs further study.

The DPCI consumes energy for construction, unlike the DBBD, but this energy can be
reduced by decreasing the block size. The DPCI consumes no energy for sensing, unlike
the other matrices. Sensing energy is important because it determines the operating energy
consumption of the node, and depending on the spectral and spatial resolution of the
sensor, as well as the type and duration of the events being monitored, these sensing costs
can accumulate exponentially.

8. Conclusions

Chaotic sequences can be used to address the shortcomings of semi-deterministic
matrices to make fully deterministic matrices that are both energy-efficient and high in
fidelity. The DPCI improves the computational complexity of the PCI by first replacing the
random numbers with chaotic sequences and, secondly, by replacing random permutations
with random sample positions. The DPCI is outperformed by the DBBD and BPBD regard-
ing recovery performance but offers a significant computational advantage. The poorer
recovery accuracy of the DPCI might be because it is much more sparse and takes fewer
samples but this needs further investigation. The DPCI offers an attractive trade-off be-
tween recovery performance and energy efficiency that energy-sensitive applications can
exploit. Some images are challenging for sensing matrices and need further investigation.
Future research should focus on improving the recovery performance of the DPCI by
investigating the sample positions that lead to better performance using training on an
image dataset. These results can then be used to generalise across datasets and develop a
universal sensing matrix.
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