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A B S T R A C T   

Eberhardt (1966), Connors and Wright (1989), Piñeiro et al. (2001), Das and Bhattacharyya (2003) and Belda 
(2009) all proposed successful mixture models for correlating the surface tension data for binary liquid mixtures. 
Rational extensions of these semi-theoretical and empirical models are derived in order to cater for multicom-
ponent mixtures. It is shown that a canonical Padé approximant emanates from the Piñeiro et al. (2001) and Das 
et al. (2003) proposals: 

σ =
∑

i
βiixiσi

∑

j
κijxj/

∑

i

∑

j
βijxixj   

Where the σi’s are the surface tensions of the pure components as a function of temperature. The βij and κij are 
adjustable model constants (with κii = 1) and they carry some physical meaning. The other models are special 
cases that are obtained by the application of different combining rules. For example, when the Extended 
Langmuir model developed by Piñeiro et al. (2001) holds, one obtains βij =

̅̅̅̅̅̅̅̅̅̅
βiiβjj

√
; on the other hand, it reduces 

to the Connors and Wright (1989) model if βij =
(

βii + βjj

)/
2. The theories underpinning these models, suggest 

that the parameters βij and κij might be temperature dependent. However, Shardt and Elliott (2017) found that, 
for binary systems they can be assumed constant, i.e. that the temperature dependence is carried solely by the 
pure component surface tensions. This premise was confirmed for the seven ternary systems which were used to 
validate the proposed multicomponent canonical Padé approximant.   

1. Introduction 

Surface tension arises due to the cohesive forces between the mole-
cules at the surface of the liquid in contact with a gas. It is a physical 
property that has important effects on the behaviour of liquids in pro-
cesses associated with the formation of droplets, the wetting of solid 
surfaces, and the penetration of liquids by capillary action. These three 
physical phenomena underpin many practical applications. For 
example, the surface tension significantly affects the spray atomization 
of liquid fuels injected into the combustion chambers of high compres-
sion engines [1]. This has implications for the efficiency of the com-
bustion performance and consequently also on the nature of the exhaust 
emissions [1]. Surface tension is also an important parameter that is 
exploited in industrial applications to improve the efficiency of formu-
lated chemical products such as paints and coatings, detergents, per-
sonal care- and pharmaceutical products. It also plays a significant role 

in processes such as enhanced oil recovery [2]. Indeed, Fathi Azarbay-
jani, et al. [3] stated: “In order to meet manufacturing challenges and 
develop new and better performing products with improved qualities, 
knowledge of surface tension is of utmost importance.” Thus, there is a 
practical need for knowing how the surface tension of liquid mixtures 
will vary with composition, temperature and, to a lesser extent, with 
pressure [4]. Surface tension is one of the physical properties that shows 
a highly non-linear dependency on composition [1]. Numerous empir-
ical and semi-empirical mixture models have been put forward over the 
years [1,5–7]. Patiño-Camino et al. [1] recently measured the surface 
tension of binary blends containing diesel or bio-diesel with either 
ethanol or butanol. They compared different models to each other in a 
quest to identify the most suitable one for correlating the experimental 
data they generated for these blends. Model performance was ranked on 
the basis of three criteria, i.e. best fit, minimum number of parameters 
and the existence of a physical basis. Based on this critical analysis, they 
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recommended the Connors-Wright model [6] due to its relative 
simplicity, the fact that the model parameters have physical meaning 
and its accuracy for such mixtures. Additionally, they observed that a 
simpler expression, originated by Eberhart [5], also performed well. 

More recently, Kleinheins, et al. [8] reviewed the most popular 
models for surface tension and tested their ability to reproduce experi-
mental data for ten binary aqueous solutions chosen to be representative 
of different solute types. They also found that the models by Eberhart [5] 
and Connors and Wright [6] performed very well. Unfortunately, 
neither Patiño-Camino et al. [1] nor Kleinheins et al. [8] considered the 
Extended Langmuir (EL) model in their analysis [7]. This model is 
possibly based on an even more rigorous analysis along the lines initially 
pioneered by Connors and Wright [6]. Furthermore, several studies 
showed that the EL model provides superior surface tension data cor-
relation for a wide range of binary mixtures [7,9–11]. In addition, highly 
nonlinear empirical models for surface tension, put forward by Belda 
[12], also proved highly effective for correlating data, not only for 
surface tension, but also for other physical properties such as density, 
viscosity and refractive index. 

