
Speciation model for mixed-ploidy systems
Code documentation

Authors: Felipe Kauai, Frederik Mortier, Silvija Milosavljevic, Yves Van de Peer, Dries Bonte

Year: 2022

Programming language: Java

Summary
We developed a model to understand the eco-evolutionary dynamics of mixed-ploidy population, and

which has been thoroughly analyzed in the manuscript “Polyploid establishment and evolution:

Understanding the eco-evolutionary dynamics of mixed-ploidy systems”. In this document we provide

the documentation for the Java code developed, and pseudo-codes of routines to make it easier for

researchers to implement the model in other programming languages, as well as to clarify the logic

behind the simulation for those not acquainted with java syntax. The reader will find the following

sections within this document:

• Model overview: The basic framework is explained, as a complement to the Methods section

within the main manuscript.

• Main program: A detailed description of the main class in the Java project, design concepts and

a pseudo-code for those interested in building the same simulation in another programming

language.

• Main Methods: A detailed description of the core methods underlying the simulation dynamics,

and their respective pseudo-codes to highlight the logic, and ease the implementation in other

programming languages.

The entire project can be found on a GitHub repository at https://github.com/KauaiFe/Polyploidy-

V1.0, along with a readme.txt file for further information.

Model overview
A population of clonal individuals are initialized within a square lattice and evolves under the combined

forces of mutation, recombination and dispersal. At the start of the simulation, each individual is

represented by a position in space and two chromosomes (diploids). These individuals produce gametes

following meiosis and can mate with other individuals that inhabit a location within a certain mating

radius. Offspring is then dispersed around the location of the first parent (seeker), and is part of the set

of individuals that compose the next generation. Tetraploid individuals are formed by the fusion of 2n

gametes formed by two diploids (produced with a certain probability) undergoing mating, or by 2n

gametes produced by two tetraploid individuals. Also, tetraploids have a parameter that controls their

fertility (gametes produced are not viable). A minimal form of assortative mating is implemented

through a parameter that constrains mating to two individuals that share a minimum genetic similarity.

Each generation is a population of individuals created in the previous generation, and therefore

generations are discrete, and non-overlapping. Through constrained dispersal, mutation, recombination

and assortative mating, the system evolves to a state where clusters of genetically isolated individuals

can be identified. Such clusters are identified as species (see main manuscript for species definition and

Main Methods section for implementation details).

https://github.com/KauaiFe/Polyploidy-V1.0
https://github.com/KauaiFe/Polyploidy-V1.0

Main program and design concepts

Java code description

The main program starts by defining all state variables that control the dynamics of the simulation.

The user can study the influence of each parameter separately on the dynamics of the system, make

them variable, or wrap them into a loop for retrieving data with multiple combinations.

Then, the initial population is initialized within the lattice, as well as all objects that carry the main

methods of the simulation.

Population object contains methods for the initialization of the simulation. It initializes a lattice, creates

a population of size popSize of individuals, and initializes a random genome (diploid) which will be the

same for all individuals upon initialization of the simulation. It takes in as parameters popSize, and

genomeSize, chosen by the user.

EvoMethods object contains methods related to the evolutionary dynamics of the system. These methods

perform mutations on chromosomes, meiosis, alignment of chromosomes (see Main Methods section),

as well as computation of genetic similarity and retrieval of individuals inside the mating radius of a

seeker. It takes in as parameters meiosisCoeff, probPolyploid, mutationRate, matingRadius and
reducedFertility.
SpTracker object contains a single public method for counting the number of species in the system. This

is a deterministic and computationally intensive clustering algorithm that identify groups of genetically

isolated individuals within the system (see Main Methods section). It takes in similarityThreshold as the

only parameter.

Individuals in the population have an Integer index and a two dimensional vector that stores

chromosomes. The number of rows represents the ploidy (diploid or tetraploid), whereas the columns

store the nucleotides of the given chromosome (row element). The positions are stored in a HashMap

that stores the index of each individual and a vector with two elements (x, y).

