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In some standard applications of spatial point pattern analysis, window selection
for spatial point pattern data is complex. Often, the point pattern window is given a
priori. Otherwise, the region is chosen using some objective means reflecting a view
that the window may be representative of a larger region. The typical approaches
used are the smallest rectangular bounding window and convex windows. The
chosen window should however cover the true domain of the point process since it
defines the domain for point pattern analysis and supports estimation and inference.
Choosing too large a window results in spurious estimation and inference in regions
of the window where points cannot occur. We propose a new algorithm for selecting
the point pattern domain based on spatial covariate information and without the
restriction of convexity, allowing for better estimation of the true domain. A modified
kernel smoothed intensity estimate that uses the Euclidean shortest path distance
is proposed as validation of the algorithm. The proposed algorithm is applied in
the setting of rural villages in Tanzania. As a spatial covariate, remotely sensed
elevation data is used. The algorithm is able to detect and filter out high relief areas
and steep slopes; observed characteristics that make the occurrence of a household
in these regions improbable.

Keywords: Covariate, Euclidean shortest path, Nonconvex, Spatial point pattern, Window
selection.

1. Introduction

A spatial point pattern is the mapped locations of objects or events over a region of interest termed
a window (Baddeley et al., 2015; Illian et al., 2008). Mapped point pattern data (Illian et al., 2008)
usually comprise

¢ an observation window W,

* the point record of each point x; in the observation window, {x;, m;1, m;2, ..., m;p}, where x;
denotes the coordinates of the observed point location and m;y, m;, ..., m;, are marks (i.e.
observations made on a set of random variables) collected at x;, and

e covariate information as a spatial measurement Z(u), u € W. It is customary for Z(u) to
describe a continuous variable defined at every point in W, whereas marks are only given at
the observed points.
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A typical aim of spatial point pattern analysis is to expand basic understanding of the first-order
and second-order properties of the underlying spatial point process that generated the pattern and
extrapolate results to regions where observations have not been made (Bailey and Gatrell, 1995).
First-order properties describe how the average number of points varies over different locations in
the window. Second-order properties describe how the process values are correlated in space (Bailey
and Gatrell, 1995). Information regarding the window W and the point pattern locations {x;} in this
window are required for an appropriate analysis of the point pattern. When covariate information
is available, an investigation into the dependence of a point pattern on covariate data should be
conducted and any dependence quantified using the available techniques in (Baddeley et al., 2015,
2010, 2012; Myllymaki et al., 2020).

In some applications, the selection of W is a non-trivial task. The window W is known when a
local phenomenon is studied. Examples include crimes in a city, pores of a metallic foam in a pipe,
fungal spots on leaves, fish in a lake, or cell centres in a small biological organ (Illian et al., 2008).
Otherwise, it must be chosen using some objective means that reflects a view that it is representative
of a larger region, or based on a probability sampling method (Diggle, 2013).

Selection of W must be made carefully; a large choice for W may result in spurious estimation
and incorrect conclusions about the first- and second-order properties of the point pattern. The
description of first- and second-order properties of point pattern data will rely implicitly or explicitly
on the specification of W, i.e. when computing global density measures based on the area of W,
when correcting for edge effects in intensity estimation (Baddeley et al., 2015; Diggle, 1985), and
when computing distance to quantify spatial dependence and correlation (Baddeley et al., 2015).

In real world applications, sampled points may be defined over an unknown irregular window that
has a disconnected or a nonconvex domain. These more general windows result from factors that may
make it impossible to observe points in certain regions. Consider the following example. Figure 1
(Dare and Barry, 1990) depicts the distribution of buzzard nests in two upland regions, Snowdonia
and Migneint-Hiraethog, in North Wales, UK. Open and closed dots indicate nesting sites outside
and inside the study region respectively. The two upland regions are separated by a dashed line and
horizontal hatching is used to indicate terrain unsuitable for nesting. In areas unsuited for nesting,
points cannot be observed. A similar example can be found in a paper by Newton et al. (1977),
based on a study of spacing of territories of Accipiter ninus, the sparrowhawk, in twelve areas of
Britain. Woodlands suitable for nesting were often separated by large areas of unsuitable woodland,
farmland or other open country. The position of the border of the study areas presented a problem as
some areas in the woodland were mainly adjacent to rivers and streams, so that estimates of density
and habitat proportions were influenced by the amount of open land included on either side. The
boundary of the study regions were marked arbitrarily by making a line around the outermost nesting
territories at a distance from their centres equal to half the mean inter-territory distance in continuous
nesting habitat.

