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A Wireless Multimedia Sensor Network (WMSN) make possible new surveillance applications in

environments that traditional systems would not handle, including search and rescue operations after a

disaster. However, WMSNs ought to perform under energy-constrained conditions that insist on novel

compression methods to diminish bandwidth usage and extend network lifespan.

Compressed Sensing (CS) was presented as a means to achieve overcome the challenges faced by

WMSNs. A sensing matrix is crucial to the compressed sensing framework. The sensing matrix can

maintain the fidelity of a compressed signal, diminish the sampling rate obligation and improve the

strength and performance of the recovery algorithm. A great number of measurement matrices have

been proposed to either offer reduced computational complexity or good recovery performance, but

only some have managed to accomplish both, and even fewer have been proven in a compelling manner.

There are images that do not lend themselves to compression, and to maintain Quality of Service (QoS)

expectations, adaptive sampling is essential.
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Low-performance nodes are essential for making WMSN practical and flexible. Different low-

performance nodes have been proposed in the literature, but the Telos Revision B (TelosB) sensor

module (mote) can be used as a reference for energy-constrained applications. TelosB is a very low

power wireless mote for research and experimentation. The design of sensing matrices has been

influenced by practical considerations in WSN. The two major innovations have replaced floating

point numbers with bipolar and binary entries and sparse sensing matrices.

The Deterministic Partial Canonical Identity (DPCI) matrix was presented to address the needs of

an energy-constrained environment for WMSN. The choices of random number generators were

discussed, and criteria were developed for selection. Complexity optimisation was undertaken to

improve the time complexity of the construction. The DPCI was outperformed by the Deterministic

Binary Block Diagonal (DBBD) and Binary Permuted Block Diagonal (BPBD) in terms of recovery

performance but gave a substantial computational cost reduction. The DPCI gives a compelling

balance between recovery performance and energy efficiency, benefiting energy-sensitive applications.

A recovery performance prediction algorithm was also proposed to be used for an adaptive sampling

scheme.
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CHAPTER 1 INTRODUCTION

A Wireless Multimedia Sensor Network (WMSN) is an ad hoc ensemble of embedded and battery-

powered optical sensor devices. This ensemble consists of a large number of sensor nodes placed

around an area to be surveyed. Depending on the topology, there is at least one data sink located at the

centre of the nodes [2]. The robustness and flexibility of these systems make possible new surveillance

applications in environments that do not have the infrastructure to support traditional equipment. These

environments can also be dynamic and hazardous; these include search and rescue operations after a

disaster.

These WMSNs have to perform in energy-constrained conditions that compel novel compression

schemes to diminish the bandwidth requirement and extend network lifespan [3]. Multi-hop routing

can be used in the network link between optical nodes and their sinks, necessitating a high compression

ratio to reduce transmission energy consumption.

The WMSN encounters unique challenges compared to the traditional Wireless Sensor Network

(WSN). This network deals with much larger data packs and multidimensional signals, which have

cross-dimensional dependencies and distortions. The other challenge is that WMSN captures data that

can be perceived by humans, which must meet a defined quality-of-service (QoS) [2].

Energy conservation is one of three energy management schemes relied upon in WSN; the others

take the form of energy transfer and energy harvesting [4]. Despite this, the large data transfers

characteristic of WMSN elevate the importance of energy conservation over the others. Energy

conservation consists of computational complexity reduction, power management optimisation and

power efficiency improvements. This study will focus on reducing the complexity of optical sensor

nodes because they make up the majority of the network.
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CHAPTER 1 INTRODUCTION

Compressed sensing (CS) was inaugurated by Pudlewski et al. [5] as an instrument to tackle the

challenges facing WMSNs. The CS method is fitting for WMSN as a consequence of its low encoder

complexity, high compression rate and resistance to transmission errors [6].

Even though there have been other proposals for complexity reduction, amongst others, sparsity

transforms optimisation [6, 7], these approaches suffer from an intractable compromise in recovery

accuracy [8]. However, sensing matrix design has shown that this compromise can be avoided

[9, 10, 11, 12, 13, 14].

Initially, during compressed sensing, each measurement was a mapping of an image onto an unrepeated

matrix [15]. This imposed an impossible memory footprint when the signal was substantial in

size, as encountered with high-resolution photos. In [16], Gan solved this problem by introducing

block-compressed sensing (BCS), which splits the image into different blocks. The blocks are then

compressed using a repeated measurement vector, which diminishes the dimensions of the required

measurement matrix and the resulting memory footprint to a great extent.

In [17], Bajwa et al. reduced sensing and storage complexity at a meaningful scale by showing the

efficacy of Toeplitz and circulant sensing matrices. These matrices need random entries exclusively for

the first row, with the other rows generated using transformations. These are named semi-deterministic

matrices, and those without random entries are fully deterministic.

Some researchers have been investigating optimisation-based matrices that use the mutual coherence

with the sparsity transform as a cost function [18, 19, 20, 21, 22, 23] but these matrices can not be

constructed dynamically. More recent research has been on training the sensing matrix based on a

signal dataset [24, 25, 26], but in the same vein, this is not suitable for WMSN nodes.

The application of CS on images still has challenges. However, minimising computational complexity

and sampling rate are the most important [27]. In [28], different types of sensing matrices were

contrasted under various metrics typical in CS. They conducted their study through experiments on

one-dimensional (1D) signals on a system that uses an advanced central processing unit (CPU). Despite

this, the duration measurements (and likely energy consumption) are not analogous to WMSN, where

low-power microcontroller units (MCUs) are popular.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

Deterministic sensing matrices have performed better than dense ones in many studies [9, 10, 11,

12, 13, 14, 29, 30, 31, 32]. Semi-deterministic matrices are being succeeded in popularity by fully

deterministic ones, especially matrices based on chaotic sequences [10, 13, 31].

1.1 PROBLEM STATEMENT

The problem that this study addresses is the compression of multimedia in WMSN using low energy

with high fidelity. These WMSN will play a significant role in future mission-critical surveillance

applications, such as search and rescue. An energy-efficient and high fidelity compression algorithm is

a key enabler for wider adoption of WMSN technology.

1.1.1 Context of the problem

The WMSNs are the key to solving many real-world problems that the existing surveillance systems

can not solve. The environmental and operational constraints on WMSNs require energy efficiency

and high fidelity. This means that developing innovative data compression to diminish the transmission

bandwidth utilisation and computational complexity of operations is essential. Compressive sensing

has been identified as the best tool to address these challenges. However, work must be done to identify

areas of improvement to get closer to the realisation of WMSNs in the operating environment.

1.1.2 Research gap

Although plenty of proposed sensing matrices aim to achieve low computational complexity or high

fidelity, only some have addressed both objectives, and even fewer have been convincingly demon-

strated. Energy efficiency and recovery performance appear to require conflicting methods. However,

there have been innovative schemes in deterministic sensing matrix design that have given encouraging

outcomes. These schemes must be identified, analysed and contrasted. The most viable approach must

be exploited as a foundation for a new sensing matrix that offers low complexity and high recovery

performance.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The proceeding section enumerates the questions that must be answered in the course of conducting this

study. The objectives represent the goalposts to direct the execution of the research approach.

1.2.1 Research Questions

This study aims to respond the following questions in order to achieve its objectives.

1. Which deterministic measurement matrices deliver the highest level of recovery perform-

ance

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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While comparing fully deterministic and semi-deterministic measurement matrices, which show

the highest level of recovery performance? The sampling rate is an essential constraint for a

WMSN, which makes it crucial for the measurement matrices to perform well at these low

sampling rates.

2. What is the energy efficiency of deterministic measurement matrices

In which manner does computational complexity relate to energy efficiency? Is it that fully

deterministic measurement matrices are more energy-efficient than random matrices, and which

element of the compressed sensing framework is the most energy-intensive? In order to give

direction to future research in WSMNs, it is essential to find out what are the energy properties

of both semi-deterministic and fully deterministic measurement matrices and which attributes of

their implementation require prioritisation.

3. How does block size influence energy efficiency

What effect does the block size have on the energy efficiency and recovery performance of fully

deterministic and semi-deterministic measurement matrices? The block size appears to influence

the recovery accuracy for the majority of measurement matrices, which seems to be that a small

block size gives rise to worse recovery performance. It must be investigated what this block size

translates to in energy efficiency and where the optimal balance between recovery performance

and energy efficiency lies.

4. What are the most effective design tactics for creating measurement matrices

What is the most effective tactic for enhancing energy efficiency while avoiding significantly

compromising recovery performance? Can recovery performance be enhanced while avoiding

adversely affecting energy efficiency? How much can energy efficiency be strengthened before

it results in a drastic reduction in recovery performance?

1.3 APPROACH

In order to answer the research questions and achieve the research objectives meaningfully, a deliberate

strategy was devised. This strategy was based on the preliminary investigation of the literature. The

strategy is outlined in the following steps below:

1. Undertake a literature review on energy-efficient measurement matrices for use in WMSNs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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2. Perform experiments with greyscale images to assess recovery performance and quantify the

impact of block size on recovery performance.

3. Analyse the computational complexity of the measurement matrices through mathematical means

and establish the connection between the energy consumption and computational complexity

on one or more WSN nodes. Identify the elements that consume the most energy in the

implementation and investigate how block size can affect energy efficiency.

4. Resolve which measurement matrix and block size offer the optimal balance between energy

efficiency and recovery performance.

5. Make sense of the results and validate them using established theories.

6. Propose a new sensing matrix based on the most viable approach.

1.4 RESEARCH GOALS

• The proposed work will first guide future research by analysing and comparing different determ-

inistic sensing matrices for applications in WMSNs.

• The second goal is interpreting and validating the empirical results of the experiments.

• The last goal is to create a sensing matrix that is informed by the theoretical analysis of the

outcomes.

1.5 RESEARCH CONTRIBUTION

• We proposed a sparse and simple sensing matrix that has competitive recovery performance.

• We proposed a simple but accurate measure to predict image compression performance for

application in adaptive sampling.

1.6 RESEARCH OUTPUTS

Skosana, Vusi, and Adnan M. Abu-Mahfouz. "Energy-Efficient Sensing Matrices for Wireless

Multimedia Sensor Networks: A Review." In 2021 International Conference on Forthcoming Networks

and Sustainability in AIoT Era (FoNeS-AIoT), pp. 51-56. IEEE, 2021.

