Supplementary materials

Long-term spatially-replicated data show no physical cost to a benefactor species in a facilitative plantplant interaction

Supplementary Figure 1. Locations of the 12 plots (black squares) split into four altitudinal transects on sub-Antarctic Marion Island (see Supplementary Text S1 for details).

Supplementary Figure 2. Pictures of the same *Azorella selago* individual photographed in 2003 (a), 2006 (b), and 2016 (c) respectively, at the low altitude site on the western side of Marion Island. Photographs were taken directly from above with a scale bar (5.2 cm length matchbox, 15 cm and 30 cm length rulers) included. Digital cameras were used in 2003 (Nikon E885), and 2006 (Canon PowerShot S10) and in 2016 (Canon PowerShot D30). There was a difference in the resolution of the images taken between the years (300 dpi in 2003, and 180 dpi in 2006 and 2016); however, this did not affect the measurements as image processing was not performed at the highest resolution. Both cameras had standard lenses, which created minimal distortion, and because cushion plants were always photographed in the centre of the images, any distortions were negligible. Possible causes of *A. selago* damage on Marion Island include wind, alien house mouse burrowing and pathogens.

Supplementary Table 1. Modelling *Azorella selago* size (n = 196), *A. selago* dead stem cover (n = 196), and *Agrostis magellanica* cover (n = 163) between 2003 and 2006 using generalized linear mixed-effects models. Cover of other = combined cover of other vascular plant species and mosses. For both categorical variables (altitude and aspect), the factors' levels are presented according to the order of their magnitude: L = Low, M = Mid, H = High, E = East, W = West. "L vs H", "M vs H", and "W vs E", respectively, signify the difference between (i) low and high altitudes, (ii) mid and high altitudes, and (iii) western and eastern sides.

			Predictor variables: initial measurements											
							Alti	tude	Aspect	% Ag	rostis ×	% Agrostis ×		
			Azorella size	Agrostis	Dead stem	Cover of	M > 1	H > L	W < E	alti	tude	aspect		
Response Variable	Statistic	Intercept	(cm ²)	cover (%)	cover (%)	other (%)	L vs H	M vs H	W vs E	L vs H	M vs H	W vs E		
	Estimate	1.368	0.866	-1.466	-0.002	0.005	-0.051	0.013	-0.024	1.467	1.466	0.007	-	
Final Azorella size	χ^2 -statistic	-	2102.466	0.555	2.437	1.232	0.4	72	0.005	1.2	211	1.458		
(cm ²)	d.f.	-	1	1	1	1	2	2	1	2		1		
	P-value	-	< 0.001	0.456	0.119	0.267	0.7	790	0.945	0.546		0.227		
							Alti	tude	Aspect	% Agrostis ×		% Agrostis ×		
			Dead stem	Agrostis	Azorella size	Cover of	L > M > H		E < W	altitude		aspect		
	Statistic	Intercept	cover (%)	cover (%)	(cm ²)	other (%)	L vs H	M vs H	W vs E	L vs H	M vs H	W vs E		
	Estimate	-1.090	0.026	6.058	-0.167	-0.016	0.404	0.014	0.219	-6.049	-6.044	-0.026		
Final dead stem cover	χ^2 -statistic	-	67.475	2.106	9.597	1.375	0.4	149	0.092	2.2	713	2.543		
(%)	d.f.	-	1	1	1	1	2	2	1		2	1		
	P-value	-	< 0.001	0.147	0.002	0.241	0.7	799	0.762	0.2	258	0.111		
							Alti	tude	Aspect	% Dea	d stem ×	% Dead stem ×		
			Agrostis	Azorella size	Dead stem	Cover of	M	<l< th=""><th>W < E</th><th>alti</th><th>tude</th><th>aspect</th><th></th></l<>	W < E	alti	tude	aspect		
	Statistic	Intercept	cover (%)	(cm ²)	cover (%)	other (%)	Му	vs L	W vs E	M	vs L	W vs E		
	Estimate	-3.202	0.058	0.152	0.002	0.040	-0.9	903	-0.769	-0.	001	-0.007		
Einel Aquestic cover $(0/)$	χ^2 -statistic	-	116.842	3.866	0.009	1.631	22.	664	20.786	0.0	011	0.458		
r mai Agrosus cover (%)	d.f.	-	1	1	1	1		1	1		1	1		
	P-value	-	< 0.001	0.049	0.923	0.202	< 0.	001	< 0.001	0.9	917	0.498		