Literature detailing the selection of spatial window domains typically rely on an assumption of
convexity of the domain. Ripley and Rasson (1977) proposed a method for window selection through
the reconstruction of a compact convex set D from a realisation of a homogeneous planar Poisson
process observed over this unknown set D. Given a set of observations from a realisation of a
homogeneous planar Poisson point process of unknown intensity within a compact convex set D,
they present a technique to determine the compact convex set. Their proposed solution is the dilation
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Figure 1. Distribution of buzzard nesting territories.

of the convex hull about its centroid. Moore (1984) presents a method for solving a similar problem,
namely estimate D, a compact convex set in R”, given independent observations xi, . . ., x, sampled
uniformly from an unknown D. Rasson et al. (1994, 1996) (also see Remon, 1994) consider how
to extend these methods to estimate convex sets with observations that are inside and outside the
convex set. These estimates are derived under the assumption of a homogeneous Poisson process and
a convex domain; assumptions that may not hold in practice. These estimates also do not incorporate
the effect of covariates on the occurrence of a point. Other literature that addresses the determination
of a convex hull or convex set from a random set of points include Efron (1965); Dattorro (2010);
Phelps (1957). The most common approaches for window selection are the smallest rectangular
bounding box and the convex hull.

The objective of this paper is to present a new algorithm to determine nonconvex window domains
for spatial point pattern data using covariate information and to illustrate how the proposed nonconvex
window aids in improving estimation. In particular, we give focus to the method of intensity
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estimation which is used to characterise the first order properties of a spatial point pattern as a
validation of the proposed algorithm. This is only one example of a method that is changed by
a nonconvex window. To this end, we have organised the paper as follows: In Section 2, we
detail the proposed nonconvex window selection algorithm and discuss how the kernel smoothed
intensity estimator can be modified for analysis on nonconvex window domains. In Section 3, the
nonconvex window construction algorithm is applied to households in a rural setting in Tanzania’s
Mara province' and elevation data from a Digital Elevation Model (DEM) used as a spatial covariate.
Section 4 is dedicated to a discussion of the results and Section 5 concludes with a discussion for
prospective future work.

2. Methodology

In this section, we propose an algorithm for the construction of a representative nonconvex window
using covariate information. A modified kernel smoothed intensity estimator is also presented that
makes use of a visibility graph to allocate kernel weights and is provided as an indication of the
appropriateness of the constructed nonconvex window.

2.1 Covariate construction of nonconvex window algorithm

The algorithm we propose herein considers the construction of a representative nonconvex window
domain that is constructed by incorporating the effect of the covariate on the occurrence of a point;
assuming that covariate information is available. The investigation of the dependence of the point
pattern on the spatial covariate should precede the implementation of this algorithm. It is desirable
to use covariates believed to impact the distribution and abundance of the object of interest, or that
is correlated to them; see Baddeley et al. (2015, 2010, 2012).

The aim of the algorithm is to select a window domain filtered of all the areas for which it is known
that the occurrence of a point is equal to or close to zero, and to determine this based on covariate
information. The steps are presented in Algorithm 1, discussed below, and illustrated in Figure 2.

Suppose x1, . . ., xn denote the set of points observed from the unknown, not necessarily convex,
domain W ¢ R? and let W* > W. Without loss of generality we suppose that W* is the smallest
bounding rectangular window that contains all the observed points, as shown in the top-left panel
of Figure 2. The Minkowski distance (Li and Klette, 2011; Longley and Batty, 2003) between

x = (x1,x2) and y = (y1, y2) is given by
1
e = yllp = (x1 = 31”7 + [x2 = y2|P) 7. )]

For p = 1 and 2, the distance is the Manhattan and Euclidean distance respectively. As p tends to
infinity, the distance is known as the Chebyshev distance where ||x||c = max{|x;|, |x2]}.
In Step 1 of the algorithm, a moving window M; at position x;, given by

Mi={u ||xi_”||ooSCd}’ 2

"'This research, entitled Covariate construction of nonconvex windows for spatial point patterns, was approved by the Faculty
of Natural and Agricultural Science Research Ethics committee at the University of Pretoria under the reference NAS33/2019.
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is created, where d = min; ¢ {||x; — xx||2} and ¢ > 0 is a positive real number. To choose the value
of ¢, the moving window M; with varying values of ¢ is moved to each observed point x;. Points
contained in the moving window are systematically chosen” and the covariate values at each point
evaluated. The values of the covariates are then used to calculate the coefficient of variation. The
maximum value of the coefficient of variation is then plotted against the moving window size. The
moving window size is then chosen subjectively as the smallest distance before the distance at which
a relatively large change in the value of the maximum occurs. The aim in selecting the moving
window size in this way is to find the scale ¢ that represents the least variation in covariate values for
neighbourhoods of the observed points. Let this appropriate side length be denoted by g. This step
is illustrated in the top panel of Figure 2.