The Connors and Wright [6], the Extended Langmuir (EL) [7] and 
Belda [12] models were all derived for binary liquid mixtures. Exten-
sions to multicomponent mixtures are, by and large, still extant. It is also 
not yet clear how best to integrate the temperature dependence of sur-
face tension into these model expressions. The present communication is 
an attempt to make some progress by dealing with these two issues. It is 
shown that a canonical form of the EL model corresponds to a Padé-like 
expression which easily extends to multicomponent situations. More-
over, it is shown that the temperature dependence can be incorporated 
via the pure component properties as first suggested by Shardt and 
Elliott [13]. Furthermore, it is found that the Connors and Wright [6], 
Das and Bhattacharyya [14], Belda [12] and Eberhart [5] models are all 
special cases of the canonical Padé form. 

2. Theory 

Eberhart [5] assumed that the surface tension of a binary mixture is 
given by a linear blending rule: 

σ = σ1y1 + σ2y2 (1)  

where σ1 and σ2 are the surface tensions of the pure components, and y1 
and y2 are the molar surface concentrations. The implication is that the 
non-ideal behaviour of the surface tension is fully embodied in the 
surface concentrations [14]. This assumption served as a cornerstone for 
the development of other models for binary mixtures [6 14]. Hence, with 
Eq. (1) as starting point, the objective is to relate the surface composi-
tions to the bulk concentrations. Numerous studies sought to treat the 
surface layer as a separate phase and used conventional phase equilib-
rium thermodynamics to determine a link between the surface and bulk 
concentrations [6]. Eberhart [5] assumed thermodynamic equilibrium 
between the surface the bulk phases, i.e. that the activity of each 
component is the same in the two phases. He expressed this as: 

a1 = γ1x1 = δ1y1 and a2 = γ2x2 = δ2y2 (2) 
where xi and yi are the mole fractions of component i in the bulk and 

surface phases respectively and γi and δi represent the corresponding 
activity coefficients. Taking the simplex constraint in each phase into 
account (i.e. that the mole fractions summate to unity), Eberhart [5] 
obtained the following equation: 

σ =
σ1Sx1 + σ2x2

Sx1 + x2
(3)  

with S =
γ1δ2
γ2δ1 

(4) 
However, a symmetric version of this expression is more suitable for 

the present discussion: 

σ =
β1x1σ1 + β2x2σ2

β1x1 + β2x2
(5)  

βi = γi/δi (6)  

Aqueous solutions, however, are typically highly nonideal. The observed 
surface tensions reveal a high surface excess of the organic component. 
Therefore, Connors and Wright [6] took a different approach. They 
obtained a useful expression by basing their analysis on two assump-
tions: (a) The partition between surface and bulk concentrations is 
defined by a Langmuir absorption isotherm, and (b) that the number of 
surface sites is proportional to the number of water molecules (compo-
nent 1) in the surface. On the basis of binding site constants denoted by 
Ki, partition functions defined by Pi = yi/xi and a molecular size factor k 
for component 2, they finally obtained the following semi-theoretical 
expression relating the surface tension to bulk mixture composition: 

σ1 − σ
σ1 − σ2

=

(
1 + (b − a)x1

1 − ax1

)

x2 (7)  

With a = K2P2
1+K2P2 

and b = kK1P1
1+K2P2 

(8) 
where, as before, xi is the bulk concentration. 
Belda [12] took an empirical approach and developed two slightly 

different equations. However, one of them has a similar functional form 
as Eq. (7): 

σ1 − σ
σ1 − σ2

=

(
1 + m1x1

1 + m2x1

)

x2 (9)  

Das and Bhattacharyya [14] proposed the following expression for the 
surface tension of binary mixtures: 

σ − σ1

σ2 − σ1
=

(
1 + px1

1 + q1x1 + q2x2
1

)

x2 (10)  

Piñeiro et al. [7] derived the Extended Langmuir (EL) model for the 
surface tension of liquid mixtures. In their analysis, they consider a bi-
nary mixture for which σ1 > σ2. Their model can be expressed as follows: 

σ1 − σ
σ1 − σ2

=

(
1 + (α/β − 1)φ1

1 + 2(1/β − 1)φ1 +
(
1/β2 − 1

)
φ2

1

)

φ2 (11)  

This form is similar to Eq. (10) except for the composition expressed in 
terms of volume fractions instead of mole fractions. Note that the pa-
rameters α and β in the EL model have physical meaning. 