Skosana, Vusi, and Adnan Abu-Mahfouz. "An Energy-Efficient Sensing Matrix for Wireless Multime-

dia Sensor Networks." Sensors 23, no. 10 (2023): 4843.

1.7 OVERVIEW OF STUDY

The Chapter 2 lays out the review of the WMSN applications and designs, energy efficiency meas-

urement and optimisation and finally, compressive sensing challenges and opportunities. Chapter 3
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CHAPTER 1 INTRODUCTION

discusses the proposed sensing matrix and experiments designed to validate the performance. Chapter 4

lists the quantitative and qualitative results of the experimental evaluation. In Chapter 5, the results are

discussed, and the trends are generalised. In Chapter 6 the outcomes of the study are concluded, and

future work is suggested.
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEW

Choosing a WMSN node is challenging as the node must have sufficient image resolution, compu-

tational power, lifetime and cost-effectiveness. These considerations are weighed by the application

priorities, and a balance must be struck. Compressive sensing is a powerful tool for WMSN. Still, it

has various aspects that need to be understood, and the strengths of the framework should be effectively

exploited while diminishing the effects of the weaknesses.

In Section 2.2, the WMSN nodes are discussed, and their applications and design considerations are

covered. The most relevant node configuration is identified for further research. The energy analysis

for MCU is discussed. The relationship between the instruction cycles and energy consumption is

detailed. In Section 2.3, compressive sensing is introduced, and the major design challenges are

highlighted. The two major sensing matrix designs are also discussed with the leading research output

reviewed. Section2.4 provides a summary of the major findings uncovered in the literature and ends

the chapter.

2.2 WIRELESS MULTIMEDIA SENSOR NETWORKS

WMSNs have been developed to address various problems in the real world. In [33], Chang and

Huang proposed the use of WMSNs for emergency services such as the execution of search and rescue

operations in unknown, dynamic and unsafe environments. The other applications are listed in Table

2.1. The image sensors that have commonly been used are low-resolution, amongst others, common

intermediate format (CIF) and video graphics array (VGA) built with complementary metal-oxide-

semiconductor (CMOS) sensors. However, there have been high-resolution sensors as well in the

high-end nodes, such as 1280x1024. Most applications have been on surveillance of humans and their

activities, the most common being in the assisted living environment.
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CHAPTER 2 LITERATURE STUDY

Table 2.1. WMSN applications.

Ref. Sensor Network Application

[34] VGA CMOS IEEE 802.15.4 Activity recognition for assisted living

[35] CIF CMOS RF transceiver Object detection and hand gesture recognition

[36] VGA CMOS IEEE 802.15.4 Distributed face detection and hand gesture re-

cognition

[37] VGA CMOS RF transceiver Low resolution (320x240) video streaming and

high resolution (VGA) snapshots based on event

triggers

[38] VGA CMOS IEEE 802.15.4 Object detection, tracking and localisation

[39] CIF CMOS — Motion and face detection

[40] VGA CMOS IEEE 802.15.1 People detection using optimised image classi-

fication

[41] CIF CMOS IEEE 802.15.4 Assisted living where multiple cameras are fused

to detect and monitor human activities

[42] 1280x1024

CMOS

IEEE 802.15.4 Single object tracking through background sub-

traction

The most common network interface was the IEEE 802.15.4 standard which describes a low-rate

wireless personal area network (LR-WPAN). The IEEE 802.15.4 supports a range of 10 m and a data

rate of 250 kb/s. There are two types of network nodes supported by the standard. The first type

of node is a full-function device (FFD). This node can operate as a personal area network (PAN)

coordinator as well as an elemental node. The second type of node is a reduced-function device (RFD)

which can only communicate with an FFD, and these nodes are shown in Figure 2.1 along with the

network topologies they can support.

The WMSN has experienced various designs in node configuration; these have entailed processors

ranging from the ATmega128L running at 8 MHz to XScale PXA270 at 624 MHz. Many WMSN nodes

are available for academic and commercial use [43]. One of the most influential considerations in node

design has been whether to adopt the compress-then-analyse or analyse-then-compress paradigms [44].

Traditionally, the compress-then-analyse was favoured, but more recent node designs have incorporated
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CHAPTER 2 LITERATURE STUDY

more computational power to do some analysis to reduce network bandwidth utilisation. However,

Redondi et al. found that the compress-then-analyse paradigm is more energy efficient.

(a) Star (b) Peer-to-peer

(c) Cluster-tree

Figure 2.1. The IEEE 802.15.4 network topologies.

The choice of processor is a balancing act between power efficiency and node processing capacity.

This trade-off, however, is superseded by cost. In order to make WMSN practical, the nodes need to
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CHAPTER 2 LITERATURE STUDY

be cost-effective and to fully leverage the potential of the technology, many of these nodes need to

be deployed. Thus costs need to be controlled to make this technology accessible to a broad scope of

applications.

2.2.1 Low-Performance Nodes

In [3], WMSN nodes are classified as low and high performance depending on the processor capacity.

The low-performance nodes have lower purchase costs and the potential for longer battery lifespans.

These properties make them suitable for many environments.

In [35], Rahimi et al. proposed the Cyclops. The researchers took advantage of small form-factor,

inexpensive and energy-efficient CMOS imaging sensors in order to allow WSN to differentiate

objects and evaluate their importance. The authors introduced CMOS imagers to WSN nodes to make

possible new types of computer vision applications. The Cyclops had an 8-bit ATmega128L + CPLD

processors.

Kleihorst et al. [36] proposed the WiCa to allow multiple cameras to view the same scene and

communicate to construct high-performance surveillance systems. The researchers took advantage

of a single instruction multiple data (SIMD) video analysis processor for onboard processing. The

nodes communicate with each other using IEEE 802.15.4 on peer-to-peer connections for surveillance

collaboration. The WiCa had 84 MHz Xetal + 8051 ATMEL processors.

In [37], Park and Chou proposed the eCam, which is a very compact, high data transfer rate WMSN

node. It comprised a low-resolution digital video camera and the ultra-small self-contained Eco WSN

node. The eCam achieved reliable VGA resolution video streaming. The eCam had an OV 528

serial-bridge controller.

Hengstler et al. [38] proposed the MeshEye mote as an energy-efficient smart camera mote for

intelligent surveillance. The mote had a low-resolution stereo vision system to enable advanced object

detection and triangulation. The stereo system worked in concert with a high-resolution module to

facilitate object capture for further processing. The MeshEye had a 55 MHz 32-bit ARM7TDMI

processor.

In [39], the CMUcam3 is presented as an inexpensive, open-source, embedded vision platform. The
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CHAPTER 2 LITERATURE STUDY

CMUcam3 consists of a CMOS camera, frame buffer, MCU and a MultiMediaCard (MMC) card slot.

The CMUcam3 had a 60 MHz 32-bit ARM7TDMI processor. The CMUcam3 also had ports to support

applications in robotics.

The MicrelEye was proposed for cooperative distributed video processing applications with classi-

fication [40]. The node consists of an inexpensive low-resolution CMOS sensor, a programmable

processing engine and a 100 m transceiver. The MiscrelEye had an 8-bit ATMEL FPSLIC pro-

cessor.

Rowe et al. [41] proposed the FireFly Mosaic node as an image processing framework with image

processing framework primitives for the development of distributed vision-sensing tasks. The node

comprises a FireFly real-time sensor networking platform with a CMUcam3 embedded vision processor.

The FireFly had a 60 MHz 32-bit LPC2106ARM7T DMI processor.

The processor is a fundamental component of a WMSN sensor node and accounts for a substantial

share of the total energy consumption [45]. In Table 2.2, the energy consumption across the different

considered low performance nodes is compared based on processor speed.

Table 2.2. Low performance node comparison.

Ref. Processor Clock Frequency Energy consumption

[35] 8-bit ATmega128L MCU 8 MHz Low

[36] 8-bit 8051 ATMEL MCU 12 MHz Low

[37] OV 528 serial-bridge controller - Low

[38] 32-bit ARM7TDMI processor 55 MHz Medium

[39] 32-bit ARM7TDMI processor 60 MHz Medium

[40] 8-bit AVR ATMEL MCU 50 Mhz Medium

[41] 32-bit ARM7TDMI processor 60 Mhz Medium

The TelosB mote has been widely used as a reference implementation in the WMSN community

[6, 9, 12, 46]. This mote consists of a Texas Instrument 16-bit MSP430 MCU that has an 8 MHz

frequency with 10 KB of random access memory (RAM) and 1 MB of external flash [47]. The TelosB

has an IEEE 802.15.4 complaint RF transceiver capable of a range of 30 m indoors and 100 m outdoors.
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CHAPTER 2 LITERATURE STUDY

This mote is often equipped with 2 AA batteries, each with a capacity of about 2850 mAh, similar to

other nodes [48, 49, 50]. The mote and its major components are shown in Figure 2.2.

Figure 2.2. The TelosB mote.

The sensing matrix determines the number of needed random numbers for construction and the number

of matrix multiplications during sensing. The Bernoulli matrix was found to be more suitable for

hardware implementation due to its entries being ±1 [51]. These entries do not require multiplication

operations. Another favoured matrix is the Binary Sparse Random matrix with a few d non-zero entries

per column, which eliminates the majority of addition operations [52]. There are two choices for

acquiring random entries during matrix construction, reading from memory and random generation.

Reading from memory has the disadvantages of ample storage and substantial energy cost to operate

non-volatile memory [53]. The random generation has the burden of significant energy consumption

from complex mathematical functions like log and sqrt [52]. Deterministic measurement matrices

have been selected as the solution to simplifying hardware design by eliminating random generation

and/or ample memory storage [32]. The general CS encoder framework is shown in Figure 2.3.

2.2.2 Energy Consumption of MCU

The current drawn by 8 to 32-bit MCUs is altered only modestly by different operations when in

active state [54]. Therefore, in order to predict comparative energy consumption between the various

operations, it is enough to measure the duration of each, as seen in Equation (2.1).

Econ =Vcc × Iactive × top (2.1)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

12

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 2 LITERATURE STUDY

Figure 2.3. The general CS encoder framework.

The time top can be predicted through the clock frequency f and number of instruction cycles needed

for the operation Nic, as shown in Equation (2.2).

top =
Nic

f
(2.2)

The MSP430 excludes a hardware multiplier; therefore, the execution of complex mathematical

operations needs multiple instruction cycles. In [55] optimised algorithms were evaluated for the

implementation of multiplication and division operations on the MSP430. In [55] the instruction

cycle cost of basic operations is discussed, such as add, subtract and compare; these operations cost

one cycle each. However, other operations such multiply and divide require complex algorithms to

implement efficiently on the MCU. These algorithms are discussed in [56], where the most efficient

implementation of multiply and divide costs 29 cycles and 22 cycles, respectively.

