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ABSTRACT 

Ancestry is a fundamental parameter of the biological profile. To date South African forensic 

anthropologists are only able to successfully apply a metric approach to estimate ancestry from 

skeletal remains. While a non-metric, or macromorphoscopic (MMS) approach exists, limited 

research has been conducted to explore its use in a South African population. The method has 

not been sufficiently tested and validated which is required for anthropological methodology 

to be compliant with standards of best practice. This study aimed to explore the MMS traits 

and its covariation with cranial measurements to develop improved methodology for the 

estimation of ancestry from skeletal remains in South Africa. A suite of 17 MMS traits and 25 

standard linear measurements were collected from 660 crania of black, white and coloured 

South Africans.  

Inter- and intra-observer agreement was closely scrutinized as visual methods have been 

shown to be prone to error. The intra-observer agreement ranged from moderate to perfect, 

with three traits (inferior nasal margin, nasal bone shape, and nasal overgrowth) yielding 

slightly lower repeatability. Inter-observer agreement was assessed among five individuals 

with varying levels of general experience and familiarity with the traits. Overall, the observers 

demonstrated poor to substantial agreement. A group discussion on the scoring procedure, 

followed by subsequent rescoring of the crania showed a slight increase in overall agreement, 

with kappa values ranging between moderate and substantial. While general experience does 

not appear to translate to proficiency with the method, familiarity with the traits and scoring 

procedure contributes to consistent scores. Thus, method-specific training is essential prior to 

employing the MMS traits in practice. Technical error of measurement was used to assess the 

repeatability of the measurements, where the intra-observer error was noted to be lower than 

the inter-observer error. The greatest disparity was observed with the inter-orbital breadth and 

mastoid height for both the inter- and intra-observer assessments.   

The MMS trait frequency distributions revealed substantial group variation and overlap. 

Ultimately, not a single trait can be considered characteristic of any one population group. 

Kruskal-Wallis and Dunn’s tests demonstrated significant population differences for 13 of the 

17 traits. Black and coloured South Africans, and coloured and white South Africans shared 

similarities for many of the traits, but black and white South Africans did not present with 

significant overlap for any trait. ANOVA and Tukey’s honestly significant difference (HSD) 

test revealed that all measurements were significantly different for ancestry, except the foramen 
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magnum length. Substantial variation and overlap were observed for the measurements among 

all three groups. 

Random Forest Modelling (RFM) was used to develop classification models to assess the 

reliability and accuracy of the variables in identifying ancestry. Models were created for the 

traits and measurements separately to gauge the discriminatory power of each dataset. A 

combined model including all data was also created to test if mixed data can better capture 

cranial variation than individual methods. The MMS model outperformed the metric model, 

with classification accuracies of 79% and 72%, respectively. Ultimately, the best results were 

obtained with the mixed model, which yielded an accuracy of 81%. The results indicate that 

the combination of size and shape data (as quantified with the mixed model) can effectively 

distinguish between black, white and coloured South Africans despite significant group 

overlap.  Thus, this study has shown the MMS traits to be a valid and tested method, and the 

population-specific data from this study can be used to add MMS analyses to forensic casework 

and skeletal analyses in South Africa.  

Key words: forensic anthropology; repeatability; observer experience; classification; random 

forest models; variable importance 
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CHAPTER 1: INTRODUCTION 

The primary role of a forensic anthropologist in medico-legal investigations is to establish a 

biological profile from unknown skeletal remains to provide sufficient information for a 

presumptive identification. The parameters of the biological profile consist of estimations of 

age-at-death, stature, sex and ancestry, and can only be established with knowledge of skeletal 

variation within and between populations. Populations are groups with diverse histories 

influenced by numerous factors, all of which contribute to the patterned distribution of human 

variation (Ousley et al., 2009; Spradley and Jantz, 2021). The quantification of skeletal 

variation among populations forms the basis of ancestry estimation, where the estimation of 

ancestry is considered possible as skeletal variation has been correlated to socially constructed 

populations around the world (Jantz and Ousley, 2005). However, it is important to 

acknowledge that the relationship between skeletal morphology and social race is complicated 

(Dunn et al., 2020).  This inherent complexity should be considered in all aspects of research, 

including terminology, method design, and drawing conclusions when attempting to quantify 

population variation from the skeleton (Edgar and Pilloud, 2021). Forensic anthropologists 

have been more cognisant of this fact and aim to enact transformation in how we describe and 

explore population variation in the discipline.    

The cranium is often considered the most accurate skeletal element for the evaluation of 

ancestry, with craniometry elected as the preferred approach. Numerous studies have assessed 

craniometric variation among South Africans (İşcan and Steyn, 1999; Franklin et al., 2010; 

L’Abbé et al., 2013; Stull et al., 2014a; Maass and Friedling, 2019). The use of standard 

craniometric variables have been found to produce satisfactory results when estimating 

ancestry with correct classifications up to 73%. However, standard linear measurements mainly 

quantify size and are frequently unable to effectively capture the shape variation observable in 

the craniofacial complex. The use of alternative metric methods, such as geometric 

morphometrics, has recently gained greater popularity amid anthropological research (Spradley 

and Stull, 2018). Geometric morphometrics entails recording landmark coordinates of complex 

objects in a three-dimensional space which then produces statistical and graphical outputs 

primarily using shape information. Shape differences among specimens can be observed as 

displacement of individual landmarks within the total configuration of the object being 

assessed (von Cramon-Taubadel et al., 2007). Researchers have noted coordinate-based 

analyses achieve greater classification accuracies than standard linear metrics, with 
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approximately 89% correct classifications among three modern South African groups (Slice, 

2007; Stull et al., 2014a). While more accurate, the metric approach, and specifically a 

morphometric approach may not always be feasible.  

The application of non-metric visual assessment appears to be an ideal solution, as the 

method does not require any equipment, is not time consuming, and can assess cranial size as 

well as shape. However, the use of non-metrics is associated with numerous methodological 

issues and is known for perpetuating typological thinking in the assessment and understanding 

of human variation (Hefner, 2009; Plemons and Hefner, 2016). Acceptance of the Daubert 

criteria (Daubert v. Merrel Dow Pharmaceuticals, Inc., 1993) as guidelines for best scientific 

practice initiated a paradigm shift in forensic research. Closer scrutiny has been placed on both 

traditional and novel methods. The testing and validation of methodology became recognised 

as an essential step in ensuring that methods report realistic results, express external validity, 

and demonstrate forensic significance (Christensen and Crowder, 2009). As such, emerging 

research around the world has attempted to challenge and improve the non-metric approach, 

now referred to as the macromorphoscopic (MMS) method, inclusive of adding definitions and 

comparative drawings, employing robust statistical tests, and gauging the accuracy of the 

method in different populations (Hefner, 2009; Hefner and Ousley 2014; Plemons and Hefner, 

2016; Hefner and Linde, 2018). Greater emphasis has also been placed on exploring observer 

agreement and trait score variation when employing the traits (Klales and Kenyhercz, 2015; 

Kamnikar et al., 2018).  

Along with emerging research modifying and improving the MMS method, researchers have 

also explored a more holistic approach that combines both metric and macromorphoscopic 

methods (Hefner et al., 2014; Maier, 2018). A combined metric-macromorphoscopic approach 

weighs different aspects of cranial size, shape and morphology, and as such is able to capture 

more between-group variation, ultimately enhancing classification power (Hefner et al., 2014). 

Additionally, the use of robust machine learning statistical methods (i.e., random forest 

modelling, artificial neural networks, etc.) has shown to yield accuracies as high as 90%, which 

rivals coordinate-based techniques (Hefner et al., 2014; Navega et al., 2015).  

To date the MMS method has yet to undergo the same level of application and rigorous 

scientific testing in South Africa. While the frequency of some of the traits have been assessed, 

its application in classification models for the purpose of forensic analyses has been very 

limited (L’Abbé et al., 2011; Dinkele 2018). With a lack of population-specific standards, 
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South African practitioners may rely on North American standards, which is not recommended 

as differences have been shown to exist between North Americans and South Africans (L’Abbé 

et al., 2011, 2013; McDowell 2012, 2015; Krüger 2015; Caple and Stephan, 2017). This 

requires for more work to be done to ensure the method meets international standards for best 

scientific practice; more specifically, population-specific standards with known error-rates 

should be created.  

The purpose of this study was to explore cranial variation among black, white and coloured 

South Africans to improve the methodology employed to estimate ancestry. The objectives 

included assessing observer agreement in collecting MMS and craniometric data, comparing 

trait score frequencies and measurement means to identify significant group differences, and 

creating a series of classification models to test the accuracy with which ancestry can be 

estimated when using the cranium. 
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CHAPTER 2: LITERATURE REVIEW 

 Forensic anthropology as a subdiscipline first gained notoriety among scientists in the United 

States during the 1930s. However, it was not until the 1960s and 70s that forensic anthropology 

was formally defined, heralding exceptional growth within the field (Dirkmaat and Cabo, 

2012).  Modern forensic anthropology, a sister-discipline to biological anthropology, is a well-

established scientific field with copious annual publications, numerous students globally, and 

an immense diversification in the studies conducted. The last two decades has witnessed a shift 

in research from traditional skeletal biology towards adding taphonomy, archaeology and 

trauma analysis to the scope of objectives for forensic anthropologists (Dirkmaat et al., 2008). 

Despite new innovations and research foci, the primary interest of a forensic anthropologist 

continues to be the creation of a biological profile for unidentified individuals, consisting of 

age-at-death, stature, sex and ancestry. While modern anthropologists attempt ancestry 

estimates for social reasons, namely the identification of unknown remains, the concept of race 

has had a much darker and sordid history in the discipline of anthropology. 

2.1 Race in biological anthropology 

The analysis of human differences and the concept of race has endured since the emergence of 

the field, and physical anthropology was essentially considered to be synonymous with racial 

studies (Caspari, 2003). The need to classify humans into races stems from the empirical 

principals of taxonomy introduced by Linnaeus in the 18th century (Dubow, 1996). The 

theoretical foundation of racial science initiated debates surrounding the origin of races on the 

evolutionary scale, with two major theories dividing the field, namely monogenism and 

polygenism (Littlefield et al., 1982). The monogenic theory contends that all humans originate 

from a single evolutionary event involving a common ancestor; this view underscores the rapid 

and extensive migration of different populations (Gill, 1990). Conversely, the polygenic school 

of thought maintains that human races are separate biological species that developed from 

disparate evolutionary lineages (i.e., different ancestors) that evolved in a parallel fashion at 

different paces (Coon et al., 1950). As such, each racial group were believed to be pure, 

homogenous and discrete “types”, with any similarities among groups assigned to “admixture” 

or adaptation to similar environmental stimuli (Caspari, 2009). The polygenic idea of race 

developed alongside the context of slavery and European imperialism, thereby reinforcing the 

inherent issue of racial inequality (Littlefield et al., 1982). This typological approach was used 
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to support the notion that individuals of European descent were evolutionarily superior, leading 

to scientific racism and discrimination (Dubow, 1995). 

The stance of anthropologists in southern Africa was not much different from their European 

counterparts. With the founding of physical anthropology in southern Africa in the 1870s the 

field experienced advances in two major directions: early hominin evolution, and assessing 

population differences, particularly among indigenous groups (Tobias, 1985). While 

formalised racial science was not quite as intensely represented in South Africa as it was among 

international anthropologists, especially in Europe, racial theory was present to a substantially 

greater degree than generally acknowledged (Dubow, 1995). 

Changes in the socio-political milieu helped to shift the outlook, with many practitioners in 

anthropology beginning to question the concept of race (Littlefield et al., 1982). During the 

1960s more published research provided novel information on genes and inheritance, allowing 

the notion of polygenism to be questioned. Furthermore, researchers became more vociferous 

on how human variation is perceived; the search for pure racial types simply could not be 

reconciled with the fact that only “hybrids” existed in practice (Dubow, 1996). Great debates 

surrounding the future of skeletal variation studies followed the denial of the existence of 

biological races. For instance, statements by Brace (1964) alleging the non-existence of 

populations as a unit of variation as they intergrade (overlap) with one another effected 

dissatisfaction among many anthropologists. As it were, concepts embedded in scientific 

discipline (and in the case of race, also entrenched in public opinion) requires critique, being 

challenged with data, and ultimately to be replaced with more useful concepts to fade away. It 

would require the remainder of the 20th century to do away with 19th century thinking. The term 

race became discontinued as it was recognised to be scientifically impractical and carried 

harmful social connotations and implications (Lieberman et al., 2003). With the distribution of 

publications asking questions like “If races do not exist, why are forensic anthropologists so 

good at identifying them?” (Sauer, 1992), a new modernised outlook overtook the issue of 

successfully capturing human variation. Anthropologists established that clear differences 

existed among groups, but the differences were certainly not discrete (acknowledging 

substantial overlap), and robust methodology was required to quantify and interpret the 

variation in a meaningful way (Dunn et al., 2020). 

Numerous anthropologists set out to evaluate the apportionment of skeletal variation across 

the globe; results indicated correlations between skeletal biology and population groupings 
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(Relethford, 2002).  Granted, population boundaries are fluid and cannot be explained with 

arbitrary physical traits or behavioural characters. However, by employing more sophisticated 

methodology that undergoes rigorous testing anthropologists are better able to interpret 

patterns of human variation. The inherent variation, both metric and non-metric, has also been 

noted to emerge early in the ontogenetic process of the human skeleton (Viðarsdóttir et al., 

2002; Weinberg et al., 2005; Wood, 2015). Further assessment revealed that enough skeletal 

variation exists to classify populations at much greater accuracy rates than would be observed 

with random allocation; thereby demonstrating the classification of humans is not a futile 

exercise (Ousley et al., 2009). The term ancestry (often conflated with social race) became used 

in lieu of biological race to abolish any ambiguity between the concepts. Ancestry describes 

skeletal variation observed on the population-level which has been correlated to different 

populations across the world, rather than the use of arbitrary morphological traits and 

behavioural characters as is embodied in the traditional concept of biological race. This 

observed variation has been described as the result of numerous extrinsic factors, inclusive of 

culture, language, and geography, and persists because of positive assortative mating and socio-

political boundaries (Edgar and Hunley, 2009; Ousley et al., 2009). Importantly, forensic 

anthropologists provide ancestry estimates, not as a vindication of the concept of biological 

race, but to allow the presumptive identification of unknown skeletal remains (Stull et al., 

2021). The estimation of ancestry has been noted to affect other parameters of the biological 

profile. Numerous studies have observed population-specific differences in levels of sexual 

dimorphism and the aging process; thus, prior knowledge of ancestry is required to obtain 

accurate sex and age estimates (e.g., Oettlé and Steyn, 2000; Spradley and Jantz, 2001; Krüger 

et al., 2015). 

However, the debate on human variation and the estimation of ancestry has recently been 

reignited with new fervour. Following events pertaining to racially fuelled police brutality in 

the United States, some anthropologists have come to question how effective ancestry estimates 

are and whether it still serves a purpose in modern forensic anthropology with some arguing 

that it does more harm than good (Bethard and DiGangi, 2020; DiGangi and Bethard, 2021). 

DiGangi and Bethard (2021) even called for the complete abolishment of the estimation of 

ancestry. Ensuing counterarguments indicated that there were greater discussions to be had on 

the subject yet (Stull et al., 2021). With that, the year 2021 delivered many publications voicing 

concerns surrounding the concept of ancestry as it stands and how anthropologists can go about 

reconciling these concerns with the quantification of skeletal variation in a meaningful, 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



7 

 

scientifically valid way (e.g., Edgar and Pilloud, 2021; Michael et al., 2021; Ross and Pilloud, 

2021; Spradley and Jantz 2021; Tallman et al., 2021). A number of these authors posit that 

despite the term ancestry replacing the term race, few changes have occurred in how the 

research is approached (Ross and Pilloud, 2021; Tallman et al., 2021). Tallman and colleagues 

(2021) present a thoughtful discussion on the use of ambiguous terminology over the years, 

and state: “We define ‘ancestry’ as biogeographically patterned, clinal, genetic variation that 

is often continentally derived and defined” (Tallman et al., 2021:74). In other words, ancestry 

is largely used to indicate major geographical groupings such as African, Asian, and European. 

Spradley and Jantz (2021) and Ross and Pilloud (2021) share this sentiment, arguing that the 

term population affinity better describes the parameter that is being explored with current 

methods aimed at estimating ancestry. However, some practitioners have already taken 

ancestry to imply variation on the population level, or what is now being referred to as 

population affinity. For instance, referring to the Fordisc help file (version 1.53) (Jantz and 

Ousley, n.d.) which affirms: “What Fordisc estimates may be termed ‘ancestry’ in the sense 

that it identifies population differences resulting from the different origin of each reference 

population’s ancestors” as well as “…, these differences reflect the different origins and 

separate histories of each group which can be highly correlated with many social, geographic, 

temporal, historical or linguistic groupings of populations”. Admittedly, many South African-

based anthropologists have acknowledged that clinal variation is not an adequate descriptor of 

skeletal variation employed for estimates to facilitate personal identification and have been 

exploring population-specific variation under the term ancestry (e.g., L’Abbé et al., 2011; 

L’Abbé et al., 2013; Stull et al., 2014a; Liebenberg et al., 2015; McDowell et al., 2015; Maass 

and Friedling, 2019). Clearly unease about ambiguities in even the most fundamental 

terminology (i.e., what to name the concept) is a valid concern.    

The inconsistencies and improper methodology used to assess ancestry and population 

variation within the discipline of forensic anthropology is hereby acknowledged. With the 

conversation on transformation still ongoing, the term ancestry will be used within and 

throughout this dissertation. Ancestry in this study refers to the skeletally quantifiable 

differences that exist within and between populations and the grouping of populations across 

the globe. The term “population” will be used to refer to a group of individuals sharing a 

geographical area; in other words, the South African population refers to all individuals that 

classify as South African. The term “population group” will be used to refer to specific 

subgroups within the South African population based on the social labelling system currently 
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employed in the country (i.e., the social race); this includes black, white and coloured South 

Africans.  

2.2 The Estimation of Ancestry  

Skeletal variation is the result of several complex, inter-related functional matrices that are 

subject to individual ontogenetic trajectories (Wood, 2015). These differential trajectories lead 

to the size and shape differences in the skeleton that forms the basis of sexual dimorphism and 

population variation; the quantification of skeletal variation is the foundation of the biological 

profile. Two broad approaches exist to facilitate the evaluation of skeletal variation, namely 

metric and morphological.  

The metric approach involves the measurement of continuous variables using standard 

landmark definitions and measuring instruments. Measurements of the skull are generally used 

for the estimation of ancestry, a method which stems back as far as 1926 with the coefficient 

of racial likeness proposed by Pearson (Spradley and Stull, 2018). With time more robust 

statistical tests and technological developments became available. Currently one of the most 

widely used methods in forensic anthropology is the application of discriminant analysis using 

cranial measurements typically performed with the software Fordisc (Jantz and Ousley, 2005). 

Custom databases have been created to allow the classification of modern black, white and 

coloured South Africans (L’Abbé et al., 2013; Liebenberg et al., 2015; Krüger et al., 2017). 

Although the metric approach reports satisfactory results (ranging between 73% and 84% 

correct classification using the cranium), the method has some limitations (L’Abbé et al., 2013; 

Stull et al., 2014a). For example, substantial heterogeneity and group overlap has been shown 

among black and coloured South African groups (Stull et al., 2014a). In other words, the 

models are frequently unable to confidently distinguish between black and coloured crania, 

ultimately resulting in misclassification. One of the reasons for this lack of discriminatory 

power may be the complex interaction between skeletal size and shape, and the way 

anthropologists currently attempt to assess it. While the linear data captured with calipers 

mainly assesses size differences, coordinate data can provide an overall better archive of both 

size and shape (Slice, 2007; Spradley and Jantz, 2016; Spradley and Stull, 2018).  Coordinate 

data is traditionally captured using a digitiser (such as a Microscribe) rather than callipers. 

