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Abstract
1. Comparative genomics has become an indispensable part of modern biology due 

to the advancements in high-throughput sequencing technologies and the ac-
cumulation of genomic data in public databases. However, the quality of genomic 
data and the choice of parameters used in software tools used for comparative 
genomics can greatly impact the accuracy of results.

2. Here, we present cogeqc, an R/Bioconductor package that provides researchers 
with a toolkit to assess genome assembly and annotation quality, orthogroup in-
ference, and synteny detection. The package offers context-guided assessments 
of assembly and annotation statistics by comparing observed statistics to those 
of closely-related species on NCBI. To assess orthogroup inference, cogeqc cal-
culates a protein domain-aware orthogroup score that aims at maximising the 
number of shared protein domains within the same orthogroup. The assessment 
of synteny detection consists in representing anchor gene pairs as a synteny 
network and analysing its graph properties, such as clustering coefficient, node 
count, and scale-free topology fit.

3. The application of cogeqc to real datasets allowed for an evaluation of multiple 
parameter combinations for orthogroup inference and synteny detection, provid-
ing researchers in need for comparative genomics with guidelines to aid in the 
selection of the most appropriate tools and parameters for their specific data.

4. We demonstrate that the default parameters in orthogroup identification and 
synteny detection tools are not always the most suitable, highlighting the impor-
tance of performing assessments for each dataset. The assessment metrics pro-
vided by cogeqc will help researchers generate more accurate and reliable results.
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1  |  INTRODUC TION

The availability of genomic data in public databases has increased 
exponentially due to advancements in sequencing technologies. 
However, a significant portion of this data is of poor quality, leading 
to incorrect or unreliable results in common analyses such as ge-
nome-wide synteny analysis and gene orthology detection (Feron 
& Waterhouse, 2022; Liu et al., 2018; Marks et al., 2021; Wang & 
Wang, 2022). Likewise, the choice of parameters in comparative 
genomics software can significantly impact the results obtained, 
as default parameters are typically optimised for particular (usually 
gold standard) datasets (Buchfink et al., 2021; Emms & Kelly, 2019). 
Therefore, careful data validation and quality control is crucial to en-
sure the accuracy and reliability of comparative genomics results.

Here, we present cogeqc, an R/Bioconductor package that can 
be used as a toolkit for assessing genome assembly and annotation 
statistics, orthogroup inference and synteny detection. The package 
offers context-guided assessments of assembly and annotation sta-
tistics by comparing observed values to those of closely related spe-
cies on the National Center for Biotechnology Information (NCBI), 
while gene space completeness can be assessed with best universal 
single-copy orthologs (BUSCOs). The orthogroup inference assess-
ment uses a protein domain-aware orthogroup score to maximise 
the number of shared protein domains within the same orthogroup. 
Finally, the assessment of synteny detection relies on representing 
anchor pairs as a synteny network and analysing its graph proper-
ties. The application of cogeqc to real datasets allowed for an evalu-
ation of multiple parameter combinations for orthogroup inference 
and synteny detection, providing researchers with guidelines to aid 
in the selection of the most appropriate parameters for their specific 
data.

2  |  IMPLEMENTATION

cogeqc is part of the Bioconductor ecosystem and, as such, can be 
easily integrated with other Bioconductor packages. Input data types 
are either base R or core Bioconductor classes (e.g. DNAStringSet 
and AAStringSet objects for DNA and protein sequences, respec-
tively). For integration with external software tools (i.e. BUSCO 
(Simão et al., 2015) and OrthoFinder (Emms & Kelly, 2019)), we pro-
vide users with functions to read and parse their output for down-
stream analyses in cogeqc.