2.3 COMPRESSIVE SENSING

The CS framework has an encoder that compresses signal x ∈ RN into measurements y ∈ RM, where

M ≪ N. In order for the signal to be recovered from the measurements, there are two conditions that

must be met, sparsity and incoherence [57]. Sparsity characterises how few non-zero entries are found

in a vector representing the signal. A signal can also be transformed into a domain where it is sparse

by using a mathematical transformation, Ψ. Incoherence characterises how low is the correlation of

the sparsifying transform with the measurement matrix, Φ [57]. This can be measured through mutual

coherence, which is the maximum normalised similarity between the row vectors of Φ, φi and column

vectors of Ψ, ψ j.
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CHAPTER 2 LITERATURE STUDY

The signal can be recovered from these measurements using numerical optimisation algorithms; this is

the decoder half of the framework. The recovery algorithm exploits the sparsity assumption through

Equation 2.3

min
z∈RN

∥z∥0 subject to Az = y, (2.3)

where A = ΦΨ, however, since this optimisation is an NP-complete problem, the convex relaxation is

used instead

min
z∈RN

∥z∥1 subject to Az = y. (2.4)

The Gaussian measurement matrix and the ℓ1-minimisation are the most widely studied encoder and

decoder pair [58]. This is because they lend themselves to mathematical analysis. However, there are

many other combinations since many measurement matrices and reconstruction algorithms have been

proposed.

The robustness of the CS framework is founded on the restricted isometry property (RIP) of the

measurement matrix. The RIP needs the columns of Φ to be nearly orthogonal. Random measurement

matrices adhere to the RIP criteria with a high likelihood if the Equation (2.5) [57] holds. The RIP is

also essential in making certain that CS can overcome additive noise gracefully.

M ≥WK log
(N

K

)
, (2.5)

where W is a small positive number and K is the sparsity of x. Reconstruction algorithms can be

grouped into two broad types, convex relaxation and greedy pursuits [59]. Basis Pursuit (BP) is a

convex optimisation algorithm that unpacks a signal into a superposition of dictionary elements with

the smallest ℓ1 norm [60]. The BP has high computational complexity, which undermines feasibility

for large-scale applications [61].

2.3.1 Reconstruction Algorithms

The rapid reconstruction and low complexity of mathematical framework have led to the popularity of

iterative greedy algorithms in compressive sensing [62]. Currently, the most popular greedy algorithms

are Matching Pursuit (MP) and its derivative Orthogonal Matching Pursuits (OMP) due to their ease of

implementation and fast recovery [63]. Other greedy algorithms are Stagewise Orthogonal Matching
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Pursuit (StOMP), Regularized Orthogonal Matching Pursuit (ROMP) [64] and Compressive Sampling

Matching Pursuits (CoSaMP) [65] that seek to deal with lack of sparsity on the input signal.

The MP algorithm [66] iteratively chooses elements from a dictionary that give the closest approx-

imation of the uncompressed signal. The OMP [67] enhances the MP by minimising the number

of iterations necessary to recover the signal. This improvement was achieved with the sacrifice of

computational complexity by selecting optimal element indexes and updating subspace columns for

each iteration [68]. The MP and OMP can take an indeterministic number of iterations to find a signal

approximation, and thus, StOMP was proposed to overcome this shortcoming [69]. With StOMP, many

elements can be selected per stage, unlike OMP.

In [70], Mun and Fowler proposed the block-based CS sampling and smoothed projected Landweber

(BCS-SPL) algorithm. The authors wanted to reduce computational complexity without compromising

image quality for convex relaxation algorithms. A directional transform was exploited to increase

sparsity and smoothing to realise rapid reconstruction.

There are different minimum sampling requirements for the recovery algorithms discussed in detail in

[63]. The Basis Pursuit, OMP, CoSaMP, and Belief Propagation have a minimum sampling requirement

of O(K logN). While Subspace Pursuits, Expander Matching Pursuits and Sparse Matching Pursuits

have O(K log(N/K)). The other sampling requirements are unique to very few algorithms, such as

ROMP with O(K log2 N) and StOMP with O(N logN). The reconstruction algorithms are compared in

Table 2.3 using minimum sparsity as one of the criteria.
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Table 2.3. Reconstruction algorithm comparison.

Ref. Type Name Aim Minimum

Sparsity

[60] Convex relaxation Basis Pursuit Unpacks a signal into a superposition of dic-

tionary elements

O(K logN)

[66] Greedy MP Chooses elements from a dictionary that

give the closest approximation of the uncom-

pressed signal

[67] Greedy OMP Fewer iterations than MP

[69] Greedy StOMP Deterministic number of iterations to find a

signal approximation

O(N logN)

[64] Greedy ROMP Combining the strengths of convex relaxation

and greedy approaches

O(K log2 N)

[65] Greedy CoSaMP Similar recovery performance to the best con-

vex relaxation approaches

O(K logN)

[70] Convex relaxation BCS-SPL Low computational complexity and high re-

covery accuracy

2.3.2 Sparsity Transforms

The compressed signal is only sometimes sparse; therefore, a sparsity transform is often used to achieve

sparsity. The most popular sparsity transforms in the WMSN literature have been discrete cosine

transform (DCT), and it’s variants [7, 12, 15, 71, 72, 73], discrete wavelet transform (DWT) [6, 9, 46],

and discrete Tchebichef transform (DTT) and it’s variants [74, 75]. The typical approach with the

varients was to prune the transforms to make them more computationally efficient, but this always

came at the cost of the image quality of the recovered image. The three transforms in their standard

form were compared in [8] to evaluate their relative performance in compressed sensing. It was found

that the transform offered the best recovery performance and energy efficiency was the DCT.

The DCT divides an image into differing spatial frequencies in order for the minor impactful frequencies

to be eliminated. The two-dimensional (2D) DCT is generally computed as two sequential one-

dimensional (1D) calculations, first along the rows and then the columns. This is because the DCT

is mathematically separable. Efficient exact implementations of the DCT exploit factorisation of the

transform into the vectors; P, M and A [76]. The vector A is the additive matrix for the set of butterfly
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computations, M is the multiplicative matrix, and P is the permutation matrix for rearranging the output.

The implementation that achieves the theoretical limit of multiplications is the Loeffler, Ligtenberg

and Moschytz (LLM) or commonly referred to as the Loeffler [77].

The DCT uses orthogonal cosine basis functions to get the transform coefficients. The first coefficient

accounts for the first basis function, which is a constant, while each successive basis has a higher

frequency. In most images, most of the energy is condensed in the low-frequency coefficient, and

the rest have small values [78]. The DCT has good energy compaction but for images with high

auto-correlation [79]. This means that when the image has little auto-correlation, the energy is spread

out over more frequencies, and fewer coefficients are close to zero. In [15], compressibility was

predicted using luminance standard deviation and the sampling rate was increased to compensate for

poor compaction. It was assumed that an image with more texture requires higher compression.

Rauhut et al. [80] broadened the scope of CS applications to signals that are not sparse on an or-

thonormal basis by proposing redundant dictionaries for sparse representation. However, obtaining the

optimal coefficients of redundant dictionaries for a given signal is computationally demanding and

requires optimisation algorithms [81].

2.3.3 Adaptive Sampling Rates

Images have different content that does not always get sufficiently compacted by sparsity transforms.

Adaptive sampling rate schemes have been proposed to detect and adapt to these challenging images.

Examples of difficult images are shown in Figure 2.4 based on results from [8]. These images were

not recovered well for all the sparsity transforms that were utilised, DCT, DWT and DTT.

Luo and Si-Wang [82] proposed an algorithm that unpacks an image through a wavelet packet transform

and then exploits expectation and information entropy to separate the coefficients of each block. Each

block is then compressed using one of three methods.

Rong-Fang et al. [83] used texture information for each image block to determine a sampling rate. The

texture information was measured using 1D entropy, and higher entropy blocks were sampled using a

higher rate.
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(a) Library image (b) France image

(c) Mountain image

Figure 2.4. Difficult images to compress.

In [15], Zhang et al. assigned sampling rates for each block based on the standard deviation of the block.

The higher the standard deviation, the higher the sampling rate. Li et al. [84] used the block-based

gradient field to assign the sampling rate, where a block with a higher gradient will be sampled at a

higher rate.

Zhang et al. [85] used the saliency of each block to assign a sampling rate. The authors measured the

saliency using statistical textural distinctiveness. Monika et al. [86] used the energy content of a block

to determine the sampling rate. The energy was measured as the sum of the square of the mean and

variance of low-frequency DCT coefficients. The different sampling strategies are compared in Table

2.4 in terms of their ease of implementation.
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Table 2.4. Adaptive sampling strategies.

Ref. Sampling Strategy Ease of implementation

[82] Expectation and information entropy Low

[83] 1D entropy High

[15] Standard deviation High

[84] Block-based gradient High

[85] Statistical textural distinctiveness Low

[86] Sum of the square of the mean and variance of low-frequency coefficients Low

2.3.4 Sensing Matrices

A properly constructed measurement matrix is essential for the faithful recovery of a compressed signal

[87]. The measurement matrix can reduce the sampling rate needed while enhancing the stability and

fidelity of the recovery algorithm [88]. Initially, dense (unstructured) random measurement matrices

were popular [89, 90]. The Gaussian and Bernoulli matrices are solidly established in the literature and

have been theoretically proven to be suitable candidates for sensing matrices [91]. However, the high

dimensional vectors that are needed to construct these matrices make them unsuitable for real-world

application [92].

In [17], Bajwa et al. proved that semi-deterministic measurement matrices, where only the first row of

the matrix uses random entries, are viable. Do et al. [93], proposed the Structurally Random Matrix

(SRM) for large-scale and real-time compressive sensing. The different categories of proposed sensing

matrices can be seen in Figure 2.5, as discussed in [1].

The SRM [93] has been influential in the development of structured measurement matrix, but sub-

sequent matrices have had better image quality, such as [94] and have had lower computational

complexity, such as [95]. The most efficient matrix was [95], which had the most reduced storage and

computational complexity.