However, the use of digital scanning modalities to source data, such as computed tomography 

(CT) scans and three-dimensional (3D) surface scanners, have become common practice in 

biological and forensic anthropology over the last decade (Garvin and Stock, 2016; Franklin 
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and Blau, 2020). Digital data allows for the 3D reconstruction of skeletal features such as 

crania, which can be used to collect skeletal dimensions by placing landmarks in the areas to 

be quantified. In addition to collecting standard inter-landmark distances or coordinate data 

through geometric morphometric (GM) techniques, the scans can also be used to measure 

volumes and surface areas of bones (Christensen et al., 2018). Shape analyses have been 

conducted with GM techniques for the purpose of estimating biological parameters and have 

found that both cranial size and shape provide useful information and should be considered 

when attempting to distinguish between groups (Stull et al. 2014a; Maass and Friedling, 2019). 

More specifically, the general location of specific landmarks has been noted to capture 

variation more effectively than simple linear distance and result in improved classification 

accuracy, thereby demonstrating the role that shape differences play in cranial variation (Slice 

2007; Stull et al., 2014a). Despite all its advantages, the use of GM and digital data is not 

always feasible, as it requires expensive equipment and training in its operation and the myriad 

of statistical analyses associated with it.   

The use of morphology and MMS may be a sensible solution and beneficial in this regard, 

as it rapidly quantifies size, shape and variants of skeletal features across the cranium without 

the need for additional equipment and is not computationally expensive (Hefner et al., 2012). 

A wide variety of morphological traits are noted in the literature, but not all are used for the 

same purpose. Certain minor skeletal variants, such as extra-sutural bones or foramina 

variations, are commonly referred to as epigenetic traits (Berry and Berry, 1967; Corruccini, 

1974; Ossenberg, 1976). The epigenetic traits are dichotomous in nature (i.e., observed as 

present or absent) and are mainly used in biological anthropology to assess biological affinity 

on a global scale and population group history (Parr, 2005; Pink et al., 2016). While these traits 

can provide some information on group relatedness, it is not particularly useful in a forensic 

context. Instead, the term macromorphoscopic (MMS) trait was proposed to refer to quasi-

continuous (i.e., a range of variation rather than present/absent) non-metric features used to 

assess the ancestry of a single individual for the purpose of forensic identification (Hefner et 

al., 2012; Pink et al., 2016). MMS traits, which forms the basis of the current study, involves 

the evaluation of bone shape, bony feature morphology, presence or absence of a trait, as well 

as feature prominence (Hefner, 2009).  
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2.3 The Evolution of Non-metrics and Macromorphoscopics 

The morphological approach has its roots in the 20th century, particularly through the work of 

E.A Hooton (1887 - 1954). Hooton was a typologist with an interest in skeletal biology and 

was known for citing polygenist theory to explain racial variation from the human skeleton 

(Caspari, 2009). During his tenure at Harvard, Hooton attempted to identify a suite of traits 

thought to be discriminatory of race; these traits were later compiled into what is known today 

as the Harvard list. The Harvard list consisted of around 102 observations divided into 

categories representing the racial classifications in use at the time (i.e., negroid, caucasoid and 

mongoloid) (Brues, 1990). While popular in application, the trait-list approach proved 

problematic as the identification of these morphological variants were noted to rely heavily on 

the experience of the observer, resulting in major interpretive issues. Furthermore, no scientific 

basis existed for weighing the traits, with personal preference often dictating the choice of traits 

used to provide an ancestry estimate (Klepinger, 2006; Christensen et al, 2013). Inevitably, the 

trait-list approach was commonly applied on a post-hoc basis to justify an ancestry estimate 

based on the opinion of the observer rather than describing actual observed cranial variation 

(Pink et al., 2016; Kamnikar et al., 2018). Simply put, if the observer decided that the cranium 

in question belonged to a black individual, they only needed to identify one or two traits 

consistent with black individuals as established by the trait list to support their answer, even if 

there was evidence to suggest the contrary. Cranial morphology is multivariate, and the 

cranium can be broken down into separate units that variably reflect size and shape differences 

attributable to population history or environmental influence (von Cramon-Taubadel, 2014). 

Therefore, the ability to identify ancestry is not based on the identification of single, univariate 

traits, but by viewing the skull in its entirety, as a skull rarely, if ever, portrays traits from only 

one population (Hefner et al., 2012).  

The non-metric methodology was recognised to be fraught with subjectivity issues; an 

unpublished manuscript by Hooton testing the trait-list approach revealed a mere 18.7% 

agreement among observers (Hefner et al., 2004). Although Hooton addressed the need for 

standardisation of the method, the approach remained largely unchanged throughout the years 

(Brues, 1990; Hefner, 2009). Hooton’s theoretical approach to race, and in so doing his Harvard 

list, was adopted by many of his students in their own research (Hefner et al., 2012; Hefner, 

2018). Passed on from mentor to student through oral tradition the morphological trait-list 

approach remained deeply entrenched in physical anthropology and the evaluation of human 

variation. One of the most frequently cited manifestations of the non-metric approach 
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completed by Rhine (published as recent as 1990) is essentially a version of Hooton’s Harvard 

list (Hefner, 2003). The non-metric method for estimating ancestry employed by Rhine (1990) 

is based on extremely small samples (some as little as nine individuals used to represent an 

entire population), extreme trait expressions allowing for little group overlap, and no statistical 

analyses. Furthermore, lack of standardisation in the application of the method has seen this 

typological, unscientific approach persist into the legacy of modern forensic anthropology for 

much longer than it should have.  

After the introduction of the Daubert criteria (Daubert v. Merrel Dow Pharmaceuticals, 

Inc., 1993) the method, and other methods with similarly questionable application, began to 

receive much needed scrutiny. The Daubert criteria for best scientific practice were 

implemented following a case of United States Federal legal proceedings with a dubious 

outcome as a result of expert testimony (Grivas and Komar, 2008; Christensen and Crowder, 

2009). Following the guidelines set forth by the Daubert criteria, expert witness testimony is 

required to be substantiated with scientifically tested methods that have been shown to be 

repeatable and precise and produce error rates and probability assessments (Dirkmaat et al., 

2008). This motion thereby rendered investigator experience insufficient as a justification for 

a scientific conclusion. While South African courts do not specifically adhere to the Daubert 

criteria, similar guidelines should be followed to place forensic science in South Africa on par 

with international standards of best practice (Allan and Louw, 2001; Meintjes-van der Walt, 

2003). More recent publication of reports by the National Academy of Sciences (NAS, 2009) 

and the President’s Council of Advisors on Science (PCAST, 2016) in the United States has 

reiterated the need for specialised validation of methodology employed in forensic practice.  

Despite the resounding affirmations of the Daubert criteria in the early 1990’s, the 

traditional trait-list approach for ancestry estimation persisted several years longer before 

researchers began to transform it. In 2003, Hefner published a master’s thesis addressing the 

trait-list approach; this was the first in a long line of studies modernising the method to be 

Daubert compliant. The transformation of the method also welcomed a new label, as non-

metric gave way to macromorphoscopic. The study introduced a multi-state scale to describe 

the traits as it provides a more realistic reflection of how the traits are expressed than a binary 

scale. The ordinal scale was paired with comprehensive descriptions and comparative 

illustrations to depict the different trait states. This methodology is consistent with other 

popular morphoscopic techniques used to evaluate sex from the cranium and pubic bone 

(Walker 2008; Klales et al., 2012). The use of comparative line drawings and descriptive 
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definitions have assisted to counteract some of the discrepancies that stem from observer error 

associated with non-metric methods. 

Ultimately Hefner (2003, 2009) observed much lower trait frequencies than traditionally 

assumed to be present, with numerous traits failing to demonstrate significant differences 

among groups. Further additions by Hefner (2007) and Hefner and Ousley (2014) gauged the 

application of a variety of classification methods to create models for estimating ancestry. Thus 

far the method has been expanded to also include other modern groups, such as Hispanics and 

Asians, in addition to the black and white North Americans included in the original study 

(Hefner et al., 2015; Plemons et al., 2018; Maier and George, 2020). To allow standardised 

data collection a software program, Osteoware® (Smithsonian Institution, 2011), incorporated 

a module for scoring MMS traits. Osteoware® also includes modules for collecting data 

pertaining to other areas of skeletal biology, such as craniometrics and pathology, amongst 

others. The module was later adapted to become a freestanding program (MMS 1.6.1), which 

was developed with the specific purpose of collecting MMS data. Similar to the Osteoware 

module, MMS is a graphical user interface (GUI) that provides a user window with the 

definition and each trait state along with illustrations and descriptive notes to streamline the 

scoring procedure (Kamnikar et al., 2018). The latest contribution to the above-mentioned 

research is the creation of the MMS databank (MaMD). Similar to the Forensic Databank of 

measurements, the MaMD is designed for the collection and analysis of MMS data worldwide 

to create more appropriate reference samples for research. The MaMD currently contains data 

from more than 2300 modern individuals and encourages data sharing and collaboration among 

researchers (Plemons and Hefner, 2016; Hefner 2018). The MaMD analytical tool (version 

0.3.15) has also been made available to classify unknown crania into a reference group from 

the database using artificial neural networks (http://macromorphoscopic.com/).  

2.4 Macromorphoscopics in South Africa 

Research pertaining to the non-metric approach in South Africa have been scarce. In the past 

South African anthropologists have mainly relied on the work of De Villiers (1968) 

supplemented with international standards when conducting morphological analyses 

(Krogman, 1962). This practice made use of outdated information, was blind to human 

variation as it lacked population-specific data and was ultimately typological. Following the 

innovations by Hefner, L’Abbé et al. (2011) conducted a pilot study to assess the use of 

macromorphoscopic traits on modern black, white and coloured South Africans.  The study 
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aimed to assess the prevalence of thirteen macromorphoscopic traits; nine traits were taken 

from Hefner’s (2009) suite of traits, combined with an additional four traits adapted from Bass 

(1995) and Hauser and de Stefano (1989). Tests to gauge the observer variation obtained 

agreement levels ranging from moderate to excellent for most traits. However, six traits proved 

to be difficult to score consistently; this notably included the four traits not modified by Hefner, 

thereby emphasising the importance of the illustrations in assigning the correct trait state. 

Frequency distributions revealed near equal distributions of the traits among all three groups. 

The lack of group separation was ascribed to the inherent heterogeneity of the South African 

population (L’Abbé et al., 2011). The study did not create any classification models, thus the 

accuracy with which the MMS traits could classify South African remains speculative.  

With such moderate results the non-metric approach has subsequently been omitted from 

South African forensic anthropological analyses. Unfortunately, no other research has been 

published to further explore the MMS variation among South Africans. However, the recent 

inclusion and successful classification of additional groups into the MaMD (i.e., North 

American Hispanics - a group previously recognised to be highly heterogeneous) suggests that 

the method may be more suitable to the South African population following some 

methodological adjustments and the inclusion of robust statistical models to better interpret the 

subtle trait compositions among the groups (Hefner et al., 2015).  

2.5 Method validation and methodological considerations 

Validation studies are essential to the advancement and standardisation of the field of biological 

anthropology. Studies revising methodology can assist in contributing to a better understanding 

of limitations and biases associated with methods and is paramount to yield reliable results. 

Given the presumed subjective nature of non-metric methods, trait score variation and its 

implications on correctly classifying biological parameters continues to be a concern that 

warrants further study (Hefner, 2009; Klales et al., 2020). This problem has prompted many 

authors to dedicate entire papers to quantifying sources of observer error in study topics 

including pathology, aging, and the estimation of sex and ancestry (e.g., Shirley and Ramirez 

Montes, 2015; Wilczak et al., 2017; Kamnikar et al., 2018; Klales et al., 2020).  

Once scientifically acceptable methodology was in place other researchers also began to 

explore the MMS traits. Klales and Kenyhercz (2015) conducted a validation study to evaluate 

the amended method. While their study confirmed the external validity of the MMS approach, 

some points of concern and areas for improvement were addressed. One of the most prominent 
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deductions involved the need for training with the traits prior to employing the method in 

practice. Observer experience has consistently been identified as one of the greatest sources of 

discrepancies in trait scores in morphoscopic techniques (Wilczak et al., 2017; Klales et al., 

2020). Published figures and descriptions have been developed in such a way that theoretically 

anyone should be able to use morphoscopic methods to assign the score that matches most 

closely (Klales et al., 2020). However, this is not always the case and validation studies 

frequently report poorer results than the original publications. One possible explanation for this 

is that original studies usually involve the developer of the method, whether it is directly 

through the data collection itself, or indirectly through training (Wilczak et al., 2017; Klales et 

al., 2020). As such the reported results may underestimate any issues that arise with scoring. 

Indeed, reproducibility testing is essential, but results from independent researchers give a 

more realistic reflection of the method as it would be used in practice.  

Studies have found that individuals with greater levels of general experience with skeletal 

material tend to produce more consistent results, regardless of method-specific experience 

(Wilczak et al., 2017; Kamnikar et al., 2018; Klales et al., 2020). This has been ascribed to 

more experienced practitioners having been exposed to more human variation which allows 

them to identify and recognise more subtle skeletal differences more effectively than their less 

experienced counterparts. However, whether general experience in the field translates to 

scoring competency may depend on the method itself. When assessing traits of the cranium 

and pubis for sex estimation (Walker 2008; Klales et al., 2012), Klales and colleagues (2020) 

report that more generally experienced observers produced the best results. But even though 

observers with less general experience were more variable in their scores, the results still 

demonstrated good agreement overall. Thus, knowledge on skeletal variation may contribute 

more to application of these methods than formal training on the specific scoring systems 

(Klales et al., 2020). This contrasts somewhat to results obtained by Klales and Kenyhercz 

(2015) when assessing the MMS traits to estimate ancestry. Although the authors also noted 

that the two experienced observers produced more consistent scores, the agreement for most of 

the traits assessed were slight to moderate, indicating the need for method-specific training 

prior to scoring the traits (Klales and Kenyhercz, 2015). Kamnikar et al. (2018) echoes this 

statement, as their results exploring long-term intra-observer trends in scoring the same traits 

revealed that greater experience with the method leads to less extreme trait scores.  

A possible reason for the need for prior training for the MMS traits could be the greater 

number of traits with a more variable, more complex scoring system compared to the sex 
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estimation scoring methods. For sex, the Walker (2008) method employs five traits on the skull 

and the Klales et al. (2012) method employs three traits on the pubic bone. Both methods make 

use of an ordinal scale ranging between one and five for all traits with ranked scores (i.e., 

1>2>3>4>5). Conversely, the MMS traits for population affinity started with 11 traits in the 

original publication (Hefner, 2009), and now includes 17 traits in the latest texts (Hefner and 

Plemons, 2016; Hefner and Linde, 2018). Furthermore, the codification varies among each of 

the traits, ranging from ordinal with ranked scores (e.g., nasal aperture width); nominal, where 

there are separate categories with no particular ranking (e.g., nasal aperture shape); and binary, 

where the trait is either present or absent (e.g., nasal overgrowth) (Hefner and Linde, 2018). 

The intricacies of the scoring system may lead to more discrepancies in the trait scores, 

especially if an individual has no prior training or experience with the traits.  

The methodology used in validation studies may also play a role in score variability, 

rendering results incomparable between studies. Varying samples and the number of trials or 

observers can all affect the results. For instance, smaller samples may affect the prevalence of 

certain traits; if a sample only contains crania that lack any post-bregmatic depressions, the 

results may demonstrate perfect agreement between observers, but does not accurately reflect 

the ability of the observer to correctly identify and score the trait. The choice of statistics and 

how it is applied may also affect results. Cohen’s kappa is widely used by forensic 

anthropologists to compare scores. However, there is not always agreement in which variations 

of kappa should be used; more specifically, whether the traits should be weighted or not. 

Weighted kappa calculations may be better suited to test the agreement of ordinal ranked traits, 

as the weighted kappa allows the user to consider the importance of disagreements between 

scores; in other words, how harshly a disagreement in scores should be penalised (Kamnikar 

et al., 2018; Tran et al., 2018). Sim and Wright (2005) recommend the use of the weighted 

kappa for ordinal data and cautions against comparing kappa values across variables with 

different prevalence or bias, or traits that are measured on different scales. The use of different 

methods and tests and how it affects the results of anthropological analyses has been touched 

on (Klales et al., 2021), but is certainly not discussed enough. With the MMS traits, many 

studies have made use of the traditional unweighted Cohen’s kappa (e.g., Hefner, 2009; L’Abbé 

et al., 2011; Klales and Kenyhercz, 2015), with a few more recent written works arguing for 

the use of a weighted Cohen’s kappa (e.g., Kamnikar et al., 2018; Maier, 2018; Merchant, 

2023). However, there is limited comparative data available to gauge the effects of different 

choices in statistics on the results of observer testing.  
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The statistical analysis of categorical data on which MMS is based is notoriously complex; 

however, the availability of software packages allows for simpler application of robust 

statistical support. Although a variety of classification statistics can be used, non-parametric 

methods are recommended as ordinal variables may violate the assumptions associated with 

parametric methods (Pink et al., 2016). The violation of assumptions will likely lead to poor 

model performance, low classification accuracies, and difficulty interpreting the results. 

Therefore, methods commonly employed with anthropological analyses (such as discriminant 

analysis and logistic regression) are not expected to deliver an optimal performance when using 

ordinal data. More robust machine learning techniques have been proposed as alternative 

options to analyse the data. Machine learning involves tuning a large number of random cut-

off points in a sample to identify the most discriminatory way to group individuals (Hefner and 

Ousley, 2014). Some examples of machine learning techniques explored in anthropology are 

artificial neural networks (ANN), support vector machines (SVM), and random forest models 

(RFM). Hefner and Ousley (2014) compared the discriminatory performance of numerous 

methods, including both parametric and non-parametric machine learning methods; with a 

three-group classification ANN (87.8%), SVM (86.4%) and RFM (85.5%) obtained the highest 

overall accuracies. With such similar accuracies other factors need to be considered when 

choosing a method for model creation, namely computational requirements and difficulty of 

interpretation. All three of these machine learning methods have been labelled as 

computationally expensive and requires extensive user experience to interpret the results 

(Huang et al., 2004). However, RFM has some advantages over ANN and SVM that makes it 

more appealing. First, RFM has a variable importance measure that simplifies output 

interpretation by indicating which variables contribute most to the model (i.e., which traits help 

to separate the groups) (Fabris et al, 2018). Additionally, RFM is able to analyse a combination 

of both categorical and continuous data, making it ideal for assessing combined metric-

macromorphoscopic models (Zheng et al., 2009). RFM is not a new method to biological 

anthropology and the positive results from previous studies warrant its use for the current study 

(Hefner and Ousley, 2014; Hefner et al., 2014; Navega et al., 2015).  
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1 Sample 

The South African population is diverse and consists of four major groups: South African 

blacks (81.0%), whites (7.7%) and coloureds (8.8%) make up the majority of the population; 

the remaining 2.6% of the population consists of individuals classified as Asian and Indian 

(Statistics South Africa, 2022). Each group has a unique history within the country leading to 

the vast heterogeneity observed within and among the groups. Black South Africans descend 

from Bantu-speaking groups that migrated throughout sub-Saharan Africa from western-

central Africa approximately 3000 to 5000 years ago (Tishkoff and Williams, 2002). Further 

divisions among the southern Bantu-speakers based on factors associated with kinship, religion 

and language resulted in the numerous subgroups residing in southern Africa today, inclusive 

of Nguni, Sotho, Venda and Shangaan-Tsonga (Stull et al., 2016). Colonisation of the Cape 

during the 17th century introduced European settlers to South Africa, shaping the heritage of 

white South Africans. The settlers were mainly of Dutch origin, with additional contributions 

from French Huguenots and Germans that arrived in the 18th century. Late in the 18th century 

South Africa was also colonised by the English (Liebenberg et al., 2015). Coloured South 

African refers to a self-identified group unique to South Africa. The group is a result of the 

complex history of South Africa with genetic contributions from Khoe-San (considered 

indigenous South Africans), Bantu-speakers, Europeans, as well as Indians and other Asian 

groups that were brought to South Africa as slaves to maintain the Cape colony. The complex 

population structure and history of the coloured South Africans manifests as a genetically and 

skeletally heterogeneous group with substantial variation (Stull et al., 2014a). While the 

varying origins of each group resulted in a uniquely heterogeneous population with distinct 

structures, the group differences employed to attempt ancestry estimations persisted as a result 

of socio-political boundaries. Sociocultural identity in South Africa is based on the 

categorisations assigned to individuals during the Apartheid era, which contributed to 

widespread endogamy among groups (Krüger et al., 2018). 