All the models presented above are for binary mixtures. It is not 
immediately obvious how to generalise them for multicomponent mix-
tures. Yet they all have a similar structure (notably Eqs. (10) and (11) are 
more complicated) with the terms in brackets corresponding to a ratio of 
a linear term in the composition variable to a quadratic term. In order to 
assist the derivation of multicomponent forms, it is convenient to first 
focus on the binary EL model. Straightforward algebraic manipulation 
leads to an equivalent form that is easier to interpret: 

σ =
φ2

1σ1 + [(2 − α)βσ1 + αβσ2 ]φ1φ2 + β2φ2
2σ2

φ2
1 + 2βφ1φ2 + β2φ2

2
(12)  

In the analysis presented by Piñeiro et al. [7], the parameter β is defined 
as the ratio of the absorption (k2) to desorption (k1) rate constants, i.e. 

β = k2/k1 (13)  

Piñeiro et al.[7] also postulated a Margules interaction term, as a 
correction for Eq. (1), but used volume fractions instead of mole frac-
tions. The correction term was assumed proportional to λ = α − 1. Recall 
that volume fractions are nominal mixture descriptors defined by: 
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φi =
Vixi

V1x1 + V2x2
(14)  

Substituting Eq. (13) and Eq. (14) into Eq. (12) and simplifying leads to 

σ =
β1x1σ1(x1 + κ12x2) + β2x2σ2(κ21x1 + x2)

β1x2
1 + 2

̅̅̅̅̅̅̅̅̅
β1β2

√
x1x2 + β2x2

2
(15)  

with βi ≡ k2
i V2

i (16) 
and κ12 = (1 − λ) k2V2

k1V1
and κ21 = (1 + λ) k1V1

k2V2 
(17) 

The model formulated by Das and Bhattacharyya [14] corresponds to 
a slightly more general form which, for binary mixtures, reads as follows 
(See Supplementary Information): 

σ =
β11x1σ1(x1 + κ12x2) + β22x2σ2(κ21x1 + x2)

β11x2
1 + 2β12x1x2 + β22x2

2
(18)  

where βii = βi. 
The straightforward extension of this equation, in order to cater for 

multicomponent system behaviour, is: 

σ =
∑

i
βiixiσi

∑

j
κijxj/

∑

i

∑

j
βijxixj (19)  

With βii = κii = 1. 
Eq. (19) is denoted the canonical P(2,2) Padé approximant because it 

represents a generalisation of several semi-theoretical and empirical 
mixture models for the surface tension of liquid mixtures. It is defined as 
the ratio of two quadratic polynomials with mole fractions as the 
composition variables. It represents a somewhat more general expres-
sion than the EL model since the βij are not defined in terms of a 
combining rule, i.e. they are free to vary. In the Supplementary Infor-
mation it is shown that all of the other models listed above are just 
special forms of this equation. For instance, the multicomponent EL 
model is obtained when the βij are defined by a combining rule corre-
sponding to a geometric mean over the pure component values, i.e. 

βij =
̅̅̅̅̅̅̅̅̅̅
βiiβjj

√
=

̅̅̅̅̅̅̅̅
βiβj

√
(20)  

which leads to the multicomponent expression: 

σ =
∑

i
βixiσi

∑

j
κijxj/

(
∑

k

̅̅̅̅̅
βk

√
xk

)2

(21)  

On the other hand, if the cross parameters (βij) are defined by an 
arithmetic mean over the pure component values, i.e. 