2.1  |  Assessing genome assembly and 
annotation statistics

We propose a context-guided assessment of assembly and annota-
tion statistics that consists in comparing observed values for com-
mon metrics (e.g. genome size, contiguity measures, number of 
genes, etc.) with those of closely related species on the National 
Center for Biotechnology Information (NCBI). For a particular taxon, 

the function get_genome_stats() extracts summary assembly and an-
notation statistics for all genomes on NCBI via the Datasets REST API 
(https:// www. ncbi. nlm. nih. gov/ datas ets/ ) and returns a data frame 
with information on 35 variables, such as assembly level, scaffold 
and contig contiguity measures, number of coding and non-coding 
genes, and submitter data. In addition to the NCBI-provided statis-
tics, the output data frame includes a variable ‘CC ratio’ representing 
the ratio of the number of contigs to the number of chromosome 
pairs, which has recently been proposed by (Wang & Wang, 2022) 
as a contiguity measure that compensates for the flaws of N50/L50 
and allows cross-species comparisons.

Additionally, users can create a data frame containing assembly 
and annotation statistics for their own genome projects and pass 
it to the compare_genome_stats() function along with the output of 
get_genome_stats(). This function will add the user-provided statistics 
to a distribution of reference statistics from NCBI quality-checked 
genomes and report the percentile and rank of observed values in 
the distribution. Of note, statistics for NCBI genomes can also be 
obtained with the getAssemblyStats() function of the biomartr pack-
age (Drost & Paszkowski, 2017), but which is dramatically slower 
and limited to a single query species. Observed statistics can also 
be visually compared with reference statistics in publication-ready 
plots created by the function plot_genome_stats() (Figure 1a). Such 
context-guided assessments are particularly useful in cases when 
assembly statistics seem problematic (e.g. genome size is too large, 
number of genes is too small), but which are in fact due to genomic 
features of particular taxa, such as smaller genomes for parasitic (Xu 
et al., 2021), carnivorous (Palfalvi et al., 2020) and aquatic plants (An 
et al., 2019), and larger genomes for species with higher transpos-
able element contents (Michael, 2014).

2.2  |  Assessing gene space completeness

To assess gene space completeness, cogeqc relies on the identifi-
cation of best universal single-copy orthologues (BUSCOs) (Simão 
et al., 2015). The function run_busco() is a wrapper that takes se-
quences as input (as FASTA files or as AA/DNA/RNAStringSet ob-
jects), runs BUSCO from the R session, and returns a data frame with 
the frequency of complete (duplicate and single copy), fragmented 
and missing BUSCOs. Users can also run BUSCO through the com-
mand line and read its output as a data frame using the function 
read_busco(). Finally, the function plot_busco() can be used to create 
publication-ready summary plots for both single-genome and batch 
modes (Figure 1b,c).

2.3  |  Assessing orthogroup inference

We developed a protein domain-aware orthogroup assessment 
score that aims to maximise the number of shared protein domains 
within the same orthogroup while minimising the number of differ-
ent orthogroups containing the same protein domain. The rationale 

https://www.ncbi.nlm.nih.gov/datasets/
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for such approach is that genes that share the same protein domain 
are expected to have evolved from a common ancestor, so they 
should be assigned to the same orthogroup. Formally, orthogroup 
scores are calculated as:

The homogeneity term is the mean Sorensen-Dice index 
(Dice, 1945; Sorenson, 1948) for all pairwise combinations of genes 
in an orthogroup. The Sorensen-Dice index measures how similar two 
genes are in terms of the protein domains they have, and it ranges 
from 0 to 1, with 0 meaning that a gene pair does not share any protein 
domain, and 1 meaning that it shares all protein domains. Formally,

where A and B are the set of protein domains associated with genes A 
and B. Hence, an orthogroup with score 1 would have all genes with the 

exact same protein domains, while an orthogroup with score 0 would 
have a different protein domain for each gene. As individual genes in 
a gene family can lose domains and gain new ones, orthogroup scores 
can take any value from 0 to 1.