The sample consisted of 660 crania (n = 220 black, white, coloured South Africans), with 

equal sex distribution. The crania were sampled from the Pretoria Bone Collection (University 

of Pretoria) and the Kirsten Collection (Stellenbosch University). The skeletal material housed 

in the stated collections are derived from cadavers obtained from either donated or unclaimed 
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bodies received under regulation of the medical schools of the respective institutions. The 

remains accessioned into the collections are of documented sex, age-at-death, and peer-

reported ancestry (L’Abbé et al., 2005; Alblas et al., 2018). Ethical approval (770/2018) to 

conduct the study was obtained from the Faculty of Health Sciences Research Ethics 

Committee at the University of Pretoria. Due to the presence of post-mortem damage and/or 

ante-mortem trauma not all of the traits and measurements could be collected for each cranium. 

As such the sample size differs for each variable. Table 3.1 provides the mean age distribution 

for each group. Notably the mean age for the white South Africans is older than the other 

groups. While age was not specifically investigated in this study, it should be acknowledged 

as a potential covariable, particularly when age differences are present among the groups in the 

sample. Reports have shown that the prevalence of tooth loss and edentulism increases 

markedly in the South African population after the age of 45 years (Kimmie-Dhansay et al., 

2021). This was certainly the case in the sample, with many individuals being either partially 

or completely edentulous, which may have implications on the data collection and results.  

 

Table 3.1 – Age distribution (years) of the skeletal sample. 

 Black White Coloured 

Males 

(n=110) 

Females 

(n=110) 

Pooled 

(n=220) 

Males 

(n=110) 

Females 

(n=110) 

Pooled 

(n=220) 

Males 

(n=110) 

Females 

(n=110) 

Pooled 

(n=220) 

Mean 49 46 48 62 68 65 48 47 47 

Range 19 - 98 16 - 75 16 - 98 31 - 85 21 - 97 21 - 97 19 - 85 18 - 100 18 - 100 
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3.2 Methods 

The data collection for the study was comprised of two components, namely (1) MMS and 

(2) metric, which will be discussed separately.   

3.2.1 MMS component 

A total of 17 MMS traits were visually assessed on each cranium. Refer to Table 3.2 for a list 

of the macromorphoscopic traits included in the study, and Appendix I for the trait definitions. 

Each MMS trait was scored following the latest methodology proposed by Hefner et al. (n.d.) 

and Plemons and Hefner (2016) as used in the “Macromorphoscopics Software” data collection 

module (MMS version 1.6.1). MMS is a free-standing version of the data collection software 

Osteoware® (Smithsonian Institution, 2015) created specifically to facilitate the collation of a 

global MMS databank (MaMD) (Hefner, 2018). Data entry in MMS includes definitions with 

accompanying line drawings demonstrating the different variable expressions, or states, for 

each trait (Plemons and Hefner, 2016). Different trait expressions receive scores organised on 

a scale; i.e., depending on the number of states available, each trait will be given a score based 

on a binary (two states) or ordinal/nominal (more than two states) scale. Where traits are 

bilaterally expressed, only the left side was scored. In instances where the left side was not 

available, the right side was used.  Hefner and colleagues (n.d.) recommend the anterior nasal 

spine not be scored for edentulous individuals. The anterior nasal spine was still scored in this 

study despite ante-mortem tooth loss. This should be considered when interpreting the results; 

but ultimately the implications of tooth loss on the size and shape of the anterior nasal spine 

need to be further explored.  

Table 3.2 – Macromorphoscopic traits and abbreviations. 

Anterior nasal spine ANS Nasofrontal suture NFS 

Inferior nasal aperture INA Orbital shape OS 

Interorbital breadth IOB Post-bregmatic depression PBD 

Malar tubercle MT Posterior zygomatic tubercle PZT 

Nasal aperture shape NAS Supranasal suture SPS 

Nasal aperture width NAW Transverse palatine suture TPS 

Nasal bone contour NBC Palate shape PS 

Nasal bone shape NBS Zygomaticomaxillary suture ZS 

Nasal overgrowth NO   
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3.2.2 Metric component 

A total of 25 standard linear cranial measurements were collected from the same crania used 

in the MMS component. All measurements were taken to the nearest millimetre using a 

standard manual sliding caliper and spreading caliper following the definitions of Langley et 

al. (2016). Refer to Table 3.3 for a list of the measurements included in the study, and Appendix 

II for the measurement definitions. Measurements were only taken on the left side. If the left 

side was unavailable, the right side was used. Measurements surrounding the palate (MAL and 

MAB) were not collected in instances of substantial alveolar resorption due to ante-mortem 

tooth loss. 

Table 3.3 – Measurements and abbreviations. 

Maximum cranial length GOL Nasal breadth NLB 

Maximum cranial breadth XCB Orbital breadth OBB 

Bizygomatic breadth ZYB Orbital height OBH 

Basion-bregma height BBH Biorbital breadth EKB 

Basion-nasion length BNL Interorbital breadth DKB 

Basion-prosthion length BPL Frontal chord FRC 

Maximum alveolar length MAL Parietal chord PAC 

Maximum alveolar breadth MAB Occipital chord   OCC 

Biasterionic breadth ASB Foramen magnum length FOL 

Upper facial height NPH Foramen magnum breadth FOB 

Minimum frontal breadth WFB Mastoid height MDH 

Upper facial breadth UFBR Biauricular breadth AUB 

Nasal height NLH   
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3.3 Statistical Analyses  

All statistical analyses were completed using the software R version 4.1.0 (R Core Team, 

2021). Outliers were detected and removed prior to further analysis. Univariate boxplots were 

used to screen the MMS data, and a combination of univariate boxplots and bivariate 

scatterplots were used to screen the metric data. Additionally, the metric data was subjected to 

additional analyses to determine if the data meets the assumptions associated with parametric 

tests. A Shapiro-Wilk test was used to assess normality (Appendix III) and a Levene’s test was 

used to assess homoscedasticity of variance (Appendix IV). Non-parametric statistics have 

previously been recommended to assess MMS traits as the ordinal scale of the character states 

may violate typical parametric statistical assumptions (Pink et al., 2016). Thus, suitable non-

parametric statistics were selected, and no additional ad hoc tests were conducted for the MMS 

data. 

3.3.1 Observer agreement 

For anthropologists to confidently create standards and employ methods, both the precision 

and repeatability (intra-observer agreement) as well as the reliability (inter-observer 

agreement) of the method needs to be tested. Inter-observer agreement evaluates consistency 

in observations of the same feature between two or more individuals, while intra-observer 

agreement gauges consistency over multiple attempts by a single observer (Kamnikar et al., 

2018). The visual assessment of traits is notoriously subjective and prone to increased levels 

of observer error (Hefner, 2009). Even with the addition of line drawings and more descriptive 

definitions, studies report variable – and often poor – observer agreement (L’Abbé et al., 2011; 

Klales and Kenyhercz, 2015). The use of different statistics, varying samples, population 

differences, and differences in the traits being assessed means that the results of validation 

studies are not always directly comparable to one another. For this reason, a detailed analysis 

of observer agreement and trait score variation was conducted for the MMS component of the 

study. Craniometry is considered more objective with less influence from external factors, and 

has been thoroughly assessed (Langley et al., 2018; Smith and Boaks, 2018; Liebenberg and 

Krüger, 2020). As such, the repeatability of the measurements was not tested as rigorously as 

the MMS traits.   
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3.3.1.1 MMS component 

The sample consisted of 10 crania selected from the Pretoria Bone Collection. To ensure a wide 

variety of trait expressions, thus avoiding statistical issues with trait prevalence, the sample 

included black and white South African males and females. The demographic information was 

not disclosed to the observers to prevent any potential cognitive bias. The 17 MMS traits were 

scored on each cranium by five different observers. The observers differed in their levels of 

experience regarding osteology and forensic anthropology as well as their experience with the 

traits. Table 3.4 provides a summary of the observers, with information on their level of 

education and number of years they have been involved with forensic casework, data collection 

and osteological research at the time the data were collected. Observer A (the principal 

investigator) has extensive experience in the field, having worked with skeletal material for 10 

years, which includes forensic case analysis, data collection and teaching. Additionally, they 

also have extensive experience with the traits, having received training (from an expert with 

experience using the traits, but not a method developer), and  self-trained with the figures and 

descriptions for approximately three years prior to data collection. Observer B is the only other 

participant familiar with some of the traits, having published on the subject. Observers C – E 

have no experience with the traits and vary in their general experience.  

For the scoring, each observer was supplied with the MMS software and the MMS user guide. 

As per the recommendation of the MMS user manual, a contour gauge was provided to assist 

with the scoring of the nasal bone contour and the post-bregmatic depression, and a clear ruler 

was provided to assist with the scoring of the malar tubercle and the posterior zygomatic 

tubercle. Only the left side was scored in the case of bilateral traits.  

Each of the five observers scored the crania by themselves, without discussing the scores 

with one another. After all observers had completed the scoring, a group discussion session 

was held to deliberate on the scoring procedure. During this session the observers went through 

the descriptions for each trait, and how they each went about assigning a score and resolving 

scores for any traits they were conflicted about. A series of additional crania (independent of 

the ones being scored for analysis) were brought to the discussion session to showcase different 

examples of the traits as well as some variants that may complicate scoring. Each observer then 

rescored the same crania that were originally scored within a period of four to six weeks after 

the first round of scores. Once again, the observers scored the crania individually without 
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discussing their scores. All the same tools (MMS software, user manual, contour gauge, and 

clear ruler) was made available to the observers. 

Table 3.4 – Summary of observer experience.  

Observer Highest 

education/ 

employment 

Trait experience General experience 

A PhD student, 

practicing forensic 

anthropologist 

Extensive (scored the traits 

in > 100 individuals, 

received training)  

10 years’ experience 

working with forensic cases 

and data collection in SA 

B PhD, practicing 

forensic 

anthropologist 

Moderate (scored the traits 

in < 50 individuals) 

20 years’ experience 

working with forensic cases 

and data collection in SA 

and USA 

C PhD student, 

practicing forensic 

anthropologist 

Novice (has never scored 

the traits or used the 

method) 

10 years’ experience 

working with forensic cases 

and data collection in SA 

D MSc student Novice (has never scored 

the traits or used the 

method) 

2 years’ experience 

working with forensic cases 

and data collection in SA 

E BSc undergraduate 

student 

Novice (has never scored 

the traits or used the 

method) 

Very limited experience 

working with skeletal 

material 

 

The observer agreement was then assessed with Cohen’s kappa which was calculated with 

the irr package in R (Gamer et al., 2019). The kappa coefficient measures the agreement 

between observers in assigning categorical variables adjusted by the standard measure of 

reliability that could be expected due to chance (Walrath et al., 2004; Ferrante and Cameriere, 

2009).  Calculated kappa values can range from -1 to 1, where values closer to 1 indicate greater 

agreement. On the other hand, a negative value indicates agreement due to chance (Walrath et 

al., 2004). There is currently no universally accepted cut-off point for satisfactory observer 

agreement. However, to be consistent with nomenclature when describing the strength of 
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agreement associated with kappa statistics, the parameters proposed by Landis and Koch 

(1977) were used. The parameters are outlined as follows: 

< 0.00 Poor 

0.00 – 0.20 Slight 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80 Substantial 

0.81 – 1.00 Almost perfect 

Different weights can be assigned to categorical variables depending on the data structure 

of the trait (i.e., binary, nominal or ranked ordinal) and how harshly disagreement in a score 

should be penalised (Sim and Wright, 2005; Tran et al., 2018). While an unweighted kappa is 

suitable for binary and nominal structured traits (where any score disagreement is equally 

penalised), a weighted kappa should be considered for ordinal traits that have a specific rank 

or order to the scores (Sim and Wright, 2005). To better explore the implications of different 

modifications to the statistical test, a series of analyses were run using different weights for the 

traits for the intra-observer agreement. This included the traditional unweighted Cohen’s kappa 

for all traits; linear-weighted Cohen’s kappa for all traits; and quadratic-weighted Cohen’s 

kappa for all traits. Lastly, a mix of unweighted (for binary and nominal traits) and quadratic-

weighted (for ordinal ranked traits) Cohen’s kappa was applied to the appropriate traits. For 

the inter-observer agreement, a mixed Cohen’s kappa was selected to compare the scores for 

each additional observer with the primary observer to explore individual trends. A mean kappa 

value was then calculated for each trait to see the overall repeatability of the traits when 

considering all observers simultaneously. A Holm’s adjustment was applied to avoid 

familywise error with multiple comparisons. The inter-observer agreement was calculated both 

before and after the group discussion to see if more familiarity with the traits and the scoring 

procedure influenced the agreement.  

3.3.1.2 Metric component 

The same ten crania were used to test the repeatability of the 25 measurements collected by 

two observers, namely the principal investigator (observer A) and one additional observer 

(observer C). The measurements were only repeated once, as both observers had extensive 

experience with osteometry, and further discussion was not required. The inter- and intra-
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observer agreement was assessed using absolute and relative technical error of measurement 

(TEM and %TEM, respectively). Absolute TEM provides an accuracy index that expresses 

error margins through the standard deviations of repeated measurements, where a higher TEM 

value indicates greater variation or error (Perini et al., 2005). The absolute TEM can be 

converted to %TEM to take the overall size of the measurement into account, as error with a 

relatively small measurement will have greater implications than the same error with a much 

larger measurement. Bland-Altman plots were also created to visually demonstrate the 

measurement agreement and overall variability between observers.  

3.3.2 Exploratory analyses 

A series of exploratory tests were conducted to test for group differences among black, white 

and coloured South Africans and to assess the relationship between the MMS and metric 

variables.  Though exploratory analyses were used to evaluate the effects of sex, the objectives 

of the current study were not to assess sex differences among South Africans. Thus, the sexes 

were pooled for further analyses unless indicated otherwise. 

3.3.2.1 MMS component 

The MMS scores were used to create frequency distributions to assess the occurrence of 

each trait per group. Kruskal-Wallis tests were used to identify if any traits demonstrated 

significant differences among the populations. Kruskal-Wallis is a non-parametric test used to 

compare three or more groups which operates under the assumptions of independence of scores 

but is not bound by assumptions of normality or homogeneity of variance (Lee, 2022). 

Additionally, a post-hoc Dunn’s multiple comparisons test (with a Holm’s adjustment) was 

used to further explore differences in the trait frequencies among the populations. The Holm’s 

adjustment counteracts the effects of multiple comparisons and prevents increased probability 

of Type I errors occurring (Ali and Bhaskar, 2016). More specifically, where Kruskal-Wallis 

indicates the presence of significant differences, the Dunn’s test indicates which groups in a 

multiple comparison differ from one another to better interpret group overlap. 

3.3.2.2 Metric component 

 An analysis of variance (ANOVA) was performed to compare the group means per 

measurement. ANOVA is a parametric test that operates under the assumptions of normality, 

homoscedasticity, and independence of variables (Scariano and Davenport, 1987). The effects 
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of ancestry, sex and the interaction between ancestry and sex was assessed to identify any 

potential group differences.  A post-hoc Tukey’s honestly significant difference (HSD) test 

(with a Holm’s adjustment) was performed in conjunction with the ANOVA to further identify 

which groups demonstrated significant differences from one another. Following the results of 

the ad-hoc Shapiro-Wilk and Levene’s tests, a Kruskal-Wallis test (with a post-hoc Dunn’s 

test) was used to assess any variables that violate the assumptions of the ANOVA. 

3.3.2.3 Correlations 

A series of correlation analyses were conducted to assess the relationships among the 

different MMS traits, as well as the metric variables. More specifically, polychoric correlations 

were used to assess the relationship among the MMS traits, Pearson correlations were used to 

assess the relationship among the measurements, and polyserial correlations were used to 

assess any possible relationships between the MMS traits and the measurements. Correlation 

coefficients can range between -1 and 1, indicating either a positive or negative relationship. 

Values closer to ±1 indicate the strength of the relationship, where greater coefficients suggest 

higher degrees of covariance between variables. The sign of the correlation (+ or -) indicates 

the nature of the relationship. Positive correlations indicate, for example, that if the value of 

one variable increases that the value of another variables another increases along with it, while 

negatively correlated variables have an inverse relationship (Curtis et al., 2016).  While there 

is no universal agreed upon interpretation of correlation coefficients, the following descriptions 

proposed by Chan (2003) was employed in this study: 

< 0.30 Poor 

0.30 – 0.59 Fair 

0.60 – 0.80 Moderate 

> 0.80 Very strong 

In addition to assessing associations among variables, correlation coefficients are used to 

test for multicollinearity. Multicollinearity exists when two independent variables are highly 

correlated, and can inflate standard errors, bias inference statistics, and lead to unstable 

parameter estimates, ultimately affecting the interpretation of results (Dormann et al., 2012). 

Caution must be carried out when interpreting results when multicollinearity is present, which 

is suggested to occur with correlations greater than 0.9 (Tabachnick and Fidell, 2007).  The 

polycor package in R was used to conduct the correlations (Fox, 2022).  
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3.3.3 Classification models 

Random forest models (RFM) were employed to classify the population affinity of the crania. 

RFM is a non-parametric machine learning method that was introduced as an improvement 

upon decision trees (Breiman, 2001; Klales and Kenyhercz, 2015). Decision trees are a type of 

classification model that uses sequential splitting values (such as MMS traits) to predict the 

probability of an unknown belonging to a certain class (i.e., ancestry) to separate a dataset into 

groups (Hastie et al., 2009). Within each data split, known as “nodes” in the tree, the variable 

that is most strongly associated with the response variable (a specific group) is selected for the 

next split until a stopping condition is met. In the case of the current study, the stopping 

condition is an overall ancestry estimate based on the ensemble of multivariate trees. The 

overall ancestry estimate is reached by combining the most likely response from all the nodes, 

or in the case of RFM, all of the trees in the ensemble. This is achieved by means of voting in 

classification; simply put, the population group that receives the most “votes” from the trees is 

returned as the overall prediction (Breiman, 2001). A total of 2500 classification trees were 

used for each model with four variables at each split. Furthermore, RFM ranks the importance 

of each variable included in the classification ensemble, giving an indication of which variables 

are most discriminatory in the model and which variables are being “noisy” and do not 

contribute to the classification (Hefner and Ousley, 2014). With variable importance, the higher 

the value, the more a variable contributes to the classification.  Finally, out-of-bag observations 

can be used to gauge the external prediction accuracy of the tree (comparable to leave-one-out 

cross-validation used with discriminant analysis). The original training data is randomly 

sampled with replacement for each tree, which generates a smaller subset of data for each tree; 

essentially this is the training data. The observations excluded from the training data, or the 

out-of-bag observations, are a random subset of data that is essentially an internal test sample. 

The tree will then be used to classify the test sample to obtain a more realistic classification 

accuracy (Strobl et al., 2009). 

In the case of missing data, the mode was calculated for each trait per each sex and 

population group separately. The mode was used as an imputation value specifically because 

it appears the most in a set of values which in this case, is a population and sex group, most 

individuals are likely to depict that value. Data imputation was only performed when variables 

had less than 10% of the observations missing. For variables where more than 10% of the 

observations would have to be replaced, the variable was omitted from the model. After the 

missing data were imputed, the sample was divided so that 75% was used as the training set to 
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create the model, and the remaining 25% was the holdout set to test the accuracy of the model 

on an independent set of crania.  