Supplementary Table 2. Modelling *Azorella selago* size (n = 194), *A. selago* dead stem cover (n = 194), and *Agrostis magellanica* cover (n = 160) between 2006 and 2016 using generalized linear mixed-effects models. Cover of other = combined cover of other vascular plant species and mosses. For both categorical variables (altitude and aspect), the factors' levels are presented according to the order of their magnitude: L = Low, M = Mid, H = High, E = East, W = West. "L vs H", "M vs H", and "W vs E", respectively, signify the difference between (i) low and high altitudes, (ii) mid and high altitudes, and (iii) western and eastern sides.

			Predictor variables: initial measurements											
							Alti	tude	Aspect	% Ag	ostis ×	% Agrostis ×		
			Azorella size	Agrostis	Dead stem	Cover of	M >]	L>H	E < W	alti	tude	aspect		
Response Variable	Statistic	Intercept	(cm ²)	cover (%)	cover (%)	other (%)	L vs H	M vs H	W vs E	L vs H	M vs H	W vs E		
	Estimate	0.510	0.939	0.000	-0.005	0.011	0.033	0.064	0.069	The inter	ation term	0.004		
	χ^2 -statistic	-	1046.848	0.071	7.952	2.326	0.1	45	0.397	n et in else		0.383		
Final Azorella size (cm ⁻)	d.f.	-	1	1	1	1		2		not includ		1		
	P-value	-	< 0.001	0.789	0.005	0.127	0.9	930	0.529	convergence issues		0.536		
							Alti	tude	Aspect	% Agr	ostis ×	% Agrostis ×		
			Dead stem	Agrostis	Azorella size	Cover of	L > M > H		E < W	altitude		aspect		
	Statistic	Intercept	cover (%)	cover (%)	(cm ²)	other (%)	L vs H	M vs H	W vs E	L vs H	M vs H	W vs E		
	Estimate	-2.710	0.025	-0.003	0.054	0.024	0.707	0.702	0.338	The interest	The interaction term	-0.024		
Einel des dieters einer (0/)	χ^2 -statistic	-	31.873	1.444	0.592	1.492	1.4	159	0.189			2.473		
Final dead stell cover (76)	d.f.	-	1	1	1	1	:	2	1	not meru		1		
	P-value	-	< 0.001	0.230	0.442	0.222	0.4	182	0.664	converge	nce issues	0.116		
							Alti	tude	Aspect	% Dead	l stem ×	% Dead stem		
			Agrostis	Azorella size	Dead stem	Cover of	Μ	<l< th=""><th>W < E</th><th>alti</th><th>tude</th><th>× aspect</th></l<>	W < E	alti	tude	× aspect		
	Statistic	Intercept	cover (%)	(cm ²)	cover (%)	other (%)	М	vs L	W vs E	M	vs L	W vs E		
	Estimate	-3.365	0.050	0.153	-0.008	0.028	-0.	569	-0.418	-0.	007	-0.005		
	χ^2 -statistic	-	115.785	3.418	4.869	1.044	5.0)77	2.673	0.2	292	0.219		
rinal Agrostis cover (%)	d.f.	-	1	1	1	1		1	1		1	1		
	P-value	-	< 0.001	0.065	0.027	0.307	0.0)24	0.102	0.5	589	0.640		

Supplementary Table 3. The number and percentage of *Azorella selago* individuals with increasing or decreasing: A) size, B) *Agrostis magellanica* cover, and C) dead stem cover, based on measurements in 2003 (i.e., initial data; indicated with subscript *i*) and in 2016 (i.e., final data; indicated with subscript *f*). Instances are indicated where *A. magellanica* cover and *A. selago* dead stem cover increased from zero initial cover $(0_i < x_f)$ or increased from some initial cover $(x_i < x_f)$, decreased from some initial cover $(x_i > x_f)$ or lost all *A. magellanica* cover despite having some cover initially $(x_i > 0_f)$.