In Step 2 of the algorithm, after settling on a value for g, the covariate values at points in the
moving window are evaluated and statistically summarised using the variance®. Let f; denote the
computed value of the summary measure based on the covariate values in M;.

In Step 3 we define a set F based on the f; values. That is, let

F={flmin; {f;} < f < max;{fi}}.
In Step 4 of the algorithm, the moving window is centred over locations u; € W*, u; & {x1,...,xn},

and is denoted by

sz{u

i — ullo Sg}. 3)

This corresponds to superimposing a grid over W* with a grid cell size of g.

In Step 5 of the algorithm, the moving window visits each cell and computes a measure based
on the covariate values in the cell. Let fj * denote the computed summary value based on covariate
evaluated at points in M]’f.

In Step 6 of the algorithm, the true domain W is obtained as

The algorithm uses the moving window to search through overlapping grid cells in the larger
domain W* and, based on a threshold value that conditions on the covariates in the neighbourhood
of the observed data points, filter out the regions that are outside the threshold. The thresholds are
strictly determined based on the covariate values in the neighbourhood of the observed data points.

2The points are chosen such that they span the area covered by the moving window. This can be achieved by selecting points
u=x;+ %(sl,sz) where b, s1, 52 € N.

3 The mean can also be used as a summary measure if the spatial covariate is a surrogate variable that represents a rate of
change of an original variable.
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Algorithm 1 Covariate construction of nonconvex window
1. Create M; = {u|||x; — ul||w < cd }, where x; is an observed point and d = min;zx{||x; — x|}
and ¢ > 0 is a positive real number.

2. Select points in M;, evaluate the value of the covariate at the selected points and use to compute
fi» where f; is the summary value based on covariates evaluated at points in M;.

3. Let F = {f|min;{f;} < f < max;{f;}}.
4. Create M}‘.‘ = {ul [luj —ullo < g}, where u; € W*, u; ¢ {x1,...,x,}, and g denotes the moving
window size.

5. Select points in M;, evaluate the value of spatial covariate at the selected points and use values to
compute f ;‘, where f ;‘ is the summary value based on covariates evaluated at points in M]’f.

6. True domain: W = Uy 5 frer M;'
<

2.2 Modified kernel smoothed intensity estimator

The use of nonconvex windows constructed using the algorithm in Section 2.1 necessitates the use of
anorm alternative to the Euclidean distance; since this distance does not respect window boundaries.
In the case where movement between points is constrained by a connected physical path on the
window, it is important to define distance using a measure that is representative of this path since
these will affect the estimates used to characterise first- and second-order properties of the pattern.

This section is dedicated to demonstrating the effect of the chosen window on the kernel smoothed
intensity estimate. The role of the proposed modified kernel smoothed intensity estimator is used
to provide an indication of the appropriateness of the constructed nonconvex window. There are
other intensity estimators that are applicable for nonconvex windows that have attractive statistical
properties and these can be used in the final estimation of intensity. The reader is directed to Baddeley
et al. (2022) for a discussion of these.

2.2.1 Kernel smoothed intensity estimation
An exploratory step in point pattern analysis involves estimating the intensity function. The intensity
function characterises the first-order properties of a spatial point process, describing how the average
number of points varies over different locations in space (Gatrell et al., 1996). A query into the
properties of the intensity of a process is often the aim of a scientific investigation and is a crucial
part of point pattern analysis (Kutoyants, 2012; Moller and Waagepetersen, 2003). For example,
in forestry surveys the stand density, defined as the number of trees growing per unit area, is an
important quantity to be estimated (Ginrich, 1967).

The intensity function A(x) (Gatrell et al., 1996) at position x € W, where W is the spatial window,
is defined as the average number of points per unit area and is denoted by the expression,

A0) = lim E(N(dx))

- 7 4
—0 |dx| ’ ( )

where dx is a small region around x, E (-) is the expected value operator, |dx| is the area for this region,
and N (dx) refers to the number of events in the region dx. A point pattern that has constant intensity
over varying locations, A(x) = 4, is termed first-order homogeneous whereas inhomogeneous point
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Figure 2. Illustration of the covariate construction of nonconvex window algorithm.
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patterns have non-constant intensity functions varying with x. The intensity function can be estimated
using the kernel estimator of intensity (Diggle, 1985; Silverman, 1986)