Both univariate and multivariate analyses were conducted to evaluate the performance of 

the traits when tested both individually and in combination. Overall, three multivariate models 

were created, namely (1) an MMS model; (2) a metric model; and (3) a combined MMS-metric 

model. The classification accuracy (for both the training and testing samples), Kappa values, 

and variable importance were recorded for each model. Both the classification and Kappa 

values are measures of model accuracy. The classification accuracy presents the percentage of 

correctly classified individuals out of all the individuals; whereas, the Kappa value presents the 

percentage of correctly classified individuals while taking random chance into account. The 

randomForest package was used to generate the RFM classifications (Liaw and Wiener, 2002). 
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CHAPTER 4: RESULTS - MORPHOSCOPIC VARIATION 

4.1 Observer agreement 

The intra-observer agreement was assessed using Cohen’s kappa with varying weights assigned 

to the traits (Table 4.1). The mean kappa value varies depending on which weights are applied, 

with the unweighted kappa producing the lowest mean values, and the quadratic weighted 

kappa producing the highest mean values. The application of quadratic weights to the ordinally 

ranked traits (anterior nasal spine - ANS, inferior nasal margin - INA, malar tubercle - MT, 

nasal aperture width - NAW, and posterior zygomatic tubercle - PZT) consistently yielded 

higher agreement scores than if no weights were assigned. Closer inspection of the raw data 

revealed that this is because the scores for the ordinal ranked traits were nearly always within 

one score away. The binary traits (nasal overgrowth - NO, post-bregmatic depression - PBD) 

yielded the same kappa values regardless of weighting, as there are only two possible scores 

that can be assigned. While unranked traits with a greater number of trait states may yield 

scores that exhibit greater separation from the original score, often resulting in lower agreement 

values (i.e., an overestimation of error) if weights are assigned to them. Thus, using the correct 

weights that bests suits each of the different traits based on their data structure is highly 

recommended as it gives the most realistic results.  

With the appropriate weights assigned to each trait, the intra-observer agreement ranged 

from 0.41 (moderate) to 1.00 (perfect), with nasal overgrowth (NO) and transverse palatine 

suture (TPS) performing the worst and best, respectively.  
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 Table 4.1 – Comparison of intra-observer agreement using Cohen’s kappa 

with different weights. Bold indicates values with moderate agreement or 

lower (<0.60). 

 Unweighted 

kappa 

Linear-

weighted kappa  

Quadratic-

weighted kappa 

Trait-specific 

mixed weights  

ANS 0.62 0.72 0.82 0.82 

INA 0.47 0.52 0.78 0.47 

IOB 0.70 0.76 0.83 0.83 

MT 0.43 0.57 0.72 0.72 

NAS 0.62 0.62 0.62 0.62 

NAW 0.84 0.87 0.91 0.91 

NBC 0.64 0.75 0.84 0.64 

NBS 0.43 0.63 0.79 0.43 

NO 0.41 0.41 0.41 0.41 

NFS 0.83 0.72 0.62 0.83 

OS 0.80 0.84 0.89 0.80 

PBD 0.74 0.74 0.74 0.74 

PZT 0.41 0.55 0.69 0.69 

SPS 0.81 0.72 0.64 0.81 

TPS 1.00 1.00 1.00 1.00 

PS 0.71 0.63 0.56 0.71 

ZS 0.74 0.74 0.76 0.74 

Mean 0.66 0.69 0.74 0.72 

Min  0.41 0.41 0.41 0.41 

Max 1.00 1.00 1.00 1.00 

 

The inter-observer repeatability of the traits was compared among five observers with 

varying experience. This was done by comparing each observer to the primary observer 

(observer A), and then calculating the mean kappa value for each trait (Table 4.2). Overall, the 

mean kappa values ranged between -0.13 (poor) and 0.66 (substantial), with the nasal bone 

contour (NBC) performing the worst and interorbital breadth (IOB) performing the best. 

Interorbital breadth was the only trait to demonstrate substantial agreement, with all other traits 

showing moderate to poor repeatability. The performance of each observer compared to the 

primary observer revealed ariable results. For example, the anterior nasal spine (ANS) showed 

fair agreement between observers A and B (0.29) but showed almost perfect agreement 

between observers A and D (0.82). Conversely, orbit shape (OS) showed almost perfect 

agreement between observers A and B (0.83), while there was only slight agreement between 

observers A and D (0.15). Thus, each observer varied in which traits they were less/more 

repeatable.  
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In some instances, kappa values could not be calculated (e.g., NaN was obtained for nasal 

bone contour – NBC, post-bregmatic depression – PBD, and palate shape – PS). This indicates 

potential prevalence issues with the sample (one trait state is present in the sample and is being 

scored the most) which violates Cohen’s kappa and prevents the calculation of a kappa value. 

However, since it only happened sporadically and did not happen with the intra-observer tests, 

it likely indicates that one observer in the pairwise comparisons were assigning the same score 

to all of the crania for the traits in question, while other observer pairs were assigning more 

variable scores; i.e., a bias issue rather than a prevalence issue.  

Table 4.2 – Inter-observer agreement using Cohen’s kappa 

among multiple observers. Scores recorded before any trait 

discussion. Bold indicates substantial agreement or higher 

(>0.61). 

 Obs A – 

Obs B 

Obs A – 

Obs C 

Obs A – 

Obs D 

Obs A – 

Obs E 

Mean 

ANS 0.29 0.42 0.82 0.67 0.55 

INA 0.08 0.49 0.11 0.36 0.26 

IOB 0.58 0.74 0.91 0.42 0.66 

MT 0.55 0.69 0.55 0.35 0.53 

NAS 0.48 -0.15 0.51 0.36 0.30 

NAW 0.66 0.55 0.30 0.40 0.48 

NBC -0.09 -0.23 NaN -0.09 -0.13 

NBS 0.39 0.30 0.38 0.46 0.38 

NO 0.05 -0.11 0.29 -0.11 0.03 

NFS 0.40 0.65 0.47 0.41 0.48 

OS 0.83 0.43 0.15 0.43 0.46 

PBD 0.21 -0.32 NaN 0.05 -0.02 

PZT 0.48 0.31 0.53 0.49 0.45 

SPS 0.03 -0.08 0.34 0.61 0.23 

TPS 0.57 0.21 0.29 0.09 0.29 

PS NaN -0.33 0.43 0.37 0.16 

ZS 0.73 0.52 0.52 0.62 0.60 

Mean 0.39 0.24 0.44 0.35 0.34 

Min  -0.09 -0.33 0.11 -0.11 -0.13 

Max 0.83 0.74 0.91 0.67 0.66 

 

All the observers rescored the same crania following a group discussion on the scoring 

procedure (Table 4.3). Overall, the mean kappa values increased after the discussion, ranging 

from -0.04 (poor) to 0.75 (substantial), with the supra-nasal suture (SPS) performing the worst 

and nasal aperture width (NAW) performing the best. Five traits demonstrated substantial 
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agreement values or higher (anterior nasal spine – ANS, interorbital breadth – IOB, nasal 

aperture width – NAW, nasal overgrowth – NO, and posterior zygomatic tubercle – PZT) 

compared to the first round of scores where only one trait demonstrated substantial agreement. 

Notably, four of the five traits with substantial agreement are ordinally ranked.  

Mixed results were observed when comparing the mean kappa values for each observer. 

Even though observer B has five traits with substantial agreement, they presented with the 

overall lowest mean, indicating more variation in their scores. The mean kappa values 

decreased for both observers B and D after the discussion. For observer B the agreement 

remained fair, while with observer D the overall agreement dropped from moderate to fair. 

Both observers C and E showed increased agreement from fair to moderate after the trait 

discussion, with observer C demonstrating the most marked increase.  

Table 4.3 – Inter-observer agreement using Cohen’s kappa 

among multiple observers. Scores recorded after discussion 

session. Bold indicates substantial agreement or higher (>0.61). 

 Obs A – 

Obs B 

Obs A – 

Obs C 

Obs A – 

Obs D 

Obs A – 

Obs E 

Mean 

ANS 0.44 0.66 1.00 0.64 0.69 

INA 0.23 0.86 -0.11 0.45 0.36 

IOB 0.77 0.91 0.31 0.77 0.69 

MT 0.44 0.59 0.59 0.58 0.55 

NAS 0.83 0.24 0.41 -0.06 0.36 

NAW 0.81 0.91 0.58 0.72 0.75 

NBC 0.21 0.13 0.25 0.05 0.16 

NBS -0.06 0.44 0.55 0.26 0.30 

NO 0.80 0.78 0.60 0.60 0.70 

NFS 0.33 0.67 0.49 0.53 0.51 

OS 0.39 0.57 0.80 0.09 0.46 

PBD -0.11 0.29 -0.15 1.00 0.26 

PZT 0.21 0.72 0.88 0.72 0.64 

SPS 0.17 0.11 -0.32 -0.11 -0.04 

TPS 0.10 0.47 0.18 0.37 0.28 

PS 0.74 0.18 0.55 0.28 0.44 

ZS 0.11 1.00 0.06 0.33 0.37 

Mean 0.38 0.56 0.39 0.42 0.44 

Min  -0.11 0.11 -0.11 -0.11 -0.04 

Max 0.83 0.91 1.00 0.77 0.75 
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4.2 Exploratory analyses: Trait frequencies and group differences 

 Table 4.4 presents the frequencies for the MMS traits. The sample size varies for each trait 

because of the presence of post-mortem damage, ante-mortem trauma, and tooth loss. A 

substantial amount of group overlap was observed for the traits, and not a single trait can be 

considered characteristic of a population (Figure 4.1). Kruskal-Wallis tests were used to 

identify potential population group differences (Table 4.5). Overall, 13 out of the 17 traits were 

noted to differ significantly among the population groups (p<0.05). The nasal bone shape 

(NBS), supra-nasal suture (SPS), transverse palatine suture (TPS), and palate shape (PS) were 

not significantly different. Since Kruskal-Wallis only indicates if there are any differences, a 

post-hoc Dunn’s test was then used to further explore the variation among the three populations 

(see Table 4.6 for a breakdown of the group overlap). Five traits demonstrate no overlap (i.e., 

should be useful for distinguishing among all the groups); this includes the inferior nasal 

margin (INA), malar tubercle (MT), nasal aperture shape (NAS), nasal bone contour (NBC), 

and zygomaticomaxillary suture (ZS). The remainder of the traits demonstrated overlap 

between at least two of the groups. Black and coloured South Africans were observed to overlap 

more frequently, with some traits also presenting with overlap between coloured South 

Africans and white South Africans. However, none of the traits indicate significant overlap 

between black South Africans and white South Africans, suggesting the two groups are most 

dissimilar from each another. Ultimately, white South Africans more frequently presented with 

prominent anterior nasal spines (ANS), sharp inferior nasal margins (INA), narrow inter-orbital 

breadths (IOB), teardrop shaped nasal apertures (NAS), plateauing nasal bone contours (NBC), 

and nasal overgrowth (NO) compared to the other groups. On the other hand, black and 

coloured South Africans more frequently presented with small anterior nasal spines (ANS), 

rounded inferior nasal margins (INA), bowed nasal apertures (NAS), rounded nasal bone 

contours (NBC), and post-bregmatic depressions (PBD). However, while coloured South 

Africans overlapped with black South Africans, the coloured group more frequently yielded 

intermediate scores rather than extreme scores. While it was not within the scope of the study 

to specifically explore sex variation, Kruskal-Wallis tests did indicate that there were 

significant sex differences for seven of the traits (Table 4.5).  
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Table 4.4 – Trait frequencies for the three population groups. Refer to Table 3.2 for trait 

abbreviations.  

 Population group 

Black Coloured White 

Trait 

scores 
n % n % n % 

ANS (n = 220) (n = 212) (n= 207) 

1 143 65.0 115 54.2 25 12.1 

2 66 30.0 85 40.1 79 38.2 

3 11 5.0 12 5.7 103 49.7 

INA (n = 220) (n = 219) (n = 220) 

1 53 24.1 7 3.2 0 0.0 

2 79 35.9 36 16.4 3 1.4 

3 74 33.6 118 56.5 38 17.3 

4 9 4.1 47 21.5 107 48.6 

5 5 2.3 11 5.0 72 32.7 

IOB (n = 220) (n = 219) (n = 220) 

1 23 10.5 33 15.1 134 60.9 

2 99 45.0 99 45.2 77 35.0 

3 98 44.5 87 39.7 9 4.1 

MT (n = 218) (n = 214) (n = 220) 

0 2 1.0 0 0.0 16 7.3 

1 116 53.2 151 70.6 167 75.9 

2 75 34.4 59 27.6 34 15.5 

3 25 11.5 4 1.9 3 1.4 

NAS (n = 220) (n = 218) (n = 220) 

1 28 12.7 65 29.8 183 83.2 

2 36 16.4 17 7.8 28 12.7 

3 156 70.9 136 62.4 9 4.1 

NAW (n = 220) (n = 219) (n = 220) 

1 5 2.3 6 2.7 80 36.4 

2 67 30.5 74 33.8 113 51.4 

3 148 67.3 139 63.5 27 12.2 

NBC (n = 194) (n = 187) (n = 202) 

0 116 59.8 70 37.4 0 0.0 

1 44 22.7 87 46.5 39 19.3 

2 7 3.6 7 3.7 79 39.1 

3 9 4.6 14 7.5 78 38.6 

4 18 9.3 9 4.8 6 3.0 

NBS (n = 213) (n = 204) (n = 214) 

1 58 27.2 25 12.3 32 15.0 

2 107 50.2 153 75.4 167 78.0 

3 26 12.2 7 3.4 12 5.6 

4 22 10.3 18 8.9 3 1.4 

NO (n = 208) (n = 186) (n = 205) 

0 202 97.1 186 100.0 168 82.0 

1 6 2.9 0 0.0 37 18.0 

NFS (n = 202) (n = 200) (n = 214) 

1 73 36.1 96 48.0 123 57.5 
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2 71 35.1 58 29.0 38 17.8 

3 17 8.4 16 8.0 23 10.7 

4 41 20.3 30 15.0 30 14.0 

OS (n = 219) (n = 218) (n = 220) 

1 118 53.9 159 72.9 150 68.2 

2 89 40.6 44 20.2 49 22.3 

3 12 5.5 15 6.9 21 9.5 

PBD (n = 218) (n = 214) (n = 217) 

0 144 65.1 155 72.4 176 81.1 

1 74 33.9 59 27.6 41 18.9 

PZT (n = 218) (n = 217) (n = 220) 

0 14 6.4 6 2.8 25 11.4 

1 77 35.3 65 30.0 104 47.3 

2 72 33.0 91 41.9 63 28.6 

3 55 25.2 55 25.3 28 12.7 

SPS (n = 219) (n = 220) (n = 220) 

0 69 31.5 29 13.2 23 10.5 

1 19 8.7 85 38.6 89 40.5 

2 131 59.8 106 48.2 108 49.0 

TPS (n = 213) (n = 211) (n = 215) 

1 53 24.9 54 25.6 59 27.4 

2 110 51.6 119 56.4 126 58.6 

3 23 10.8 15 7.1 14 6.5 

4 27 12.7 23 10.9 16 7.5 

PS (n = 168) (n = 116) (n = 53) 

1 50 29.8 31 26.7 25 47.2 

2 29 17.3 18 15.5 9 17.0 

3 54 32.1 55 47.4 11 20.8 

4 35 20.8 12 10.3 8 15.1 

ZS (n = 210) (n = 209) (n = 215) 

0 153 72.9 84 40.2 75 34.9 

1 45 21.4 123 58.8 112 52.1 

2 12 5.7 2 1.0 28 13.0 
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Figure 4.1 – Frequency distribution for a selection of traits to demonstrate group variation 

and overlap.  
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Table 4.5 - Results of the Kruskal-Wallis 

test comparing trait score frequencies among 

the populations and between the sexes. Bold 

indicates significant differences. 

Trait Population  Sex 

ANS <0.05 0.08 

INA <0.05 <0.05 

IOB <0.05 <0.05 

MT <0.05 <0.05 

NAS <0.05 0.76 

NAW <0.05 <0.05 

NBC <0.05 0.05 

NBS 0.28 0.24 

NO <0.05 0.33 

NFS <0.05 0.33 

OS <0.05 0.18 

PBD <0.05 0.07 

PZT <0.05 <0.05 

SPS 0.92 <0.05 

TPS 0.19 0.93 

PS 0.06 <0.05 

ZS <0.05 0.99 

 

Table 4.6 - Break down of group overlap for trait scores based on 

the Kruskal-Wallis and Dunn’s tests.  

No groups 

overlap 

All groups 

overlap 

B and C 

overlap 

B and W 

overlap 

W and C 

overlap 

INA 

MT 

NAS 

NBC 

ZS 

NBS 

SPS 

TPS 

PS 

ANS 

IOB 

NAW 

NO 

PBD 

PZT 

- NFS 

OS 

PBD 

 

4.3 Correlations 

Polychoric correlations were used to analyse the MMS traits, with correlation coefficients 

ranging between -0.57 and 0.60 (Table 4.7). Most of the notable correlations were observed for 

features located in the nasal and orbital region.  Fair positive correlations were noted between 

the nasal aperture shape (NAS) and the inter-orbital breadth (IOB) (r = 0.59), nasal aperture 

shape (NAS) and nasal width (NAW) (r = 0.59), as well as the anterior nasal spine (ANS) and 

inferior nasal margin (INA) (r = 0.57). Additionally, the nasal aperture width and inter-orbital 

breadth (r = 0.60) were noted to be moderately correlated.  
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Table 4.7 – Polychoric correlations demonstrating the relationship between macromorphoscopic traits.  

 ANS INA IOB MT NAS NAW NBC NBS NO NFS OS PBD PZT SPS TPS PS ZS 

ANS -                 

INA 0.57 -                

IOB -0.35 -0.45 -               

MT -0.19 -0.27 0.25 -              

NAS -0.50 -0.57 0.59 0.27 -             

NAW -0.46 -0.53 0.60 0.22 0.59 -            

NBC 0.43 0.38 -0.44 -0.14 -0.52 -0.47 -           

NBS -0.03 -0.19 -0.06 0.01 0.08 0.09 0.03 -          

NO 0.27 0.31 -0.55 -0.23 -0.55 -0.37 0.43 -0.13 -         

NFS -0.01 -0.08 0.09 0.09 0.10 0.04 -0.13 -0.06 -0.04 -        

OS -0.02 -0.02 -0.14 0.21 -0.01 -0.06 -0.01 0.01 0.14 0.09 -       

PBD -0.11 -0.10 0.09 0.06 0.09 0.09 -0.10 0.06 -0.01 -0.06 0.02 -      

PZT -0.13 -0.21 0.26 0.16 0.16 0.21 -0.18 0.08 -0.03 -0.01 -0.12 0.12 -     

SPS 0.09 -0.01 0.01 0.04 -0.02 -0.04 0.09 0.09 0.13 0.07 -0.05 -0.02 0.07 -    

TPS -0.05 -0.08 0.09 -0.03 0.06 0.04 -0.04 -0.04 0.01 0.02 -0.04 -0.09 0.02 -0.02 -   

PS -0.03 -0.19 0.15 0.12 0.14 0.22 -0.05 0.03 0.02 0.11 -0.02 -0.02 -0.02 0.14 0.12 -  

ZS 0.18 0.21 -0.20 -0.12 -0.26 -0.16 0.22 0.03 0.16 -0.06 -0.07 -0.07 -0.06 0.04 0.03 0.08 - 

39 
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CHAPTER 5: RESULTS - CRANIOMETRIC VARIATION 

5.1 Observer agreement  

Technical error of measurement was used to gauge the degree of measurement repeatability 

between two observers (Table 5.1). The intra-observer TEM and %TEM ranged between 0.32 

and 0.74, and 0.30% and 2.46%, respectively. The margin of error was slightly higher for the 

inter-observer analysis, with the TEM and %TEM ranging between 0.45 and 1.67, and 0.34% 

and 5.71%, respectively. The variables that presented with the greatest error for both inter- and 

intra-observer analyses were inter-orbital breadth and mastoid height. The dimensions of the 

palate (MAL and MAB) and foramen magnum (FOL and FOB) also demonstrated greater 

levels of measurement error for the inter-observer analysis.  

Bland-Altman plots were used to illustrate the variability in the repeatability of the 

measurements. The intra-observer plot demonstrated greater precision, with the majority of the 

variables presenting with less than 2mm difference (Figure 5.1). The inter-observer plot 

demonstrated greater variation, with five measurements presenting with as much as 4mm 

difference (Figure 5.2). 

Despite some observer variation, the combined TEM and Bland-Altman results 

demonstrate satisfactory levels of agreement, and all measurements were retained in the 

analyses.  
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Table 5.1 - Absolute technical error of measurement (TEM) and 

relative technical error of measurement (%TEM) for inter- and 

intra-observer agreement. 