	Category	Number of Azorella individuals	% Azorella individuals
A	Azorella increased in size $(x_i < x_f)$	409	91.9 %
	Azorella decreased in size $(x_i > x_f)$	36	8.1 %
В	Agrostis cover gained $(0_i < x_f)$	34	7.6 %
	Agrostis cover gained $(x_i < x_f)$	226	50.7 %
	Agrostis cover lost $(x_i > x_f)$	23	5.2 %
	Agrostis cover lost $(x_i > 0_f)$	6	1.3 %
	Agrostis absent in both years	156	35.1 %
С	Dead stem cover increased $(x_i < x_f)$	360	80.9 %
	Dead stem cover increased $(0_i < x_f)$	4	0.9 %
	Dead stem cover decreased $(x_i > x_f)$	81	18.2 %

Supplementary Figure 3. Final *Azorella selago* size (a & c), absolute change in *A. selago* size (b & d) and *A. selago* horizontal growth rate calculated from the maximum diameter (e & f) at different altitudes and on different aspects on Marion Island. None of the differences illustrated here are significant. See Table 1 in the main text for more details.

Supplementary Figure 4. Final *Azorella selago* dead stem cover (a & c), absolute change in *A. selago* dead stem cover (b & d), final *Agrostis magellanica* cover (e & g) and absolute change in *A. magellanica* cover (f & h) at different altitudes and on different aspects on Marion Island. None of the differences illustrated here are significant. See Table 1 in the main text for more details.

Supplementary Table 4. Modelling *Azorella selago* size, *A. selago* dead stem cover, and *Agrostis magellanica* cover separately (i.e., using a snap-shot approach) during 2003, 2006, and 2016 using generalized linear mixed-effects models. Cover of other = combined cover of other vascular plant species and mosses. For both categorical variables (altitude and aspect), the factors' levels are presented according to the order of their magnitude: L = Low, M = Mid, H = High, E = East, W = West. "L vs H", "M vs H", and "W vs E", respectively, signify the difference between (i) low and high altitudes, (ii) mid and high altitudes, and (iii) western and eastern sides.

		Predictor variables: 2003												
						Alti	tude	Aspect	% Agrostis ×		% Agrostis ×			
			Agrostis cover	Dead stem cover	Cover of other	H > 1	M > L	$\mathbf{E} > \mathbf{W}$	alti	tude	aspect			
Response variable: 2003	Statistic Inte	Intercept	(%)	(%)	(%)	L vs H	M vs H	W vs E	L vs H	M vs H	W vs E			
	Estimate	7.606	0.656	-0.004	-0.014	-0.687	-0.029	-0.201	-0.643	-0.636	0.033			
	χ^2 -statistic	-	16.418	2.0561	0.727	19.	817	0.368	3.719		5.991			
Final Azorella size (cm ²)	d.f.	-	1	1	1		2	1	2		1			
	P-value	-	< 0.001	0.152	0.394	< 0	.001	0.544	0.156		0.014			
			A	4	Course of other	Alti	tude	Aspect	% Ag	rostis ×	% Agrostis ×			
	Statistic	Intercept	Agrosus cover	Azoreua size		M > L > H		E < W	altitude		aspect			
			(%)	(cm ⁻)	(70)	L vs H	M vs H	W vs E	L vs H	M vs H	W vs E			
	Estimate	-1.817	0.103	-0.004	0.041	0.04	0.51	0.3	-0.094	-0.106	-0.037			
	χ^2 -statistic	-	0.005	0.006	7.892	3.0	092	0.548	1.195		5.567			
Final dead stem cover (%)	d.f.	-	1	1	1	:	2	1		2	1			
	P-value	-	0.945	0.939	0.005	0.2	213	0.459	0	.55	0.018			
						Alti	tude	Aspect	% Dea	d stem ×	% Dead stem ×			
	Statistic	Intercept	Azorella size	Dead stem cover	Cover of other	M	< L	W < E	alti	tude	aspect			
			(cm ²)	(%)	(%)	M vs L		W vs E	М	vs L	W vs E			
	Estimate	-3.588	0.328	0.005	-0.003	-1	.41	-1.418	0.	005	-0.016			
Final Agrostis cover (%)	χ^2 -statistic	-	26.819	0.391	0.008	53.	895	100.069	0.341		3.469			
- , , ,	d.f.	-	1	1	1		1	1	1		1			