βij =
(
βi + βj

)/
2 (22)  

the multicomponent [6] model is obtained: 

σ =
∑

i
βixiσi

∑

j
κijxj/

∑

k
βkxk (23)  

Eq. (23) is the canonical P(2,1) Padé approximant for the surface tension 
corresponding to the Connors and Wright model. It also embodies some 
of the models proposed by Belda [12]. See the Supplementary Infor-
mation for details. Finally, if in addition it holds that κij = 1∀ i, j, the 
multicomponent form of the Eberhart [5] is obtained: 

σ =
∑

i
βixiσi/

∑

j
βjxj (24)  

Eq. (24) is the canonical P(1,1) Padé approximant form. By analogy, the 
P(1,2) canonical Padé form is defined by: 

σ =
∑

i
βixiσi/

∑

i

∑

j
βijxixj (25)  

The nonlinear composition behaviour of some systems is such that it 
requires implementation of a P(3,2) Padé approximant which is defined 
as follows: 

σ =
∑

i
βiixiσi

(
∑

j
κijxj

)(
∑

j
λijxj

)/
∑

i

∑

j
βijxixj (26)  

with  κii = λii = 1. 
The expressions defined by Eq. (25) and Eq. (26) have not yet been 

tested for use in the correlation of surface tension data. 
The theory-based derivations [5–7], on which the canonical Padé 

approximants are based, suggest that the parameters βij and κij might 
well be temperature-dependent. However, Shardt and Elliott [13] 
showed that the Connors model, including an extension they proposed 
[4], applies to a wide range of temperatures even if the model param-
eters are assumed constant, i.e. independent of the solution temperature. 
The implication is that the pure-component temperature dependence is 
the controlling factor for binary mixtures. This communication focused 
on testing this important idea using actual surface tension data for 
ternary mixtures that were obtained over a range of temperatures. 

Eqs. (18), (23) to (26) are the most general canonical Padé approx-
imant forms proposed for surface tension. Noteworthy is the fact that all 
the adjustable parameters either characterise pure component behav-
iour or binary interactions. Therefore, pure component information 
together with data obtained for binary mixtures should suffice to predict 
multicomponent behaviour under isothermal conditions. If, in addition, 
the postulate posited by Shardt and Elliott [13] holds, this would pre-
sumably even be true for data collected over some limited temperature 
range. The original derivations of these models featured fewer adjust-
able parameters that differ from those present in Eqs. (18), (23) and 
(24). The assumptions (or empirical conjectures) made in the original 
development of these equations define links between the parameters 
found in the extended canonical versions. See the Supplementary In-
formation for details. 

Note also that the canonical Padé approximants defined above are 
based on mole fractions as the mixture composition descriptors. Any 
other rational choice can be used including volume or mass fractions. 
While that would change the β- and κ-values in the model expressions, 
the predicted data trends will be identical. A proof of this assertion is 
provided in the Supplementary Information for binary mixtures. 

3. Data analysis 

The capacity of the various canonical Padé models for accurately 
representing real experimental information was tested using experi-
mental data gleaned from the literature. The seven ternary systems 
shown in Table 1 were used. They were selected because they included 
binary and ternary data that was generated over a range of tempera-
tures. This made it possible to test the hypothesis, made by Shardt and 

Table 1 
Ternary systems used in the data reduction exercise.  

# Components T-range, 
◦C 

References 

I monoethanolamine (1) – 2-amino-2-methyl-1- 
propanol (2) – water (3) 

25–50 [16] 

II water (1) – acetone (2) – toluene (3) 15–55 [17] 
III 2-propanol (1) – 1,2-propanediol (2) – water (3) 25–55 [18,19] 
IV tetrahydrofuran (1) 2-propanol (2) – 2,2,4-tri-

methylpentane (3) 
15–35 [20] 

V 2-propanol (1) – tetrahydropyran (2) – 2,2,4- 
trimethylpentane (3) 

20–50 [21] 

VI ethanol (1) – benzyl acetate (2) – benzyl alcohol 
(3) 

15–35 [22] 

VII 2-propanol (1) – benzyl alcohol (2) – 
phenylethanol (3) 

25–45 [23,24]  
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Elliott [13], that the temperature dependence of the surface tension of a 
mixture is adequately accounted for by the pure component surface 
tension behaviour. 

Table 2 shows the canonical Padé expression as they relate to ternary 
mixtures. As mentioned, the original derivations of these expressions 
included constraints on the model parameters. See the Supplementary 
Information for details. However, these were ignored during the least- 
squares data regression performed presently. All the parameters in the 
canonical forms were allowed to vary freely and they were determined 
using least-squares regression. 