 Intra-observer error Inter-observer error 

TEM %TEM TEM %TEM 

GOL 0.62 0.33 0.81 0.43 

XCB 1.02 0.78 1.07 0.81 

ZYB 0.39 0.30 0.59 0.46 

BBH 0.45 0.34 0.45 0.34 

BNL 0.39 0.38 0.45 0.44 

BPL 0.47 0.47 0.82 0.81 

MAL 0.78 1.37 1.67 2.93 

MAB 0.76 1.18 1.48 2.29 

ASB 0.67 0.62 0.55 0.51 

NPH 0.91 1.35 0.71 1.05 

WFB 0.39 0.40 0.59 0.61 

UFBR 0.32 0.30 0.55 0.52 

NLH 0.63 1.27 0.84 1.68 

NLB 0.39 1.51 0.45 1.75 

OBB 0.71 1.77 0.59 1.50 

OBH 0.32 0.95 0.59 1.78 

EKB 0.89 0.92 0.81 0.82 

DKB 0.63 2.46 1.47 5.71 

FRC 0.67 0.59 0.74 0.66 

PAC 0.91 0.79 1.13 0.97 

OCC 0.67 0.69 0.62 0.64 

FOL 0.22 0.62 0.89 2.48 

FOB 0.50 1.71 0.63 2.17 

MDH 0.74 2.45 1.00 3.30 

AUB 0.50 0.43 0.55 0.47 

Mean 0.60 0.96 0.80 1.40 

Min 0.32 0.30 0.45 0.34 

Max 0.74 2.46 1.67 5.71 
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Figure 5.1 – Bland-Altman plot illustrating the intra-observer agreement of measurements. 

 
Figure 5.2 – Bland-Altman plot illustrating the inter-observer agreement of measurements 

compared between two observers. 
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5.2 Exploratory analyses: Measurement means and group differences 

Table 5.2 presents the measurement means and standard deviations for each population group. 

Overall, a lot of variation was observed with no trend in terms of which group is consistently 

the largest or smallest for any particular region. All measurements were noted to have 

significant differences in the ANOVAs for ancestry, except for the foramen magnum length 

(FOL) (Table 5.3). Further analysis with Tukey’s HSD revealed that 10 out of the 25 

measurements were significantly different among all three groups; this includes several 

variables pertaining to facial and cranial breadth (Table 5.4). The remainder of the 

measurements demonstrated overlap between at least two of the three groups, with no particular 

trends regarding cranial regions. When considering sex, all measurements were noted to differ 

significantly between males and females, except for orbital height (OBH).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



43 

 

Table 5.2 – Summary statistics showing the measurement means (mm) and standard 

deviations for black, white, and coloured South Africans. Refer to Table 3.3 for 

measurement abbreviations. 

 Black White Coloured 

Variable n mean sd n mean sd n mean sd 

GOL 217 183.9 7.4 200 182.2 7.5 206 181.0 8.7 

XCB 217 131.0 5.3 212 135.5 5.7 209 132.9 5.5 

ZYB 200 126.5 6.3 213 124.6 5.9 157 123.5 6.8 

BBH 213 130.5 6.1 202 133.6 6.2 206 128.6 5.8 

BNL 219 99.4 5.1 219 99.6 5.2 218 97.0 5.1 

BPL 167 101.0 5.9 96 93.5 5.1 114 95.5 6.1 

MAL 166 56.3 4.0 87 53.1 3.4 112 53.0 4.2 

MAB 128 63.5 3.9 14 60.0 4.6 28 60.0 4.1 

ASB 211 106.1 5.0 208 112.7 4.9 215 107.4 5.1 

NPH 167 65.7 4.6 95 67.2 3.9 114 63.6 5.3 

WFB 218 96.3 4.8 218 95.4 4.2 217 94.1 5.1 

UFBR 217 105.8 4.7 220 102.2 4.5 202 103.4 4.7 

NLH 220 47.6 3.0 219 50.6 3.2 212 47.2 3.3 

NLB 215 27.4 2.2 218 23.4 2.3 209 26.3 2.5 

OBB 219 39.6 2.0 220 40.1 2.0 216 39.6 2.1 

OBH 220 33.7 2.0 220 34.1 1.8 216 33.6 2.5 

EKB 218 98.7 4.4 219 95.3 4.2 207 96.5 4.4 

DKB 216 25.1 2.8 217 21.5 2.7 216 22.8 2.7 

FRC 213 112.1 5.6 203 112.4 5.4 208 110.4 5.7 

PAC 212 114.1 6.5 194 112.8 6.5 204 112.0 6.8 

OCC 212 96.1 5.2 207 98.6 5.1 205 94.8 5.9 

FOL 218 37.0 2.9 219 37.4 2.8 218 36.9 2.9 

FOB 219 29.1 2.4 219 30.6 2.5 220 28.8 2.2 

MDH 218 27.9 3.4 220 29.9 3.2 219 26.2 3.6 

AUB 218 115.9 5.3 218 119.7 5.0 219 114.6 7.7 
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Table 5.3 – ANOVA and Kruskal-Wallis results evaluating the 

effects of population and sex for each measurement. Bold 

indicates significant. 

 Population Sex 

Variable F-value Pr (< F) F-value Pr (< F) 

GOL 7.48 <0.01 259.10 <0.01 

XCB 35.63 <0.01 54.27 <0.01 

ZYB 10.78 <0.01 301.0 <0.01 

BBH 35.58 <0.01 172.80 <0.01 

BNL 18.38 <0.01 196.50 <0.01 

BPL 60.98 <0.01 46.84 <0.01 

MAL 32.13 <0.01 48.92 <0.01 

MAB 12.48 <0.01 36.66 <0.01 

ASB 103.10 <0.01 35.76 <0.01 

NPH 15.58 <0.01 57.48 <0.01 

WFB 12.74 <0.01 45.60 <0.01 

UFBR 33.32 <0.01 128.60 <0.01 

NLH 73.86 <0.01 80.22 <0.01 

NLB 133.80 <0.01 42.79 <0.01 

OBB 4.15 0.02 76.67 <0.01 

OBH 3.54 0.03 3.35 0.07 

EKB 34.99 <0.01 111.30 <0.01 

DKB 95.51 <0.01 7.17 <0.01 

FRC 8.25 <0.01 135.40 <0.01 

PAC 5.36 0.01 72.77 <0.01 

OCC 26.12 <0.01 14.0 <0.01 

FOL 1.49 0.23 84.09 <0.01 

FOB 37.08 <0.01 57.18 <0.01 

MDH 63.92 <0.01 78.40 <0.01 

AUB 40.76 <0.01 100.60 <0.01 
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Table 5.4 – Break down of group overlap for measurement means based on 

the ANOVA and Tukey’s HSD tests.  

No groups 

overlap 

All groups 

overlap 

B and C 

overlap 

B and W 

overlap 

W and C 

overlap 

ASB 

BBH 

BPL 

DKB 

EKB 

MDH 

NLB 

OCC 

UFBR 

XCB 

FOL AUB 

FOB 

NLH 

OBB 

OBH 

BNL 

FRC 

GOL 

NPH 

OBH 

PAC 

WFB 

GOL 

MAB 

MAL 

OBB 

PAC 

ZYB 

 

5.3 Correlations 

Pearson correlations were used to analyse the cranial measurements. Overall, much stronger 

correlations were observed among the measurements compared to the MMS traits, with 

correlation coefficients ranging between -0.12 and 0.92. Very strong positive correlations were 

noted between the bizygomatic breadth (ZYB) and the upper facial breadth (UFBR) (r = 0.82) 

and auricular breadth (AUB) (r = 0.84), respectively; upper facial breadth (UFBR) was also 

strongly correlated with the bi-orbital breadth (EKB) (r = 0.92). Similarly, the palate length 

(MAL) and basion-prosthion length (BPL) were highly correlated (0.81). Numerous positive 

correlations of moderate strength (r > 0.6) were also recorded across the entire cranium. Few 

negative correlations were observed with the measurements; this includes orbital height (OBH) 

and inter-orbital breadth (DKB) (r = -0.12), as well as the occipital cord (OCC) with the inter-

orbital breadth (DKB) (r = -0.08), parietal cord (PAC) (r = -0.05), and basion prosthion length 

(BPL)(r = -0.03). However, the negative correlations were very weak.    

Finally, polyserial correlations were used to analyse the relationship between the MMS traits 

and cranial measurements. Moderate positive correlations were noted between the nasal 

breadth measurement (NLB) and the inter-orbital breadth (IOB) (r = 0.55), nasal aperture shape 

(NAS) (0.50) and nasal aperture width (NAW) scores (r = 0.71). The inter-orbital breadth (IOB) 

score was also moderately correlated with both the bi-orbital (EKB) (r = 0.59) and inter-orbital 
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breadth (DKB) measurements (r = 0.60). The presence of correlations among the variables 

collected from the same region (i.e., the face) is not unexpected.  
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Table 5.5 – Pearson correlations demonstrating the relationship between the cranial measurements.  
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H
 

A
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GOL -                         

XCB 0.41 -                        

ZYB 0.64 0.44 -                       

BBH 0.56 0.42 0.43 -                      

BNL 0.69 0.26 0.55 0.64 -                     

BPL 0.57 0.04 0.56 0.34 0.69 -                    

MAL 0.52 0.08 0.54 0.36 0.49 0.81 -                   

MAB 0.58 0.31 0.69 0.38 0.47 0.52 0.56 -                  

ASB 0.42 0.61 0.38 0.41 0.29 0.08 0.11 0.25 -                 

NPH 0.50 0.27 0.31 0.44 0.46 0.38 0.40 0.38 0.22 -                

WFB 0.51 0.49 0.60 0.48 0.43 0.24 0.24 0.48 0.40 0.16 -               

UFBR 0.63 0.41 0.82 0.42 0.56 0.52 0.47 0.66 0.35 0.22 0.76 -              

NLH 0.41 0.36 0.33 0.30 0.41 0.13 0.22 0.25 0.39 0.72 0.25 0.25 -             

NLB 0.53 0.18 0.56 0.17 0.40 0.47 0.35 0.53 0.10 0.04 0.35 0.60 0.08 -            

OBB 0.46 0.35 0.60 0.31 0.46 0.35 0.28 0.40 0.25 0.12 0.44 0.63 0.20 0.44 -           

OBH 0.15 0.18 0.17 0.07 0.10 0.08 0.10 0.03 0.12 0.33 0.14 0.16 0.39 0.12 0.28 -          

EKB 0.65 0.34 0.79 0.37 0.53 0.51 0.45 0.63 0.30 0.15 0.67 0.92 0.15 0.68 0.70 0.14 -         

DKB 0.35 0.06 0.44 0.16 0.31 0.32 0.26 0.43 0.08 0.01 0.52 0.60 0.02 0.43 0.03 -0.12 0.56 -        

FRC 0.68 0.53 0.47 0.70 0.49 0.39 0.38 0.48 0.45 0.49 0.48 0.46 0.33 0.30 0.30 0.15 0.43 0.24 -       

PAC 0.66 0.13 0.36 0.52 0.43 0.35 0.29 0.36 0.23 0.22 0.42 0.40 0.14 0.37 0.31 0.04 0.43 0.36 0.48 -      

OCC 0.36 0.33 0.13 0.30 0.06 -0.03 0.13 0.08 0.28 0.27 0.11 0.09 0.26 0.04 0.02 0.07 0.07 -0.08 0.20 -0.05 -     

FOL 0.42 0.19 0.47 0.28 0.29 0.26 0.26 0.28 0.28 0.27 0.27 0.43 0.27 0.29 0.37 0.22 0.43 0.21 0.30 0.20 0.09 -    

FOB 0.31 0.27 0.39 0.24 0.27 0.23 0.17 0.14 0.28 0.27 0.19 0.25 0.30 0.12 0.25 0.19 0.23 0.05 0.26 0.09 0.18 0.54 -   

MDH 0.39 0.28 0.43 0.35 0.27 0.21 0.35 0.38 0.33 0.24 0.30 0.39 0.27 0.20 0.32 0.14 0.36 0.15 0.39 0.22 0.16 0.25 0.19 -  

AUB 0.56 0.64 0.84 0.45 0.45 0.29 0.32 0.55 0.56 0.32 0.60 0.67 0.45 0.35 0.52 0.15 0.64 0.25 0.51 0.29 0.19 0.37 0.35 0.45 - 

 

 

 

48 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



49 

 

Table 5.6 – Polyserial correlations demonstrating the relationship between macromorphoscopic traits and cranial measurements.  

 ANS INA IOB MT NAS NAW NBC NBS NO NFS OS PBD PZT SPS TPS PS ZS 

GOL 0.05 -0.14 0.26 0.11 0.07 0.15 -0.03 -0.01 -0.04 -0.05 -0.08 -0.03 0.11 0.15 0.05 0.16 -0.02 

XCB 0.21 0.21 -0.02 -0.01 -0.21 -0.12 0.24 -0.08 0.07 -0.10 -0.02 -0.01 -0.04 0.10 -0.03 -0.04 0.16 

ZYB 0.01 -0.18 0.34 0.14 0.11 0.19 0.01 -0.04 -0.05 0.01 -0.09 -0.01 0.25 0.12 0.06 0.22 -0.05 

BBH 0.22 0.09 0.010 -0.03 -0.13 -0.09 0.14 -0.08 0.05 -0.12 -0.03 -0.13 0.02 0.17 0.01 0.12 0.10 

BNL 0.12 -0.08 0.17 0.02 0.03 0.08 -0.01 -0.01 -0.01 -0.12 -0.10 -0.04 0.15 0.20 -0.01 0.14 -0.01 

BPL -0.20 -0.46 0.36 0.18 0.34 0.32 -0.21 0.13 -0.11 -0.14 -0.07 0.01 0.16 0.16 0.02 0.27 -0.15 

MAL -0.16 -0.36 0.28 0.10 0.18 0.19 -0.10 0.05 -0.06 0.11 -0.11 -0.01 0.13 0.16 0.03 0.29 -0.10 

MAB -0.10 -0.26 0.40 0.19 0.16 0.22 -0.01 -0.19 0.06 0.08 -0.11 -0.03 0.23 0.16 0.10 0.26 -0.03 

ASB 0.33 0.30 -0.14 -0.08 -0.34 -0.24 0.30 -0.09 0.17 0.05 -0.06 -0.11 -0.06 0.10 -0.07 -0.05 0.20 

NPH 0.23 0.05 -0.02 -0.04 -0.13 -0.16 0.17 -0.01 0.05 -0.06 -0.06 -0.05 0.06 0.20 -0.04 0.11 0.05 

WFB -0.01 -0.07 0.38 0.08 0.07 0.16 -0.05 -0.06 -0.03 -0.01 -0.13 0.05 0.07 0.09 -0.03 0.02 -0.05 

UFBR -0.14 -0.29 0.56 0.18 0.26 0.36 -0.20 -0.03 -0.12 -0.10 -0.19 0.08 0.22 0.12 0.01 0.16 -0.12 

NLH 0.250 0.22 -0.14 -0.11 -0.28 -0.16 0.27 -0.07 0.09 -0.02 -0.03 -0.04 0.03 0.10 -0.06 -0.01 0.10 

NLB -0.36 -0.53 0.55 0.20 0.50 0.71 -0.37 0.02 -0.18 -0.03 -0.05 0.03 0.19 0.03 0.05 0.18 -0.16 

OBB 0.13 0.09 0.18 0.06 -0.05 0.03 0.02 -0.01 0.01 0.03 -0.13 -0.02 0.14 0.08 -0.01 0.08 0.03 

OBH 0.16 0.09 -0.06 0.04 -0.07 -0.08 0.14 -0.03 0.06 0.04 0.18 0.06 -0.01 0.04 -0.04 -0.02 0.09 

EKB -0.13 -0.29 0.59 0.20 0.27 0.37 -0.18 -0.02 -0.12 0.03 -0.16 0.02 0.21 0.08 0.04 0.19 -0.09 

DKB -0.25 -0.39 0.60 0.17 0.35 0.41 -0.29 -0.07 -0.14 0.01 -0.06 0.05 0.16 -0.02 0.04 0.05 -0.16 

FRC 0.09 -0.04 0.10 0.02 0.01 0.08 0.06 -0.06 0.01 -0.01 -0.02 -0.05 -0.03 0.11 -0.03 0.14 0.07 

PAC -0.01 -0.10 0.13 0.12 0.01 0.09 -0.07 -0.03 0.02 -0.07 0.03 -0.02 0.08 0.09 0.09 0.08 -0.03 

OCC 0.17 0.12 -0.08 -0.03 -0.14 -0.13 0.18 -0.10 0.06 -0.04 0.04 -0.01 -0.15 0.08 -0.01 -0.03 0.08 

FOL 0.05 -0.01 0.09 -0.02 -0.03 0.04 0.12 -0.03 0.03 0.01 -0.04 -0.04 0.08 0.11 0.01 0.15 0.06 

FOB 0.16 0.16 -0.08 -0.15 -0.16 -0.14 0.25 -0.05 0.13 -0.02 -0.05 -0.07 0.04 0.07 -0.04 0.00 0.15 

MDH 0.25 0.16 -0.11 -0.03 -0.16 -0.13 0.19 -0.07 0.12 -0.03 -0.04 -0.06 0.01 0.08 -0.02 0.04 0.11 

AUB 0.25 0.14 0.06 -0.05 -0.20 -0.10 0.24 -0.08 0.08 -0.04 -0.10 -0.04 0.10 0.11 -0.01 0.10 0.09 
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CHAPTER 6: RESULTS - RANDOM FOREST MODELS FOR 

CLASSIFICATION 

 

6.1 MMS models 

Univariate random forest models were first created to explore the predictive ability to estimate 

ancestry of each MMS trait on its own prior to building a multivariate model (Table 6.1). Palate 

shape (PS) was removed from any subsequent analyses as there were too many missing values 

resulting in a small sample.  

Training accuracies for the univariate models ranged from 33.1% to 68.7%, with the 

transverse palatine suture (TPS) and nasal bone contour (NBC) performing the worst and best, 

respectively. The testing accuracies were comparable and ranged from 29.1% to 69.7%. 

Although testing accuracies are typically lower compared to training accuracies, several traits 

demonstrated an increased accuracy (up to 6% higher) when employed with an independent 

sample. Conversely, the kappa values yielded much lower accuracies, ranging from -0.06% to 

54.6%. This indicates that many of the correct classifications achieved with the univariate 

MMS traits occurred because of chance rather than the model producing a true positive 

prediction.  
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Table 6.1 – Univariate classification 

accuracy (%) of each MMS trait using 

RFM for population affinity. 

Trait Training 

accuracy 

Testing 

accuracy 

Kappa 

ANS 52.3 46.7 20.0 

INA 66.3 61.8 42.7 

IOB 46.1 52.7 42.8 

MT 42.8 43.6 15.5 

NAS 57.4 55.2 32.7 

NAW 50.9 53.9 30.9 

NBC 68.7 69.7 54.6 

NBS 43.8 37.6 6.4 

NO 39.0 38.8 8.2 

NFS 41.6 46.1 19.1 

OS 40.8 41.8 12.7 

PBD 38.0 39.4 9.1 

PZT 41.0 45.5 18.2 

SPS 43.8 44.2 16.4 

TPS 33.1 29.1 -0.06 

ZS 49.5 48.5 22.7 

 

All the MMS traits were then combined into a multivariate model. Overall, the MMS traits 

yielded an accuracy of 78.7%. Table 6.2 presents the training accuracies, with a breakdown of 

the predictive performance of each population group and group overlap. The greatest overlap 

(and subsequent misclassification) was observed between black and coloured South Africans.  

White South Africans had the least overlap, resulting in the highest group accuracy (89.7%). 

The model is not overfit, as indicated by the comparable, and slightly higher, testing accuracy 

of 81.8%. The kappa value was lower than both the training and testing accuracies (72.7%); 

however, the discrepancy is much smaller than observed with the univariate models and is still 

at a level that indicates good performance. This indicates that the multivariate model is less 

prone to produce false positive predictions resulting from chance than the univariate models.  
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Table 6.2 – Confusion matrix showing patterns of overlap 

and misclassification among the groups for the training 

model employing the MMS traits.  