The dispersal term aims to correct for overclustering (i.e. or-
thogroup assignments that break ‘true’ gene families into an arti-
ficially large number of smaller subfamilies), and it describes the 
relative frequency of dispersed domains (i.e. the same domain in 
two or more orthogroups). This term penalises orthogroup assign-
ments with the same protein domains in multiple orthogroups. 
We acknowledge that the presence of the same protein domain 
in multiple orthogroups can occur due to convergent evolu-
tion, but since convergent evolution of protein domains is rare 
(Gough, 2005), we assume that such patterns indicate overclu-
stering of gene families.

Orthogroups inferred with OrthoFinder (Emms & Kelly, 2019) 
can be read with the function read_orthogroups(), and mean and 
median scores can be calculated with the function assess_or-
thogroups(). To ensure a higher accuracy in orthogroup assign-
ments, we recommend running OrthoFinder with different 

ScoreOG = Homogeneity − Dispersal.

Homogeneity=
1

Npairs

Npairs∑

i=1

SDIi ,

SDI(A,B)=
2|A∩B|
|A|+ |B|

,

F I G U R E  1  Summary of publication-ready plots that can be created with graphical functions in cogeqc. (a) Summary assembly and 
annotation statistics for all Zea mays genomes on the NCBI obtained with the function plot_genome_stats(). Red data points in the ‘Sequence 
length’ and ‘Gene count total’ panels represent simulated observed values passed by the user. (b) BUSCO summary statistics for a single 
genome obtained with the function plot_busco(). The data used in this figure are a BUSCO output for the Ostreococcus tauri genome. (c) 
BUSCO summary statistics for multiple genomes obtained with the function plot_busco(). The data used in this figure are a BUSCO output 
in batch mode for the bacteria Herbaspirillum seropedicae and Herbaspirillum rubrisubalbicans. (d) Summary comparative genomics statistics 
from OrthoFinder obtained with the function plot_orthofinder_stats(). (e) Heatmap of orthogroup overlap for pairwise species comparisons as 
obtained with the function plot_og_overlap(). All data used to create the figures are distributed with the package as example datasets.

(a)

(b)

(d) (e)

(c)
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combinations of parameters and comparing the distributions of 
orthogroup scores in each run to select the best. Alternatively, 
if reference and reliable orthogroup assignments exist, users can 
compare their predicted orthogroups with reference orthogroups 
by using the function compare_orthogroups(), which can show the 
percentage of reference orthogroups that are preserved in pre-
dicted orthogroups.

Finally, comparative genomics statistics obtained with 
OrthoFinder can be read as a list of data frames with the function 
read_orthofinder_stats() and visualised with graphical functions 
that create publication-ready plots summarising statistics, such 
as plot_orthofinder_stats(), plot_og_overlap() and plot_og_sizes() 
(Figure 1d,e).

2.4  |  Assessing synteny detection

We propose a network-based assessment of synteny (or collinear-
ity, used here as synonyms) detection that consists in representing 
synteny relationships as a graph (i.e. a synteny network) and ana-
lysing topological properties of the graph to assess its quality. To 
infer synteny networks for mammalian and angiosperm genomes, 
(Zhao & Schranz, 2019) have run a synteny detection algorithm 
with multiple combinations of parameters and selected the best 
combination based on the clustering coefficient and number of 
nodes of each network. Ideally, a synteny network should have 
a large number of nodes (i.e. anchor pairs, duplicated genes re-
tained from a large-scale duplication event) and a high clustering 
coefficient.

However, there is often a trade-off between the number of 
nodes and the clustering coefficient, with larger networks being 
more sparse, and smaller networks being more densely connected. 
To account for this trade-off, we use the product of the clustering co-
efficient and the number of nodes to assess networks. Additionally, 
as synteny networks and biological networks in general tend to be 
scale-free (i.e. the degree distribution follows a power-law distribu-
tion) (Barabási, 2009; Barabasi & Oltvai, 2004; Ravasz et al., 2002; 
Venancio et al., 2009; Zhao & Schranz, 2019), we added a term to 
the network score formula that considers how well the network fits 
a scale-free topology. Formally, the score of a synteny network is 
calculated as

where C is the network's clustering coefficient, N is the number of 
nodes, and F is the coefficient of determination (R2) for the scale-free 
topology fit.