P-value -	< 0.001	0.532	0.928	< 0.001	< 0.001	0.559	0.063
-----------	---------	-------	-------	---------	---------	-------	-------

Supplementary Table 4 continued.

			Predictor variables: 2006											
						Alti	tude	Aspect	% Agrostis	×	% Agrostis ×			
			Agrostis	Dead stem	Cover of	L < I	I < M	$\mathbf{E} > \mathbf{W}$	altitude		aspect			
Response variable: 2006	Statistic	Intercept	cover (%)	cover (%)	other (%)	L vs H	M vs H	W vs E	L vs H M vs H		W vs E			
	Estimate	7.892	0.009	-0.012	-0.001	-0.658	0.025	-0.046	The intervention t		0.026			
$\mathbf{E}_{in} = 1 \mathbf{A}_{in} \mathbf{A}_{i$	χ^2 -statistic	-	5.102	5.616	0.002	27.	071	0.266	The interaction term		4.565			
Final Azorella size (cm ²)	d.f.	-	1	1	1	:	2	1	was not included	was not included due				
	P-value	-	0.024	0.018	0.964	< 0.	.001	0.606	to convergence issues		0.033			
						Alti	tude	Aspect	% Agrostis	×	% Agrostis ×			
			Agrostis	Azorella size	Cover of	H < M < L		W > E	altitude		aspect			
	Statistic	Intercept	cover (%)	(cm ²)	other (%)	L vs H	M vs H	W vs E	L vs H M	vs H	W vs E			
	Estimate	-0.807	0.012	-0.152	0.007	0.481 0.255		0.244			-0.028			
$\Gamma' = 1 + 1 + \dots + (0/2)$	χ^2 -statistic	-	1.736	5.348	0.196	0.4	469	0.036		1.1	4.473			
Final dead stem cover (%)	d.f.	-	1	1	1		2	1	was not included	1 due	1			
	P-value	-	0.188	0.021	0.658	0.7	791	0.850	to convergence i	ssues	0.034			
						Alti	tude	Aspect	% Dead sten	n ×	% Dead stem ×			
			Azorella size	Dead stem	Cover of	М	<l< th=""><th>W < E</th><th>altitude</th><th></th><th>aspect</th></l<>	W < E	altitude		aspect			
	Statistic	Intercept	(cm ²)	cover (%)	other (%)	М	vs L	W vs E	M vs L		W vs E			
	Estimate	-3.318	0.312	0.009	0.021	-1.	826	-0.945	0.020		-0.028			
Einel Accepting accept $(0/)$	χ^2 -statistic	-	9.859	1.465	0.312	101	.181	109.162	1.936		5.317			
rmai Agrosus cover (%)	d.f.	-	1	1	1		1	1	1		1			
	P-value	-	0.002	0.226	0.576	< 0.	.001	< 0.001	0.164		0.021			

Supplementary Table 4 continued.