Elad [18] directly optimised the sensing matrix to minimise the average measure of the mutual

coherence. This approach led to better performance than random measurements. Duarte-Carvajalino

and Sapiro [19] demonstrated the utility of jointly optimising a sensing matrix and overcomplete

dictionary transform with encouraging results. However, this approach was computationally demanding,
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Figure 2.5. The sensing matrix categories. Taken from [1], ©2021 IEEE.

and the authors used image patches for their experiments. Abolghasemi et al. [20] proposed an

alternating optimisation of the sensing matrix for reducing the mutual coherence. Their minimisation

algorithm was based on gradient descent and was able to improve recovery accuracy. There have

been many other approaches to mutual coherence minimisation [21, 22, 23], but the construction is

infeasible on a WMSN.

In [24], Baldassarre et al. used the signal dataset to optimise the sensing matrix. Unlike previous

approaches, a structured measurement matrix was developed that offered storage and computational

advantages. Ahmed et al. [25] trained a binary sensing matrix on a dataset to improve recovery

accuracy. For each iteration of the training, the positions of zero and non-zero elements were randomly

swapped, and the structural similarity index (SSIM) of the recovered signal was used as a fitness value.

More recently, Ahmad and Khan [26] used training to optimise a sensing matrix by identifying regions

that have the most energy of the training signals. A selected number of coefficients were chosen, and

set the others to zeros. Similarly, with optimisation matrices, these measurement matrices are not ideal

for WMSN nodes, the sensing matrices are not universal and need offline training.

In [1], it was discovered that deterministic sensing matrices could offer better recovery accuracy than

structured matrices, and the rest of this study will focus on semi-deterministic and fully deterministic

matrices.
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2.3.4.1 Semi-deterministic Matrices

In dealing with challenges related to hardware implementation and sensing efficiency, He et al. [96]

suggested the use of a binary permuted block diagonal (BPBD) matrix. It is binary and sparse, making

hardware implementation simple and diminishing sensing computations. During construction, it

utilises random numbers to permute its columns, which increases computational complexity based

on the generation of random numbers. The authors conducted experiments on MATLAB to compare

the BPBD matrix with other matrices. They found that the proposed measurement matrix has similar

recovery performance to different matrices and the Gaussian. Additionally, the measurement matrix

outperforms other matrices at meagre sampling rates.

A study was conducted by Sun et al. in [29] aimed to address the computational complexity associated

with dense measurement matrices. They introduced the sparse block circulant matrix (SBCM) as a

solution, which has the gain of being both sparse and circulant within each block. This is in contrast

to other structurally random matrices, which are only circulant across blocks. The SBCM is created

using sparse circulant submatrices, with each submatrix constructed from Gaussian numbers used

row-wise and block-wise. The researchers compared the storage and computational complexity of the

SBCM to dense random matrices and evaluated its performance against the Gaussian matrix in 1D

signal experiments. Results showed that the SBCM achieved a similar mean square error (MSE) to the

Gaussian matrix but with significantly reduced complexity.

In [30], Su and colleagues aimed to address the challenges associated with implementing a random

measurement matrix in hardware. They utilised a Toeplitz matrix and improved its randomness by

substituting pseudo-random chaotic entries with random ones. In addition, they reduced the complexity

of calculations by splitting the Toeplitz matrix into block-diagonal and skew-circulant components.

The outcome of this was an enhanced Toeplitz measurement matrix (ITMM). The researchers evaluated

the storage and computational complexity of the matrix and conducted experiments using a DCT and

the StOMP recovery algorithm on monochrome images that were divided into 16x16 blocks at high

sample rates. The ITMM measurement matrix outperformed the Gaussian and other matrices with

regard to signal-to-noise ratio (SNR).

A study by Nandhini et al. (2015) presented two memory-efficient measurement matrices. The first of

the two matrices, named the Combination matrix, is created by taking the Kronecker product of the

Gaussian and Toeplitz measurement matrices [9]. While this method diminishes the number of random
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entries necessary, it increases the complexity of construction due to the multiplication operations.

The last matrix, named the Hybrid matrix, is generated by combining Toeplitz and Binary matrices.

According to the results, the proposed matrices outperformed the Gaussian matrix with regard to

energy consumption and recovery performance. Specifically, the Hybrid matrix performed better than

the Combination matrix.

In a study conducted by Nandhini et al. (2019), a combination of Toeplitz, Hankel, and circulant

matrices was utilised. The Toeplitz matrix was created using random Gaussian entries, while the

Hankel and circulant matrices were formed through transformations of the Toeplitz matrix [12]. These

three matrices were then combined to generate the sensing matrix. The researchers compared their

matrix to the Gaussian matrix and found that their matrix had superior recovery performance and

energy efficiency.

2.3.4.2 Fully Deterministic Matrices

In a study by Sun et al. [97], an enhanced version of the Hadamard sensing matrix was presented. The

standard construction of this matrix involves randomly selecting M rows from an N ×N Hadamard

matrix to create an M×N matrix. However, the researchers opted to choose M rows in order instead

of randomly. This deterministic approach ensured that the row vectors satisfied both orthogonality

and non-linearity attributes while also reducing computational complexity. The effectiveness of the

improved Hadamard measurement matrix was compared to the standard matrix through experiments

on monochrome images using the DWT and OMP recovery algorithm. The results showed that

the proposed measurement matrix outperformed the standard Hadamard matrix in regard to peak

signal-to-noise ratio (PSNR), particularly at low sampling rates.

Authors Ravelomanantsoa et al. [32] have introduced a deterministic measurement matrix suitable for

hardware implementation called the deterministic binary block diagonal (DBBD). This matrix improves

upon the BPBD by eliminating random permutations. The authors conducted experiments using 1D

biomedical signals to evaluate the proposed measurement matrix against the Gaussian and BPBD

matrices. The DCT and a newly proposed OMP variant reconstruction algorithm were utilised. Results

showed that the proposed measurement matrix outperformed both the Gaussian and BPBD matrices

with regard to recovery accuracy, measured in SNR, as well as computational complexity.

A research paper by Yao et al. [10] utilised the low complexity of Logistic mapping chaotic systems to
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CHAPTER 2 LITERATURE STUDY

create an incoherent rotated chaotic (IRC) sensing matrix. The first 1000 elements of the sequence

were disregarded, and the remaining elements were downsampled using an interval d to increase

randomness. This process requires a chaotic sequence of length l = 1000+dt to generate t sampled

values. The IRC matrix only needs n rotated factors for each row, thus reducing storage compared

to other chaotic matrices. The authors introduced an incoherence factor η , which is multiplied for

each rotation and can be separated into a matrix ω . However, this leads to increased computational

complexity due to multiple multiplications from the incoherence factor. MATLAB experiments were

conducted to compare the IRC matrix with the Gaussian. The study showed that the IRC matrix

performs better, but the selection of the incoherence factor presents a challenge for implementation as

it heavily impacts reconstruction performance.

In their study, Hong et al. [11] created a structured sparse sensing matrix that minimised the distance

between the Gram matrix of the equivalent dictionary and the target. This was achieved by ensuring

low mutual coherence. To ensure robustness to sparse representation error of the target signal, they

regularised the improved structured sensing matrix. The researchers combined a row-wise sparse

matrix and a base sensing matrix to create the sensing matrix. They chose a DCT matrix with a

dictionary learned using the KSVD algorithm. The computational complexity of the matrix was

compared to that of a dense matrix. To contrast their sensing matrix against other types of sensing

matrices, such as a dense random matrix, the authors conducted a contrast study. They also included a

denoising algorithm called BM3D to minimise blockiness. The researchers evaluated the images and

found that their sensing matrix produced better results than the dense random sensing matrix when

measured using PSNR.

In a study by Gan et al. [13], a measurement matrix was proposed that utilises bipolar chaotic

sequences to reduce storage and eliminate multiplication. However, these sequences are generated

from the Chebyshev chaotic system, which requires the computationally burdensome cos function

to be implemented on the MCU. To transform the values into a bipolar matrix, a threshold value

is applied to the sequence. The researchers conducted experiments comparing their matrix to the

Gaussian, Bernoulli, improved Hadamard, and dense Chebyshev matrices. Their matrix performed

similarly to the other matrices but was the most effective at low sampling rates.

In their research paper, Sun and colleagues [31] introduced the Chaos-Bernoulli block circulant matrix

as a means to reduce the use of transmission resources. To generate a pseudo-random sequence, they
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CHAPTER 2 LITERATURE STUDY

selected an initial value and sampling interval and used a non-linear Hybrid Chaotic map that integrated

the Logistic and Tent maps. They discarded the first 1000 values of the sequence to enhance its

randomness and sampled it at an interval to ensure the independence of the sampled values. They then

applied the sign function to the sampled sequence and used it to create a block circulant matrix, which

helped to minimise storage and implementation requirements. To obtain the final measurement matrix,

they randomly selected M rows from the block circulant matrix. The authors compared their matrix

with other matrices like the Gaussian, Bernoulli, Hybrid chaotic, and Gaussian circulant matrices using

numerical experiments. They concluded that their matrix performed better than the others.

2.3.4.3 Matrix Comparison

Various studies have revealed that semi-deterministic and fully deterministic measurement matrices

outperform dense random matrices [9, 10, 11, 12, 13, 29, 30, 31, 32, 96, 97]. Table 2.5 presents

a comparison of the performance of different matrices. The complexity cost is classified as Low,

Medium, or High. Reconstruction accuracy is determined with regard to image quality, which must be

better than that obtained using the Gaussian matrix. The matrices with the lowest sensing complexity

are [96] and [32] in this case.

Table 2.5. Sensing matrix properties.

Ref. Type Construction Cost Sensing Cost Image Quality

[96] Semi High Low Good

[29] Semi High Medium Competitive

[30] Semi High Medium Good

[9] Semi High High Good

[9] Semi High Medium Good

[12] Semi High High Good

[97] Full High High Competitive

[32] Full Low Low Good

[10] Full Medium High Good

[11] Full High High Good

[13] Full Medium Medium Good

[31] Full High High Good
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CHAPTER 2 LITERATURE STUDY

2.4 CHAPTER SUMMARY

The networks used in WMSN have limited data rates, typically as low as 250 kb/s. These low rates

and the need for energy conservation make compression an essential tool. The most energy-efficient

paradigm for image analysis in WMSN is the compress-then-analyse. There are many WMSN nodes

that have been proposed for different applications. These nodes differ primarily by their computational

capacity, namely high and low-performance nodes. Low-performance nodes are essential for making

WMSNs practical and flexible. Different low-performance nodes have been proposed, but the TelosB

mote can be used as a reference for energy-constrained applications.