Synteny networks can be inferred with the R package syntenet 
(Almeida-Silva et al., 2023), and their scores can be calculated with 
the function assess_synnet(), which returns a data frame with the 
network's score and the observed values for each term of the for-
mula above (C, N, and F). If users have multiple networks stored in a 
list, the function assess_synnet_list() can calculate scores for multiple 
networks at once.

3  |  RESULTS AND DISCUSSION

3.1  |  Assessing the completeness of Chlorophyta 
genomes

To demonstrate the usage of the functions to assess gene space com-
pleteness, we obtained genome sequences for all Chlorophyta genomes 
on Pico-PLAZA 3.0 (N = 16) (Van Bel et al., 2022) and calculated their 
BUSCO scores (Text S1). All genomes were stored in the same directory 
and the function run_busco() was used to run BUSCO in batch mode using 
the lineage dataset chlorophyta_odb10. BUSCO scores were visualised 
with the function plot_busco() (Figure 2). We observed that Chlorophyta 
genomes on Pico-PLAZA are highly complete, with >90% complete 
BUSCOs (Figure 2). However, an exception is the algae Helicosporidium 
sp. (Trebouxiophyceae), with only 65.3% complete BUSCOs.

3.2  |  Orthogroup assignments in different public 
databases perform equally well

We used the protein domain-aware orthogroup assessment imple-
mented in cogeqc to assess orthogroup assignments in public data-
bases, namely PLAZA Dicots 5.0 (Van Bel et al., 2022), OrthoDB 
(Kuznetsov et al., 2023), eggNOG (Hernández-Plaza et al., 2023), 
and HOGENOM (Penel et al., 2009). The rationale for this approach 
is that domain homogeneity for reference-quality orthogroups 
should be as high as possible, as indicated by our benchmark with 
the OrthoBench dataset (Text S2). As the species composition var-
ies across databases, we used Arabidopsis thaliana as a representa-
tive species to assess orthogroups. For each database, orthogroups 
were filtered to include only Arabidopsis genes, and scores were 
calculated with the function calculate_H() using InterPro domain 
annotation obtained from PLAZA Dicots 5.0 (Text S3).

We observed that eggNOG orthogroups have lower scores 
than orthogroups from all other databases (Mann–Whitney U test, 
p < 0.01). HOGENOM orthogroup scores are higher than OrthoDB 
scores, but lower than PLAZA. Finally, PLAZA orthogroup scores 
are higher than all other databases (Text S3, section 3). However, al-
though differences were significant (Mann–Whitney U test, p < 0.01), 
Wilcoxon effect sizes (r) were small, with the difference between egg-
NOG and HOGENOM being the only one with r > 0.1 (Figure 3a). The 
small effect sizes suggest that the observed differences could be due 
to large sample sizes, as small p-values can be obtained if the sample 
size is large enough, even when differences are negligible (Sullivan & 
Feinn, 2012). Thus, despite some small differences, we conclude that 
all databases perform equally well in their orthogroup assignments.

3.3  |  Assessing orthogroup inference under 
multiple combinations of OrthoFinder parameters

To infer orthogroups, OrthoFinder relies on similarity searches with 
DIAMOND (Buchfink et al., 2021), followed by normalisation of bit 

Score = CNF,
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scores by gene length, and graph-based clustering using Markov 
clustering (MCL). By default, OrthoFinder runs DIAMOND in default 
mode, which is faster, but less accurate than its ultra-sensitive mode. 
To cluster genes into orthogroups, an MCL inflation parameter of 1.5 
is used by default, with lower values resulting in a smaller number of 
larger clusters (i.e. low granularity), and higher values resulting in a 
greater number of smaller clusters (i.e. high granularity). To investi-
gate the effect of different parameter combinations on orthogroup 
homogeneity, we downloaded the proteomes of 25 Brassicaceae 
species from PLAZA 5.0, Phytozome v13, BRAD and CoGe (Cheng 
et al., 2011; Goodstein et al., 2012; Lyons et al., 2008; Van Bel 
et al., 2022), and ran OrthoFinder with eight combinations of param-
eters by changing the DIAMOND mode (standard vs. ultra-sensitive 
mode) and the MCL inflation (mcl = 1, 1.5, 2, and 3). Orthogroup 
scores for each OrthoFinder run were obtained with the function 
assess_orthogroups() (Text S4).