A = D Kn(x = xi), )
i=1

where £ is the bandwidth, Kj,(x) = A 2K ((x — x;)/h), and K(-) is a kernel weighting function,
a probability density on R2. Values of the intensity at certain locations in W are estimated from
neighbouring data and the estimates presented. Due to edge effects, the estimator is biased. This can
be corrected for by using the uniformly corrected kernel estimator (Diggle, 1985)

. 1 <
AV (x) = —— > Kp(x—x,), (©6)
qn(x) ; l
or the Jones-Diggle corrected kernel estimator (Jones, 1993)
A o 1
AV (x) = K, (x — x;), 7)
) Z qn(x;) ( )

i=1

where g, (x) = fW Ky (x — y)dy is an edge correction term.

Since the intensity function is estimated on the full extent of W, if W is misspecified, we estimate
intensity in areas of the domain for which a point occurrence is non-observable. We show this
with the example in Figure 3. The figure depicts the kernel smoothed intensity estimate of a point
pattern where point locations (red dots) denote fish in a lake. The point pattern was created by
simulating points in a polygon of the Great Bear Lake in Northwest Territories, Canada*. The bold
irregular boundary represents the separation between lake water and dry land. The estimation is
done over a rectangular window domain, the standard smallest bounding rectangle, and fitted with a
Gaussian kernel. As seen in the figure, for such a point pattern, estimation of intensity in this window
domain will result in the incorrect allocation of positive intensity of fish over areas of dry land. The
observation window will obviously be delineated by the boundary separating land and water and
would be chosen as such in practice. The importance of making use of covariate information for
window determination is clear from this example.

2.2.2 Distance metrics for spatial point patterns

The kernel smoothed intensity estimate in Equation 5 apportions weights based on the Euclidean
distance between a point and the point events observed in the point pattern. The expression for the
Euclidean distance between two points, x = (x1, x2) and y = (y1, y2) in R?, is given by

Il = yll2 = /(61 = y1)2 + (x2 = y2)2. (®)

This distance measure makes two implicit assumptions, (1) the distance is calculated along the
shortest physical path formed by the line segment connecting two points in Euclidean space; (2) the

“https://www.naturalearthdata.com/downloads/10m-physical-vectors/ 1 0m-lakes/[ Accessed 10 January 2020]
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Figure 3. Kernel smoothed intensity estimates of a simulated point pattern of the locations of fish in
a lake, estimated on a rectangular window domain and fitted with a Gaussian kernel.

space has no variation in direction and is completely uniform (Longley and Batty, 2003). These
assumptions make it possible to use expressions that only require knowledge of the coordinates of the
end point locations, thus the actual path between two points is avoided (Longley and Batty, 2003).
In cases where the movement of points is constrained by a connected physical path on a nonconvex
window, estimating the intensity assuming the Euclidean norm results in a kernel smoothed estimate
that does not regard the boundaries of W or holes in this domain.

Consider Figure 4°, a Google Earth plot of the geographical locations, latitude and longitude,
of households in the Hekwe village in Mara province, Tanzania®. In Figure 4(b), we see that
mountainous regions make it non-viable to move along the blue coloured line segment, indicative of
the Euclidean distance, and that a more representative path would follow along the yellow line using
a non-Euclidean distance. In instances as shown in Figure 4, this would mean the Euclidean distance
does not measure the true distance between points on the physical surface represented by the spatial
window. In addition to this, mountainous areas make it likely impracticable to build houses, thus for
the given point pattern, intensities should not be registered over these regions.

For a convex polygon, the line segment representing the path formed by the Euclidean distance
between any two points from the polygon lies entirely in the polygon. On the other hand, a nonconvex
polygon has points for which the line segment representing the path formed by the Euclidean distance
does not entirely lie within the polygon. An alternative distance metric should thus be chosen for a
nonconvex domain that constrain the movement of points.

2.2.3 Path connected distance metric

The problem of finding a representative distance measure between points, one that respects the
window boundaries and nonconvex structure, and that avoids holes in the window domain, can be
solved by finding the length of the Euclidean shortest path. The Euclidean shortest path (Li and

> Google Earth V 7.3.3.7786. (April 14, 2017). Mara province, Tanzania. 1°37°07.33”S, 34°16°26.95”E. Eye alt 5.12km.
CNES/Airbus 2021. http://www.earth.google.com[February 18, 2021], Google Earth V 7.3.3.7786. (July 21, 2017). Mara
province, Tanzania. 1°37°15.16”S, 34°17°05.01”E. Eye alt 1.96km. Maxar Technologies 2021, CNES/Airbus 2021.
http://www.earth.google.com[February 18, 2021].