The remaining of the code is a straightforward procedure that executes the simulation. The program is

executed for a total of numGenerations iterations. At each iteration the simulation builds a new

population from the previous one. This new population consists of offspring that are the results of

successful mating trials between two individuals from the previous generation. A successful mating trial

happens when both individuals (parents) share the same ploidy level (e.g., two diploids), their gametes

share a minimum genetic similarity similarityThreshold and have the same ploidy (e.g., both gametes

are 2n, which will produce a tetraploid offspring).

int numGenerations = 10001; // For how many generations should the simulation run
int popSize = 2500; // Number of individuals that will inhabit the lattice
int genomeSize = 200; // Size of the genome. Each individual will have two chromosomes, each of size genomeSize
int matingRadius = 3; // The radius in which a seeker can find other potential mates (in lattice cells)
int dispersalRadius = 2; // The radius in which offspring can be dispersed (around the seeker)
double similarityThreshold = 0.95; // The minimum required genetic similarity for two individuals to be able to mate (95%)
double meiosisCoeff = 0.05; // When two chromosomes pair during meiosis, it is defined how many nucleotides are exchanged
double probPolyploid = 0.05; // Probability that a diploid individual will produce 2n gametes
double mutationRate = 0.00005; // Probability of mutation per nucleotide
double probDispersal = 0.01; // Probability that an offspring will be dispersed instead of replacing the seeker’s location
double probMate = 0.3; // Probability that an individual is not picked to reproduce (drift)
double reducedFertility = 0.12; // Probability that gametes formed by tetraploid individuals are null

Population pop = new Population(popSize, genomeSize);
EvoMethods solve = new EvoMethods(meiosisCoeff, probPolyploid, mutationRate, matingRadius, reducedFertility);
SpTracker sp = new SpTracker(similarityThreshold);

HashMap<Integer, int[][]> population = pop.getPopGenomes(); // Retrieves genomes from Population object

HashMap<Integer, int[]> positions = pop.getPopPositions(); // Retrieves positions from Population object

/* Empty hashmaps are initialized to store next generation iteratively. They will substitute the previous population and positions
hashmaps iteratively */

HashMap<Integer, int[][]> newPopulation = new HashMap<>();

HashMap<Integer, int[]> newPositions = new HashMap<>();

int offspringCount = 0; // control the index of offspring to be stored in the next generation

while(newPopulation.size() < population.size()) {

 int parent01 = offspringCount;

 int[][] parent01Chromosome = population.get(parent01); // Pick first individual from the population

/* The method findMates() takes in as parameters the positions HashMap and the first parent (seeker) index and finds all individuals

within matingRadius around the seeker. */
 ArrayList<Integer> mates = solve.findMates(positions, parent01);

 double pMate = Math.random(); // Probability that parent01 will be substituted (drift)
 if(pMate < probMate) {

 int newMate = (int) (Math.random()*mates.size());

 parent01Chromosome = population.get(mates.get(newMate));
 }

// Iterate over all mates inside matingRadius

 for(int i = 0; i < mates.size(); i++) {

 // A new gamete for parent01 is generated for every mating trial

 int[][] gameteP1 = solve.meiosis(parent01Chromosome);

 // Select a random mate inside the mating radius

 int mate = (int) (Math.random()*mates.size());
 int[][] mate02Chromosome = population.get(mates.get(mate));

 /*See main manuscript for a detailed description of how meiosis is performed*/

 int[][] gameteP2 = solve.meiosis(mate02Chromosome);

 // If gametes from parent 01 or 02 are null (reduced fertility)

 // then throw NullPointerException and continue execution
 try {

 /*See Main Methods section for a detailed description of how genetic similarity is computed */

 double similarity = solve.computeSimilarity(gameteP1, gameteP2);
 if(gameteP1.length == gameteP2.length && similarity >= similarityThreshold

 && parent01Chromosome.length == mate02Chromosome.length) {

 int[][] offspring = joinGametes(gameteP1, gameteP2);

 int[] offspringPosition = positions.get(parent01);

 double t = Math.random();

 if(t < probDispersal) {
 offspringPosition = newPosition(positions, parent01, dispersalRadius);

 }

 newPopulation.put(offspringCount, offspring);

 newPositions.put(offspringCount, offspringPosition);

 offspringCount++;
 break;

 }
 }catch(NullPointerException e) {

 }
 }

 /*Substitute previous population and positions*/

 population = newPopulation;
 positions = newPositions;

 /* The default program counts the number of species at every 500 generations */

 if(g % 500 == 0){
 double[][] adjMatrix = solve.buildAdjMatrix(population);

 int[][] species = sp.countSp(adjMatrix); /*See Main Methods section for a detailed description of sp.countSp()*/

 }

}

Pseudo-code and flowchart

𝐒𝐩𝐞𝐜𝐢𝐚𝐭𝐢𝐨𝐧𝐌𝐨𝐝𝐞𝐥: 𝐌𝐚𝐢𝐧 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦
1. Let 𝐺 denote the number of generations
2. Initialize initial population 𝑆𝑔