A global comparison of the distributions of orthogroup scores 
shows that using an mcl = 1 dramatically reduces homogeneity 
scores as compared to every other mcl value (Mann–Whitney U test, 
p < 0.01; Figure 3b). Orthogroup scores for the default OrthoFinder 
mode (standard DIAMOND, mcl = 1.5) are much larger than runs 
with mcl = 1, both with standard and ultra-sensitive DIAMOND 
mode (Mann–Whitney U test, p < 0.001, effect size >0.3; Figure 3b). 
To test for a possible bias resulting from the species choice, we 

inspected the distributions of orthogroup scores by OrthoFinder 
mode for each species separately. We observed that the species 
choice does not affect scores, as revealed by similar distribution 
shapes for all species (Figure 3c).

Furthermore, we analysed the effects of changing arguments for 
each parameter separately (i.e. same DIAMOND mode with different 
mcl values, and vice versa) to understand their individual relevance 
to orthogroup scores. We observed that increasing mcl values leads 
to significantly higher orthogroup scores, with scores following the 
order 3 > 2 > 1.5 > 1, but the difference is only large between mcl val-
ues of 1 and other values (Mann–Whitney U test, p < 0.001, r > 0.3; 
Figure 3d). Wilcoxon effect sizes for the comparisons between mcl 
values of 1.5 and above are small (r < 0.1; tables 3 and 4 in Text S4), 
suggesting that significant differences could be due to large sample 
sizes (N > 16,000). Likewise, comparisons of orthogroup scores for 
OrthoFinder runs with different DIAMOND modes revealed signif-
icant but negligible differences (p < 0.05, r < 0.04; Figure 3e; table 5 
in Text S4), indicating that changing DIAMOND modes has little 
impact in orthogroup scores and, hence, should not be a concern 
in orthogroup detection. This has been suggested by DIAMOND 
developers in their original manuscript (Buchfink et al., 2021), but 
we now confirm it with supporting data. Thus, we recommend run-
ning OrthoFinder with the standard DIAMOND mode, because it 
offers a 100-fold increase in speed compared to the ultra-sensitive 

F I G U R E  2  Species tree and BUSCO scores for Chlorophyta genomes in Pico-PLAZA 3.0. Scores were calculated using the function 
run_busco() to run BUSCO in batch mode using the chlorophyta_odb10 as lineage dataset. Except for Helicosporidium sp., all species have 
highly complete genomes, as demonstrated by their percentages of complete BUSCOs. Figures were generated by combining the output of 
the functions plot_species_tree() and plot_busco(), and code to recreate it is available in Text S1.
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F I G U R E  3  Assessment of orthogroup inference in public databases and for a Brassicaceae dataset. (a) Distribution of orthogroup 
scores for each database. Comparisons with Wilcoxon effect sizes ≥0.1 are highlighted, with asterisks representing significance levels. 
(b) Distribution of mean orthogroup scores for each OrthoFinder run. Comparisons between the default OrthoFinder mode (standard 
DIAMOND, mcl = 1.5) and other runs with Wilcoxon effect sizes ≥0.1 are highlighted. (c) Distribution of orthogroups scores obtained when 
considering each species individually. Distributions have the same shape regardless of the species choice. (d) Comparison of the distributions 
of orthogroup scores for OrthoFinder runs with the same DIAMOND mode, but different mcl values. Significant differences (p < 0.05, 
Mann–Whitney U test) are highlighted. (e) Comparison of the distributions of orthogroup scores for OrthoFinder runs with the same mcl 
value, but different DIAMOND modes. (f) Bar plots displaying the relationship between orthogroup count and size for each OrthoFinder run. 
Green and blue bars/distributions represent OrthoFinder runs with the default and ultra-sensitive DIAMOND modes, respectively. *p ≤ 0.05. 
**p ≤ 0.01, ***p ≤ 0.001. ****p ≤ 0.0001.