  Classifies into: % 

Correct 

Group: 

 Black White Coloured 

Black 127 5 33 77.0 

White 3 148 14 89.7 

Coloured 32 18 115 69.7 

Total:  78.7 

 

Finally, the variable importance was calculated to assess how much discriminatory power 

each trait contributes to the model and overall correct classification. Ultimately all the traits 

contributed some information to the model, with the variable importance ranging from 2.7 to 

56.0 (Table 6.3). Figure 1 graphically demonstrates the contribution of each trait to the model. 

The highest ranked traits include the inferior nasal margin (INA), nasal bone contour (NBC), 

and nasal aperture shape (NAS) – i.e., variables in the nasal region. The lowest ranked traits 

include nasal overgrowth (NO), post-bregmatic depression (PBD), and orbit shape (OS).  

 

Table 6.3 – RFM 

variable importance for 

MMS traits.  

Trait Variable 

importance 

INA 56.0 

NBC 50.0 

NAS 33.8 

ANS 23.3 

ZS 19.9 

IOB 19.6 

NAW 16.2 

SPS 15.9 

PZT 14.7 

NBS 14.4 

MT 13.3 

NFS 12.8 

TPS 12.7 

OS 10.7 

PBD 6.9 

NO 2.7 
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Figure 6.1 – Variable importance for the multivariate model employing all MMS traits.  

An additional multivariate model was created to further explore the accuracy of the traits. For 

this model the number of traits employed were reduced. More specifically, all traits with poor 

repeatability as noted with Cohen’s kappa, any trait that did not yield significant differences 

with Kruskal-Wallis, and any trait with low variable importance (< 15) were removed. Using 

seven traits, the model yielded training and testing accuracies of 73.6% and 75.3%, 

respectively, with a kappa value of 62.9%. Thus, a reduction in the number of traits included 

in the model led to a slight decrease in the model accuracy.  

6.2 Craniometric models 

Because of a large number of missing values, all measurements with landmarks surrounding 

the palate were removed from subsequent analyses (basion-prosthion length, palate length, 

palate breadth, nasion-prosthion height). Training accuracies for the univariate models ranged 

from 30.9% to 53.7%, with the orbital height (OBH) and nasal breadth (NLB) performing the 

worst and best, respectively (Table 6.4). Once again several measurements demonstrated an 

increase (up to 7.2% higher) with the testing accuracies, where the correct classifications 

ranged from 29.7% to 52.1%. The kappa values were lower than both the training and testing 

accuracies (between -5.5% and 31.8%).  
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 Table 6.4 – Univariate classification 

accuracy (%) of each measurement using 

RFM for population affinity.  

Trait Training 

accuracy 

Testing 

accuracy 

Kappa 

GOL 36.4 43.6 15.4 

XCB 43.4 37.0 5.5 

ZYB 45.1 49.1 23.6 

BBH 39.0 41.2 11.8 

BNL 35.2 37.6 6.4 

ASB 46.1 45.5 18.2 

WFB 42.6 29.7 -5.5 

UFBR 42.2 38.8 8.2 

NLH 43.0 42.4 13.6 

NLB 53.7 52.1 28.2 

OBB 33.8 35.2 2.7 

OBH 30.9 37.0 5.5 

EKB 43.4 45.5 18.2 

DKB 52.1 54.6 31.8 

FRC 35.8 38.2 7.3 

PAC 39.8 42.2 13.6 

OCC 44.2 41.2 4.4 

FOL 32.5 29.7 -5.5 

FOB 39.6 36.4 4.6 

MDH 47.9 46.1 19.1 

AUB 40.4 38.2 7.3 

 

The overall accuracy for the multivariate measurement model was 72.3%; this is lower than 

the MMS trait model (6.4% decrease), but it does outperform all univariate models. Similar 

patterns of variation and therefore misclassifications were observed with the measurement data, 

such that black and coloured South Africans overlap more frequently, and white South Africans 

are more dissimilar (Table 6.5).  
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Table 6.5 – Confusion matrix showing patterns 

of overlap and misclassification among the 

groups for the training model employing the 

measurements.  

  Classifies into: % 

Correct 

Group: 

 B W C 

B 111 6 48 67.3 

W 6 147 12 89.1 

C 44 21 100 60.6 

Total:  72.3 

The variable importance for the measurements were more evenly distributed than the MMS 

traits, ranging between 8.2 and 35.2 (Table 6.6). Thus, all the measurements contribute some 

information to the classification model. Figure 6.2 shows the measurement contributions to the 

model. The highest ranked measurements include the nasal breadth (NLB), biasterionic breadth 

(ASB), and inter-orbital breadth (DKB). The lowest ranked traits include orbital breadth 

(OBB), orbital height (OBH), and foramen magnum length (FOL). 

Table 6.6 – RFM 

variable importance 

for measurements.  

Trait Variable 

importance 

NLB 35.2 

ASB 30.9 

DKB 24.8 

NLH 22.2 

AUB 17.4 

MDH 17.1 

OCC 16.8 

XCB 16.8 

BBH 15.2 

EKB 14.7 

UFBR 13.7 

ZYB 12.9 

FOB 12.4 

BNL 11.7 

GOL 10.7 

WFB 10.6 

PAC 10.5 

FRC 9.9 

FOL 9.0 

OBH 8.7 

OBB 8.2 
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Figure 6.2 – Variable importance for the multivariate model employing all measurements.  

An additional model was created, where all measurements with a variable importance below 

14 were removed. Using 11 traits, the model yielded training and testing accuracies of 70.3% 

and 72.7%, respectively, with a kappa value of 59.1%. Once again, a reduction in the number 

of measurements included in the model led to a decrease in the model accuracy.  

6.3 Mixed model 

The MMS traits and measurements were combined to create a mixed multivariate model and 

the overall accuracy for the combined model was 81.0% (Table 6.7). The combined model 

achieved a classification accuracy higher than the accuracies achieved when using the MMS 

traits and measurements independently.  Similar patterns of misclassification were observed 

with the combined model. Interestingly, the coloured South African group achieved a higher 

correct classification with the combined model than the separate craniometric and MMS 

multivariate models. More specifically, the accuracy obtained with the combined model 

(75.2%) equals the accuracy obtained for the black South Africans (75.8%).  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



57 

 

Table 6.7 – Confusion matrix showing patterns 

of overlap and misclassification among the 

groups for the combined training model 

employing both MMS traits and measurements.  

  Classifies into: % 

Correct 

Group: 

 B W C 

B 125 7 33 75.8 

W 3 152 10 92.1 

C 28 13 124 75.2 

Total:  81.0 

The variable importance when comparing all variables simultaneously ranged from 1.0 to 33.4 

(Table 6.8; Figure 6.3). The highest ranked variables include the inferior nasal margin (INA), 

nasal bone contour (NBC), nasal aperture shape (NAS), biasterionic breadth (ASB), nasal 

breadth (NLB) and the inter-orbital breadth measurement (DKB). While the three most 

important variables were MMS traits, the least important variables were also MMS traits, with 

nasal overgrowth (NO), post-bregmatic depression (PBD), and transverse palatine suture (TPS) 

contributing little information to the model.  
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Table 6.8 – RFM variable importance for the 

combined MMS traits and measurements.  

Variable Variable 

importance 

Variable  Variable 

importance 

INA 33.4 FRC 7.0 

NBC 29.1 EKB 6.9 

NAS 22.0 GOL 6.8 

ASB 18.8 BBH 6.4 

NLB 14.0 FOB 6.0 

DKB 13.5 OBH 4.9 

ANS 11.9 FOL 4.7 

MDH 10.2 OCC 4.7 

PAC 10.2 SPS 4.7 

IOB 9.9 OBB 4.6 

AUB 9.7 NBS 3.5 

NLH 9.7 MT 3.3 

NAW 8.3 PZT 3.1 

ZS 8.1 NFS 2.8 

UFBR 7.7 OS 2.8 

BNL 7.6 TPS 2.3 

XCB 7.6 PBD 1.2 

ZYB 7.6 NO 1.0 

WFB 7.2   

 

 

Figure 6.3 – Variable importance for the multivariate combined model employing all MMS 

traits and measurements.  
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To decrease the number of variables used in the model, all variables with an importance 

value below five were removed. Using 25 variables, the modified combined model yielded 

training and testing accuracies of 79.6% and 80.6%, respectively, with a kappa value of 70.9%. 

Table 6.9 provides a summary of all classification accuracies obtained with the multivariate 

models. It was consistently shown that removing variables decreased the accuracy of the 

models. Even though variables that did not demonstrate significant differences among the 

groups or that have low variable importance are included, every single variable contributes 

information to the model that facilitates better classification.  

Table 6.9 – Comparison of the performance (%) of the 

MMS, measurement, and combined models to estimate 

ancestry. 

Model Training Testing Kappa 

All MMS  78.8 81.8 72.7 

All measurement 72.3 75.8 63.6 

All combined 81.0 84.2 76.4 

Modified MMS 73.6 75.25 62.9 

Modified measurement 70.3 72.7 59.1 

Modified combined 79.6 80.6 70.9 
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CHAPTER 7: DISCUSSION  

Now more than ever, methods exploring ancestry need to be re-evaluated to ensure that valid 

methodology is employed, and that population variation is investigated and described in a 

scientifically meaningful way. As recommended by the Academy Standards Board (ASB) of 

the American Academy of Forensic Sciences, the estimation of ancestry should be based on 

peer-reviewed, published and validated methods that make use of appropriate reference 

samples. The combination of metric and non-metric data provides a detailed description of 

South African cranial variation which will assist practitioners to effectively quantify cranial 

size and shape to better understand and interpret results when using the cranium in skeletal 

analyses. The current study externally validates the MMS traits as a potential tool to estimate 

ancestry in South African anthropological analyses by providing population-specific data 

combined with robust quantitative analyses yielding high accuracies. However, certain aspects 

and limitations should be considered to further refine the method. 

7.1 Methodology, observer agreement, and data variation  

Non-metric methods are known to be subjective in nature and may produce variable results 

prone to bias (Hefner 2009; Hartley et al., 2022). This study attempted to explore some sources 

of trait score variation when scoring the MMS traits on the cranium for ancestry. Previous 

studies have referred to the implications of different statistics, observer experience and training, 

and population differences on consistently scoring morphological variation from the skeleton 

(Klales and Kenyhercz, 2015; Kamnikar et al., 2018; Klales et al., 2021).  

Firstly, each statistical method used for reliability comparison have limitations which can 

create contradictory results. Klales and colleagues (2021) discuss the difficulties in comparing 

results from reliability studies of sex indicators as authors vary in the chosen statistics for 

observer agreement, ranging from Cohen’s kappa with different weights, to intraclass 

correlations. While published studies typically make use of Cohen’s kappa to assess the 

reliability of the MMS traits, a lack of consensus exists on the differential weighting of traits. 

The results of the current study demonstrated disparate rates of agreement depending on the 

weight assigned to the traits. Practitioners need to be cognisant of the fact that the MMS traits, 

while similar to the Walker (2008) or Klales et al. (2012) scoring systems, are not quite the 

same as these systems because all of the traits do not share the same data structure or number 

of trait expressions. No uniformly suitable Kappa weight can be applied to all the traits. The 
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variation in data structure needs to be considered when selecting tests for comparison and when 

interpreting results among multiple studies. The quadratic weighted kappa provides a realistic 

measure of agreement for the traits that are ordinally ranked with a logical order. Intuitively, 

as the ordinal scores are quasi-continuous with overlapping boundaries, being within one score 

should not be penalised as harshly as being two or more scores out. Among the most frequently 

cited literature, Hefner (2009), L’Abbé et al. (2011) and Klales and Kenyhercz (2015) did not 

specify whether any weights were assigned to the traits. Thus, unweighted kappa was likely 

employed, in which case the agreement for the ordinal traits may be underestimated. 

Conversely, Maier (2017) and Kamnikar et al. (2018) made use of quadratic-weighted kappa 

for all the traits. While it is suitable for the ordinal ranked traits, a quadratic weight is overly 

permissive for the nominal traits. Essentially, with the nominal scores there is no trait overlap, 

so whether an observer is within one score or not is irrelevant, as disagreement indicates 

misidentification of a particular shape or variant rather than misjudging the size of a skeletal 

feature. Applying a quadratic weight to all traits can result in underestimation of error for the 

nominal traits. Overall, the results indicate that different weights can influence the apparent 

reliability of a method, and practitioners should apply weights and tests that are suitable to the 

data type being analysed for each trait.  

Additional limitations that have been associated with Cohen’s kappa are issues of 

prevalence and bias, often referred to as the paradoxes of the kappa statistic. Prevalence occurs 

in cases where one trait state is much more prevalent than others, making it difficult to detect 

true agreement beyond chance (Byrt et al., 1993; Flight and Julious, 2015). Notably, prevalence 

might be a consequence of sampling. Using nasal overgrowth as an example: the trait was quite 

rare in the overall sample, but overgrowth was observed among less than 3% of black South 

Africans and was not observed at all among coloured South Africans. If a sample selected for 

reliability testing only included a group in which the trait is absent or exceedingly uncommon, 

the agreement score might not accurately reflect an observer’s ability to score the trait correctly 

when present. On the other hand, bias refers to the frequency at which observers select a 

particular category (Byrt et al., 1993; Flight and Julious, 2015), and has to do with how an 

observer might interpret the descriptions and reference drawings.  While prevalence can be 

mitigated with methodical sample selection, bias is difficult to control. Bias may result in 

failure to ascertain a coefficient with Cohen’s kappa, as was noted with the first round of inter-

observer scores prior to the group discussion. The calculation of additional prevalence and bias 

indices have been suggested to detect the paradoxes in a dataset; however, the indices are only 
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applicable to nominal data (Byrt et al., 1993). And while it is easy to calculate the indices for 

binary traits (i.e., scored as present or absent), the calculations become far more complex when 

a trait has more than two states. Alternatively, a prevalence and bias adjusted kappa (PABAK) 

has been proposed (Byrt et al., 1993), but again can only be applied to nominal data (Flight and 

Julious, 2015). The combination of several different data types into one method renders the 

analysis and comparison of traits challenging.  No uniform approach is universally applicable, 

and practitioners need to demonstrate heightened awareness of strategies to circumvent 

potential issues pertaining to repeatability testing, especially when assessing non-metric traits. 

This includes the selection of sufficiently large samples; inclusion of the widest possible array 

of traits; selection of appropriate measures of repeatability that considers the characteristics of 

the data and number of states assigned to each trait; and providing sufficient detail to facilitate 

comparability of results across different studies. 

Despite differences in the quantification of trait repeatability, results from the current study 

were compared to previously published research. The intra-observer agreement is equivalent 

to rates from other published studies (see Appendix VI for comparisons). Overall, three traits 

demonstrated moderate repeatability, which is the lowest rate of agreement recorded for the 

intra-observer analysis; the traits included inferior nasal margin (INA), nasal overgrowth (NO), 

and nasal bone shape (NBS). The inferior nasal margin is one of the traits with the greatest 

number of categories (with states from 1 to 5), where the trait expressions gauge whether the 

floor of the nasal aperture is smooth or sloping as it transitions to the maxilla, or whether the 

aperture is demarcated by a ridge a bone (Plemons and Hefner, 2016; Hefner and Linde, 2018). 

The change of the slope from one score to the next is gradual, and quite difficult to discern 

from photographs (Merchant, 2023). While studies involving the developer of the method 

observed substantial to almost perfect agreement (Hefner, 2009; Kamnikar et al., 2018), limited 

independent studies exist that report intra-observer rates. Both South African studies – the 

current study and that by L’Abbé and colleagues (2011) – demonstrated moderate agreement 

for the inferior nasal margin (INA). The lower rate of agreement compared to Hefner (2009) 

might have arisen due to misinterpretation of the description and images; however, it may also 

be the result of differences in trait expression attributable to population variation (Kamnikar et 

al., 2018). The expression of the inferior nasal margin (INA) in South Africans should be 

further explored given its consistent identification as the most discriminatory variable in the 

classification models; the repeatability of the inferior nasal margin (INA) is of paramount 

significance.  
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Both the nasal overgrowth (NO) and nasal bone shape (NBS) may be less repeatable because 

of subtle trait variations. The nasal overgrowth (NO) assesses projection of the nasal bones past 

the maxilla and is scored as either present or absent. Typically, the reliability of a trait is 

expected to be high if a variable only has two states which are sharply differentiated (McHugh, 

2012). The disagreement in the evaluation of nasal overgrowth (NO) is likely related to the 

specific criteria concerning the extent to which the nasal bones must project beyond the maxilla 

to be scored as present. For the current study, when only a small portion of nasal bone 

projection was observed, the trait was scored as absent. Merchant (2023) raises similar 

concerns regarding the description of nasal overgrowth and how certain variations, such as 

separation of the nasal bones from the maxilla, correspond to the description of true nasal 

overgrowth. Finally, nasal bone shape evaluates the relationship between the degree of 

“pinching” and “bulging” that is exhibited by the nasal bones. In the current sample, the 

comparative drawings did not always align with the specimens; in numerous instances, the 

crania did not seem to match the extent to which the nasal bones “bulge” in the image. This 

could be indicative of variation among global populations. Additionally, the shape of the nasal 

bones was frequently noted to be asymmetrical. While Hefner and Linde (2018) contend that, 

in the case of asymmetry, the largest or most pronounced expression should be employed for 

numerous traits, this guideline is not specified for the nasal bone shape (Merchant, 2023). 

Contrary to the inferior nasal margin (INA), the nasal bone shape (NBS) and nasal overgrowth 

(NO) were not identified as highly discriminatory variables (although both traits do contribute 

information to the classification models). Nevertheless, the observed disagreements in the 

current study provide insights into the methodology for scoring these traits.  

The level of inter-observer agreement is notably lower when compared to the intra-observer 

agreement, with several traits demonstrating poor repeatability. Disparity between inter- and 

intra-observer agreement should be ideally minimal, as notable discrepancies may suggest that 

while the intra-observer demonstrates consistency, it does not necessarily reflect the reliability 

of the method in terms of scoring the traits accurately. However, the trend of much greater 

intra-observer consistency when evaluating the MMS traits is continuously observed 

throughout the literature (Hefner, 2009; L’Abbé et al., 2011), and is likely the result of 

experience and familiarity with the method. The current study conducted a comparison based 

on levels of general experience, which revealed that less experienced individuals exhibited 

fewer traits with higher levels of agreement. This observation is not necessarily reflected in the 

mean kappa values calculated per observer, as even observers with more extensive general 
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experience displayed comparably low repeatability. Collectively, none of the traits consistently 

exhibited poor repeatability across all observers. Instead, each observer presented with 

different traits that achieved the highest and lowest levels of repeatability, respectively. The 

variability among observers suggests that in the absence of additional guidance or shared 

knowledge, each observer resorts to individualised scoring approaches for different traits. This 

assumption is substantiated by potential instances of scoring bias, as is evidenced by the 

numerous cases where it was not possible to calculate a kappa value for certain traits. Thus, 

general experience with skeletal material does not directly translate to competency in using the 

traits.   

Multiple authors have underscored the need for method-specific training to use the MMS 

traits (Klales and Kenyhercz, 2015; Kamnikar et al., 2018). While certainly not equivalent to 

continuous comprehensive training, a discussion session was conducted with all the observers 

to assess whether even a modest degree of familiarity and additional instruction on the scoring 

procedure could improve reliability results. The group discussion appeared to have a positive 

impact, as several traits demonstrated increased repeatability compared to the previous scores. 

Although, this improvement is once again not reflected in the mean kappa values for each 

observer. The discussion culminated in mixed results. Two observers (C and E), demonstrated 

greater repeatability following the discussion, resulting in mean kappa values that progressed 

from fair to moderate. Interestingly, these individuals have mixed levels of general experience, 

suggesting that general experience does not contribute significantly to a more consistent 

assessment of the traits.  In contrast, the other two observers (B and D) demonstrated decreased 

repeatability in comparison to the first round of scores. This result initially seemed unexpected, 

as Observer B is the only other observer with prior experience with the traits, having previously 

published on the subject. However, closer examination revealed that their experience pertained 

to the traits as described in the original publication (Hefner, 2009). Since the initial publication, 

several modifications have been introduced, including the incorporation of additional traits, 

adjustment to the trait scales, and the implementation of the MMS user interface, all of which 

may influence the observer agreement. Furthermore, very limited research has aimed to 

quantify the repeatability of traits over an extended period of time, which may also contribute 

to lower agreement despite experience with the traits (Kamnikar et al., 2018).   