3. 𝐟𝐨𝐫 𝑔 = 1 𝑡𝑜 𝐺 𝐝𝐨
4. 𝑆𝑔+1 ← Initiliaze empty population

5. 𝐰𝐡𝐢𝐥𝐞 |𝑆𝑔+1| < |𝑆𝑔| 𝐝𝐨

6. 𝐟𝐨𝐫 𝑠 = 1 𝑡𝑜 |𝑆𝑔| 𝐝𝐨

7. 𝐈𝐟 individual 𝑠 is not lost via drift with probability 𝑄
8. 𝑀 ← Find potential mates inside mating radius of individual 𝑠
9. 𝐟𝐨𝐫 𝑚 = 1 𝑡𝑜 |𝑀| 𝐝𝐨
10. 𝑝 ← select random individual from 𝑀
11. individuals 𝑠 and 𝑝 undergo meiosis and mutation
12. 𝐢𝐟 𝑠 and 𝑚 are compatible
13. 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑗𝑜𝑖𝑛𝑒𝑑 𝑔𝑎𝑚𝑒𝑡𝑒𝑠 𝑓𝑟𝑜𝑚 𝑠 𝑎𝑛𝑑 𝑚
14. 𝑆𝑔+1 ← 𝑆𝑔+1 + 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

15. break
16. 𝐞𝐧𝐝
17. 𝐞𝐧𝐝
18. 𝐞𝐧𝐝
19. 𝐞𝐧𝐝
20. 𝐞𝐧𝐝
21. 𝑆𝑔 ← 𝑆𝑔+1

22. 𝐞𝐧𝐝
23. return gsTotal/p

Below, the reader may find the code flowchart, also presented in the main manuscript, highlighting

the procedure to build a single generation.

Main Methods and details

EvoMethods class

The EvoMethods has a constructor that initializes the state variables that control the methods built for

the class. The variables meiosisCoeff, probPolyploid, mutationRate, matingRadius and

reducedFertility are required for the constructor.

The class has five methods: computeSimilarity(), meiosis(), findMates(), mutate() and

buildAdjMatrix().

To compute 𝐺𝑆 (see Main text) for two sets of more than one chromosome each, we apply a simple

optimization heuristic (HeuristicGS) for the alignment of chromosomes. Let 𝐾1 and 𝐾2 be two sets

public EvoMethods(double meiosisCoeff, double probPolyploid, double mutationRate, int matingRadius, double reducedFertility) {

 this.meiosisCoeff = meiosisCoeff;

 this.probPolyploid = probPolyploid;

 this.mutationRate = mutationRate;

 this.matingRadius = matingRadius;

 this.reducedFertility = reducedFertility;

}

containing the chromosomes of parents (or gametes) 1 and 2, respectively, with the requirement that

both parents (or gametes) have the same ploidy level, i.e., |𝐾1| = |𝐾2| . If Ki denotes the 𝑖𝑡ℎ element of

set 𝐾, then the procedure reads as follows:

𝐇𝐞𝐮𝐫𝐢𝐬𝐭𝐢𝐜𝐆𝐒(𝐾1, 𝐾2).
1. Get ploidy level: p
2. Initialize variable to be returned: gsTotal ← 0
3. 𝐟𝐨𝐫 i = 1 to |𝐾1| 𝐝𝐨

4. L ← find chromosome in 𝐾2 such that GS(Ki
1, Kj

2) is maximum for all j

5. gsTotal ← gsTotal + GS(Ki
1, L);

6. 𝐾2. pop(L)
7. 𝐞𝐧𝐝
8. return gsTotal/p

The method computeSimilarity() uses the HeuristicGS procedure for the alignment of chromosomes and

compute similarity between chromosomes while alignment is performed. It takes in two genomes (or

gametes) as parameters and returns a real value corresponding to the similarity between genomes (or

gametes). The java code is presented below.

public double computeSimilarity(int[][] genome01, int[][] genome02) {

 double similarity = 0.0; /* similarity to be returned by the end of method execution */

 ArrayList<Integer> queue = new ArrayList<>(); /* start a queue to store chromosomes already compared */

 /* if a chromosome (genome02) is the most similar to one from the queue (genome01)

 * then it must not match again another genome from the queue (genome01) */

 ArrayList<Integer> matched = new ArrayList<>();

 for(int i = 0; i < genome01.length; i++) {

 /*add all chromosomes from genome01 to queue. The choice of each genome is picked first is irrelevant*/

 queue.add(i);