(a)

(c)

(d)

(f)

(e)

(b)



2948  |    ALMEIDA-SILVA and VAN de PEER

mode (Buchfink et al., 2021). To validate that orthogroup scores are 
corrected for overclustering, we ran OrthoFinder with mcl = 5 and 
confirmed that scores are penalised if the granularity is too high 
(Text S5).

Gene family evolution models often rely on phylogenetic birth-
and-death processes, such as CAFE 5 (Mendes et al., 2020), Count 
(Csuros, 2010), and DeadBird (Zwaenepoel & Van de Peer, 2020). 
However, large variances in gene copy numbers can result in uninfor-
mative parameter estimates, and a common rule of thumb consists 
in removing orthogroups with ≥100 genes (Mendes et al., 2020). 
When comparing OrthoFinder runs with mcl values of 3 and 1.5, we 
observed a 2.7-fold increase in the percentage of orthogroups with 
≥100 genes for the latter (Figure 3f). Hence, to reduce the number 
of discarded orthogroups, we recommend using OrthoFinder with 
mcl values of 3. However, since our dataset comprises a single plant 
family, we advise users to test different parameter combinations for 
more diverse (e.g. different families and orders) or more restricted 
(e.g. genus- or population-level) datasets.

3.4  |  (Re)assessing the effectiveness of 
OrthoFinder's bit score normalisation

Bit scores are heavily influenced by gene length, which makes them 
a biased measure of sequence similarity (Emms & Kelly, 2015). To 

address this issue, OrthoFinder has introduced a normalisation tech-
nique that accounts for gene length, removing the correlation be-
tween gene length and bit scores (Emms & Kelly, 2015). To verify 
the effectiveness of OrthoFinder's normalisation, we performed a 
Spearman correlation test between orthogroups scores and median 
gene length and observed a significant but weak negative correla-
tion (ρ = −0.19, p < 0.001; Figure 4a). Furthermore, we observed that 
the number of domains in a protein is moderately correlated with its 
length (ρ = 0.416, p < 0.001; Text S4), indicating that the number of 
domains can be a confounder. To address that, we calculated partial 
Spearman's correlation coefficients between orthogroup scores and 
median gene length while controlling for the number of domains, and 
we found a spurious correlation between these variables (Figure 4a; 
Text S4). Collectively, our findings shows that OrthoFinder's bit 
score normalisation is effective in reducing biases resulting from 
gene length.

3.5  |  Functional analyses unveil biological 
processes associated with rapidly and slowly evolving 
gene families

We observed that all distributions of orthogroup scores produced 
by different OrthoFinder parameters have a similar shape. Using the 
default OrthoFinder mode, we were able to divide the distribution 

F I G U R E  4  Validation of OrthoFinder's bit score normalisation and functional analyses of orthogroups clusters. (a) Relationship between 
orthogroup scores and orthogroup median length. Spearman's correlation coefficient (ρ), partial Spearman's correlation coefficient (ρpartial), 
and p-value are indicated in the bottom left part of the plotting area. (b) Distribution of orthogroup scores for an OrthoFinder run with 
default parameters. Peaks were used to split the distribution in three clusters, with boundaries indicated by dashed red lines. (c) Tree plot 
of enriched functional terms for each orthogroup cluster. Enrichment analyses were performed with clusterProfiler (Wu et al., 2021) and 
visualised with enrichplot. Terms are grouped in a tree-like structure based on semantic similarities calculated with the function pairwise_
termsim() from the enrichplot package.
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F I G U R E  5  Assessment of synteny detection in Fabaceae species with different combinations of parameters. (a) Network scores for a 
synteny network containing all Fabaceae species. (b) Network scores for species-specific synteny networks. Networks with zero scores are 
due to clustering coefficients of 0. Colours represent different combinations of parameters.