® The data was provided by Katie Hampson, http://www.gla.ac.uk/researchinstitutes/bahcm/staff/ katiehampson/,
http://www.katiehampson.com/#intro, and approved for use by the Faculty of Natural and Agricultural Science Research
Ethics committee under the reference NAS33/2019.
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(a) (b)
Figure 4. Google Earth plot of the geographical locations of households (red dots) in Hekwe village
in Tanzania’s Mara province. (a) Point pattern. (b) Distance between points on adjacent sides of a
mountain. The blue line shows the path formed by the Euclidean distance, and the yellow line shows
the path formed by a non-Euclidean norm.

Klette, 2011) is the shortest path that can be traversed between two points in a polygon whilst avoiding
obstacles (i.e. boundaries and holes). In Euclidean geometry, a path from a point a to a point b (Li
and Klette, 2011) , P(a, b), is a finite sequence of vertices vo = a, vy, ..., Vk—1, Vk = b; the path starts
at the point a and proceeds from vertex to vertex until it reaches b. The Euclidean shortest path is
the path between points a and b that has minimum length. The length of path P (a, ) is given by

k-1

[P, b)l = > [1vi = visilla. ©)
i=0

The Euclidean shortest path is determined by using a visibility graph (Li and Klette, 2011). The
visibility graph of a polygon is a graph that connects vertices that are visible to each other. Vertices
are visible to each other if the line segment connecting them does not pass through the polygon edges
or holes. Each edge of the visibility graph can be labelled with the length of the edge connecting
the intervisible vertices of the polygon. A shortest path finding algorithm can then be applied to the
visibility graph to find the Euclidean shortest path (Li and Klette, 2011).

Figure 5 shows the Euclidean shortest path (red line) between two points (green dots) in a convex
polygon, nonconvex polygon and a polygon with holes. The visibility graph (blue lines) of each
polygon is also shown.

An adapted kernel intensity estimator that smooths along the Euclidean shortest path is then
available for use and is expressed as

Ax) = )" Kn(1P(x,x)), (10)
i=1

where |P(x,x;)| is the length of the Euclidean shortest path from point x to point x;, & is the
bandwidth, K}, (x) = h™2K(|P(x,x;)|/h), K(-) is a kernel function. The bias-corrected estimators
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can also be modified and expressed as
.l n
AP ()= —— ) Kn(IP(x.x)D), (11)
qn(x) ; '

for the uniformly corrected kernel estimator, and

n

AN = Z Qh;x')

i=1 !

Kn (1P (x, xi)1), (12)

for the Jones-Diggle corrected kernel estimator, where g, (x) = fW K (|P(x,y)|)dy. In the case of
convex polygons, the Euclidean shortest path distance is equivalent to the Euclidean distance.

The choice of bandwidth is an important consideration in the estimation of the kernel smoothed
intensity function. It is directly responsible for the approximation accuracy. Large bandwidths mask
the structure of the data and over-smooth the kernel estimate, whilst small bandwidths under-smooth
the data and produce estimates with large spikes. A good choice for the bandwidth would be a value
that gives a smooth estimate for the intensity function and that captures the distribution of the data.
Our goal in providing the proposed modified kernel smoothed intensity estimator is to provide an
indication of the appropriateness of the constructed nonconvex window, thus bandwidth selection
is out of the scope of what will be considered in this paper. The bandwidth is kept constant for
comparisons and consistency. The methods detailed in Diggle (1985) and Baddeley et al. (2015) can
be reverted to for the determination of the appropriate bandwidth and the bandwidth effect on the
modified kernel smoothed intensity estimate reserved for future work.

Figure 6 illustrates the effect of swapping out the Euclidean distance for the Euclidean shortest
path distance on a nonconvex window. Here we see that the weight of influence of the given point
diffuses along a connected physical path on the domain. If the Euclidean distance is used as a metric
to characterise the distance between two points, the influence of the point event decays linearly as
the distance from it increases. Consequently, the contribution of the point event to the final intensity
estimate is diffused radially from its centre regulated by the linear distance. This means that the
contribution to the kernel smoothed intensity estimate is higher even when the paths between points
are constrained by the boundary of the window domain.

(a) Convex polygon (b) Nonconvex polygon (c) Polygon with holes

Figure 5. Euclidean shortest path (red line) between two points (green dots) and visibility graph
(blue lines) on three different polygons.
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Figure 6. Illustration of the effect of using the Euclidean distance and the Euclidean shortest path
distance in estimating the kernel smoothed intensity function shown for a single point event. A
Gaussian kernel is used and the influence of a single point plotted on a log scale.