Energy consumption on an MCU can be measured using the number of instruction cycles per operation.

The most expensive operations are multiplication and division. The design of sensing matrices has been

influenced by practical considerations in WSN. The two major innovations have been the replacement

of floating point numbers with bipolar or binary entries and sparse sensing matrices. Random numbers

have been a source of inefficiency from requiring complex mathematical functions or external storage

retrieval.

Compressive sensing is dependent on the sparsity of the signal and incoherence of the sparsity trans-

forms and sensing matrix for ensuring robustness. Different recovery algorithms have been proposed

to address recovery performance and speed. The choice of recovery algorithm affects the minimum

sampling required on the encoder side, where the sensing matrix is critical.

There are many factors affecting the performance of CS; these include the signal sparsity or sparsity

transform, the reconstruction algorithm and the sensing matric design. The most successful sparsity

transform has been the DCT which has proven to preserve image quality and require low computational

complexity. The sparsity transforms are not universal, and there are images where they fail to

compact the energy. Adaptive sampling has been proposed to deal with these challenging images,

but an algorithm is still needed to predict compression performance in order to adjust the sampling

rate.

The BCS-SPL reconstruction algorithm reduces computational complexity without negatively affecting

image quality. Most other compressive sensing aspects impose a compromise between energy efficiency

and recovery performance. However, sensing matrix design has been shown to allow the improvement

of efficiency and recovery accuracy at the same time.
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CHAPTER 2 LITERATURE STUDY

The most promising sensing matrices for energy efficiency and good recovery performance are determ-

inistic matrices. The matrices with the lowest sensing complexity were based on the BPBD because of

the sparsity.
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CHAPTER 3 METHODS

3.1 CHAPTER OVERVIEW

This chapter introduces the proposed sensing matrix and the experimental setup to validate its per-

formance. The motivation for the presented matrix is offered, and the characteristics of the matrix

are discussed. Different alternative components, such as random number generators and construction

algorithms, are discussed. A novel adaptive sampling mechanism is proposed in order to keep the

sample rate low while maintaining QoS expectations. The experiments conducted in this chapter

answer some of the research questions.

Section 3.2 outlines the proposed matrix’s design considerations. In Section 3.3, the proposed sensing

matrix is presented, and the various aspects of its design are highlighted. In Section 3.4, an adaptive

sampling technique is proposed. The technique is compared to similar techniques and evaluated for

effectiveness. Lastly, the technique is optimised for computational efficiency. In Section 3.5, the

experimental setup is discussed, and all the relevant metrics are presented. Section 3.6 provides a

summary of the major elements of the chapter.

3.2 DESIGN CONSIDERATIONS

Matrices that are fully deterministic often rely on chaotic sequences to eliminate the need for random

numbers. This results in matrices that are not sparse, unlike the Bernoulli matrix. The DBBD matrix, on

the other hand, is a sparse, fully deterministic matrix with fixed entries. However, it does require N−M

add operations during sensing. Semi-deterministic matrices, such as the partial canonical identity

(PCI), have achieved good sparsity without the need for add operations during sensing. Additionally,

the PCI matrix has a diminished mutual coherence with the majority of sparsity transforms [98]. One

drawback of the PCI matrix is that it relies on computationally expensive random numbers, which are

consistent with other semi-deterministic matrices. This issue is resolved by replacing random numbers
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CHAPTER 3 METHODS

with a chaotic sequence. To further enhance the construction complexity, random sample positions are

used in place of random permutation, which also diminishes the time complexity.

3.3 DETERMINISTIC PARTIAL CANONICAL IDENTITY MATRIX

To create the PCI matrix, a set of M rows is randomly chosen from an identity matrix with dimensions

of N ×N. While previous studies, including [98, 99, 100], have used the PCI, they have not examined

its computational complexity or potential for improved recovery performance. Therefore, the way in

which the PCI is constructed has a significant impact on both its energy consumption and recovery

performance.

Numerical optimisation has become a common approach to improving the recovery performance of

measurement matrices by reducing mutual coherence with sparsity basis Ψ, as evidenced by several

sources [18, 19, 20, 21, 22, 23]. However, the DPCI’s mutual coherence remains constant, as illustrated

in Figure 3.1.

Figure 3.1. The mutual coherence of matrices using random number generators.
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3.3.1 Random Number Generation

Obtaining random numbers is a crucial aspect of constructing the sensing matrix. The computational

complexity can be reduced, and recovery performance can be improved depending on the method used

for generating the random numbers. We analysed three different algorithms to determine the most

suitable one based on their simplicity and impact on recovery performance.

3.3.1.1 Linear Congruent Generator

When it comes to generating pseudo-random numbers, the Linear Congruential Generator (LCG) is

one of the earliest and most well-known algorithms. With low complexity with regards to computation

and storage, this generator utilises recurrence to produce random numbers that can be seen in Equation

(3.1)

Xn+1 =
(

aXn + c
)

mod m,

xn =
Xn

m
.

(3.1)

The equation presented involves the use of X as the state of the algorithm and x as a random number

that falls within the range of [0,1]. The variables a, c and m are known as the multiplier, increment and

modulus, respectively, and the selection of values for these variables greatly affects the algorithm’s

performance. In this case, the values chosen were a = 16807, c = 0, and m = 2147483647, as stated

in [101]. The resulting energy consumption is expressed in Equation (3.2) with regards to instruction

cycles

εLCG =
(
εmul +2εdiv

)
. (3.2)

The LCG has two divide and one multiply operations, which do not bode well for energy effi-

ciency.

The frequency of occurrence of the random numbers is shown using a histogram with 100 bins and 106

trials in Figure 3.2. The histogram is almost flat, suggesting that each number has the same probability

of occurrence as the next.
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Figure 3.2. The LCG Histogram with 100 bins.

3.3.1.2 Logistic Map

One of the least complex chaotic systems is the Logistic map. It is often used as a reliable source for

generating random numbers [102]. The equation for the system is presented in Equation (3.3). The

variable µ represents the system parameter, while xn is the value of each n, which falls within the range

of [0,1]. To create the system, a value of µ = 4.0 and an initial state of x0 = 0.4 were utilised.

xn+1 = µxn(1− xn) (3.3)

The energy consumption for producing each number in the sequence is formulated in Equation (3.4)

using instruction cycles. The Logistic map has two multiply operations, which is not ideal but much

better than the LCG.

εlogistic =
(
εsub +2εmul

)
(3.4)
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The frequency of the Logistic random numbers is shown using a histogram with 100 bins and 106

trials in Figure 3.3. The histogram has two peaks, one at each end of the scale, suggesting that the

probability is not evenly distributed and most values will be greater than 0.8 or less than 0.2.
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Figure 3.3. The Logistic Histogram with 100 bins.

3.3.1.3 Tent Map

A graph resembling a tent, the Tent map is a difference equation that is iterative, piece-wise linear, and

characterised by chaotic behaviour. This map is known for its uniform distribution of random numbers

and low computational complexity [103]. The equation for this map is shown in Equation (3.5), where

µ represents the system parameter and every value of n is xn ∈ [0,1]. In this particular instance, the

values utilised were µ = 1.99 for the system parameter and x0 = 0.4 as the initial state.

xn+1 =


µxn, if 0 ≤ xn <

1
2

µ(1− xn) if 1
2 ≤ xn ≤ 1

(3.5)
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The energy consumption for producing each number in the sequence is formulated in Equation (3.6).

The Tent map has only one multiply operation, which is at least one order of magnitude better than the

other random number generators.

εtent ≈
(
εcomp +

1
2

εsub + εmul
)

(3.6)

The frequency of the Tent random numbers is shown using a histogram with 100 bins and 106 trials in

Figure 3.4. The histogram is relatively flat but values less than 0.2 are less likely to occur than the

rest.
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Figure 3.4. The Tent Histogram with 100 bins.

3.3.2 Complexity Optimisation

To simplify the creation of the PCI, we employed deterministic random numbers and replaced random

permutations with random sample positions. This optimisation step significantly diminished both the

computation and time complexity.
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3.3.2.1 Random Permutation

To randomly permute the columns of the PCI matrix, the Fisher-Yates Shuffle (FYS) algorithm was

used. This algorithm offers two advantages: unbiased permutations and time complexity O(n) [104].

The Tent map chaotic sequence was employed to generate random values, as outlined in Algorithm

1.

Algorithm 1 Random Permutation
procedure S H U F F L E(A )

X0 = 0.400

U = 1.99

for index i from N −1 to 1 in A do

if Xi−1 < 0.5 then

Xi =UXi−1

else

Xi =U(1−Xi−1)

end if

j = (i−1)Xi+1

Swap A[i] and A[ j]

end for

Return A

end procedure

The energy consumption of the algorithm is formulated in Equation (3.7). The permutation requires

N−1 iterations to shuffle N columns. Each iteration needs two expensive computations, a Tent random

number and a multiply operation.

ε f ys =
(
N −1

)(
εtent + εsub + εmul + εadd

)
(3.7)

3.3.2.2 Random Sample Position

In the PCI matrix, each row only has a single non-zero entry. This characteristic has been utilised

to lessen the complexity of the construction of the DPCI matrix. To implement the random sample

position algorithm, random column sample positions are generated for every row using Algorithm

2.
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Algorithm 2 Random Sample Position

procedure S A M P L E(A )

X0 = 0.400

for row i from 1 to M in A do

Xi = random(Xi−1)

j = N ×Xi

A[i, j] = 1.0

end for

Return A

end procedure

The columns in the novel construction algorithm remain orthogonal, while the non-zero row entries

differ between them. This design retains the RIP properties of the original shuffling algorithm. However,

the effectiveness of the new algorithm is dependent on the quality of the random number generator,

which must be sufficient to spread the non-zero entries evenly across columns. Additionally, the

randomness of the distribution may be affected by the block size N and the sample size M.

Equation (3.8) is used to calculate the amount of energy consumed by the algorithm. In order to

simulate the shuffling of N columns, the permutation requires M iterations. Each iteration only

involves one complex computation, which is a Tent random number. This significantly lessens the

computational complexity of the shuffling process. Additionally, the algorithm lessens the number of

required random numbers and iterations from N −1 to M.

εrsp = Mεtent (3.8)

Figure 3.5 and 3.6 were used to evaluate the algorithm with all three random number generators,

which included LCG, Logistic, and Tent. The algorithm was then compared to the conventional

implementation that used random permutation. It was found that the conventional implementation with

FYS had the best recovery performance, but LCG and Tent were also competitive. Due to its lower

computational complexity, the Tent implementation was selected for further evaluation.
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Figure 3.5. Quantitative recovery performance of different variants.