Data for the monoethanolamine (1) − 2-amino-2-methyl-1-propanol 
(2) binary was not available for System I in Table 1. Therefore, when 
regressing the binary data, the following parameter settings were 
imposed: κ12 = κ21 = 1, and β12 = (β1 + β2)/2. This is equivalent to 
assuming that the behaviour of this particular binary is adequately 
described by the P(1,1) Padé approximant. A similar strategy was 
implemented for system II for which data for the water (1) - toluene (3) 
binary was not available. 

The Akaike information criterion (AIC) [15] was used to rank the 
relative performance of the models. The governing equation is 

AIC = n ln (SSE) + 2df (27)  

where n is the number of data points, SSE is the sum of the square errors, 
and df is the degrees of freedom, i.e. the number of parameters that are 
fitted. To compare models, it is only the difference between the AIC 
values that matters. On taking differences, the units cancel out and the 
result is unitless: 

ΔAIC = n ln (SSEref/SSEmodel) + 2Δdf (28)  

Eq. (28) makes intuitive sense as it balances the change in goodness of 
fit, as assessed by the sum-of-squares, with the change in the degrees of 
freedom (due to differences in the number of parameters in the models 
being compared). In each case, the multicomponent version of the 
Eberhart [5] model, i.e. the P(1,1) Padé expression, served as the 
reference model. In a first step, the full data sets were regressed. How-
ever, in a second round, only the binary data were used to fix the model 
parameters. This provided an indication as to whether ternary data can 
be predicted from knowledge of binary data. In both cases, the SSE 
values for the full data sets were used to calculate the ΔAIC values. 
Comprehensive details, including the numerical values assumed by the 
model parameters, are provided in the Supplementary Information. 

4. Results 

Fig. 1 shows the average absolute deviations (AAD) between pre-
dicted and experimental values for the different systems and the models 
that were tested. Fig. 1(a) shows the results for the case where the model 
parameters were obtained using both the binary and ternary data. 

Interestingly, the P(2,1) Padé approximant always performed better that 
the P(1,2) expression. Evidently, the prediction errors decrease as the 
model order is increased. This was to be expected since more adjustable 
parameters were available. Fig. 1(b) shows the AAD values for the full 
data sets when, instead, the model parameters are fixed using just the 
binary data. As anticipated (but not shown here), better fits of the binary 
data were obtained. However, the predictions for ternary composition 
became slightly worse and this is reflected in the larger overall AAD 
values. As before, the P(2,1) model consistently outperformed the P(1,2) 
Padé approximant. Otherwise, increasing the model order again led to a 
reduction of the AADs. 

The improved performance offered by the higher order Padé 
approximants is to be expected. However, the substantial increase in the 
number of adjustable model parameters poses a risk of overfitting the 
data. Fig. 2 shows the Akaike information results. The plotted ΔAIC 

Table 2 
Canonical Padé approximants for correlating the surface tension of ternary mixtures.  

Form Padé approximant Eq. References 

P(2,2) σ =
β1x1σ1(x1 + κ12x2 + κ13x3) + β2x2σ2(κ21x1 + x2 + κ23x3) + β3x3σ2(κ31x1 + κ32x2 + x3)

β1x2
1 + β2x2

2 + β3x2
3 + 2β12x1x2 + 2β13x1x3 + 2β23x2x3 

19 
[14]  

σ =
β1x1σ1(x1 + κ12x2 + κ13x3) + β2x2σ2(κ21x1 + x2 + κ23x3) + β3x2σ2(κ31x1 + κ32x2 + x3)

( ̅̅̅̅̅
β1

√
x1 +

̅̅̅̅̅
β2

√
x2 +

̅̅̅̅̅
β3

√
x3
)2 

20 
[7] 

P(2,1) σ =
β1x1σ1(x1 + κ12x2 + κ13x3) + β2x2σ2(κ21x1 + x2 + κ23x3) + β3x2σ2(κ31x1 + κ32x2 + x3)

β1x1 + β2x2 + β3x3 

23 
[612] 