During the second round of scoring, no ‘NaN’ values were encountered (i.e., instances 

where kappa values could not be calculated), indicating that the potential scoring bias may have 

been somewhat mitigated after discussing the traits. Method discussions among practitioners 
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are essential, as it can enhance comprehension of standard procedures, facilitate terminology-

related deliberations, and shed light on the implication of language, translation and personal 

interpretation of terms on quantifying non-metric variation (Wilczak et al., 2017). Furthermore, 

such discussions provide insight into the various approaches taken by practitioners to resolve 

issues related to trait assessment which may lead to error or bias, especially in cases where 

there are no established guidelines to address certain trait variations.  

In the current study, several personal approaches to scoring the traits became apparent. 

Certain observers (e.g., observer A – the principal investigator) placed a significant emphasis 

on tactile examination to assess the size of some traits, such as the anterior nasal spine (ANS), 

nasal aperture width (NAW), and posterior zygomatic tubercle (PZT). The repeatability of the 

above traits improved when the other observers adopted this approach. The use of different 

tools to visually assess certain traits also varied among the observers. In an attempt to improve 

trait repeatability, the most recent guidelines recommend the use of a contour gauge to better 

visualize the nasal bone contour, and a clear ruler is recommended to examine the size of the 

malar tubercle and posterior zygomatic tubercle (Plemons and Hefner, 2016; Hefner and Linde, 

2018; Kamnikar et al., 2018). One observer commented on using the ruler to also assess the 

nasal aperture width and inter-orbital breadth, which essentially converts the trait to a 

measurement, and would be more accurately measured with a caliper. Merchant (2023) 

addresses ambiguity regarding the location and placement of the ruler to assess the posterior 

zygomatic (PZT) and malar tubercles (MT), ultimately highlighting a lack of consensus among 

their cohort of observers. While the exact placement of the ruler did not form part of the 

collective discussion in the current study, this omission is likely attributed to the observers 

using it infrequently. Throughout the training period, Observer A attempted scoring both with 

and without the ruler and observed greater consistency when it was not used. Since Observer 

A was responsible for collecting all the data used throughout the current study, the ruler was 

not used as part of the scoring procedure. Similarly, the contour gauge received limited 

preference to score nasal bone contour (NBC), and it was not used during data collection. In 

the group discussion, several observers noted that scoring the trait with the contour gauge 

consistently yielded the same score (despite the nasal region itself looking different), leading 

to repeatability poorer than chance and introducing bias in the scores. Following additional 

instructions provided by Observer A, subsequent attempts to score nasal bone contour (NBC) 

without the contour gauge demonstrated improved repeatability; however, the kappa value 

remained quite low. The results support findings in the literature calling for training prior to 
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using the traits in research or skeletal analyses (Klales and Kenyhercz, 2015; Kamnikar et al., 

2018).  

Although the importance of training cannot be overstated, Wilczak and colleagues (2017) 

raise concerns regarding the potential implications of “second-hand” and self-training in 

scoring. Typically, developers of new methods offer training at workshops or through 

collaborative projects. However, as methods become more established and widely applied, the 

availability of training opportunities diminishes. As such, practitioners often need to rely on 

published descriptions and photographs, or training provided by independent individuals with 

some experience in the method. Although observers without direct training from developers 

can still produce consistent results (especially for intra-observer agreement), the possibility 

exists that discrepancies may arise compared to the developers or other experts in the field 

(Wilczak et al., 2017). Such discrepancies can lead to variations in trait frequencies between 

studies, and ultimately decreased classification accuracy (Lewis and Garvin, 2016; Klales et 

al., 2020). Furthermore, discrepancies can become standard practice as it is passed down from 

one generation to the next through educational pedagogy (Klales, 2021). Additional research 

needs to evaluate the precision and reliability of scoring the MMS traits, especially for the sake 

of data sharing and the collation of a global database. Ultimately, the observer agreement 

achieved in this research is in line with previous studies evaluating the MMS traits, which have 

considered the repeatability satisfactory to justify its use in practice. Nevertheless, it is 

important to acknowledge that there is no established threshold for what constitutes a kappa 

value that is acceptable. Further deliberation is necessary to establish criteria for adequate 

levels of validity and reliability by which a method can be assessed for its applicability in 

forensic casework (Klales, 2021). In order for the method to be a viable option to conduct 

ancestry estimation in South Africa, the forensic anthropology community responsible for 

assessing skeletal remains should be subjected to rigorous training in scoring the MMS traits 

prior to the method being used in analyses.  

The collection of measurements is considered much more objective and repeatable than non-

metric methods as it makes use of standard landmarks with clear definitions and calibrated 

tools. A multitude of studies have examined the repeatability of measurements on the cranium, 

postcranium, and across various digital modalities (Adams and Byrd, 2002; Franklin et al., 

2013; Stull et al., 2014b; Smith and Boaks, 2017; Langley et al., 2018; Liebenberg and Krüger, 

2020). While measurements are more objective, they are not completely free from error 

(Hartley et al., 2022. The most prevalent source of measurement error stems from ambiguity 
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surrounding the precise identification of landmark locations. Type I landmarks, positioned at 

the intersection of structures such as sutures, typically yield the least measurement error (Smith 

and Boaks, 2017). The prevalence of type I landmarks on the cranium may contribute to the 

perception of the cranium as having a higher level of repeatability compared to the postcranial 

skeleton. In the present study, measurement errors were found to be consistently low, with all 

measurements falling within the conventional margin of error of ±2mm, as accepted in the field 

of anthropology (Stull et al., 2014b; Smith and Boaks, 2017). However, certain measurements, 

such as inter-orbital breadth and mastoid height, exhibited greater measurement variation. 

Additionally, greater error was also recorded for the maxilla-alveolar length and breadth, as 

well as the length of the foramen magnum. The inter-orbital breadth (measured from dacryon 

to dacryon) has previously been identified as particularly susceptible to error in multiple studies 

(Franklin et al., 2013; Stull et al., 2014b; Smith and Boaks, 2017). Even though dacryon is 

classed as a type I landmark, Smith and Boaks (2017) reported poor agreement on the exact 

location of this landmark. In the case of mastoid height, the measurement error may arise from 

personal idiosyncrasies during data collection, such as variations in caliper orientation (Smith 

and Boaks, 2017). Similar to the MMS traits, no universally accepted threshold exists as to 

what constitutes an acceptable TEM value for measurements. Nevertheless, the measurements 

in this study achieved agreement levels consistent with those found in other studies and were 

thus deemed satisfactory. 

7.2 Population variation and classification 

Skeletal variation attributable to ancestry has been shown to be highly variable, not only among 

different populations across the globe, but also within populations and population groups 

(Ousley et al., 2009). The variation observed among the three South African population groups 

has been discussed in terms of their population histories, which were significantly influenced 

by migration, colonisation, and institutionalised racism (Stull et al., 2016; Krüger et al., 2018). 

The current study revealed substantial group overlap in the crania of modern black, white and 

coloured South Africans, which aligns with findings in previous studies (L’Abbé et al., 2011; 

L’Abbé et al., 2013; Stull et al., 2014a; Liebenberg et al., 2015b). Both metric and MMS data 

reveal consistent patterns of misclassification, where coloured South Africans misclassify 

nearly equal with both black and white South Africans. In contrast, black and white South 

Africans rarely misclassify as one another. These findings align with the assertion by Hefner 

and colleagues (2014) that craniometric and MMS data yield similar insights into the 
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relationships between and among populations. Coloured South Africans are typically reported 

to exhibit the lowest classification accuracy when compared to black and white South Africans, 

particularly in cranial analyses. This increased misclassification has been linked to their 

complex genetic composition (Adhikari, 2005), and the intermediacy in terms of cranial 

morphology relative to the other groups. Coloured South Africans have been shown to share 

similarities with white South Africans in cranial size but display greater similarities with black 

South Africans in cranial shape (Stull et al., 2016; Krüger et al., 2018). Despite the substantial 

overlap, various traits and measurements demonstrate significant differences across all three 

groups, implying the potential for group differentiation when employed in multivariate 

analyses. This was subsequently validated with the mixed classification model, which showed 

greater accuracy when classifying coloured South Africans compared to either the MMS or 

metric models on their own. Thus, the combination of size and shape variables in the mixed 

model proves to be more effective in distinguishing coloured South Africans from the other 

population groups, resulting in reduced misclassification and improved predictive 

performance. Future research needs to further explore the craniofacial variation and overlap of 

the South African coloured group; given their complexity, alternative subdivisions within the 

group may also be considered to better capture the great amount of variation that is observed 

among coloured individuals. 

The midfacial region of the cranium is frequently cited as the most discriminative area for 

the estimation of ancestry (Brues, 1990; McDowell et al., 2012, 2015; Liebenberg et al., 

2015b). The craniofacial complex is a modulated structure in which adjacent bones interact 

under the influence of developmental, genetic, and functional factors to give to a highly 

integrated phenotype (Bastir et al., 2006; Martínez-Abadías et al., 2012). In essence, changes 

in one skeletal element are mirrored by corresponding changes in adjacent areas (Bastir, 2008). 

In the context of the facial skeleton, the nasal bones, maxillae, and zygomas share a close 

relationship. Their proximity is expected to result in stronger correlations among the 

morphological features and dimensions, thereby leading to covariance within and among 

populations (Martínez-Abadías et al., 2012; Mitteroecker et al., 2012). Many variables 

examined in the study are concentrated in the facial region, which demonstrated particular 

patterns of variation. For example, crania with a larger nasal width also exhibited a wider inter-

orbital breadth, and a bowed nasal aperture shape. Similarly, crania with a teardrop-shaped 

nasal aperture were likely to exhibit a sharper inferior nasal margin. The results also identified 

inverse relationships; crania with a bowed nasal aperture are less likely to have a large nasal 
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spine or sharp nasal margin, while crania with wide inter-orbital breadths and/or bowed nasal 

apertures are less likely to present with nasal overgrowth. Despite the apparent covariation, the 

MMS traits did not display strong correlations with one another or with the cranial 

measurements. The lack of strong correlations is somewhat unexpected, considering the 

proximity of the traits and the fact that certain variables quantify the same feature, such as the 

score and measurement for interorbital breadth (IOB and DKB), as well as the score and 

measurement for nasal width/breadth (NAW and NLB). The moderate strength of the 

correlations may indicate a limited relationship among the features; however, measurements 

quantifying size are recognised to be more proficient in capturing such relationships than non-

metric traits (Mitteroecker et al., 2012). When comparing the measurements with one another, 

a higher number of variables displayed stronger correlations. More appropriate analyses, such 

as maximum likelihood methods, should be used to provide more comprehensive insights on 

the variable relationships. While the covariance and heritability of cranial measurements has 

been extensively examined, the heritability of non-metric traits, particularly within the context 

of the MMS method, remains incompletely understood to date (Corrucini, 1974; Relethford, 

1994; Carson, 2006; Martínez-Abadías et al., 2009). Ross and Pilloud (2021) contend that a 

more biological perspective should be applied to the evaluation of MMS traits, wherein 

heritability and evolutionary significance require further exploration.  

The findings of the current study confirm the premise that the midface, and specifically the 

nasal region, plays a pivotal role in ancestry estimation. The variables not only demonstrated 

significant differences, with many showing marked differences among all three groups 

assessed, but also proved to be beneficial within the classification models. For group 

classification, both univariate and multivariate analyses were conducted. While researchers 

widely acknowledged that multivariate analyses outperform single variables (Ousley and Jantz, 

2012), the performance of individual variables is essential to understand their ability to estimate 

ancestry when limited skeletal material is available, like with fragmentary crania. The majority 

of the variables displayed relatively moderate accuracies for the univariate analyses, with the 

univariate MMS models exhibiting slightly higher accuracy compared to univariate 

measurements. The nasal bone contour (NBC) and inferior nasal margin (INA) demonstrated 

high accuracies (69% and 66%, respectively), which is notable considering the models 

represented single traits distinguishing among three groups. In comparison, the highest 

accuracies observed with measurements were noted for nasal breadth (NLB) and interorbital 

breadth (DKB) (54% and 52%, respectively). This suggests that the MMS traits are more 
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effective at capturing variation among groups, whereas the cranial measurements exhibit 

greater similarity and overlap among the groups, which presents difficulty in defining sufficient 

boundaries for group classification.  

The multivariate analyses further substantiate this assumption, as the MMS model 

outperformed the measurement model. The measurement model achieved accuracies 

comparable to previously published error rates for the classification of the South African 

groups using standard craniometrics with discriminant analysis (L’Abbé et al., 2013). While 

the predictive performance is better than chance, the measurements allow for a notable margin 

of error. This is likely because much of the variation associated with the cranium is not 

quantified effectively when applying linear distances to measure a round object. The mixed 

model achieved the greatest results (81% to 84% correct classification), which align with 

established postcraniometric standards (Liebenberg et al., 2015a) and morphometric data 

employing cranial features for the same South African population groups (Stull et al., 2014a). 

Variable importance analysis indicated that the mixed model heavily relied on variables that 

assess facial shape (such as inferior nasal margin - INA, nasal bone contour - NBC, and nasal 

aperture shape - NAS) in conjunction with measurements that quantify both facial size (nasal 

breadth – NLB, and interorbital breadth - DKB) and cranial vault size (biasterionic breadth – 

ASB, and parietal chord - PAC). Thus, the two datasets capture the variation of the cranium 

differently and a comprehensive assessment of both size and shape is required to achieve the 

best results for cranial ancestry estimation (Stull et al., 2014a). Many authors have documented 

the superior results attainable through mixed models (e.g., Hefner et al., 2014; Maier, 2019; 

Klales, 2020). Maier (2019) highlights the benefit of gathering more information through 

simultaneous analysis of multiple datasets, emphasising that mixed models can offer improved 

assessment of variation in complex groups, such as Hispanic individuals in the United States 

(and by extension, the highly heterogeneous coloured South Africans in the current study). An 

additional advantage of mixed models is that skeletal variation from multiple methods can be 

integrated into a single ancestry estimate. The interpretation and collation of results from 

multiple methods has been shown to vary substantially among forensic practitioners, often 

without any empirical basis (Garvin and Passalacqua, 2012; Klales, 2021). This can ultimately 

lead to disparate results and introduce bias in forensic reports (Hartley et al., 2022). Currently, 

practitioners offer no consensus on how to combine results from different methods into final 

estimates for forensic reports (Klales, 2021).  
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This study supports previous research in stating the great potential of RFM as a classification 

method (Hefner et al., 2014; Navega et al., 2015; Maier, 2019; Klales, 2020). As RFM is non-

parametric, the method does not rely on statistical assumptions like normality, which are rarely 

met in real-world data.  The method is capable of combining different types of data and includes 

internal validation functionality which eliminates the need for additional independent samples 

to test the model validity. Finally, RFM is not prone to overfitting and the curse of 

dimensionality, which is a well-known issue encountered with discriminant analysis (Ousley 

and Jantz, 2012). The inclusion of a greater number of measurements is recognised to allow 

more differences to be detected among groups. However, a decrease in classification accuracy 

will often be noted as more variables are added (Ousley, 2016). Essentially, redundant and 

highly correlated variables introduce statistical “noise”, which adversely affects the predictive 

performance of a model. The solution to this problem is to reduce the number of variables so 

that only the most discriminatory variables are retained. For example, with linear discriminant 

analysis, stepwise selection is employed as a variable reduction technique (Ousley and Jantz, 

2012; Ousley, 2016). RFMs are capable of handling large numbers of variables, and it has been 

recommended that as many variables as possible be included and the model be allowed to run 

with them (Hefner and Ousley, 2014; Navega et al., 2015). Navega and colleagues (2015) 

specifically caution against removing variables, even if they exhibit low measures of variable 

importance. Variable importance reflects the contribution of a specific trait or measurement to 

the overall ensemble of trees used in the model. In the current study, the ensemble consisted of 

2500 trees. However, each individual tree employs a random subset of variables at each split. 

Consequently, the overall contribution to the model may appear small, but the variable 

importance does not necessarily reflect how discriminative a variable can be for certain 

individual trees within the ensemble (Navega et al., 2015). Indeed, the current study 

demonstrated that the removal of even a single variable led to decreased accuracy. A notable 

strength of RFM is its efficiency in capturing interactions between variables as the model tests 

different combinations at each split, which makes it a highly effective classification tool with 

strong generalization capabilities (Navega et al., 2015).  

7.3 Practical application and future recommendations  

This study confirmed the potential of MMS traits in exploring ancestry and the positive 

results that the method can yield, particularly when used alongside craniometrics. However, 

the findings also identified several areas that warrant further exploration. These include 
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additional covarying factors that may influence cranial morphology and how the traits are 

expressed, such as sexual dimorphism, age, edentulism, and asymmetry.   

Previous research has examined metric sex differences in the crania of South Africans (e.g., 

Steyn and İşcan, 1998; Franklin et al., 2005; Dayal et al., 2008; Small et al., 2018). The results 

reveal significant differences between males and females, resulting in high classification 

accuracies. However, these studies evaluated population groups in isolation (i.e., only looking 

at either black or white South Africans) without simultaneously comparing multiple different 

population groups and sexes to comprehensively assess the interaction of sex and ancestry on 

cranial morphology. In a morphoscopic study, Krüger et al. (2015) identified significant 

differences between black and white South Africans using the Walker (2008) traits, and thus 

supported the need for population-specific standards to estimate sex. Furthermore, correlations 

between the Walker (2008) traits and cranial measurements revealed strong relationships, 

suggesting sex plays a role in both the size and shape of the cranium (Krüger et al., 2015). 

L’Abbé et al. (2013) simultaneously considered sex and ancestry when attempting to estimate 

ancestry with cranial measurements and observed that the cranium frequently misclassified 

according to sex. Thus, the close variation between sex and ancestry can affect the positive 

predictive performance of the cranium in correctly assigning sex and ancestry. Concerning the 

MMS traits, Hefner (2009) reported no significant sex differences, suggesting that the sexes be 

pooled for further analyses. However, sex has previously been shown to have a significant 

impact on inter-orbital breadth (IOB) in a South African population (L’Abbé et al., 2011). 

Similarly, the current study observed significant sex differences for several traits, including the 

inferior nasal margin (INA), inter-orbital breadth (IOB), malar tubercle (MT), nasal aperture 

width (NAW), posterior zygomatic tubercle (PZT), and supra-nasal suture (SPS). The South 

African population has demonstrated varying levels of sexual dimorphism compared to North 

Americans (Caple and Stephan, 2017), which could account for the significant sex differences 

observed with the MMS traits. Conducting sex-specific analyses can mitigate the impact of 

sexual dimorphism, allowing classification models to focus solely on assessing differences 

related to ancestry. Prior knowledge of sex can enhance classification accuracy by reducing 

group overlap, thereby facilitating more effective group separation (Liebenberg et al., 2019). 

Further studies are warranted to explore whether sex-specific analyses would yield improved 

results for the MMS traits.   

Similarly, the effects of age on craniofacial morphology need to be considered. Ontogeny 

and cranial growth in subadults have been extensively documented, with cranial stasis 
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(cessation of growth) reported around 17 years of age (Ross and Williams, 2010). The changes 

in the craniofacial complex throughout the adult lifespan remain less thoroughly understood. 

Existing literature suggests that cranial remodelling persists throughout adulthood, revealing 

differences in both cranial size and shape (Akgül and Toygar, 2002; Albert et al., 2007; 

Patterson et al., 2007). Ross and Williams (2010) describe a general expansion in facial 

breadth, with certain craniometric landmarks around the bony orbit – such as frontomalare 

temporale, dacryon and ectoconchion – shifting laterally as age advances. This lateral 

movement results in enlarged orbits (Williams and Slice, 2010). Additional observations 

indicate an increase in cranial circumference, elongation and widening of the face, and 

lengthening of the mandible with an increased mandibular angle (Albert et al., 2007; Ross and 

Williams, 2010; Williams and Slice, 2010). Apart from facial changes, an enlargement of the 

cranial base has been noted, involving a downward shift of the external occipital protuberance, 

lambda, and the mastoid processes, while asterion has been noted to shift posteriorly (Ross and 

Williams, 2010; Small et al., 2016). Notably, these are all prominent landmarks used in 

standard craniometric methods. The most conspicuous facial changes are observed in the dento-

alveolar region, primarily influenced by antemortem tooth loss. Advancing age contributes to 

bone porosity due to decreased osteoblastic activity, which increases the risk of tooth loss 

(Small et al., 2016). The overall remodelling of alveolar bone due to edentulism produces a 

concave facial appearance along with an increased facial height, regression of the dento-

alveolar region, and retrusion of the maxilla (Albert et al., 2007; Nikita, 2014). Edentulism may 

also lead to asymmetry in the cranium, particularly in instances of unilateral tooth loss and 

asymmetrical mastication (Dinkele, 2018).  