3.4 ADAPTIVE SAMPLING

Adaptive sampling is the primary means to ensure a QoS level in image quality while maintaining a

low average sampling rate. A detection algorithm was developed for challenging images for DCT. The

algorithm was also optimised to reduce the complexity while not compromising accuracy.

3.4.1 Median Coefficient Magnitude

The median magnitude (absolute value) of the 1D DCT coefficients was used to predict sparsity

for each image. The DCT needs to compact the energy in an image to a few coefficients, and the

median magnitude of these coefficients is a good proxy for the success of the compaction. The median

magnitude will be high for energy that was not successfully compacted. This algorithm was compared

with another simple algorithm based on luminance standard deviation [15]. The images are listed

in Table 3.1 along with their values for standard deviation, median magnitude and image quality.

The image quality results are from the study in [8], where images were compressed at 10% using a

DCT.

The median magnitude and standard deviation can predict recovery performance. The standard

deviation has a stronger Pearson correlation with the image quality of 0.92 than the median magnitude

of 0.91. However, the median magnitude is less computationally expensive than the standard deviation.
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The standard deviation has a time complexity of O(2n) and expensive mathematical operations such as

pow and sqrt.

Table 3.1. Test images and their performance predictions.

File Standard Deviation Median Magnitude Image Quality (dB)

barb.tiff 47.20 340.23 20.89

boat.tiff 52.32 201.51 21.83

france.tiff 77.21 405.57 13.04

goldhill2.tiff 49.23 161.25 23.70

lena2.tiff 47.85 160.60 23.82

library.tiff 89.33 634.27 10.27

mandrill.tiff 42.30 346.45 18.62

mountain.tiff 80.64 757.24 12.25

peppers2.tiff 57.40 193.73 21.19

washsat.tiff 10.31 117.01 29.48

zelda.tiff 40.53 112.32 27.74

The median is computed by first sorting all the values in order of magnitude and then selecting the

middle point, or the average of the two closest values to the middle point, for odd and even-sized values.

The sorting of the values is the most expensive operation and dominates the computation cost of the

median. The best-performing algorithms have a log-linear time complexity, which makes calculating

the median over the entire image expensive.
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(a) LCG (b) Original

(c) FYS (d) Logistic

(e) Tent

Figure 3.6. Qualitative recovery performance from different variants.
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3.4.2 Region Sampling

The image was randomly sampled into regions to reduce the computational load while sacrificing the

prediction accuracy, shown in Figure 3.7. The median coefficient magnitude was computed for each

region, and the results were averaged to predict performance over the entire image.

Figure 3.7. The region sampling.

The sampling was tested on two strategies to see if acceptable outcomes could be achieved. In the first

strategy, a block size of 16 × 16 was used on 11 regions. The second strategy was a block size of 32 ×

32 on 11 regions. The results are shown in Table 3.2. The second strategy gives better results than the

first based on correlation with the full-image baseline. The second strategy had a correlation of 0.95,

while the first had 0.92. Increasing the block size increases the accuracy of the spatial sampling, while

increasing the number of regions enhances the overall representation of textures in the image.
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Table 3.2. Region sampling results.

File Full Image Sampling Strategy 1 Sampling Strategy 2

barb.tiff 340.23 47.14 79.20

boat.tiff 201.51 40.52 43.75

france.tiff 405.57 38.94 111.26

goldhill2.tiff 161.25 32.23 56.57

lena2.tiff 160.60 28.05 40.37

library.tiff 634.27 64.48 124.73

mandrill.tiff 346.45 63.11 77.20

mountain.tiff 757.24 106.53 132.43

peppers2.tiff 193.73 34.48 34.60

washsat.tiff 117.01 22.08 27.46

zelda.tiff 112.32 19.74 30.97

3.5 EXPERIMENTAL EVALUATION

The compressed sensing experiments were conducted using MATLAB on a personal computer running

Windows 10, which had an Intel Core i7 CPU and 16 GB RAM. In order to ensure that the results were

representative, a large number of images were utilised during the experiments. The Waterloo Repertoire

GreySet2 collection of monochrome images, which includes images of people, landscapes, animals,

objects, and posters, was used in 512 × 512 sizes. The images in the collection have high-frequency

textures and low-frequency structures. DCT was used to make each block of 8 × 8, 16 × 16, and

32 × 32 pixel images sparse, and they were then sampled using various measurement matrices. The

block size of 8 × 8 is popular [74, 8] and offers the least memory footprint during sensing, while the

other block size were added to see what influence size plays on energy consumption and recovery

performance. The BCS-SPL algorithm was used to recover the images. The measurement matrices

were evaluated using experiments that graded them at a relatively reduced sampling rate of 10% to

determine their most energy-efficient level. In order to account for stochastic deviation in the results,

the experiments were repeated five times. The average image quality in the form of PSNR was taken

to evaluate the recovery performance, while mathematical analysis was used to evaluate the energy

consumption of the matrices.
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3.5.1 Peak Signal to Noise Ratio

In order to gauge the effectiveness of compressed sensing, the quality of images will be evaluated using

the PSNR metric. Numerous studies have shown that PSNR is a reliable measure for low sampling

rates and high distortion [8]. It is a widely used objective image quality measure. PSNR values are

expressed in decibels (dB) and correspond to image quality. The mathematical expression for PSNR is

provided in Equation (3.9) [73]

MSE =
1

MN

M−1

∑
i=0

N−1

∑
j=0

(ρr(i, j)−ρp(i, j))2,

PSNR =10log

(
L2

MSE

)
.

(3.9)

The PSNR has an inverse, nonlinear mathematical relationship to MSE, which is a cumulative squared

error of the reference ρr(i, j) against the processed image ρp(i, j), L is the dynamic range of the

intensity.

3.6 CHAPTER SUMMARY

The DPCI matrix was presented to solve the issues faced by a WMSN in an energy-constrained

environment. This matrix promises high energy efficiency and high fidelity. The primary advantage

of DPCI is that it uses deterministic random numbers that can be computed with low computational

overhead.

Different random number generators were evaluated, and criteria were developed for selection. The

Tent map chaotic system was selected because it gave the best combination of computational efficiency

and statistical soundness.

The time complexity of constructing the matrix was optimised by developing a novel construction

algorithm. The algorithm directly assigns sample positions for the matrix for each row instead of

random shuffling.

A novel adaptive sampling mechanism was proposed to deal with challenging images. The adaptive

sampling mechanism consists of a prediction algorithm for compression performance to allow for

increasing the sampling rate to maintain QoS.
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Experiments were designed to demonstrate the efficacy of the proposed matrix in addressing the

identified problems. In each of the experiments, several trials were used to evaluate the performance of

each matrix.
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CHAPTER 4 RESULTS

4.1 CHAPTER OVERVIEW

The quantitative and qualitative recovery performance and energy consumption results are provided in

this chapter of the experiments conducted in the previous chapter.

In Section 4.2, the recovery performance is presented in detail. The various measurement matrices and

block sizes are covered in the results. In Section 4.3, the energy consumption analysis is presented for

all the sensing matrices and block sizes. Section 4.4 provides a summary of the main aspects of the

results.

4.2 RECOVERY PERFORMANCE

The quantitative recovery performance of the matrices is measured utilising image quality (PSNR) in

Table 4.1, 4.2 and lastly 4.3. These tables capture the performance under block sizes of 8×8, 16×16

and 32×32. Every recovered image is listed with the image quality for all the sensing matrices. On

the bottom of each table is the average image quality over all the images to represent the average

performance of each measurement matrix. The qualitative performance is shown alongside each table

with examples for each of the sensing matrices in Figure 4.3 to 4.9. For each figure, four images are

shown that were compressed utilising the Gaussian, DBBD, BPBD and DPCI along with the original

image as a benchmark.

4.2.1 Block size 8×8

In Table 4.1, the outcomes for the block size of 8×8 are presented. The best recovery performance

was from the Zelda image with 32.19 dB utilising the DBBD matrix, seen in Figure 4.1. The worst

performance was from the Library image at 15.13 dB compressed with the DPCI matrix; see Figure

4.2. The DBBD matrix had the highest average at 24.42 dB. The BPBD matrix had the second-highest
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CHAPTER 4 RESULTS

performance, with 24.01 dB. The DPCI averaged 22.94 dB, representing the third-best performance.

Finally, the Gaussian matrix had the lowest average performance, with 21.84 dB.

Table 4.1. Recovery performance for 8×8.

PSNR (dB)

File Gaussian BPBD DBBD DPCI

barb.tiff 21.62 23.40 23.47 22.63

boat.tiff 24.16 25.32 25.84 24.64

france.tiff 15.65 17.78 18.32 16.89

goldhill2.tiff 25.47 26.71 26.56 26.25

lena2.tiff 25.57 27.51 28.13 26.28

library.tiff 15.58 16.15 16.74 15.13

mandrill.tiff 19.80 20.57 20.67 19.79

mountain.tiff 15.87 16.97 17.44 16.10

peppers2.tiff 25.33 27.16 27.57 25.08

washsat.tiff 22.46 31.33 31.75 29.66

zelda.tiff 28.67 31.23 32.19 29.89

Average 21.84 24.01 24.42 22.94

In Figure 4.1, the Zelda images are presented. The images look close in performance, and it is difficult

to say which image has the best quality overall objectively. Despite this, quantitatively, there is a clear

difference in performance, where there is ≈ 1 dB difference between DBBD and BPBD, BPBD and

DPCI, and finally, DPCI and Gaussian, in order of decreasing performance.

Figure 4.2 shows the Library images. The BPBD preserved much of the text, and the sub-images

have some detail to discern the objects. The Gaussian had blurred a lot of detail, but the structural

content was intact. The DBBD had sharp detail, but the text was unrecognisable, and small details

were lost to blocking artefacts. The DPCI retained the content of the sub-images but distorted the text.