			Predictor variables: 2016											
						Alti	tude	Aspect	% Agrostis ×		% Agrostis ×			
			Agrostis	Dead stem	Cover of	M >]	H > L	W < E	alti	tude	aspect			
Response variable: 2016	Statistic	Intercept	cover (%)	cover (%)	other (%)	b) L vs H M vs H		W vs E	L vs H M vs H		W vs E			
	Estimate	8.067	0.292	-0.008	-0.034	-0.554	0.001	-0.172	-0.279	-0.277	0.022			
\mathbf{E}_{in-1}	χ^2 -statistic	-	18.153	10.392	10.635	17.	506	0.099	2.0)17	6.128			
rinal Azorella size (cm ⁻)	d.f.	-	1	1	1	2	2		2	2	1			
	P-value	-	< 0.001	0.001	0.001	< 0.	.001	0.753	0.3	865	0.013			
						Alti	tude	Aspect	% Agr	ostis ×	% Agrostis ×			
			Agrostis	Azorella size	Cover of	M >]	M > L > H		altitude		aspect			
	Statistic	Intercept	cover (%)	(cm ²)	other (%)	L vs H	M vs H	W vs E	L vs H	M vs H	W vs E			
	Estimate	-0.881	0.328	-0.1060	0.005	0.586	0.607	0.222	-0.326	-0.325	-0.015			
	χ^2 -statistic	-	0.042	5.299	0.282	12.	613	0.787	3.115		1.966			
Final dead stem cover (%)	d.f.	-	1	1	1	1	2	1 2		2	1			
	AgrostisAzorella sizeCover of $M > L > H$ $E < W$ altitudeStatisticInterceptcover (%)(cm²)other (%) $L vs H$ $M vs H$ $W vs E$ $L vs H$ $M vs H$ Estimate-0.8810.328-0.10600.0050.5860.6070.222-0.326-0. χ^2 -statistic-0.0425.2990.28212.6130.7873.115d.f111212P-value-0.8380.0210.5960.0020.3750.211Azorella sizeDead stemCover of $M < L$ $W < E$ altitude	211	0.161											
						Alti	tude	Aspect	% Dead	l stem ×	% Dead stem ×			
			Azorella size	Dead stem	Cover of	M	<l< th=""><th>W < E</th><th>alti</th><th>tude</th><th>aspect</th></l<>	W < E	alti	tude	aspect			
	Statistic	Intercept	(cm ²)	cover (%)	other (%)	М	vs L	W vs E	М	vs L	W vs E			
	Estimate	-3.192	0.317	-0.007	0.048	-1.3	396	-1.370	0.0	005	-0.005			
Einel Aquestic cover $\binom{0}{2}$	χ^2 -statistic	-	24.772	3.670	16.516	63.	071	88.460	0.543		0.553			
rmai Agrosus cover (%)	d.f.	-	1	1	1		1	1		1	1			
	P-value	-	< 0.001	0.057	< 0.001	< 0.	.001	< 0.001	0.4	61	0.457			

Supplementary Table 5. Modelling the number of fruits (n = 214) and flower buds (n = 214) on *Azorella selago* during 2003 using generalized linear mixedeffects models. Cover of other = combined cover of other vascular plant species and mosses. For both categorical variables (altitude and aspect), the factors' levels are presented according to the order of their magnitude: L = Low, M = Mid, H = High, E = East, W = West. "L vs H", "M vs H", and "W vs E", respectively, signify the difference between (i) low and high altitudes, (ii) mid and high altitudes, and (iii) western and eastern sides. *Azorella* size (cm²) has been included as an offset variable.

			Predictor variables: 2003											
					Altitude		Aspect	% Agrostis ×		% Agrostis ×				
			Agrostis cover	Cover of other	L < N	/I < H	W < E	alti	tude	aspect				
Response variable: 2003	Statistic	Intercept	(%)	(%)	L vs H	M vs H	W vs E	L vs H	M vs H	W vs E				
	Estimate	-0.617	1.013	-0.102	-0.902	-0.728	-0.355	-1.032	-1.037	-0.057				
Number of forsite	χ^2 -statistic	-	5.378	1.244	3.502		3.782	0.373		1.506				
Number of fruits	d.f.	-	1	1	2		1	2		1				
	P-value	-	0.020	0.265 0.174		74	0.052	0.8	330	0.220				
					Altitude		Aspect	% Agrostis ×		% Agrostis ×				
			Agrostis cover	Cover of other	H > M	∕I > L	E < W	alti	tude	aspect				
	Statistic	Intercept	(%)	(%)	L vs H	M vs H	W vs E	L vs H	M vs H	W vs E				
	Estimate	-1.505	-2.873	-0.056	-1.666	-0.761	1.126	2.849	2.832	-0.030				
	χ^2 -statistic	-	6.089	0.763	10.	351	7.490	3.0	276	1.152				
Number of flower buds	d.f.	-	1	1	2		1	2		1				
	P-value	-	0.014	0.382	0.006		0.006	0.220		0.283				