Figure 7 shows the result of applying Equations 5 and 10 to two different point patterns, one on
a convex window and one on a nonconvex window. A Gaussian kernel is used for the intensity
estimation. In the case of the convex window the intensity estimates fitted using Equations 5 and 10
are the same since the Euclidean shortest path distance on this domain will be equal to the Euclidean
distance. This can be seen in the left panel of Figures 7(b) and 7(c). In the right panel of Figure 7(b)
it can be observed that the intensity estimates on the nonconvex window, calculated using Equation
5, disregards the window boundaries and incorrectly allocates higher intensity in areas devoid of
points, whereas in the case of the intensity estimate calculated using Equation 10 shown in the right
panel of Figure 7(c), the intensity estimate is more representative of the pattern with its nonconvex
window. The result of applying the intensity estimator in the case of the Euclidean distance and
Euclidean shortest path distance will follow similarly for the edge-corrected counterparts.

Figure 8 compares the intensity estimates of a point pattern, simulated from a homogeneous
Poisson process with 4 = 0.5, computed using the Jones-Diggle corrected intensity estimator in the
case when the Euclidean and the Euclidean shortest path distances are used. Estimation is done using
a Gaussian kernel and a bandwidth of 3. The pointwise differences illustrated in Figure 8(d) are
computed by subtracting the estimated intensity values in Figure 8(b) from the estimated intensity
values in Figure 8(c). In areas of the window domain in which points are visible to each other
the values of the intensity estimates are relatively similar. Larger differences are observed in the
regions of the window where the presence of the boundary separates point locations that are in close
proximity to each other.
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(c) Intensity estimate using Equation 10

Figure 7. Point pattern plots and intensity estimates on convex (left) and nonconvex (right) windows
fitted using Equations 5 and 10, respectively.

3. Results

We now consider an application to rural household locations in Tanzania with significant altitude
variation. Algorithm 1, presented in Section 2, is used to construct a window for the locations of
houses in an African rural setting. All computations and analysis in this section are done using R
Statistical Software R Core Team (2021). Elevation data were processed using the raster package
(Hijmans, 2022) and point patterns were created using the spatstat package (Baddeley et al., 2015).
Implementation of the algorithm was facilitated by making use of the sp (Pebesma and Bivand, 2005),
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Figure 8. Intensity estimates of simulated point pattern. (a) Point pattern simulated from a homo-
geneous Poisson process with intensity 0.5. (b) Intensity estimate using Equation 7. (c) Intensity
estimate using Equation 12. (d) Pointwise difference between intensity estimate using Equations 7
and 12.

sf (Pebesma, 2018), maptools (Bivand and Lewin-Koh, 2022), and igraph (Csardi and Nepusz, 2006)
packages.

The data used was collected in a census that took place in the Serengeti District, Mara province,
situated in Northern Tanzania’. The census comprises of georeferenced data for 35 947 households
spread across 88 villages. The locations of households are given as latitude and longitude in decimal
degree coordinates. Three villages are considered for this paper, namely Magatini, Majimoto and
Hekwe with households that number 100, 336 and 235 respectively. The sets of locations of
households in the villages form the point patterns. Figure 9 shows plots of the household locations
for each village.

Spatial covariate data of terrain elevation for Tanzania is extracted from a Digital Elevation Model
(DEM). A DEM, represented as a raster grid, is a matrix of cells, with each cell containing a numeric
value representing the elevation (in meters) of the earth’s surface above sea level. The grid cells
represent a square unit of area and each holds a measurement at sampled points, or estimates at
unsampled points, of the terrain elevation value referenced horizontally to a geographic coordinate
system. The spatial covariate data were collected in the Shuttle Radar Topographic Mission (SRTM).

7 The data was provided by Katie Hampson, http://www.gla.ac.uk/researchinstitutes/bahcm/staff/ katichampson/,
http://www.katiehampson.com/#intro, and approved for use by the Faculty of Natural and Agricultural Science Research
Ethics committee under the reference NAS33/2019.
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Figure 9. Household locations for three rural villages in Tanzania’s Mara province.

The SRTM data were sampled over a grid of 1 arc-second by 1 arc-second (approximately 30m by
30m), with linear vertical absolute height error of less than 16m.