Quantitatively, the DBBD and BPBD images had a comparable performance with less than a 1 dB

difference. The Gaussian and DPCI had comparable quantitative performance, which was ≈ 1 dB less

than the DBBD and less than 1 dB between them.
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CHAPTER 4 RESULTS

(a) BPBD (b) Original

(c) DBBD (d) DPCI

(e) Gaussian

Figure 4.1. Recovered Zelda images for 8×8.
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(a) BPBD (b) Original

(c) DBBD (d) DPCI

(e) Gaussian

Figure 4.2. Recovered Library images for 8×8.
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(a) BPBD (b) Original

(c) DBBD (d) DPCI

(e) Gaussian

Figure 4.3. Recovered Boat images for 8×8.
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CHAPTER 4 RESULTS

The recovery of Boat images is displayed in Figure 4.3. Notably, the DBBD exhibited the sharpest

detail but with visible pixelation artefacts. The DPCI came in second place with great attention to

small details, such as the ship rigging, but some pixelation artefacts were present. The BPBD followed

closely with the third highest detail, revealing certain sections of the ship rigging. Meanwhile, the

Gaussian method had no pixelation artefacts but produced the lowest level of detail. These findings are

supported by Table 4.1.

4.2.2 Block size 16×16

Based on the results presented in Table 4.2, the Zelda image had the highest image quality, achieving

compression recovery of 33.36 dB when utilising the DBBD matrix. This can be seen in Figure 4.4.

On the other hand, the Library file had the poorest image quality, with compression of 15.65 dB when

utilising both the DPCI and Gaussian matrices. This is demonstrated in Figure 4.5. When considering

the average performance, the DBBD matrix was found to be the best, achieving 25.28 dB. The BPBD

came in second with 24.03 dB, followed by the Gaussian matrix with 23.53 dB, and finally, the DPCI

with 23.35 dB.

Table 4.2. Recovery performance for 16×16.

PSNR (dB)

File Gaussian BPBD DBBD DPCI

barb.tiff 22.97 23.19 23.90 23.03

boat.tiff 24.73 25.21 26.89 24.89

france.tiff 16.82 18.02 19.00 16.08

goldhill2.tiff 26.05 26.61 27.99 26.41

lena2.tiff 27.06 27.62 29.39 26.92

library.tiff 15.65 16.01 17.37 15.65

mandrill.tiff 20.08 20.42 21.02 20.00

mountain.tiff 16.74 16.84 17.81 16.19

peppers2.tiff 27.10 27.80 29.09 26.05

washsat.tiff 30.93 31.08 32.28 30.72

zelda.tiff 30.76 31.53 33.36 30.90

Average 23.53 24.03 25.28 23.35
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Figure 4.4 shows the Zelda images compressed utilising a block size of 16 × 16. The DBBD image

is noticeably better than the other matrices, but the rest of the images had a close performance. The

results are corroborated by Table 4.2, where the DBBD was higher than the other matrices by more

than 1 dB.

Figure 4.5 shows the Library images. The DBBD had the best performance, the detail is sharp, and

some of the text is legible. The DPCI had some sharp details, but smaller objects were smoothed out

with unrecognisable text. The BPBD and Gaussian had comparable performance, characterised by

blurred details. The results are corroborated by Table 4.2, where the DBBD was higher than the other

matrices by more than 1 dB.

The images of GoldHill2 are visible in Figure 4.6. The DBBD showed the highest level of visual detail,

but there were some colour distortions. The BPBD and DPCI had similar performance levels. The

Gaussian, on the other hand, had the least amount of detail but no distortions. These findings align

with the quantitative results in Table 4.2.

4.2.3 Block size 32×32

The results presented in Table 4.3 indicate that the Zelda file provided the best image quality, achieving

32.71 dB when compressed with the DBBD matrix. Figure 4.7 showcases this result. On the other

hand, the Library file produced the worst image quality, with only 14.91 dB when compressed utilising

the DPCI matrix. This result is illustrated in Figure 4.8. The DBBD matrix demonstrated the highest

average performance, delivering 24.73 dB, followed by the BPBD matrix at 23.96 dB. The Gaussian

matrix achieved the third-best performance, providing 22.94 dB, while the DPCI matrix performed the

worst, with only 22.81 dB.
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(a) BPBD (b) Original

(c) DBBD (d) DPCI

(e) Gaussian

Figure 4.4. Recovered Zelda images for 16×16.
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(a) BPBD (b) Original

(c) DBBD (d) DPCI

(e) Gaussian

Figure 4.5. Recovered Library images for 16×16.
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(a) BPBD (b) Original

(c) DBBD (d) DPCI

(e) Gaussian

Figure 4.6. Recovered Goldhill2 images for 16×16.
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Table 4.3. Recovery performance for 32×32.

PSNR (dB)

File Gaussian BPBD DBBD DPCI

barb.tiff 22.94 23.11 23.56 22.72

boat.tiff 24.84 25.36 26.04 24.49

france.tiff 17.50 17.85 18.86 16.45

goldhill2.tiff 24.93 26.46 27.23 24.62

lena.tiff 26.95 27.77 28.49 26.12

library.tiff 15.72 15.85 17.21 14.91

mandrill.tiff 20.13 20.19 20.50 20.06

mountain.tiff 16.65 16.75 17.33 15.87

peppers2.tiff 26.36 27.85 28.19 25.07

washsat.tiff 30.82 30.89 31.87 30.72

zelda.tiff 30.78 31.48 32.71 29.84

Average 23.42 23.96 24.73 22.81

Figure 4.7 shows the Zelda images compressed utilising a block size of 32 × 32. The quantitative

results in Table 4.3 are slightly different from the qualitative evaluation, the DBBD still had the best

performance, but it was followed by the BPBD, Gaussian and then DPCI. The DBBD performed better

than the other matrices. The DBBD image had sharp detail and high contrast. The DPCI also had some

sharp detail but had blocking artefacts. The Gaussian and BPBD had a comparable performance with

smoothed details.

Figure 4.8 shows the Library images. The DBBD performed the best; the detail was sharp, the

text visible, and the letters recognisable. The BPBD had the second-best performance, where some

of the text is visible but not recognisable. The DPCI and Gaussian had comparable performances

characterised by blurred details. These are analogous to the quantitative results in Table 4.3.

The Mandrill images that have been restored can be seen in Figure 4.9. Among the different techniques

used, the DBBD method displayed the most visual detail but had noticeable lines running through the
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image. The DPCI and Gaussian methods had comparable performance and displayed the second most

amount of detail. On the other hand, the BPBD method produced the worst results with visible blocking

artefacts. The findings are consistent with the data presented in Table 4.3, where the performance

metrics are fairly close, except for the DBBD method, which stood out.

4.3 ENERGY CONSUMPTION

The energy consumption was evaluated using the MSP430x1xx Family MCU as a reference hardware

platform. The most energy-efficient operating region of the MCU is at 1MHz, using a 2.2V supply. The

MCU draws a current of 220 µA in the active mode. The instruction cycles needed for mathematical

operations are converted to energy consumption in Table 4.4. The most expensive operations are

multiplication and division, with the other operations equal in energy cost.

Table 4.4. Energy in joules.

Operation Energy Consumption (nJ)

Add 0.484

Subtract 0.484

Multiply 14.036

Divide 10.648

Compare 0.484

In order to create the DPCI, one must have a total of M Tent sequence numbers. Sensing is possible

with the DPCI without the need for any additions or multiplications, unlike the BPBD and DBBD,

which require N −M additions. While the DPCI solely uses energy for construction, the BPBD and

DBBD consume energy for both construction and sensing. Table 4.5 provides a breakdown of the

energy costs associated with constructing and sensing for all block sizes at a 10% sampling rate. The

total energy used for sensing the image is not dependent on the block size but rather on the size of the

image itself. In this particular case, the energy used for sensing was 114.2 µJ.
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(a) BPBD (b) Original

(c) DBBD (d) DPCI

(e) Gaussian

Figure 4.7. Recovered Zelda images for 32×32.
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(a) BPBD (b) Original

(c) DBBD (d) DPCI

(e) Gaussian

Figure 4.8. Recovered Library images for 32×32.
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(a) BPBD (b) Original

(c) DBBD (d) DPCI

(e) Gaussian

Figure 4.9. Recovered Mandrill images for 32×32.
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Table 4.5. Energy consumption for matrices.

Energy per block (µJ)

Process Gaussian BPBD DBBD DPCI

Constructing 8×8 High High 0 0.089

Constructing 16×16 High High 0 0.369

Constructing 32×32 High High 0 1.506

Sensing 8×8 High 0.028 0.028 0

Sensing 16×16 High 0.112 0.112 0

Sensing 32×32 High 0.446 0.446 0

4.4 CHAPTER SUMMARY

The results of the experimental evaluation were presented. The results were divided into recovery

performance and energy consumption.

Recovery performance was evaluated for 8×8 block size using quantitative measures as well as

qualitative assessment. The quantitative measures were assessed using PSNR and presented in a table,

while the qualitative assessment was carried out by visual inspection of the different images. The same

was done for 16×16 and 32×32 block sizes.

Energy consumption was analysed by first converting instruction cycles to energy in Joules using the

ideal operating region of the MCU. The influence of block size was analysed on the construction and

sensing cost.
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CHAPTER 5 DISCUSSION

5.1 CHAPTER OVERVIEW

This chapter discusses the results of the experiments conducted in the previous chapter in order to

critically evaluate and identify patterns.

In Section 5.2, the recovery performance results for each block size are analysed and summarised.

The general pattern across block sizes is then identified and discussed. In Section 5.3, the energy

consumption results are analysed and discussed. The influence of block size is discussed for all the

evaluated block sizes.

5.2 RECOVERY PERFORMANCE

The recovery performance of all the sensing matrices is discussed in the following subsections. The

performance is organised into different block sizes.

5.2.1 Block size 8×8

France, Library, and Mountain were the three images that performed the worst. Across all the

measurement matrices, their image quality was below 20 dB. These images present a challenge for

compression as they are not easily compacted by most sparsity transforms.

The DBBD had the best quantitative performance, but the qualitative performance was not clear. For

some images, the DBBD had a similar performance to the other matrices. In general, the DBBD was

sharp but suffered from pixelation artefacts.

The BPBD had the second-best quantitative performance. The qualitative performance was not

consistent; the matrix performed second best only on one image where the performance was evaluated.

The BPBD preserved the structural content of the images but did not have sharp detail.
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The DPCI had the third-best quantitative performance but the second qualitative performance for one

image. The DPCI had sharp detail but distorted some of the structural content of the images.

The Gaussian had the worst quantitative and qualitative performance. The Gaussian did not have sharp

detail, but the structural content was intact, and there were no distortions.