 }

 while(!queue.isEmpty()) { */while the queue is not empty compared chromosomes*/

 int chromosome = queue.get(0);

 queue.remove(0);

 int compare = -Integer.MAX_VALUE;

 int matchedIndex = -1;

 /* look for best match from genome02 with chromosome from the queue*/

 for(int i = 0; i < genome02.length; i++) {

 boolean notMatched = true;

 /* See whether this chromosome has already a correspondence from previous elements from the queue */

 for(int j = 0; j < matched.size(); j++) {

 if(i == matched.get(j)) {

 notMatched = false;

 break;

 }

 }

 if(notMatched) {

 /*Then count similar alleles. The algorithm will find the best match for the chromosome in the queue*/

 int similarAlleles = 0;

 for(int k = 0; k < genome02[i].length; k++) {

 if(genome01[chromosome][k] == genome02[i][k]) {

 similarAlleles++;

 }

 }

 if(similarAlleles > compare) {

 compare = similarAlleles;

 matchedIndex = i;

 }

 }

 }

 if(matchedIndex != -1) {

 matched.add(matchedIndex);

 similarity += Double.valueOf(compare);

 }

 }

 return similarity/(Double.valueOf(genome01[0].length)*genome01.length);

}

Next, we have a 𝑚𝑒𝑖𝑜𝑠𝑖𝑠() method, which takes in as parameter a genome and returns a gamete. The

procedure is thoroughly described in the main text. As far as the Java implementation is concerned,

we implement a switch statement that distinguishes between diploid and tetraploid genomes. After

gametes are formed, these are subject to mutations, with a built-in method called 𝑚𝑢𝑡𝑎𝑡𝑒(). The class

also contains two simples methods, 𝑓𝑖𝑛𝑑𝑀𝑎𝑡𝑒𝑠() amd 𝑏𝑢𝑖𝑙𝑑𝐴𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(). The first method simply

scans all individuals inside a given mating radius around a focal parent, and returns a list of potential

mates. The second performs pairwise genetic similarity computations for all individuals, using the

previously described method 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(), and returns an adjacency matrix, used for

retrieving species identities (see below).

SpTracker and Population classes

The SpTracker class contains only two methods. One for counting the number of species, 𝑠𝑝𝐶𝑜𝑢𝑛𝑡(),

and an auxiliary method, 𝑟𝑒𝑚𝑜𝑣𝑒𝐼𝑑(), to remove rows of a matrix returned by the previous method.

The method 𝑠𝑝𝐶𝑜𝑢𝑛𝑡() is a straight forward greedy clustering algorithm, that clusters individuals

according to their genetic similarities. The method takes in as parameter the adjacency matrix referred

to in the last section, and outputs a matrix, with the number of rows equal to the number of species,

and the number of columns equal to the population size, representing individual identities. At each

species (or row), all columns that have a 1, represent an individual of the population that is assigned

to that species, and 0 otherwise. Let Pop be the current population of individuals and AdjMatrix the

adjacency matrix representing genetic similarities G between all pairs of individuals, then the pseudo-

code of the algorithm reads as follows:

𝐜𝐨𝐮𝐧𝐭𝐒𝐩(𝑃𝑜𝑝, 𝐴𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥).
1. 𝑠𝑝𝑖𝑗 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑗 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖

2. 𝑠𝑝11 ← 𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 1
3. 𝑘 ← 1 /* dummy variable to control species identity */
4. 𝐝𝐨
5. 𝐟𝐨𝐫 j = 1 to Pop. Size 𝐝𝐨
6. 𝐢𝐟 𝐴𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥1𝑗 ≥ 𝐺 𝐝𝐨

7. sp𝑘𝑗 ← 1 /* Assign individual j to species k */

8. 𝐞𝐧𝐝
9. 𝐞𝐧𝐝
10. 𝐰𝐡𝐢𝐥𝐞 there is no individual j ∈ 𝑠𝑝𝑘𝑗 such that 𝐴𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥𝑗𝑖 ≥ 𝐺, ∀ 𝑖 ∈ 𝑃𝑜𝑝

11. 𝐈𝐟 Pop. size > 0 𝐝𝐨
12. 𝑘 ← 𝑘 + 1
13. 𝑠𝑝𝑘1 ← 𝑎𝑠𝑠𝑖𝑔𝑛 𝑓𝑟𝑒𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
14. Repeat lines 4 − 10
15. 𝐞𝐧𝐝
16. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑝𝑖𝑗