The selection of sites for human settlement in a rural setting is typically guided by some attractive
and restrictive traits of the natural landscape. These may include features such as the proximity to
water and food, population density and usable land for agriculture and building. Elevation and slope
are properties of terrain that influence the distribution of environmental phenomena and the nature
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Figure 10. Terrain elevation (left) and terrain slope (right) for villages in Tanzania’s Mara province.

of environmental processes (Ravibabu and Jain, 2008). In rural areas, steep slopes present many
challenges which make it impracticable for building houses. Steep slopes have greater requirements
in terms of structural planning and costs. Flat land is easier and cheaper to build on since less time
and expenses are incurred in getting the land suitable for building. Owing to these reasons, terrain
slope is useful for describing terrain viable for (new) house locations and is used here as a spatial
covariate to characterise land that is suitable for building.

The point occurrence of a household can only be observed in areas that have terrain viable
for building. A viable area for building can be characterised by terrain features observed in the
neighbourhood of the points in the pattern expressed as the average slope. In places not suitable for
building, we expect steeper slopes outside the range of values considered viable for house settlements.
Other considerations such as the ease of access to the property have a large influence in determining
whether the land is usable. For instance wide, flat, areas elevated high above ground and surrounded
by steep ascents are less accessible due to the effort required to move along steep inclines surrounding

the landscape.
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The terrain slope is computed from the elevation data according to Horn (1981) through the terrain
function in the raster package in R (Hijmans, 2022). Gaussian blurring is applied to the computed
terrain slope surface to smooth the surface roughness. A 3 X 3 structuring square kernel is used for
this process. The left and right panels of Figure 10 show the terrain elevation and terrain slope for
the selected villages respectively.

The relative intensity (Baddeley et al., 2015, 2012) as a function of elevation and terrain slope is
calculated for each of the villages as an exploratory step. This is done to confirm the dependence
of household locations on the spatial covariates®. Figure 11 shows the estimated relative intensity
for household locations for each village against terrain elevation and terrain slope. The estimates
in each case are modelled relative to the fitted kernel smoothed intensity estimate with no covariate
effects. A 95% confidence band is shown in the figure and is computed assuming an inhomogeneous
Poisson point process. The estimation was done using the spatstat package Baddeley et al. (2015).
In the figure, we see that the relative intensity values against terrain slope, relative to the fitted
model with no covariate effects, tend to have larger departures from the value of one than the relative
intensity against terrain elevation relative to the fitted model with no covariate effects. This indicates
a disagreement with the fitted model with no covariate effects and suggests a possible dependence
of the household locations on terrain slope. The figures based on terrain elevation have relative
intensity values that are fairly close to one, suggesting less dependence of household locations on
terrain elevation implying that elevation by itself is not an appropriate covariate to employ in the
window selection process.

Using terrain slope as a covariate, we implement the algorithm to the selected villages as follows:

1. The minimum Euclidean distance® between all pairs of points is calculated.

2. A square moving window with side length equal to a multiple of the minimum Euclidean
distance between the observed points is defined.

3. The moving window scans the neighbourhood of each point in the pattern and calculates the
average slope.

4. A range for these values is used as the selection criterion to determine which quadrats should
be included for the window W: a quadrat should be deleted from the window if the average
slope is larger than the average slope of values considered viable, as given by the range derived
from the observed points.

The results of the algorithm for the three villages are shown in the left panel of Figure 12. In each
of the villages, the algorithm filters out areas that are outside the range of values determined by the
average slope in the neighbourhood of observed locations in the pattern. We observe that the areas
identified and excluded by the algorithm in the window construction process are regions with high
terrain slope. Regions with terrain slope values that are in the range of covariate values at observed

8This is not the final estimation of intensity and is only done here to investigate whether the occurrence of a point is dependent
on covariates. The result of this analysis is used to decide which covariate should be used in the window construction process.
The literature based on this analysis is well developed and can be found in Baddeley et al. (2015, 2012).

°The algorithm uses the Euclidean distance to define of the moving window since the use of the shortest path distance may
result in a larger sized moving window.
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grey shaded area shows a 95% confidence band assuming an inhomogeneous Poisson point process.
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Figure 12. Point pattern plot (left) and modified kernel smoothed intensity estimate plot (right)

for villages in Tanzania’s Mara province, on nonconvex windows constructed using terrain slope
covariate data

point locations have been identified by the algorithm as low terrain slope areas. Areas where point
locations have not been observed, but which satisfy the condition for viable land, are included in
the final window construction. Even though there are no realisations of the point process in certain
areas, the algorithm accounts for the possibility of a point occurring there as long as it satisfies the
definition of viable land that is a function of covariate values at observed locations in the pattern.

The right panel of Figure 12 shows the modified kernel smoothed intensity estimate for validation.
A Gaussian kernel is used and the Jones-Diggle bias correction term applied. The bandwidth is
chosen using the criterion defined by Diggle (1985).