P(1,2) σ =
β1x1σ1 + β2x2σ2 + β3x2σ2

β1x2
1 + β2x2

2 + β3x2
3 + 2β12x1x2 + 2β13x1x3 + 2β23x2x3 

25  

P(1,1) σ =
β1x1σ1 + β2x2σ2 + β3x2σ2

β1x1 + β2x2 + β3x3  

24 
[5]  

Fig. 1. Absolute average deviations (AAD) between all predicted and experi-
mental surface tension values. Results obtained when (a) regressing the full 
data set, and (b) using only the binary data. 
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values provide a relative measure of model performance which con-
siders that better performance is to be expected for models with a greater 
number of adjustable parameters. Models with fewer parameters are 
preferred as this lowers the risk of overfitting. The P(1,1) model, applied 
to the binary data of each system, was used as the reference for calcu-
lating the ΔAIC values. Large ΔAIC values indicate improved data fits 
compared to the reference model. Fig. 2(a) shows that the use of higher 
order models was particularly beneficial when the data regression 
considered the full data sets. With one exception (the P(2,2) model 
applied to ternary system I), this was also true when the regression ex-
ercise considered only the binary data. 

The evidence presented in Fig. 1, and Fig. 2, confirms that the ca-
nonical Padé approximants have merit for correlating surface tension 
data as a function of both composition and temperature. This was 

confirmed for data available over a limited range of temperature near 
ambient, i.e. 15 ◦C–50 ◦C. This implies that the effect of temperature was 
adequately accounted for ternary mixtures by the temperature depen-
dence of the pure components alone, a premise first posited by Shardt 
and Elliott [13]. 

Apart from the various linear blending rules, mixture models 
generally require data for all binary subsystems in order to predict 
multicomponent behaviour. The P(1,1) model is an interesting excep-
tion. If the model provides an adequate representation of the composi-
tion dependence of an n-component system, the multicomponent 
behaviour is fixed even when no data is available for one of the con-
stituent binaries. Unfortunately, Figs. 1 and 2 both indicate that the P 
(1,1) model was inadequate for representing the full data sets of the 
systems considered presently. Nevertheless, when the P(1,1) model was 
applied to cater for the missing binaries of ternary system I and II, 
excellent ternary data prediction was achieved on the basis of data for 
just two of the binaries in the mixture. See Figs. 1(b) and 2(b). 

The Supplementary Information includes Figures that visualize the 
fits for the binary data and the ternary data of each system. In each case, 
the P(2,2) model with the parameters obtained by regressing the full 
data, are shown. This model proved adequate for all systems in that the 
AAD values were very low, less than 0.84 % and even as low as 0.17 %. 
However, the benzyl acetate – benzyl alcohol binary showed an unusual 
composition dependence as shown in Fig. 3. Only in this case, was the 
application of Eq. (26) required in order to fit the isothermal surface 
tension vs. composition curves. 

5. Conclusion 

The canonical P(2,2) Padé approximant for the surface tension, with 
the multicomponent version defined by Eq. (19), was obtained on the 
basis of a rational extension of the proposals initially made by Eberhardt 
(1966), Connors and Wright (1989), Piñeiro et al. (2001), Das et al. 
(2003) and Belda (2009) for binary mixtures. This general model in-
cludes the other multicomponent forms as those are obtained via various 
combining rules. The data correlation prowess of these models was 
tested using seven ternary systems for which data was available over a 
significant temperature range. The model performance was ranked using 
the Akaike Information criterion (AIC). It was found that, irrespective of 
whether the data regression was done over the binary data alone, or the 
full data set, that the P(2,2) model performed best when considered in 
terms of the AIC criterion. Furthermore, the postulate that the temper-
ature dependence of the surface tension is determined by that of the pure 
component surface tensions [13] was confirmed for the present data 
sets. Lastly, it holds that the canonical Padé approximations are 
invariant with respect to the composition descriptor used, e.g. mole, 
volume or mass fraction. 

Fig. 2. Akaike information results for (a) regression of the full data sets, and (b) 
data regression performed on the binary data alone. 

Fig. 3. Data fits for the benzyl acetate – benzyl alcohol binary on regressing the full data set for System VI. (a) Result obtained for the P(2,2) Padé approximant 
defined by Eq. (19). (b) Adjusting the result for (a) by implementing Eq. (26) for the benzyl acetate – benzyl alcohol binary. 
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