(a)

(b)
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of orthogroup scores into three clusters based on peaks (Figure 4b). 
Cluster 1 includes orthogroups with low scores, indicating faster 
evolutionary rates due to gain and loss of protein domains. Cluster 3 
includes orthogroups with high scores, suggesting slower evolution-
ary rates due to shared protein domains by most or all members. 
Cluster 2 includes orthogroups with intermediate scores, indicating 
neither fast nor slow evolutionary rates. To investigate the func-
tional profiles of each cluster, we conducted enrichment analyses 
of GO terms, MapMan bins, and InterPro domains using all genes in 
orthogroups as background.

For cluster 1, we found an enrichment of genes associated with 
ATP production, water and K+ transport, seed oil body biogenesis, 
and response to nitrate and ethylene (Figure 4c). Orthogroups in 
cluster 2 were enriched in genes associated with sulfur amino acid 
metabolism, spliceosome biogenesis, β-1,3-glucan biosynthesis, 
response to brassinosteroids, xylem development, exocytosis, and 
calcium and sulphate transport. Finally, orthogroups in cluster 3 
were enriched in genes involved in photosynthesis, zinc and amino 
acid transport, DNA replication, endocytosis, cell–cell junction as-
sembly, and toxin catabolism. Our results are in line with previous 
studies, indicating that rapidly evolving families are associated 
with environmental response while slowly evolving families are 
associated with more basic cellular processes (Ngou et al., 2022; 
Wang et al., 2018).

3.6  |  Graph-based assessment of synteny detection 
with different combinations of parameters

To detect synteny between genomic regions, one must explicitly 
define the minimum number of genes required to call a syntenic 
block or segment, and the maximum number of allowed gaps be-
tween genes. Here, we used the R package syntenet (Almeida-Silva 
et al., 2023) to infer synteny networks among Fabaceae genomes 
on PLAZA 5.0 (Van Bel et al., 2022) with 5 combinations of param-
eters: a3m25, a5m15, a5m25, a5m35, and a7m25, where ‘a’ stands for 
the minimum number of anchors to call synteny, and ‘m’ stands for 
the maximum number of gaps between genes (Text S6). We inferred 
species-specific (i.e. intragenomic) networks and a full network (i.e. 
all pairwise species comparisons).

For the full network, scaled network scores were very similar, 
but the parameter combination a3m25 resulted in the best syn-
teny network, with the largest number of nodes, scale-free topol-
ogy fit, and overall score (Figure 5a). Interestingly, the network 
obtained with the default parameter combination of the MCScanX 
algorithm, a5m25, had the lowest score. When analysing each 
species' network separately, we observed that the best parame-
ter combination depends on the species (Figure 5b), highlighting 
the importance of performing assessments for each dataset. The 
combinations a7m25 and a5m15 are typically the worst, leading to 
zero scores in some species due to clustering coefficients of zero, 
while a3m25, a5m25, and a5m35 lead to the best scores in 45%, 
33%, and 22% of the species, respectively (Figure 5b). Finally, we 

observed that the parameter combination that leads to the high-
est score in most species-specific networks (a3m25) is also the 
best combination for the full network (with all species) (Figure 5b). 
Although it suggests that this combination tends to be the best in 
most cases, we advise users to test multiple combinations when-
ever possible.

4  |  CONCLUSION

cogeqc is an R package that can be used to assess the quality of ge-
nome assembly and annotation in a phylogenetic context, and to 
assess the quality of orthogroup inference and synteny detection. 
The package was designed to be user-friendly, easily integrate with 
other packages and software tools, and provide summary results as 
publication-ready plots. Applications to real datasets demonstrated 
how the package can be used to select optimal parameters in ortho-
group inference and synteny analyses, providing users with general 
guidelines.
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