Supplementary Text 1

Summary of the methodology utilized by Nyakatya (2006)

The research by Nyakatya (2006) has been published as MSc thesis (available from: https://scholar.sun.ac.za/handle/10019.1/21696) but here I summarize the key study design points relevant to the methods used for our study. The broad aim of Nyakatya's (2006) study was to quantify spatial variability in the phenology, morphology, reproductive effort, and epiphyte load of *Azorella selago* cushion plants across sub-Antarctic Marion Island, and to determine the direction and range of this variability.

Twelve long-term monitoring plots were established and surveyed at three altitudes (c. 200, 400 and 600 m a.s.l) on the island's eastern and western aspects between April 2002 and April 2003. Plots were established using complete sampling, i.e., a central starting point was selected, and the area encompassing a minimum of 50 A. selago plants (excluding individuals < 15 cm diameter) from that starting point was considered as a plot. The exact locations of each plot were randomly selected within certain constraints: 1) plots had to be in Azorella-dominated fellfield; 2) plots had to be located within defined altitudinal bands (i.e., 150 - 250 m a.s.l., 350 - 450 m a.s.l. and > 550 m a.s.l.); and 3) plots needed to form an altitudinal transect (two altitudinal transects were established on both the eastern and western sectors of the island). The plots were clearly marked with corner marker poles and tags for long-term monitoring purposes. Within each plot, 50 A. selago cushion plants (greater than 15 cm in diameter) were selected and used for taking several of measurements. Nondestructive measurements were also taken from cushion plants that were less than 15 cm in diameter to avoid damaging young plants. The exact and relative position of each cushion plant within a site, its nearest neighbours, and the corners of each sampling site were determined using a Nikon Total Station DTM350 Theodolite, with an accuracy of 10 mm. Since there are no fixed reference points

on the island, a Garmin 12MAP GPS (global positioning systems) was used to obtain the approximate geographic co-ordinates of each site.

Within these sites, a variety of quantitative measurements of *A. selago* were recorded. Each of the 50 *A. selago* individual within each site was photographed in the summer of 2002/2003 from directly above at a height of 1.5 m, with a scale bar included within each photograph.

Reference:

Nyakatya, M. J. 2006. Patterns of variability in *Azorella selago* Hook. (Apiaceae) on sub-Antarctic Marion Island: climate change implications. – Stellenbosch University, South Africa.

Supplementary Text 2

The statistical models specified for our analyses:

- 1. log(final Azorella size (cm²)) ~ log(initial Azorella size (cm²)) + initial Agrostis cover (%) + initial Azorella dead stem cover (%) + altitude + aspect + other vascular plants and mosses' initial combined cover (%) + (initial Agrostis cover (%) × altitude) + (initial Agrostis cover (%) × aspect) + (1 plot) (Eqn. 1)
- 2. Final Azorella dead stem cover (%) ~ initial Azorella dead stem cover (%) + log(initial Azorella size (cm²)) + initial Agrostis cover (%) + altitude + aspect + other vascular plants and mosses' initial combined cover (%) + (initial Agrostis cover (%) × altitude) + (initial Agrostis cover (%) × aspect) + (1 plot) (Eqn. 2)
- 3. Final Agrostis cover (%) ~ initial Agrostis cover (%) + log(initial Azorella size (cm²)) + initial Azorella dead stem cover (%) + altitude + aspect + other vascular plants and mosses' combined

 $cover (\%) + (initial dead stem cover (\%) \times altitude) + (initial dead stem cover (\%) \times aspect) + (1 | plot)$ (Eqn. 3)