Of the three qualitatively analysed images, only the Boat image had clear performance outcomes from

the different sensing matrices. The Zelda image had performance results that were too similar to

discern. The Library image highlighted the strengths and weaknesses of the sensing matrices. However,

the overall best performance was subjective.

5.2.2 Block size 16×16

The three images, France, Library and Mountain, still had a much lower performance than the other

images with less than 20 dB.

The DBBD had the best quantitative performance and qualitative performance. The DBBD had sharp

detail but suffered from colour distortion artefacts.

The BPBD had the second-best quantitative performance. The qualitative performance was not clear.

The BPBD preserved the structural content for most of the images but had blurred detail.

The DPCI had the worst quantitative performance, but the difference with the Gaussian is very small.

The DPCI had the third-best qualitative performance for one of the images. The DPCI had sharp detail

but distorted the structural content of the images.

The Gaussian had the third-best quantitative and qualitative performance. The Gaussian did not have

sharp detail, but the structural content was intact, and there were no distortions.

The DBBD was the only sensing matrix that performed qualitatively well for all three images. The

Zelda and Goldhill2 images had a similar performance to the remaining sensing matrices. The Library

image highlighted the different strengths and weaknesses of the remaining matrices.
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5.2.3 Block size 32×32

The DBBD had the best quantitative performance and qualitative performance. The DBBD had sharp

detail and high contrast but suffered from distortions, such as lines across the image.

The BPBD had the second-best quantitative performance. The BPBD smoothed details and had

blocking artefacts. The qualitative performance was not consistent.

The DPCI had the worst quantitative performance. The DPCI qualitative performance was not

consistent between the images. The DPCI had blocking artefacts for one image, sharp detail on the

second and smoothed details on the last.

The Gaussian had the third-best quantitative performance. The Gaussian did not have sharp detail, but

the structural content was intact, and there were no distortions.

The DBBD was the only sensing matrix that performed qualitatively well for all three images. The

Zelda and Goldhill2 images had similar performance for the remaining sensing matrices. The Library

image highlighted the different strengths and weaknesses of the remaining matrices.

5.2.4 All block sizes

Three images were particularly challenging for all the measurement matrices for all the block sizes.

These were the France, Library and Mountain. However, there were differences between sensing

matrices, such as the DBBD almost exceeded 20 dB at 16×16 block size. There was different

performance between the different block sizes, and most of the sensing matrices achieved their peak

performance at 16×16. The content of these images presents a challenge for compression.

The DBBD had the best quantitative performance for all the block sizes. The matrix generally produced

sharp detail in its processed images but would suffer some distortion from pixelation, colour or lines

across the image.

The BPBD had the second-highest quantitative performance for all the block sizes. The qualitative

performance was not consistent, but generally, the matrix produced smoothed details and, for large

block sizes, blocking artefacts.
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When it came to a block size of 8 × 8, the DPCI had the third-best quantitative outcome. However, it

had similar results to the Gaussian at 16× 16 and inferior results at 32×32. For certain images, the

DPCI had the second and third-best qualitative performance. The DPCI typically generated precise

features but was vulnerable to distortions such as pixelation and blocking. At 32 × 32, the DPCI had

the poorest quantitative performance, and it struggled with the more challenging images, experiencing

a comparative decrease in performance of almost 1 dB compared to the Gaussian. Further research is

needed to determine if this drop was caused by the statistical distribution of the non-zero values when

the sample size, N, is large.

The Gaussian generally performed better than the DPCI on the quantitative measures but had the worst

qualitative performance overall. The Gaussian was quite stable in that it never produced any distortions,

but the images lacked details.

When it came to recovering images, the impact of block size was inconsistent. The worst performance

was demonstrated by the Gaussian when the block size was 8 × 8, but it performed better for 16 × 16

and 32 × 32. The recovery performance of BPBD was comparable across all block sizes, whereas the

DBBD and DPCI performed the best at 16 × 16.

5.3 ENERGY CONSUMPTION

Reducing the block size can help to decrease the energy required for construction in DPCI, unlike in

DBBD. DPCI does not require any energy for sensing, which distinguishes it from other matrices.

Sensing energy is a crucial factor that affects the overall energy consumption of the node. The costs

associated with sensing can increase exponentially depending on the sensor’s spectral and spatial

resolution, as well as the type and duration of events being observed.

5.4 SUMMARY

The results across all the performance metrics are summarised in Table 5.1.
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Table 5.1. Summary of all the results.

Recovery Performance Energy Consumption (µJ)

Matrix Quantitative (dB) Qualitative Construction Sensing

Gaussian 8×8 21.84 Blurred details High High

BPBD 8×8 24.01 Smoothing and distortion High 0.028

DBBD 8×8 24.42 Pixelation and colour distortion 0 0.028

DPCI 8×8 22.94 Pixelation and blocking 0.089 0

Gaussian 16×16 23.53 Blurred details High High

BPBD 16×16 24.03 Smoothing and distortion High 0.112

DBBD 16×16 25.28 Pixelation and colour distortion 0 0.112

DPCI 16×16 23.35 Pixelation and blocking 0.369 0

Gaussian 32×32 23.42 Blurred details High High

BPBD 32×32 23.96 Smoothing and distortion High 0.446

DBBD 32×32 24.73 Pixelation and colour distortion 0 0.446

DPCI 32×32 22.81 Pixelation and blocking 1.506 0
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CHAPTER 6 CONCLUSION AND FUTURE

RESEARCH

6.1 CHAPTER OVERVIEW

This chapter summarises the results and presents recommendations for future work. The conclusions

are presented in respect of the research questions and objectives. Future research recommendations are

made based on the challenges encountered during the execution of the research as well as opportunities

that need to be pursued.

6.2 CONCLUSION

There recovery performance of semi-deterministic and fully deterministic was comparable. Except

for the DBBD, there has not been a significant leap in recovery performance. The DBBD performs

significantly better than other sensing matrices and is the deterministic version of the BPBD, but this is

an exception, not a general trend.

Computational complexity affects energy consumption in terms of the complexity of the mathematical

and logical operations as well as the time complexity of the compressive sensing. These factors are

influential when the sensing matrix is constructed and when the signal is sensed. Construction is less

important than sensing complexity because it is not a core operation that has to be carried out for each

signal. Fully deterministic matrices tend to be less sparse than semi-deterministic matrices because

they have been constructed directly from chaotic sequences. The sparsity of the matrices affects the

sensing complexity, and this has favoured semi-deterministic matrices. Semi-deterministic matrices

have suffered from their reliance on random entries, which makes them expensive to construct, but this

problem can be solved by using chaotic matrices, as was done in this study.

The block size affects only the construction cost of the sensing matrices in the case of semi-deterministic
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CHAPTER 6 CONCLUSION AND FUTURE RESEARCH

and some fully deterministic matrices. The relationship is that the larger the block size, the higher the

construction cost.

The most successful design in the sensing matrix is the BPBD; this matrix was successfully improved

even further in the DBBD. This matrix design gives the best recovery performance but suffers one

drawback, which is sensing complexity. The matrix requires N −M addition operation for sensing,

which places a significant energy draw over time. The most energy-efficient sensing matrix design

is the PCI which does not need addition operations for sensing, unlike the BPBD. The PCI had a

drawback in that it had high construction costs because of a dependence on random numbers. This was

solved in the proposed sensing matrix, the DPCI, by replacing random numbers with chaotic sequences.

However, the quality of the random number generator is important for recovery performance, and the

Tent map gave the optimal trade-off between even distribution and energy efficiency. Properties of

the PCI were exploited to improve the time complexity of the DPCI even further by replacing random

permutation with random sample positions.

Some images are not compacted well by sparsity transforms. These images can only be addressed by

increasing the sample rate to maintain QoS. There have been many attempts at predicting compression

performance for images, but most of these prediction methods are complex. The luminance standard

deviation is simple to implement, but an even more simple algorithm was proposed. The coefficient

median magnitude is simple to implement, with complexity only stemming from ordering the values,

but this prediction method can be further simplified by randomly sampling smaller regions of the

image.

6.3 FUTURE RESEARCH

Some images don’t perform well during compression; these images need to be studied further to

find suitable sparsity transforms that can compact their content. But for now, this type of image can

be handled by using adaptive sampling, which needs to be studied further to allocate sample rates

efficiently.

The block size affects recovery performance. The effect is not the same for each sensing matrix, but

most sensing matrices had a peak performance at the intermediate size. One matrix was unaffected,

and another had a peak outside the tested region. This relationship between block size and recovery

performance needs to be studied further to understand how this peak operating region can be identified
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CHAPTER 6 CONCLUSION AND FUTURE RESEARCH

and exploited for other sensing matrices.

Improving sensing matrix performance through mutual coherence is ineffective for the DPCI, as it

remains constant. Further research should focus on improving the recovery performance of the DPCI.

This can be done by analyzing sample positions that yield better results through image dataset training.

Once the results are obtained, they can be used to develop a universal sensing matrix that can be

applied across different datasets.
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APPENDIX A DATASETS

A.1 THE WATERLOO REPERTOIRE GREYSET2

The selected images from the University of Waterloo [105] are shown in high resolution from Figure

A.1 to A.11. These images are popular in the image processing literature. The image and their subject

are described in Table A.1.
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Table A.1. Selected Waterloo Repertoire Greyset2 images.

File Description

barb.tiff A person is photographed sitting on the floor with their face and most of the

body visible.

boat.tiff A small grounded sailboat is captured with a person standing next to it.

france.tiff Travel poster with smooth background and text.

goldhill2.tiff The image captures conjoined houses built up a hill, and there is a person

walking down the hill.

lena2.tiff This image is a portrait of a person at close range and captures mostly the

face.

library.tiff This is a poster with three subfigures; each subfigure has people and has small

and large text.

mandrill.tiff The image is a close-up of the face of a mandrill.

mountain.tiff The image is a landscape of a mountain range with a body of water also

visible.

peppers2.tiff This is a close-up image of peppers.

washsat.tiff This is a satellite image of a city where there are structures from streets.

zelda.tiff This is a portrait of a person where the background is out of focus and the face

dominates the frame.
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Figure A.1. The barb image.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

81

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



APPENDIX A DATASETS

Figure A.2. The boat image.
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Figure A.3. The france image.
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Figure A.4. The goldhill2 image.
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Figure A.5. The lena2 image.
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Figure A.6. The library image.
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Figure A.7. The mandrill image.
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Figure A.8. The mountain image.
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Figure A.9. The peppers2 image.
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Figure A.10. The washsat image.
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Figure A.11. The zelda image.
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