The majority of previous studies employed morphometric techniques to investigate age-

related changes, but few authors have assessed the implications of age and edentulism on 

morphoscopic variation. Regarding sexual dimorphism, older females have been reported to 

exhibit more robust cranial features (Walker, 1995). Although age shows a significant 

correlation with cranial morphoscopic traits, further research indicated that age did not 

significantly affect sex estimation using these traits (Klales, 2021). A limited selection of the 

MMS traits for ancestry have been explored for age variation. The anterior nasal spine has been 

found to exhibit a significant relationship with age, where older individuals tend to display 

longer, more pronounced spines (L’Abbé et al., 2011; Dinkele, 2018). However, the 

relationship between the remainder of the traits and age remains speculative (Caple and 

Stephan, 2017), and more importantly, whether or not this association with age will impact the 
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predictive performance of the traits in ancestry estimation is unknown. Age and edentulism 

posed concerns in the current study, given the disparity in the mean age of white South Africans 

compared to the other groups. Despite the mean age difference, both the white and coloured 

South African groups exhibited substantial amounts of edentulism. Indeed, the presence of 

edentulism not only impacts cranial features, as discussed earlier, but it also restricts the sample 

size by preventing the collection of variables related to the palate, owing to significant alveolar 

resorption. Additional classification models should be created to assess if age-specific models 

would yield greater classification accuracies. Furthermore, the number and patterns of missing 

teeth should be assessed in the current sample to explore if there is a relationship between age, 

edentulism and the cranial variables (especially the MMS traits), given the paucity of 

information on this subject.  

Finally, additional strategies need to be explored to improve the observer repeatability of 

the traits. Method-specific training remains a top priority for mastering the MMS method 

(Klales and Kenyhercz, 2015). However, the specific components that should be included in 

the training process has yet to be clearly defined. Direct training from the method developer 

would be the optimal way forward; however, this is simply not feasible. Even if continuous 

training opportunities were offered, international conferences and workshops are expensive 

and not all practitioners and students may have the financial resources to attend. The 

availability of online resources can be useful in promoting consistency in scoring traits globally 

and in addressing discrepancies in a standardised manner. In a comprehensive study examining 

the qualitative assessment of pathological lesions on bone, Wilczak and colleagues (2017) 

recommended several steps to potentially improve confidence and validity in scoring methods. 

These steps included on-going discussions on terminology and method refinement; making 

exemplar cases and case studies of trait variations available; and incorporating 3D models into 

the training and scoring procedure (Wilczak et al., 2017). While Hefner and Linde (2018) have 

published a photographic atlas showcasing the different MMS traits, challenges related to 

scoring the traits from 2D photographs have been discussed (Merchcant, 2023). Other authors 

have also highlighted issues with scoring from 2D photographs, such as poor lighting, sub-

optimal angles in photographs, and the skeletal feature not being entirely in the plane of focus 

(Stephan and Caple, 2017; Wilczak et al., 2017; Craik and Collings, 2022; Merchant, 2023).  

This makes scoring particularly challenging for individuals that are relying on photographs for 

training purposes.  
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The use of 3D models is a potential solution for the challenges associated with 2D 

photographs. With technological advancements, forensic anthropologists are increasingly 

integrating 3D virtual reconstructions of bones into their research, educational practices, and 

forensic evidence reconstruction for legal testimony (Carew et al., 2019; Craik and Collings, 

2022). In virtual 3D models, users can manipulate the image by rotating the bone or zooming 

in on specific features. The viewing software also allows for the application of different 

settings, such as varied lighting or textures, to enhance specific traits or features. Incorporating 

3D models into teaching has proven effective in improving comprehension and consistency 

among students in identifying skeletal features (Craik and Collings, 2022). While 3D models 

offer several advantages, they are not considered a complete replacement for physical bones, 

particularly for traits that require palpation. Kuzminsky et al. (2020) noted that although virtual 

models were suitable for experienced individuals in analysing sex from the cranium, they prove 

less reliable for individuals with less experience. Thus, a combined approach utilising real 

bones, 3D printed bones or casts alongside virtual models may yield optimal training. The 

impact of using 3D models (both virtual and physical) as part of MMS trait training should be 

further explored. 
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CHAPTER 8: CONCLUSION 

The current study is the first to conduct a comprehensive analysis of MMS variation and 

predictive performance in a modern South African population. Numerous exploratory analyses 

were conducted to show that despite substantial heterogeneity and overlap, sufficient cranial 

differences exist among black, white and coloured South Africans to be able to estimate 

ancestry using the MMS traits. Ultimately, the classification models demonstrated that MMS 

traits outperform craniometric techniques currently employed for ancestry estimation. This 

confirms that the variation in the craniofacial complex results from both size and shape 

differences, an aspect more effectively quantified with MMS traits compared to cranial 

measurements, which predominantly assess size. The findings validate the use of MMS traits 

as a tool to estimate ancestry in South Africa; thus, the method can be incorporated into South 

African forensic casework. The South African-specific database created in this study will be 

submitted for inclusion in the global MaMD databank. Once integrated, the MMS analytical 

tool associated with the MaMD can be employed to assess the ancestry of unknown South 

Africans.  

Moreover, this study demonstrated that a mixed model, incorporating both MMS traits and 

measurements, achieved high accuracies surpassing those of each method when used on its 

own. This further underscores the effectiveness of combining numerous size and shape 

variables, especially in assessing complex, heterogeneous groups characterised by substantial 

within-group variation and overlap. Due to their size overlap with white South Africans, and 

shape overlap with black South Africans, coloured South Africans are often prone to 

misclassification, resulting in significantly lower classification accuracies. However, the mixed 

model successfully classified coloured South Africans with comparable accuracy to the other 

groups, a challenge that limited other methods and studies. While the combination of variables 

contributed significantly to the improved group separation, the choice of classification statistics 

also played a crucial role.  

Random forest modelling (RFM) proved to be a valuable tool to analyse the mixed model, 

offering several advantages. It can be applied to any data type including mixed data with 

combinations of continuous, nominal, and ordinal variables. The models are robust against 

statistical assumptions (such as normality) and overfitting and can handle a large number of 

variables. Despite being computationally robust, RFM is overall user-friendly and allows the 
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inclusion of large amounts of variables without concerns about additional or manual variable 

reduction. The successful performance of the mixed model, paired with the advantages of 

RFM, indicates a need for a computer software program that will allow the case-by-case 

analysis of South African crania using RFM with both MMS traits and measurements, which 

is not possible with the MMS analytical tool.  

While promising results were noted, some areas for improvement were also identified. Other 

factors that influence the morphology of the craniofacial complex, including sex, age and 

edentulism, should be explored to gain a better understanding of the sources of variation in the 

cranium and the implications on estimates of the biological profile. Finally, observer 

repeatability remains a concern for the method to be applied successfully. Method-specific 

training should be a requirement before the method is used. Additional tools such as 3D models 

should be assessed in an attempt to enhance the trait repeatability. Ultimately, method 

refinement and validation should be an on-going, globally collaborative effort.  
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APPENDIX 

Appendix I – Macromorphoscopic trait definitions and states 

Trait name State Definition 

Anterior nasal 

spine 

(ANS) 

Taken in the area of the nasal spine, best viewed from anterior aspect. 

1 Minimal to no projection of spine beyond inferior nasal aperture. 

2 Moderate projection of spine beyond inferior nasal aperture. 

3 Pronounced projection of spine beyond inferior nasal aperture. 

 

 

 

Inferior nasal 

aperture 

(INA) 

Refers to shape of border which defines transition from nasal floor to 

vertical potion of the maxilla. 

1 Inferior sloping begins within nasal cavity and terminates on 

vertical surface of maxilla; produces smooth transition. 

2 Sloping begins more anteriorly, with more angulation at the exit 

of the nasal opening. 

3 Transition from nasal floor to vertical maxilla is not sloping, nor 

is there an intervening sill (i.e. forms a right angle). 

4 Superior incline of the anterior nasal floor creates a weak (but 

present) vertical ridge traversing the border (partial sill). 

5 Pronounced ridge obstructing the nasal floor-to-maxilla transition 

(sill). 

Inter-orbital 

breadth 

(IOB) 

Assessment made relative to facial skeleton. 

1 Narrow. 

2 Medium. 

3 Broad. 

 

Malar 

tubercle 

(MT) 

Caudally protruding tubercle on inferior margin of maxilla/zygoma in 

the region of the zygomaticomaxillary suture. Score with a transparent 

ruler. 

0 No projection. 

1 Trace tubercle about 2mm or less below ruler’s edge. 

2 Medium protrusion about 2mm - 4mm below ruler’s edge. 

3 Pronounced tubercle about 4mm or more below ruler’s edge. 

Nasal 

aperture 

shape 

(NAS) 

Assessed by observing lateral contours of nasal aperture and the 

position of the greatest lateral projection of the margin. 

1 Teardrop; greatest lateral projection intermediate to 2 and 3. 

2 Bell-shaped; greatest projection at inferior margin. 

3 Bowed; greatest projection at midline. 
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Nasal 

aperture  

width 

(NAW) 

Assessment made relative to facial skeleton. 

1 Narrow. 

2 Medium. 

3 Broad. 

 

Nasal bone 

contour 

(NBC) 

Contour of nasal bones and frontal process of maxilla taken 1cm below 

nasion. Scored with a contour gauge. 

0 Low and rounded contour (circular shape, lacks steep walls). 

1 Oval contour (elongated with high and rounded lateral walls). 

2 Broad plateau (steep walls with broad flat superior surface). 

3 Narrow plateau (steep walls with narrow flat superior surface). 

4 Triangular (steep walls lacking a flat superior surface). 

 

Nasal bone 

shape 

(NBS) 

Assess lateral contours of nasal bones rather than the frontonasal 

suture, nasal suture or symmetry of the nasal bones. 

1 No nasal pinch (bones may be wide or narrow). 

2 Superior pinch with minimal lateral bulging. 

3 Superior pinch with pronounced lateral bulging inferiorly. 

4 Triangular. 

Nasal 

overgrowth 

(NO) 

Inferior projection of lateral borders of the nasal bones beyond the 

maxillae. Does not include anterior bulging of nasal bones. 

0 No overgrowth. 

1 Any projection at nasale inferius present. 

 

Nasofrontal 

suture 

(NFS) 

Suture separating nasal bones from the frontal bone. Ignore symmetry 

of the nasal bones. 

1 Round and lacks angles. 

2 Square (approximate right angles at nasale superius). 

3 Triangular. 

4 Irregular (lacks any definite shape). 

 

Orbital shape 

(OS) 

Defined by the shape of the orbital borders, best scored from anterior 

view. 

1 Rectangular (horizontal margins longer than vertical margins). 

2 Circular (margins equidistant from centre on all sides). 

3 Rhombic (medial border shorter than the lateral border; “aviator 

sunglasses”). 

Found along sagittal suture, observed in lateral profile. 

0 No depression. 
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Post-

bregmatic 

depression 

(PBD) 

1 Marked depression. 

Posterior  

zygomatic 

tubercle 

(PZT) 

Marginal process; posterior projection of the zygoma at midorbit. 

Score with a transparent ruler. 

0 No projection. 

1 Weak projection (less than 4mm). 

2 Moderate projection (4 – 6 mm). 

3 Marked projection (more than 6mm). 

 

Supranasal 

suture 

(SPS) 

Persistent, complex suture represents fusion of the nasal portion of the 

frontal suture; it is not a persistent metopic suture. 

0 Completely obliterated. 

1 Open (unfused). 

2 Closed, but visible. 

 

Transverse 

palatine 

suture 

(TPS) 

View entire suture (i.e. not unilateral), concentrating on the medial 

section. 

1 Courses perpendicular to median palatine suture with no 

anterior/posterior deviations. 

2 Courses perpendicular to median palatine suture with an anterior 

bulge/deviation. 

3 Deviates anteriorly or posteriorly in the region of the median 

palatine suture (similar to EKG reading). 

4 Courses perpendicular to median palatine suture with a posterior 

bulge/deviation. 

 

 

Palate shape 

(PS) 

Contour of the dental arcade, viewed from inferior surface. 

1 Elliptical (smooth round curvature with a constriction at the area 

of the third molars) 

2 Parabolic A (smooth round curvature with flaring at the area of 

the third molars) 

3 Parabolic B (similar to 2, but palate is longer than it is wide) 

4 Hyperbolic (slightly flattened, parallel configuration; square) 

Zygomatico-

maxillary 

suture 

(ZS) 

Based primarily on location of greatest lateral projection and the 

number of angles present.  

0 No angles, greatest projection inferiorly at the malar tubercle. 

1 One angle, greatest projection near midline. 

2 Two or more angles (s-shaped), greatest projection is variable. 
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Appendix II – Measurement definitions 

Maximum cranial length (GOL) – The straight, maximum distance between glabella and 

opisthocranion (spreading caliper). 

Maximum cranial breadth (XCB) – The maximum width of the skull from euryon to euryon, 

taken perpendicular to the midsagittal plane (spreading caliper). 

Bizygomatic breadth (ZYB) – The maximum direct distance between the most lateral points 

on the zygomatic arches, from zygion to zygion (spreading caliper). 

Basion-bregma height (BBH) – The direct distance in the midplane between basion and 

bregma. Mark basion with a pencil for greater repeatability (spreading caliper). 

Basion-nasion length (BNL) – The direct distance in the midplane between basion and nasion. 

Mark basion with a pencil for greater repeatability (spreading caliper). 

Basion-prosthion length (BPL) – The direct distance in the midplane between basion and 

prosthion. Mark basion with a pencil for greater repeatability. Do not take if specimen is 

edentulous (spreading caliper).  

Maximum alveolar length (MAL) – The direct distance in the midplane between prosthion 

and alveolon. Do not take if specimen is edentulous (sliding caliper). 

Maximum alveolar breadth (MAB) – The maximum breadth on the lateral border of the 

maxilla at the location of the second molars.  Do not take if specimen is edentulous (sliding 

caliper). 

Biasterionic breadth (ASB) – The direct distance between the left and right asterion (sliding 

caliper). 

Upper facial height (NPH) – The direct distance in the midplane between nasion and 

prosthion. Do not take if specimen is edentulous (sliding caliper). 

Minimum frontal breadth (WFB) – The minimum distance between the left and right 

frontotemporale (sliding caliper). 
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Upper facial breadth (UFBR) – The direct distance between the most lateral points on the 

frontomalar suture (sliding caliper). 

Nasal height (NLH) – The average height from nasion to the lowest point on the border of the 

nasal aperture on either side (sliding caliper). 

Nasal breadth (NLB) – The maximum breadth of the nasal aperture taken at the most lateral 

points on the margin (sliding caliper). 

Orbital breadth (OBB) – The laterally sloping distance from dacryon to ectoconchion. Mark 

ectoconchion with a pencil for greater repeatability (sliding caliper). 

Orbital height (OBH) – The distance between the superior and inferior margins of the orbit 

perpendicular to the orbital breadth and bisecting the orbit into equal halves (sliding caliper). 

Bi-orbital breadth (EKB) – The direct distance between the left and right ectoconchion. Mark 

ectoconchion with a pencil for greater repeatability (sliding caliper). 

Inter-orbital breadth (DKB) – The direct distance between the left and right dacryon (sliding 

caliper). 

Frontal chord (FRC) – The direct distance between nasion and bregma (sliding caliper). 

Parietal chord (PAC) – The direct distance between bregma and lambda (sliding caliper). 

Occipital chord (OCC) – The direct distance between lambda and opisthion (sliding caliper). 

Foramen magnum length (FOL) – The direct distance between basion and opisthion. Mark 

basion with a pencil for greater repeatability (sliding caliper). 

Foramen magnum breadth (FOB) – The distance between the lateral margins of the foramen 

magnum at the point of greatest curvature (sliding caliper). 

Mastoid height (MDH) – The direct distance between porion and mastoidale (sliding caliper). 

Bi-auricular breadth (AUB) – The minimum distance across the roots of the zygomatic 

processes, from auriculare to auriculare (spreading caliper). 
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Appendix III – Shapiro Wilk test for normality of metric data 

Variable p-value  

GOL 0.48 

XCB 0.05 

ZYB <0.01 

BBH 0.04 

BNL 0.01 

BPL 0.11 

MAL 0.15 

MAB 0.05 

ASB 0.01 

NPH 0.05 

WFB <0.01 

UFBR 0.01 

NLH <0.01 

NLB <0.01 

OBB <0.01 

OBH <0.01 

EKB <0.01 

DKB <0.01 

FRC 0.01 

PAC 0.05 

OCC 0.01 

FOL <0.01 

FOB <0.01 

MDH <0.01 

AUB 0.15 

* Bold indicates deviation 

from normal distribution 

(p<0.05) 
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Appendix IV – Levene’s test for homoscedasticity of variance for metric data 

Variable p-value  

GOL 0.16 

XCB 0.56 

ZYB 0.40 

BBH 0.43 

BNL 0.91 

BPL 0.21 

MAL 0.35 

MAB 0.68 

ASB 0.82 

NPH 0.04 

WFB 0.04 

UFBR 0.55 

NLH 0.48 

NLB 0.39 

OBB 0.95 

OBH <0.01 

EKB 0.43 

DKB 0.84 

FRC 0.76 

PAC 0.86 

OCC 0.14 

FOL 0.69 

FOB 0.51 

MDH 0.21 

AUB 0.04 

* Bold indicates unequal 

variance-covariance 

matrices (p<0.05) 
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Appendix V – Tukey’s HSD for metric variables 
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Appendix VI - Comparison of published observer error rates for MMS traits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intra-observer  Inter-observer 

 Current 

study 

Hefner 

(2009) 

L’Abbé  

et al. 

(2011) 

Maier 

(2017) 

Kamnikar et 

al.  

(2018) 

Current 

study 

 

Hefner 

(2009) 

L’Abbé 

et al. 

(2011) 

Klales and 

Kenyhercz 

(2014) * 

Klales and 

Kenyhercz 

(2014) ** 

ANS 0.821 0.422 0.81 0.759 0.49 0.685 0.506 0.55 0.165 -0.250 

INA 0.468 0.964 0.58 - 0.63 0.357 0.376 0.65 0.284 -0.522 

IOB 0.833 0.857 0.53 0.666 0.64 0.689 0.325 0.44 0.412 0.242 

MT 0.717 0.929 0.53 0.658 0.10 0.551 0.470 0.44 0.382 -0.538 

NAS 0.615 - - - - 0.356 - - 0.324 0.412 

NAW 0.906 0.929 0.68 0.702 0.64 0.752 0.732 0.56 0.167 0.167 

NBC 0.643 0.810 0.74 0.624 0.69 0.159 0.231 0.54 0.141 0.032 

NBS 0.429 - - - - 0.297 - - 0.198 0.155 

NO 0.412 1.00 0.64 0.922 0.58 0.695 1.00 0.73 0.374 0.500 

NFS 0.833 - - - - 0.506 - - 0.281 0.032 

OS 0.804 - - - - 0.464 - - 0.453 0.375 

PBD 0.737 0.820 - 0.768 0.62 0.255 0.232 - 0.411 -0.250 

PZT 0.688 - - - <0.01 0.635 - - 0.251 0.365 

SPS 0.808 0.468 - 0.634 - -0.040 0.650 - 0.586 0.412 

TPS 1.000 1.00 - 0.714 - 0.281 0.700 0.38 0.485 0.767 

PS 0.714 - - 0.610 - 0.437 - - - - 

ZS 0.737 0.857 0.39 0.600 0.06 0.374 0.541 0.11 0.166 0.357 

* experienced observer 

**inexperienced observer 
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