4. Discussion

In this paper we considered spatial window selection techniques for point pattern data. The selection
of a spatial window precedes analysis of a point pattern data set and is important since estimation and
prediction are dependent on it. Some methods typically rely on the assumption of a homogeneous
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Poisson process (Moore, 1984; Ripley and Rasson, 1977) and the assumption of a convex domain,
which may not necessarily be true in practice. In real world applications, the distribution of points
may be influenced by some underlying process, expressed as a covariate, resulting in more complex
spatial windows. When covariate information is available, the dependence of the point pattern on
the covariate should be investigated. Parametric models that incorporate this dependence and formal
hypothesis testing procedures, under parametric assumptions, are well developed. Nonparametric
methods have received some attention, albeit minimal, which include extending the kernel smoothed
intensity estimate to allow for covariate effects (Baddeley et al., 2012, 2015).

We presented an algorithm for the selection of the spatial point pattern domain without the
restriction of convexity. The algorithm is applied to village household locations in a rural setting, and
elevation data from a DEM is used. In another case it may be appropriate to include other covariates
that characterise a feature of the landscape that is unsuitable for building new houses, such as areas
with rivers, dams or marshes.

The moving window defined by the algorithm has a side length proportional to the minimum
distance of the point observations; chosen such that the number of points in the area centred at the ith
observed point is one. A drawback of defining the moving window in this way is that if the observed
pattern has points which are very close, it will increase the number of cells that are moved through
and thus the computation time.

During the implementation phase of this paper, we found that using Gaussian blurring on the
computed terrain slope allowed the algorithm to detect all mountain pixels including mountain
peaks. It should however be noted that this does not work if the mountain peak pixels form large
wide ridges. In such a case, the mountain peak pixels can be extracted and eliminated from the DEM
using the algorithm discussed in Sathymoorthy et al. (2007).

Intensity estimation through the process of kernel smoothing is used as a validation technique
to illustrate the effect of the spatial window on intensity estimates. The selected spatial window
directly affects the intensity estimate. If a window is chosen too large, estimation will occur over
areas for which data has not been observed and where it has not been confirmed that a point can
occur. The result is spurious estimation of intensity in void areas where the point occurrence of an
object or event cannot happen. We have shown that, when the movements of points is constrained
to nonconvex window domains, the kernel smoothed intensity estimate that applies kernel weights
along the path formed by the Euclidean distance disregards the window boundaries and holes in
the window domain. The problem of finding a representative distance measure that respects the
window boundaries and avoids holes in the window domain was solved by finding the length of the
Euclidean shortest path. The Euclidean shortest path distance gives a more representative measure
of proximity on a connected path in a nonconvex domain than the Euclidean distance. One drawback
of using the Euclidean shortest path distance is the computation time of the Euclidean shortest path
finding algorithm which increases as the number of vertices of the polygon increases. Optimising
the computation time for this algorithm warrants further investigation.

5. Conclusion

Window selection for spatial data is a complex process, most often requiring expert knowledge if
not obtained using a data-driven approach, such as herein. The common generic approaches used
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are the smallest rectangular bounding window and convex windows due to the use of the Euclidean
distance. A chosen window must however cover the true domain of the sampled spatial data in order
to facilitate modelling. Here we presented a new algorithm for selecting the spatial point pattern
domain without the restriction of convexity. The algorithm works by using a moving window to
search over a larger domain than that of the true window. Using a function or feature of the spatial
covariate in regions at observed points in the pattern, the proposed algorithm constructs a nonconvex
window.

We applied the algorithm in the setting of rural villages in Tanzania’s Mara province and used
remotely sensed data from a DEM as a covariate. The algorithm performed well in detecting and
filtering out areas of high relief and steep slopes, observed characteristics that were seen to make
the occurrence of a household improbable. When the movement between points is constrained to
such a nonconvex window, as depicted in Figure 4, the Euclidean distance will not give a measure
representative of the path between points. Consequently, the Euclidean shortest path distance on the
nonconvex window is a measure more suited for specifying the distance between points represented
by the surface than other measures and thus should be used in the calculation of the kernel smoothed
intensity estimate, and in any further spatial analysis. This paper has validated the algorithm
using intensity estimation, however the changes in other first- and second-order methods should be
investigated in future research as well. This needs to take into account an appropriate metric as
shown in this paper.

In future work the algorithm could be extended to allow for an ensemble of spatial covariate effects.
One could also investigate ways to refine the selection criterion (function of the covariate), used as a
filter to remove regions, and make the identification of this feature more robust and automatic. The
definition of the moving window using a non-Euclidean metric or other window definitions such as
Voronoi cells also warrants further investigation.
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